
This is a repository copy of Development Automation of Real-Time Java: Model-Driven
Transformation and Synthesis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159681/

Version: Accepted Version

Article:

Chang, Wanli orcid.org/0000-0002-4053-8898, Wei, Ran, Zhao, Shuai et al. (3 more
authors) (Accepted: 2020) Development Automation of Real-Time Java: Model-Driven
Transformation and Synthesis. ACM Transactions in Embedded Computing Systems.
ISSN 1558-3465 (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Development Automation of Real-Time Java: Model-Driven
Transformation and Synthesis

WANLI CHANG, Department of Computer Science, University of York, UK

RAN WEI, School of Artificial Intelligence, Dalian University of Technology, China

SHUAI ZHAO, Department of Computer Science, University of York, UK

ANDY WELLINGS, Department of Computer Science, University of York, UK

JIM WOODCOCK, Department of Computer Science, University of York, UK

ALAN BURNS, Department of Computer Science, University of York, UK

Many applications in emerging scenarios, such as autonomous vehicles, intelligent robots, and industrial

automation, are safety-critical with strict timing requirements. However, the development of real-time systems

is error-prone and highly dependent on sophisticated domain expertise, making it a costly process. This paper

utilises the principles of model-driven engineering (MDE) and proposes two methodologies to automate the

development of real-time Java applications. The first one automatically converts standard time-sharing Java

applications to real-time Java applications, using a series of transformations. It is in line with the observed

industrial trend, such as for the big data technology, of redeveloping existing software without the real-time

notion to realise the real-time features. The second one allows users to automatically generate real-time Java

application templates with a light-weight modelling language, which can be used to define the real-time

properties Ð essentially a synthesis process. This paper opens up a new research direction on development

automation of real-time programming languages and inspires many research questions that can be jointly

investigated by the embedded systems, programming languages as well as MDE communities.

CCS Concepts: · Computer systems organization → Real-time systems; · Software and its engineer-

ing → Software notations and tools.

Additional Key Words and Phrases: Real-Time Programming Languages, Real-Time Specification for Java,

Model-Driven Engineering

ACM Reference Format:

Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns. 2020. Development

Automation of Real-Time Java: Model-Driven Transformation and Synthesis. ACM Trans. Embedd. Comput.

Syst. 1, 1, Article 1 (April 2020), 26 pages. https://doi.org/ab.cdef/1234567.7654321

Authors’ addresses: Wanli Chang, wanli.chang@york.ac.uk, Department of Computer Science, University of York, Deramore

Lane, Heslington, York, YO10 5GH, UK; Ran Wei, ranwei@dlut.edu.cn, School of Artificial Intelligence, Dalian University

of Technology, Dalian, China; Shuai Zhao, shuai.zhao@york.ac.uk, Department of Computer Science, University of York,

Deramore Lane, Heslington, York, YO10 5GH, UK; Andy Wellings, andy.wellings@york.ac.uk, Department of Computer

Science, University of York, Deramore Lane, Heslington, York, YO10 5GH, UK; Jim Woodcock, jim.woodcock@york.ac.uk,

Department of Computer Science, University of York, Deramore Lane, Heslington, York, YO10 5GH, UK; Alan Burns,

alan.burns@york.ac.uk, Department of Computer Science, University of York, Deramore Lane, Heslington, York, YO10 5GH,

UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1539-9087/2020/4-ART1 $15.00

https://doi.org/ab.cdef/1234567.7654321

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:2 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

1 INTRODUCTION

Stringent temporal requirements are widely encountered in emerging scenarios like autonomous
vehicles, intelligent robots, and industrial automation that support safety-critical applications. A
real-time system must react to stimuli from the environment (including the passage of physical
time) within time intervals dictated by the environment [10]. In [29], the author classifies system
failure modes into random failures and systematic failures, the latter contributing to hazards that
could lead to incidents with catastrophic consequences. Systematic failures can be further classified
into functional failures and timing failures. It is imperative to ensure that a safety-critical system
imposes correct timing requirements and at the same time, that such requirements are satisfied by
the system’s timing behaviour. Demonstrating real-time properties forms key evidence in certifying
the safety of a system.

Due to the high productivity, portability and relatively low maintenance cost, the Java program-
ming language has received extensive attention in the real-time and safety-critical domains [24, 54].
For instance, Java was adopted in [35] and [34] to reduce distributed computing latency in an
unified cloud-based platform for autonomous vehicles. However, these works have been developed
focusing on functionality with limited consideration of timing and safety guarantee, especially
when the complex perception functions are involved. As mandated by safety regulations, such as
the ISO 26262 for automotive systems and IEC 61508 for functional safety, hard real-time constraints
are essential to guarantee safety of the system (e.g., the vehicle) and its surrounding environment.
Thus, there is a need to push these existing works towards the real-time regime.

There is a tendency that matured Java techniques (which were developed without the notion of
real-time) are re-developed to possess real-time properties (e.g., real-time big data systems [21]
and real-time stream processing techniques [37]). The major reason is that, those simple and
conservative methods (like leaving large safety margins) that were deployed in practice are losing
ground, with ever more complicated functionality, higher timing-related performance requirements
and limited resources on the emerging real-time applications [3, 14ś16].

Despite its popularity, standard Java does not provide real-time related facilities such as thread
scheduling, resource sharing control, memory management, etc., which are essential to achieve
predictability [11] in terms of temporal behaviour. This has motivated the development of the
Real-Time Specification for Java (RTSJ) [8]. RTSJ reserves intrinsic advantages of Java, and provides
plenty of real-time facilities to guarantee system temporal behaviour. However, RTSJ is arguably
harder to use than standard Java due to its rather complex real-time facilities.

Compared to generic time-sharing applications in Java, developing real-time applications using
RTSJ depends greatly on the level of expertise in real-time systems design, and requires thorough
understanding of its specification. Developing with RTSJ is also an error-prone task due to the
complexity of the source code. All of the above make the development of real-time applications a
costly process. In addition, although there have been system analysis and verification techniques [40]
to ensure correctness in the design phase, in terms of both logical and temporal behaviour, it remains
an open and challenging problem of how to eliminate human-related erroneous factors (e.g., caused
by limited understanding of the real-time concepts and insufficient experience with RTSJ facilities).
The safety-critical nature in many real-time application domains amplifies the impact of such
concerns.
Model-driven engineering (MDE) is a contemporary software development paradigm, which

promotes models as first-class artefacts. Based on models, developers are able to perform a series of
model management operations in an automated manner, and eventually produce software artefacts,
such as documentation and working code. This reduces the amount of time required to develop
a system and thus improves the productivity of software engineers, by at least a factor of 10 in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:3

many cases [26, 28]. Adopting MDE also reduces the number of errors throughout the development
process and improves consistency [63]. In addition, MDE can be applied to any domain to achieve
automation, due to the concept of domain-specific modelling and the interoperability provided by
the model management operations, which can be executed in an automated manner.
An initial attempt to automate the development of real-time Java applications based on MDE

has been made in [17], which proposes a toolchain that transfers standard Java applications into
real-time ones by RTSJ. However, transformation is only provided from certain basic elements in
Java (e.g., Java threads to RTSJ threads), and it is not a comprehensive approach for automating the
transformation of the entire run-time environment. In addition, it does not consider the scenario
where a standard Java reference implementation is not available for such a transformation.

In this paper, we apply the principles of MDE in the domain of real-time programming with
Java. We propose two methodologies to automate the development of real-time Java applications.
Note that the term łreal-time Javaž indicates real-time systems (i.e., systems with strict temporal
requirements) that are developed by Java semantics (e.g., RTSJ). The first methodology is able to
automatically convert existing time-sharing Java applications to real-time applications in RTSJ,
through a series of model management operations. The output software is in full compliance to the
RTSJ specification, with dependencies on the RTSJ runtime environment supporting scheduling,
memory management, resource sharing, asynchrony, etc. In comparison to [17], asynchronous
event handling as a major component in Java is included, and asynchronous transfer of control is
enabled to make a comprehensive automated transformation of the entire run-time environment.
The second one allows users to directly generate a RTSJ-compliant application template with a
light-weight modelling language, where users can define customised real-time properties (e.g.,
scheduling parameters and resource sharing methods) for their objects in these RTSJ models.
This is essentially a synthesis process, and especially valuable when a standard Java reference
implementation is not available (e.g., to develop a new RTSJ application). The automation toolchain
and modelling process associated with the proposed methodologies are explained in Sections 4
and 5, respectively.
These two methodologies enable the developers with limited real-time background to develop

real-time applications with high software development efficiency. The output real-time application
is verified automatically by the applied methods via the predefined analysis (e.g., the temporal anal-
ysis). Due to the application of MDE techniques, the productivity and consistency are significantly
improved throughout the development process. In addition, human-related errors (e.g., implemen-
tation mistakes) are eliminated in the automation. The scientific challenges addressed and hidden
issues discovered towards automatic generation of real-time applications with MDE techniques are
also discussed. Furthermore, We identify and describe several future research directions beyond
this paper.

The rest of the paper is organised as follows. Section 2 provides a review of the MDE technology
and its application in the real-time systems development. Section 3 describes the real-time Java,
The proposed Java to RTSJ transformation methodology and its associated toolchain are reported in
Section 4 with detailed transformation approaches. Section 5 presents the proposed RTSJ application
synthesis methodology via a light-weight modelling language, which provides an alternative when
the standard Java source code is not available as input. Section 6 outlines open questions and
possible research directions that are introduced by the proposed methodologies. Finally, Section 7
gives the conclusion.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:4 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

2 MODEL-DRIVEN ENGINEERING

Modelling is an essential part of any system engineering process. Engineers of all disciplines
construct models of the systems they intend to build to capture, test and validate their system
design ideas with other stakeholders before committing to a long and costly production process.
MDE is a software engineering methodology that aims to reduce the complexity of software

systems by promoting models that focus on the essential complexity of systems, as the first-class
artefacts of the software development process. In contrast to traditional software development
methodologies, where models are mainly used for communication and post-mortem documentation
process (e.g. with UML diagrams), in MDE, models are the main living and evolving artefacts from
which concrete software development artefacts can be produced in an analysable and automated
fashion.

MDE was proposed at the time when object-oriented techniques reached a point of exhaustion
[7, 44]. MDE constitutes the latest paradigm shift in software engineering as it raises the level of
abstraction beyond that provided by 3rd generation programming languages. In recent studies,
MDE has been shown to increase the productivity of developers by as much as a factor of 10
[26, 28], and significantly enhance important aspects of the software development process such as
maintainability, consistency and traceability [38].

There are two important aspects of MDE Ð (i) domain-specific modelling, where domain experts
create their own domain-specific modelling languages (DSMLs) to capture the concepts in their
domain (and create instances of their DSMLs to model their systems), without concerns of lower-
level implementation details (such as what programming language and what types of database
to use, etc.); (ii) model management operations, which are programs performed on models in an
automated manner to generate software engineering artefacts. Model management operations
typically include, but are not limited to:

• Text-to-Model Transformation (T2M): to convert text (such as source code) into models based
on parsing rules defined in the transformation;

• Model Validation: to check the well-formedness of models, as well as custom constraints
against the elements in models;

• Model-to-Model Transformation (M2M): to interoperate between different modelling tech-
nologies, where one type of model is transformed into another type;

• Model-to-Text Transformation (M2T): to generate text based on the contents of the model
(e.g., documentation generation and source code generation);

• Model Comparison: to compare different versions of a model to find out what is changed;
• Model Merging: to integrate models defined by different parties but share model elements.

There are a wide range of tools to create domain-specific modelling languages (DSMLs), such as
Eclipse Modeling Framework (EMF) [51], Eclipse-based UML tools [33], MagicDraw [36] and SySML
[52]. Amongst these tools, EMF has been widely adopted for its easy-to-use Ecore metamodel,
with which the developers are able to create their DSMLs in UML-like diagrams, and may use the
created models to generate Java source code. An example Flowchart metamodel created using EMF
is shown in Listing 1. With the Flowchart metamodel, developers are able to create instances of the
metamodel (namely Flowchart models). An example flowchart model is shown in Figure 1.

@namespace(uri="flowchart", prefix="flowchart")

package flowchart;

abstract class NamedElement {

attr String[1] name;

}

class Flowchart extends NamedElement {

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:5

val Node[*] nodes;

val Transition[*] transitions;

}

abstract class Node extends NamedElement {

ref Transition[*]#source outgoing;

ref Transition[*]#target incoming;

}

class Transition extends NamedElement {

ref Node[1]#outgoing source;

ref Node[1]#incoming target;

}

class Action extends Node { }

class Decision extends Node { }

class Subflow extends Flowchart, Node { }

Listing 1. Example Flowchart metamodel

Fig. 1. An example Flowchart model

In EMF, models are XML-based documents which can be consumed by model management
programs. In Listing 2, an example model-to-text transformation program is presented, which can
be used to create HTML documents based on the Flowchart model in Figure 1. In this way, the
development time for these HTML documents can be significantly reduced due to the automation
introduced by the model transformation. It is to be noted that due to the high flexibility of model-
to-text transformation, the target document can be of any type, including source code written in
any programming language.

[% import 'util.eol'; %]

<h1>[%=action.name%]</h1>

[%var nextSteps = action.outgoing.collect(t : Transition | t.target);%]

[% if (not nextSteps.isEmpty()) { %]

Next step

[% } else { %]

finished

[% } %]

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:6 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

Listing 2. Example model-to-text transformation to generate HTML documents

MDE has been applied to a variety of domains with proven benefits. In [31] MDE is applied to
transform model query languages to MySQL queries to reduce the effort and error rates in manually
creating MySQL queries. In [63], MDE is applied to automatically generate fully functional graphical
editors for UML profiles. In [5], MDE is applied to transform natural languages to database query
languages to form complex query using simple natural language grammars. In [57], MDE is
considered to be the foundation of run-time safety assurance of Cyber-Physical Systems.
Developing real-time systems using model-based approaches has been explored in the commu-

nity [27, 55]. However, none of these works study the migration from standard Java to real-time Java.
In addition, many of the past efforts rely on the notion of model-driven architecture, which is an
outdated model based practice and lacks tool support. By applying MDE techniques, as previously
described, real-time system developers can benefit from the productivity gain from MDE, as well
as the consistency and maintainability through automation provided by MDE.

3 REAL-TIME SPECIFICATION FOR JAVA

The Real-Time Specification for Java (RTSJ) was originally developed as Java Special Request
1 under the Java Community Process in 20011. Since then, RTSJ has been well practised in a
wide range of application domains, including automotive, manufacturing control, avionics and
information systems [25, 50, 55, 56]. For instance, RTSJ has been applied to the auto-pilot system of
an unmanned aerial vehicle, which is the first Java-based system that meets all Boeing’s operational
requirements for test flights [1]. Jcoap, implemented using RTSJ, provides real-time communications
for IoT systems [32]. In [20], RTSJ has been applied in a real-time big data processing systems
with FPGA-based hardware acceleration. In industry, JamaicaCAR developed by both Acis and
Perrone Robotics2 provides a lightweight application framework for car headunits and in-vehicle
information systems. In addition, Acis and CLAAS3 present solutions (namely Jamaica-IoT) for
digital factory and manufacturing, which enables deployment and operation of data analytics and
control logic at the network’s edge.
The RTSJ is designed to support both hard and soft real-time applications. This specification

consists of two major components Ð (i) extensions from the Java programming language; and (ii)
modifications on the semantics of the standard Java Virtual Machines (JVM) [8]. In this section, we
briefly review the programming specification of RTSJ, together with its reference implementations
as well as the supporting Virtual Machines (VM). Detailed descriptions of each RTSJ facility and
the application examples can be found in [10] and [58].

3.1 Programming Specification

There are several major extensions to the standard Java language that are provided in the pack-
age javax.realtime, including task scheduling and dispatching, memory management, shared
resource control, asynchronous event handling, etc.

One major facility provided in RTSJ isjavax.RealtimeThread, which takes a set of scheduling-
related parameters (e.g., priority, period and deadline) specifying a real-time thread’s release,
execution and timing properties. Three types of threads are derived from this entity: periodic, spo-
radic and aperiodic, depending on the input release parameter assigned to the thread’s constructor

1https://jcp.org/en/jsr/detail?id=1
2https://www.perronerobotics.com
3https://www.claas.ca

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:7

method. In addition, a set of asynchronous event handlers are provided to allow user-defined actions
in the cases of deadline miss or budge overrun. By default, the real-time threads are scheduled by a
preemptive fixed-priority scheduler, but user-defined scheduling and dispatching policies are also
possible.
Another important extension is the real-time memory management model. In RTSJ, a set of

memory management facilities are provided in RTSJ (e.g.,ImmortalMemory and ScopedMemory) to
allow the construction of self-defined memory models. However, RTSJ imposes a set of memory
accessing rules that restrict memory-accessing behaviours to prevent dangling reference (i.e., refer-
ences that point to objects in reclaimed memory blocks). With memory management model defined,
the standard Java garbage collector is no longer required so that its unpredictable interference is
avoided at run-time. Later, a real-time garbage collector is provided by JamaicaVM (see Section 3.2),
which allows the use of Heap memory and eases the development of RTSJ applications by avoiding
building complex memory models.
In the presence of shared objects, RTSJ provides several resource sharing policies like priority

Inheritance [47] and Priority Ceiling Protocol (PCP) [41]. Among these protocols, the PCP yields
minimal blocking time (i.e., one critical section only) and guarantee dead-lock free resource accesses.
In addition, asynchrony is well handled via a set of asynchronous event handling facilities. Finally, a
set of time-related facilities (e.g., real-time system clock and HighResolutionTimewith granularity
of nanoseconds) are supported.

3.2 RTSJ Implementations and VMs

RTSJ was firstly implemented by TimeSys4. This implementation (i.e., a RTSJ-compliant VM and
a RTSJ reference implementation) supports all versions of Linux. Later, Aicas GmbH5 provided a
different RTSJ implementation in their JamaicaVM, supporting a wide range of real-time operating
systems, such as Linux, VxWorks and QNX. In addition, there are also other virtual machines which
are compliant with RTSJ, e.g., jRate6, OVM [4] and Aero JVM7.
Among these VMs, JamaicaVM provides hard real-time guarantees and is the mostly adopted

VM for executing RTSJ applications. Currently, JamaicaVM supports RTSJ V1.0.2 and is working
towards RTSJ 2.0 implementation based on Java 8. In particular, a real-time Garbage Collector
(GC) is supported by JamaicaVM [48]. This GC executes each time when threads issues requests to
allocate an object in a preemptable fashion, and will not interrupt application threads. In JamaicaVM
manual8, an analytical approach for measuring worst-case execution time in the presence of the
real-time garbage collector is provided.
In total, thirty-eight priority levels are supported by this VM, where priority levels 11-38 are

designated for real-time threads (through the class RealtimeThread) and priority levels 1-10 are
designated to standard Java threads. That means JamaicaVM is also compliant with the standard
non real-time threads. In this work, we assume that each thread in the given application will be
mapped to a real-time thread, and each real-time thread has a unique priority.

3.3 Targeted RTSJ Run-Time Environment

In testing the feasibility of our approach, we assume a simple but widely applied real-time system
model. Standard Java applications in uniprocessor systems are transformed to real-time applications,
where Java threads can be converted to either periodic or aperiodic real-time threads, with their

4https://www.timesys.com
5https://www.aicas.com/cms/en
6http://jrate.sourceforge.net/
7http://www.aero-project.org
8https://www.aicas.com/cms/sites/default/files/JamaicaVM-8.2-manual-web.pdf

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:8 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

Fig. 2. Time-sharing applications to real-time applications migration

release parameters pre-defined in the application requirements. The Fixed-Priority Preemptive
Scheduling (FPPS) policy is taken for coordinating executions of real-time threads due to its being
widely applied and well-supported exact schedulability test. The scheduling policy is set by the
underlying real-time operating system (e.g., RTEMS [43]) and not configurable by the proposed
toolchain. Other scheduling policies can be used, as long as they have schedulability tests in place,
such as the Earliest Deadline First scheduling with the Processor Demand Analysis [12].

In addition, threads can access shared objects, but they must do so with the PCP applied, which
is an optimal resource sharing solution in uni-processor systems (i.e., deadlock-free and minimised
blocking time) [18]. JamaicaVM v8.5 (with RTSJ v1.0.2 and Java 1.5) is used as the underlying virtual
machine. Finally, Memory management is handled by the real-time GC provided by JamaicaVM.

4 JAVA TO REAL-TIME JAVA TRANSFORMATION

The structure of our first proposed methodology is shown in Figure 2. The first step in our approach
is the reverse engineering of the Java programs into models. In order to do this, we use a Text-to-
Model transformation to convert the source code of standard Java applications (i.e. without real-time
properties) into Java models. In addition to the Java source code, we also take a list of real-time
application requirements that provide necessary information, e.g., the worst-case execution time
(WCET), period, priority, and deadline of each thread, for building a real-time system. To ensure the
temporal requirements, the WCET of each task provided by the users should be either measured or
analysed considering the underlying hardware.
With the two inputs, a Java model that conforms to the Java metamodel is produced. With

the Java model, there is a need to perform a model validation to check if the given application is
capable to satisfy all the temporal requirement after being transformed to a real-time application.
If the model validation passes (the response time of each real-time thread is equal to or less than
its deadline), it means that the to be transformed application is schedulable. We then perform a
model-to-model transformation to transform the Java model to the target Java model (named Java
Model′) which uses RTSJ Java constructs. This transformation is a endogenous transformation
- that the target model also conforms to the Java Metamodel (for RTSJ does not introduce new
language syntax in Java). The transformation is derived based on our knowledge in RTSJ and our
defined mappings from standard Java classes to RTSJ classes. The target Java Model′ is then used
as an input for a model-to-text transformation, which is responsible to transform Java models back
to Java source code.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:9

Fig. 3. Discovering Java a model from Java source code

With the proposed approach, applications developed originally in standard Java can be automati-
cally converted to real-time applications based on RTSJ, and are directly executable on JamaicaVM.
The whole conversion process is conducted without intervention of software developers, and
hence, eliminates human-related erroneous factors. In addition, the proposed methodology removes
the need of expertise in the real-time systems design and necessary knowledge of any targeted
real-time programming specification. Consequently, the cost for real-time systems development
can be significantly reduced with the high productivity brought by MDE. In the following sections,
we will discuss the transformations involved in the approach individually.

4.1 Reverse Engineering Transformation (T2M)

The reverse engineering transformation is the very first transformation in the tool chain. Reverse
engineering transformation is also normally referred to as Model Discovery, in the sense that a
model is discovered from the source code. There are a number of available tools and approaches
that are capable of performing this task. For example, JaMopp [23], Spoon [39] and MoDisco [9]
are all feasible tools to perform reverse engineering from Java. It is to be noted that in this step,
there is a strict requirement for model discovery in our proposed approach, that there shall be no
information loss during the model discovery. This is typically due to the fact that the discovered
model will be analysed, changed and then transformed back to the source code. If there is any
information loss, the eventual transformed source code is not complete.
Our proposed reverse engineering transformation is presented in Figure 3. The Java source

code and the real-time application requirements (we assume here that this would be a Java class
with static fields) are firstly parsed into an Abstract Syntax Tree (AST), which is a very low-level
representation model of the Java source code. The problem with ASTs is that they are difficult to
navigate and analyse. Therefore, an AST simplification is performed to produce the discovered Java
model that conforms to the Java Metamodel. The AST simplification is a reversible procedure, so
that even if the discovered Java model is changed, the inverse of the AST simplification is still able
to produce an AST that preserves all the original information (with changes applied to the AST).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:10 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

4.2 Model Validation

With the discovered Java model, a model validation is performed to check whether the given
application can meet its timing constraints defined in its real-time application requirements. The
validation process first checks whether the given requirements are consistent with the input Java
source code (e.g., whether threads’ ids in the application are consistent with the ones given by the
requirement). The real-time application requirements provide full thread releasing and scheduling
information for each thread that needs to be transferred to real-time threads.
Then (assuming threads defined in the requirements are consistent with the source code), an

analysis is performed to verify the timing properties of each real-time thread using the Response
Time Analysis (RTA) discussed in [2]. For a given task τi in the targeted system, the worst-case
response time Ri is then calculated by adding the task WCET Ci , the blocking time Bi and the
interference time due to preemptions from higher-priority tasks Ii :

Ri = Ci + Bi + Ii

= Ci + Bi +
∑

j ∈hp(i)

⌈

Ri

Tj

⌉

Cj
(1)

where ⌈·⌉ denotes the ceiling function and hp(i) returns the set of tasks that have higher priorities
than τi ’s priority (denoted as Pri(τi) in the following equations).

In the presence of shared resources, Ci is further extended to include the time that τi spends on
executing with each shared resources, as shown in (2).

Ci =WCETi +
∑

rk ∈F (τi)

N k
i c

k (2)

whereWCETi denotes the WCET of τi without accessing any shared resources, F (τi) gives a set
of resources accessed by τi , c

k gives the WCET of a given resource k and N k
i returns the number

of access τi can issue to resource k in one release. It is to be noted that, as described in [49], the
overhead cost by the real-time GC for allocating objects are included into the WCET of each thread,
which should be pre-defined in the application requirements based on memory usage of each thread
(i.e., keyword new).

The blocking time Bi indicates the time period that task τi is prevented from executing due to
either non-preemptive sections from the underlying operating system or a low-priority thread that
accesses a shared resource with a ceiling priority higher than Pri(τi).

Bi =max{ĉi , b̂} (3)

in which ĉi denotes blocking due to resource access and b̂ gives the longest non-preemptive section
period in the underlying operating system. Finally, ĉi is computed by (4) with PCP assumed. It is to

be noted that the value of b̂ depends on the operating system and underlying hardware, and should
be measured and reported in the input application requirements.

ĉi = max{ck |N k
lp > 0 ∧ Pri(rk) ≥ Pri(τi)} (4)

This equation finds all resources that are accessed by tasks with a lower priority but have a higher
ceiling priority than Pri(τi), and returns the longest critical section among these resources as the
worst-case blocking time for τi .

With the above analysis, the worst-case response time for each release of the application threads
is bounded. If the system validation yields a schedulable system with given threads’ scheduling
parameters in the requirement, the proposed methodology processed to the next step, where it
transfers the standard Java model to the real-time Java model based on the pre-generated metamodel.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:11

Fig. 4. Example transformation rule Thread2RealtimeThread

However, the current version of model validation heavily depends on system requirement for
pre-measured computation cost of each thread and shared resource. In the future, mature worst-case
execution time measuring techniques can be integrated into the proposed toolchain for a higher
degree of automation.

4.3 RTSJ Model Transformation

After the RTA (model validation) test passes, in the next step, a model-to-model transformation
(i.e., block M2M in Figure 2) is performed to migrate the standard Java model to a RTSJ Java model.
It is to be noted that this transformation is endogenous in the sense that RTSJ does not introduce
new Java abstract syntax, therefore the both the source model and the target model conform to
the same Java Metamodel. This migration is performed based on a set of transformation rules,
which specify the mapping from standard Java facilities to RTSJ facilities provided in package
javax.realtime. In this section, we elaborate on two major Java to RTSJ transformations (i.e.,
threads and synchronisation) and then briefly describe the transformation rules to resolve RTSJ
run-time environment dependencies.

4.3.1 Standard Threads to RTSJ Threads.

Onemajor difference between standard Java and RTSJ is the schedulable entities (i.e., threads), where
Java uses java.lang.Threadwhile RTSJ applications relies on javax.realtime.RealtimeThread.
Figure 4 shows an example transformation rule (named Thread2RealtimeThread), which transforms
a standard Java thread into a real-time thread.

On the left side of the figure is the source model of the transformation. The source model contains
a number of standard Java threads that are extracted from the input source code. The transformation
rule maps each standard Java thread to a real-time thread in RTSJ, as seen in the target model.
In the source model, each thread is associated with a explicitly defined java.lang.Runnable

object, which contains all functionality implementations that should be executed by this thread.
This Runnable object will be passed directly into the run() method9 of the real-time thread
constructed during this transformation phase. In addition, each standard Java thread may also
define an optional faultRecovery()method, which contains recovery operations to be performed
in situations where the threadmisses its deadline. The transformation rule transforms the code in the

9This Runnable object does not replace the Runnable of the real-time thread. It is passed into the real-time thread and

executed by invoking its run() method for the execution of the logic implementation. The run() method of a real-time

thread may contain extra implementation for realising its activation behaviours.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:12 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

faultRecovery() method into RTSJ dedicated handlers, in this instance, the transformation creates
a DeadlineMissHandler based on javax.realtime.AsyncEventHandler. If such a method is not
provided, an immediate system shutdown is triggered in case of any deadline misses.
Then, the transformation rule creates RTSJ parameters such as ReleaseParameter and Schedul-

ingParameter to apply timing constraints. As defined in the previous section, the source model also
contains a set of real-time application requirements, which is defined in the form of a Java class
with static fields. In real-time application requirements, a set of release and scheduling parameters
specifying the execution eligibility and temporal proprieties of each thread should be defined by
the users, as shown in Figure 4. Note that a period parameter is mandated for periodic threads, but
should be omitted by those aperiodic threads to facilitate the identification of various activation
pattern of real-time threads. Listing 3 provides examples of real-time application requirements for
a periodic thread and an aperiodic thread, and IDs of their corresponding standard Java threads.

// Periodic thread pt1

public static final String pt1_jthread = "java_thread1";

public static final String pt1_id = "pt1";

public static final int pt1_period = 250;

public static final int pt1_cost = 200;

public static final int pt1_deadline = 250;

public static final int pt1_priority = 20;

// Aperiodic thread at1

public static final String at1_jthread = "java_thread2";

public static final String at1_id = "at1";

public static final int at1_cost = 30;

public static final int at1_deadline = 50;

public static final int at1_priority = 25;

Listing 3. Example application requirements of real-time threads in RTSJ

During the transformation, the priorities of the threads are constructed as javax.realime.Prio-
rityParameter objects and other parameters (e.g., cost, deadline) are constructed as javax.realti-
me.ReleaseParameters objects, as shown in Figure 4. Depending on whether a given thread
is associated with a period, the release parameter objects are further transformed into either
PeriodicParameters or AperiodicParameters10 objects provided in java.realtime.package.
In addition, it is to be noted that the DeadlineMissHandler transformed from the pre-defined
faultRecovery() method is also integrated into the ReleaseParameters object, as defined by
the RTSJ specification.
With above real-time thread parameters and logic constructed, a standard Java thread can be

transformed into a RTSJ thread by passing these parameter objects and the Runnable object into
the construction method, where the Runnable object is called inside the run() method. For periodic
threads, method waitForNextPeriod() is added into its run() method to achieve a periodic release
behaviour. Listing 4 gives the implementation of the transformed periodic real-time thread pt1,
where the parameters given in the application requirement (represented as the SystemSpec.java
file) are assigned to the periodic thread, and the Runnable object of the corresponding standard
Java thread is assigned to the generated PeriodicThread object. The helper method getThread()
is pre-defined by the proposed methodology and is generated by the tool-chain during model

10Classes PeriodicParameters and AperiodicParameters are defined by RTSJ as the sub-classes of ReleaseParametersin

package javax.realtime.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:13

transformation. In addition, the object deadMissHandler is also generated during model transfor-
mation, and takes the faultRecovery() method defined in the input source code as its Runnable
parameter.

Finally, note that as we assume the presence of a real-time GC, real-time threads are allowed to
execute in Heap memory so that memory area parameters associated to the real-time threads are set
as empty, which by default are executed in Heap by JamaicaVM. In addition, it is to be noted that we
used a hybrid (i.e. imperative and declarative) transformation approach. The transformation rule in
Figure 4 is one of the rules we define for the entire transformation. There are also rule dependencies,
for example, we also define a faultRecovery2DeadlineMissHandler transformation rule, this rule
should be called within our Thread2RealtimeThread transformation rule. This execution behaviour is
typical for hybrid transformations and we recommend using the Epsilon Transformation Language
[30] to write and execute the transformation. Finally, it is noted that we are not providing any
concrete example of the source code of the standard Java application, as a standard Java thread can
be implemented by various approaches and identified during the T2M transformation regardless of
its actual implementation, where its runnable() object will be passed directly into the generated
real-time thread for execution.

public class RTPeriodicThread extends RealtimeThread {

public RTPeriodicThread(String name, int priority, int period, int cost, int deadline,

Runnable logic, AsyncEventHandler deadlineMissHandler) {

PriorityParameters priorityP = new PriorityParameters(priority)

PeriodicParameters releaseP = new PeriodicParameters(clock.getTime(), new

RelativeTime(period, 0), new RelativeTime(cost, 0), new

RelativeTime(deadline, 0), null, deadlineMissHandler);

super(priorityP, releaseP, null, null, null);

this.setName(name);

}

@Override

public void run() {

while (!finished) {

logic.run();

waitForNextPeriod();

}

}

}

...

RTPeriodicThread pt1 = new RTPeriodicThread(SystemSpec.pt1_id, SystemSpec.pt1_priority,

SystemSpec.pt1_period, SystemSpec.pt1_cost, SystemSpec.pt1_deadline,

Utility.getThread(SystemSpec.pt1_jthread));

Listing 4. Code example of a transformed periodic thread

4.3.2 Java Synchronisation to Real-Time Resource Control.

Besides thread scheduling, another major difference between standard Java application and RTSJ is
thread synchronisation, where in RTSJ each shared resource must be protected by proper resource
sharing protocols (i.e., javax.realtime.MonitorControl) to ensure bounded resource accessing
time for each resource access. As described in Section 3.3, the PCP is applied in the proposed
toolchain for managing shared resources in transformed RTSJ appellations. This section describes
the transformation rule Lock2RealtimeLock that transforms standard Java synchronisation to RTSJ

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:14 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

PCP facility11. In the current version of the proposed toolchain, we assume that each thread can
only access one resource at a time.
To perform proper transformation, we define a set of rules towards thread synchronisation in

the input source code and real-time application requirements, as described below.

• The user should be aware of all shared objects (i.e., ones that are read and written by more
than one threads) and the threads that access those shared objects in the input Java source
code.

• Each shared resource must be implemented as a class with the required operations imple-
menting its methods properly protected by the standard Java synchronisation approach, i.e.,
via synchronised coding blocks and methods.

• The use of wait(), notify() and notifyAll() facilities in Standard Java are not allowed
for thread synchronisation i.e., threads are not self suspended for accessing shared resources.

• For a given shared resource, say rk , the user should provide its ceiling priority (i.e., the
maximum priority of threads that access rk) in the real-time application requirements.

In Listing 5, we provide an example of a valid input source code of a shared object class
SharedResource and the associated application requirements conforming to the rules defined
above.

// real-time application requirements

public static final String sr1_id = "sr1";

public static final int sr1_ceiling = 25;

...

// input source code

class SharedResource{

String id;

public synchronised void access(){

critical_section;

}

}

SharedResource sr1 = new SharedResource(sr1_id);

Listing 5. Application requirements and input source code of a shared resource in standard Java

With above rules defined, the standard Java synchronisation approach can be effectively trans-
formed to their real-time resource sharing counterparts. First, in the source Java model generated in
Section 4.1 (i.e., the model that extracts all objects in the input source code) , we are able to identify
all shared objects (i.e., classes) and required operations by detecting the synchronised keyword.
Then, for each object created based on these classes, its associated ceiling priority can be found in
the application requirements. With the above information, RTSJ implementation can be generated
by adding a PriorityCeilingEmulation instance to that object, as given in Listing 6.

The transformation first generates a PriorityCeilingEmulation instance for the shared object
with its ceiling priority assigned based on the requirements. Then, the control policy for this shared
resource is set to this PCP instance so that each thread that accesses this object will raise its priority,
and later on restore its original priority once the lock is released. This is performed automatically
by JamaicaVM, assuming the transformation is conducted successfully.

11The PCP in RTSJ is implemented by class PriorityCeilingEmulation in package javax.realtime by extending class

MonitorControl.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:15

Fig. 5. Example transformation rule Thread2AsyncEventHandler

// Transformed RTSJ implementation

SharedResource sr1 = new SharedResource(sr1_id);

// With PCP enforced.

PriorityCeilingEmulation pcp = PriorityCeilingEmulation.instance(sr1_ceiling);

MonitorControl.setMonitorControl(sr1, pcp);

Listing 6. An example of RTSJ synchronisation with PCP applied

Finally, note that the priority ceiling priorities of shared objects must be correctly assigned in the
real-time application requirements. Otherwise (e.g., the ceiling is lower than that of the accessing
thread), a CeilingViolationException will be thrown by JamaicaVM.

4.3.3 Supporting Asynchronous Event Handling.

In most embedded systems, applications should be aware of environmental objects (e.g., sensors
and controllers in robots, engines and vehicles), and then react to environmental changes for the
assurance of the correctness of system execution. For example, in a hospital intensive care unit,
the system must react if the łpanicž button is pressed, and then send a paging information to the
patient’s duty doctor for immediate health care [58]. In such a system, the action łpressing the panic
buttonž is an asynchronous event and can be triggered at any time from the external environment.
The interactions between the application and environmental objects could be realised with either
time-triggered or event triggered approaches. The time-triggered approach can be realised by
periodically-released real-time threads in RTSJ e.g., a periodic thread that keeps monitoring the
status of the łpanicž button, and are supported by the proposed methodology in Sections 4.3.1
and 4.3.2. In contrast, the event-triggered programming provides a more flexible programming
style, where threads are triggered by the occurrence of external events via interrupts. In addition,
the event-triggered approach avoids additional overheads for maintaining many threads (e.g., using
one thread for each environmental object), and thus, reduces the efforts for thread communication
and synchronisation.
As described in Section 4.3.1, in RTSJ, Asynchronous Event Handlers (AEHs) are supported

to handle situations where tasks miss their deadlines, which share the same philosophy as the
Asynchronous Events (AEs) triggered by the external environment. Similarly, external events
are also handled by AEHs in RTSJ specification. To support event-triggered programming in
the proposed methodology, transformation rule Thread2AsyncEventHandler is defined to provide

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:16 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

automated transformation from standard Java threads to AsyncEventHandler objects in RTSJ, as
illustrated by Figure 5.

For each external event, it is bind to an AsyncEvent object in RTSJ, which in turn, is associated
with an AsyncEventHandler object. To transform the RTSJ event handling facility for one external
event from the standard Java application, the handling thread (along with its Runnable object
and the faultRecovery() method) should be provided in the input source code. In addition,
the reference of the external event, the scheduling and release parameters for the transformed
AsyncEventHandler object must be specified in the application requirement. Similar with the
Thread2RealtimeThread transformation, the Runnable object and the faultRecovery() method
of the standard Java thread are mapped to the Runnable object and the DeadlineMissHandler
respectively in the generated AsyncEventHandler object. In addition, the scheduling and release
parameters given in the application requirement are assigned to the generated AEH. Note that
all AEHs are released aperiodically in the proposed methodology. Then, an AsyncEvent object is
created to represent the external event via binding the event’s identifier given by the application
requirement. Finally, the AEH is registered to the AE so that it is executed each time the associated
event is fired.

// Happening of External Event

public static final String ee1_id = "ee1";

// Asynchronous Event Handler

public static final String aeh1_jthread = "thread3";

public static final String aeh1_id = "aeh1";

public static final int aeh1_cost = 10;

public static final int aeh1_deadline = 250;

public static final int aeh1_priority = 10;

// Asynchronous Event

public static final String ae1_id = "ae1";

public static final String ae1_binding = ee1_id;

public static final String ae1_handling = aeh1_id;

Listing 7. Example real-time application requirements of an asynchronous event handling facility

Listing 7 provides an example application specification of asynchronous event handling for an
external event, which contains the identifier of the external event, the identifier of the handling
thread in the input source code, and parameters of the associated AE and its handler. For each
asynchronous event, the references of the external objects and its handler are given for the binding.
Note that as defined by RTSJ specification, the happening of an external event is modelled by a
String object, which gives the handle of the external object.

public class RTAsyncEventHandler extends AsyncEventHandler {

public RTAsyncEventHandler(String name, int priority, int cost, int deadline, Runnable

logic, AsyncEventHandler deadlineMissHandler) {

PriorityParameters priorityP = new PriorityParameters(priority);

AperiodicParameters releaseP = new AperiodicParameters(new RelativeTime(cost,

0), new RelativeTime(deadline, 0), deadlineMissHandler);

super(priorityP, releaseP, null, null, null, false);

this.setName(name);

}

@Override

public void handleAsyncEvent() {

logic.run();

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:17

}

}

...

RTAsyncEventHandler aeh1 = new RTAsyncEventHandler(SystemSpec.aeh1_id,

SystemSpec.aeh1_priority, SystemSpec.aeh1_cost, SystemSpec.aeh1_deadline,

Utility.getThread(SystemSpec.aeh1_jthread));

RTAsyncEvent ae1 = new RTAsyncEvent(SystemSpec.ae1_id);

ae1.setHandler(Utility.getHandler(SystemSpec.aeh1_id));

ae1.bindTo(SystemSpec.ae1_binding);

Listing 8. Output implementation of the RTSJ asynchronous event handling facility

With the transformation rule Thread2AsyncEventHandler applied, the corresponding AsynEvent
and AsynEventHandler objects conform to RTSJ can be generated, as given in Listing 8. The
standard Java thread in the input source code is passed to the constructor of aeh1 object, and
its run() method is executed in the handleAsyncEvent() method of the RTAsyncEventHandler
class. In addition, its name, scheduling and aperiodic release parameter are also assigned during the
construction of the AEH objects, based on the given application requirement. Then, the AsyncEvent
object is generated, which sets the aeh1 object as its handler and is bind to the external event
ae1_binding. After the binding, this asynchronous event handling facility is activated, where aeh1
will be executed each time when the event occurs. Finally, as the JamacaVM and its real-time GC is
applied, the objects of external environment happening (e.g., a sensor monitor object) are created
in the Java Heap memory space. Similarly, their associated events and handlers are also created in
this memory area, and thus, the memory-related parameters of the generated AEHs are set to be
empty and the noHeap flag is set to false.

Theoretically, each AE can be associated with more than one AEHs and vice versa. However, for
simplicity, the current version of the proposed methodology defines that one AE is designated to one
AEH only, but allows that each AEH can be associated with more than one AEs (e.g., one deadline-
miss handler can be associated with the deadline-miss events of multiple schedulable objects).
When an external event is fired, its associated AE is stored into a queue and will be handled by a
server thread. The AEs are ordered by the priories of their associated handlers. The server thread
takes AEs from the queue individually according to the priority order, and executes their associated
AEHs. The priority of the server thread is dynamic and reflects the priority of the executing AEH.
As the current version of the proposed methodology aims at the uni-processor systems, this single
server thread execution model is sufficient. With such a single server thread model, there is no
need for explicit communication facility between the handlers as they simply read and write from
shared objects one by one with no contention. However, as stated in [19], this execution model
can raise the issue of unbounded priority inversion [58], where a low priority executing handler
prevents the execution of a high priority queuing handler, and in turn, be preempted by a real-time
thread with an intermediate priority. To bound the priority inversion, the proposed method defines
that the priority of the server thread should be the maximum value between the priority of the
handler it is currently executing and the priority of the handler at the front of the event handler
queue, assuming the fixed-priority scheduling scheme.

Further, as described in [19], a multiple server threads execution model (with one or more handler
queues) is more flexible and is desirable in multiprocessor real-time systems. However, using such
a event handing model requires additional facilities for handler allocation and synchronisation.
Extensions towards the asynchronous event handling model is a part of the future research topic
given in Section 6, where the proposed methodology can be extended for multiprocessor real-time
systems.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:18 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

4.3.4 Supporting Asynchronous Transfer of Control.

The last major RTSJ facility supported by our proposed methodology is the Asynchronous Transfer
of Control (ATC) facility, where the point of execution of a schedulable object (e.g., a real-time
thread or an asynchronous event handier) can be changed by another schedulable object [58].
ATC is a common feature supported by many real-time programming language specifications (e.g.,
Ada), and provides an approach to enable immediate response of schedulable objects to certain
conditions, such as recovery from a system error or execution mode changes. For instance, if
a real-time thread detects a major system fault, it must inform other real-time threads quickly
and safely so that immediate recovery actions can be performed collectively by these schedulable
objects in a coordinated fashion.

In standard Java applications, asynchronous thread control is commonly realised by thread inter-
ruption via calling interrupt()method explicitly on the target thread. Then, an InterruptedExce
ption can be thrown by the target thread, and will be handled in the designated catch clause.
However, this approach cannot guarantee immediate attention of the target threads when the
interruption is fired. With standard Java exception handling model, interruptions can be delayed
if the target threads are not blocked in interruptible methods (i.e., join(), sleep() and wait()

methods). Therefore, a standard Java thread has to check for its interruption status periodically
via the isInterrupted() method, and hence, can incur the delay of the interval of the checking
period.
RTSJ achieves the ATC feature via extending the standard Java exception handling model and

thread interruption facility, where the exception łAsynchronously Interrupted Exception" (AIE)
is provided to interrupt real-time schedulable objects. In RTSJ, invocation to the interrupt()

method of a schedulable object automatically throws the system generic AIE, rather than the
InterruptedException in Standard Java. To support asynchronous interruption, the specification
requires the that all methods that allow the delivery of an AIE (i.e., can be interrupted) must
place this exception explicitly in their throw list. Such methods are termed as the asynchronously
interruptible methods (i.e., AI-methods). When a schedulable object (e.g., a real-time thread) is
interrupted (by calling interrupt()method) while executing in an AI-method, an AIE is generated
by the underlying VM and is thrown immediately. In contrast, methods that do not throw AIE or
with the synchronized keyword are termed as ACT-deferred methods. In such methods, an AIE is
still generated but is held pending until the thread enters into a AI-method. By doing so, methods
without ATC concern or access shared resources can still execute safely in the presence of an AIE.

However, as defined in RTSJ specification, AIE can only be handled by ATC-deferred methods.
This is to prevent the situation where the handler is interrupted by another AIE. In addition, even
if the AIE is caught and handled, it will still keep propagating until clear() method is called. This
method tests whether the AIE is pending on the currently-executing schedulable object. If so, the
AIE is set to non-pending and will stop propagation. Otherwise, the AIE can be left non-handled
and be delivered to the calling method. With ATC applied, the output RTSJ application removes
the need for polling the thread’s interruption status periodically and can guarantee immediate
response of the interrupted schedulable objects.
As the ATC facility is mainly supported by the underlying VM (e.g., the JamaicaVM), limited

efforts are requirement to achieve the transformation from standard Java thread interruption to
RTSJ ATC. Transformation rule Interruption2ATC is defined by the proposed methodology for this
transformation. Firstly, during the T2M transformation phase (recall Figure 2), the interruption
delivery methods and the handling method in the standard Java input source code can be identified
via examining the throws InterruptedException clause and the catch clause respectively. Then,
the InterruptedException is replaced by the AsynchronouslyInterruptedException in these
methods during the M2M transformation phase. In addition, the clear() method is added into the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:19

Fig. 6. Transformation rules to resolve run-time environment dependencies

catch clause of the handling methods to test whether the caught AIE is the one that is pending on
the current method. If so, the handling code in the input source code will be executed. Otherwise,
no actions are required and the AIE will keep propagating until it is caught by the pending method.
This checking is done automatically by the underlying JamaicaVM.

Finally, note that in the current version of proposed methodology, a method that both throws
and catches an AIE is not allowed and will results into an invalid Java Model during the Model
Validation phase i.e., nested ATC model is not supported. Extensions towards supporting more
flexible ATC model (e.g., multiple AIEs and nested ATC model) in the proposed Java to RTSJ
automation methodology is listed as a possible future research topic in Section 6.

4.3.5 Transformation Rules for Run-Time Environment Dependencies.

Besides the transformation rules discussed above, RTSJ applications require a dedicated run-time
Environment in order to be executed with real-time properties. Therefore, there is a need to execute
a transformation to convert standard Java run-time Environment dependencies into RTSJ run-time
Environment dependencies.
Figure 6 illustrates the transformation rule that converts these run-time environment depen-

dencies. As shown in the figure, a typical standard Java run-time environment is equipped with
a non-real-time garbage collector, a system clock with granularity in milliseconds, utility timers,
standard Java exceptions. In addition, standard Java threads are mapped to native level threads and
are scheduled by the underlying operating system.
In order for the output application with the RTSJ facilities generated in the above sections

to execute successfully and to satisfy the application’s timing requirements, a RTSJ run-time
environment is required. The right side of Figure 6 shows an example of JamaicaVM-based RTSJ run-
time environment. This JaimaicaJM RTSJ run-time is equipped with a dedicated real-time garbage
collector running in the Heap memory, a real-time wall clock, finer-grained HighResolutionTime
objects with granularity in nanoseconds and additional RTSJ related exceptions and a Fixed Priority

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:20 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

preemptive scheduler mechanisms. The mappings from Standard Java run-time environment to
RTSJ run-time environment is drawn in Figure 6 using dashed lines.

Among the facilities considered in the targeted RTSJ run-time environment, the real-time garbage
collector is enabled and the fixed priority scheduler is applied as default by JaimaicaVM. The stan-
dard Java clock is transformed to javax.realtime.Clock in javax.realtime package so that the
invocations to obtain the current system time12 is replaced by the method Clock.getRealtimeCloc
k().getTime(). Further, as required by the RTSJ specification, time units in RTSJ should be mod-
elled by HighResolutionTime as either a AbsoluteTime or a RelativeTime object, where the later
two time units are sub-classes of the former. For instance, the temporal properties (e.g., period, cost
and deadline) for a real-time thread will be generated as the RelativeTime objects before they are
assigned to the construction method of RealtimeThread. Finally, additional exceptions introduced
by Class RTSJ is generated into the output implementation where applicable. For instance, for
each synchronised method, a CeilingViolationException exception should be thrown for illegal
ceiling priority assignment. After this transformation is executed, the target model should have
dependencies to RTSJ run-time resolved.

5 MODELLING SUPPORT OF RTSJ APPLICATIONS — A SYNTHESIS METHODOLOGY

Fig. 7. A light weight metamodel for modelling with RTSJ

In previous sections, an automation methodology for standard Java to real-time Java application
migration is discussed, which provides conversion from standard Java applications to real-time
applications that are compliant to RTSJ. However, engineering scenarios do not always begin with
creating a standard Java application. In certain cases (e.g., developing a new application), engineers
typically have to start from scratch to create real-time Java applications i.e., without any reference
implementation by the standard Java programming language. To ease the development, testing

12The method System.currentTimeMillis().

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:21

and verification process of creating new RTSJ applications, a light-weight modelling language
is proposed in this section, which allows engineers to create a RTSJ model that describes their
real-time applications. Then, with the user-defined RTSJ application model in hand, model-to-text
transformations are performed to generate structural Java source code (using RTSJ constructs) as
the final output, to improve the efficiency of engineers throughout the entire development cycle
and to eliminate human-related errors via automation.

Figure 7 shows the proposed light weight RTSJ metamodel. The root element is NamedElement,
in which engineers can use className to name their class extension (e.g. extensions to AsyncEvent),
and use objectName to name their objects. Meta-element RTElement directly inherits NamedElement,
where users can describe the real time properties of their real-time objects (e.g. a real-time
thread or an AEH) using scheduling and release proprieties priority, cost and deadline.
Meta-element RTPackage maps to a Java package, it may contain RTSJ Classes. Meta-element
ExternalHappening is used to capture external events that may be wrapped as an AsyncEvent.
Abstract meta-element AsyncEvent is used to model an Asynchronous Event in RTSJ, it may refer
to ExternalHappening(s). Abstract meta-element AsyncEventHandler is used to model an asyn-
chronous event handler for Asynchronous Events in RTSJ. Note that an AsyncEventHandler may
refer to a number of AsyncEvent, but an AsyncEvent must have one AsyncEventHandler. Meta-
elements AE_Extension and AEH_Extension enables the users to create their own extensions
to AsyncEvent and AsyncEventHandler respectively. Abstract meta-element RealtimeThread
is used to capture a real-time thread object in RTSJ. The extensions of RealtimeThread (i.e.,
RTPeriodicThread and RTAperiodicThread) are provided for users to allow different real-time
thread release models, as specified in RTSJ specification.

[%

var className = self.className;

var ePackageName = self.eContainer().name;

%]

package [%=ePackageName%];

import javax.realtime.AsyncEventHandler;

import javax.realtime.PriorityParameters;

import javax.realtime.AperiodicParameters;

...

public class [%=className%] extends AsyncEventHandler {

public static final String priority = [%=self.priority%];

public static final String cost = [%=self.cost%];

public static final String deadline = [%=self.deadline%];

public static final String name = [%=self.objectName%];

protected Runnalbe logic = null;

public [%=className%](Runnable logic, AyncEventHandler deadlineMissHandler)

{

PriorityParameters priority_parameters = new PriorityParameters(priority);

AperiodicParameters release_parameters = new AperiodicParameters(new RelativeTime(cost, 0),

new RelativeTime(deadline, 0),

deadlineMissHandler);

super(priority_parameters, release_parameters, null, null, null, false);

this.setName(name);

this.logic = logic;

}

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:22 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

public [%=className%](String name, int priority, int cost, int deadline, Runnable logic,

AyncEventHandler deadlineMissHandler)

{

PriorityParameters priority_parameters = new PriorityParameters(priority);

AperiodicParameters release_parameters = new AperiodicParameters(new RelativeTime(cost, 0),

new RelativeTime(deadline, 0),

deadlineMissHandler);

super(priority_parameters, release_parameters, null, null, null, false);

this.setName(name);

this.logic = logic;

}

@Override

protected void handleAsyncEvent() {

logic.run();

}

}

Listing 9. Example Model-to-Text transformation written in EGL to generate an extension class of

AsyncEventHandler

With the RTSJ models constructed, model-to-text transformations can be executed on them. Listing 9
shows a model-to-text transformation script written in Epsilon Generation Language (EGL) [42]
for generating extension classes of AsyncEventHandler. For model-to-text generations, there are
static sections and dynamic sections, dynamic sections in EGL are enclosed with square brackets (i.e.
[and]). As it can be seen in Listing 9, dynamic sections uses information from the model to generate
extension classes of AsyncEventHandler, with most static sections automatically generated, human
error factors can be eliminated. It is to be noted that the model-to-text transformations provided in
our approach only generate template-like Java classes, the developers typically need to write their
algorithms and logic in their defined Runnable instances.

6 OPEN CHALLENGES AND FURTHER RESEARCH DIRECTIONS

Plenty of open questions and research opportunities are introduced by this work. In this section,
we discuss some of the challenges and point towards selected future research directions.

First, the current version of the proposed toolchain assumes the presence of a real-time garbage
collector (e.g., the one supported by JamaicaVM), which allows the execution of real-time threads
in Heap memory. However, in situations where a real-time GC is not available, an explicit memory
management model must be constructed by ScpoedMemory to guarantee temporal requirements of
real-time Java applications, as executing in Heapmemorywill suffer from unpredictable interference
of standard Java garbage collector. One major challenge of this Java to RTSJ automation approach
is to provide a generic memory management model that suits all types of RTSJ applications. The
memory management model in RTSJ is highly specific to the application characteristics (especially,
the correlation of those real-time threads) and is difficult to generate based merely on the knowledge
from the input source code. In addition, a future version of the proposed toolchain may include the
measurement (or analysis) of certain task execution parameters (e.g., WCET) in the automation
process, towards a higher degree of automation.

A possible workaround is to enforce an SCJ (Safety-Critical Java)-like programmingmodel [13, 46],
which imposes restrictions towards the application structure but is sufficient to provide the required
functionalities. In the SCJ, threads are grouped into missions, which are executed by one or more
mission sequencers (i.e., missions can be executed concurrently). This programming model conforms
to a specific memory management framework [45]. In the SCJ, each mission has its own memory

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:23

block and each thread in that mission is also assigned with a private memory area, building upon
the memory block of the associated mission. Once a mission is finished (i.e., all its threads are
signalled to be terminated), its associated memory block (and subsequently, memory areas of
its threads) will be reclaimed during a mission cleanUp phase. However, applying this memory
model in the proposed methodology requires extra information describing the correlation between
those real-time threads in order to allocate them correctly into each individual group for memory
allocation.
Second, as an initial attempt on the topic, we have targeted at a simple and widely-applied

uniprocessor environment and focused mainly on the functionality of the proposed toolchain. There
is a trend that most of the existing real-time programming specifications are extended to support
multiprocessor and distributed systems [62]. The proposed approach can also be extended to support
multiprocessor features with multiprocessor scheduling policies, resource sharing techniques and
multiple server thread asynchronous event handling model taken into account [60, 61]. In addition,
as the application scenarios of real-time systems become more sophisticated, supporting complex
system semantics (e.g., in the presence of release jitters, shared resources or nested AIEs) is also
desirable and should be investigated.
In addition, as illustrated in Figure 2, there is an open question to be answered when the given

applications are found unschedulable after model validation. One possible solution would be the
reconfiguration of system scheduling parameters to achieve better schedulability (i.e., transferring
systems that are deemed unschedulable into feasible real-time systems). Such reconfiguration is
worthwhile especially for complex systems (e.g., multiprocessor systems with shared resources),
where optimal scheduling solutions may not be available. In such cases, a search-based algorithm
could be applied for searching threads’ parameters and feasible resource sharing protocols that
can achieve a schedulable system [59]. In addition, further improvement can be made towards
other perspectives of real-time systems, such as sustainability and robustness in the presence of
additional interference.
From the programming language perspective, the proposed automated toolchain can be gen-

eralised to support different programming languages (e.g., C/C++ and Ada) and their real-time,
safety-critical and high-integrity extension profiles (e.g., MISRA C/C++ [22, 53] and Spark Ada [6]).
Such efforts are worthwhile as they remove the restriction on the usage of a specific programming
language (and its extensions) in the proposed automated toolchain and provide solutions towards
those major programming languages in embedded systems.

From the model-driven perspective, for those programming languages where reverse engineering
facilities may not be available (e.g., C and Ada), modelling real-time systems from system specifica-
tion directly and then generating implementation via code generation facilities would be desirable.
There are several modelling languages which are capable of modelling real-time systems, e.g., the
Architectural Analysis and Design Language (AADL), the Unified Modelling Language (UML), the
Systems Modelling Language (SysML), the Modelling and Analysis of Real-Time Embedded Systems
(MARTE) UML profile, and the AADL for UML profile are all feasible languages for modelling
real-time systems.
However, there are shortcomings in these languages discussed above. AADL is not an open

modelling language, and there is a lack of modelling capabilities for the system behaviour. UML is
a general modelling language. However, it lacks the formalism needed in modelling of the real-
time systems. SysML shares the same problem as UML. MARTE provides extensive modelling
capabilities, which leads to the complexity of the language itself. Consequently, a MARTE model
could get complex quickly, leading to complex models and diagrams which are hard to manage. A
new modelling language is therefore needed for the real-time systems community to address the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:24 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

above shortcomings. With this modelling language, we could generate the real-time applications in
programming languages such as Java, Ada and C.

7 CONCLUSION

In this paper, two model-based development methodologies have been proposed, which auto-
matically generate RTSJ-compliant implementations through either transforming the existing
time-sharing standard Java applications or modelling customised RTSJ applications using a light-
weight modelling language from scratch. The proposed methodologies ease the development of
real-time systems by allowing software engineers to construct real-time Java applications with-
out necessary knowledge of the RTSJ programming specification. The proposed methodologies
provide real-time system development solutions that reduce software development cost, increase
productivity and eliminate human-related errors by automating the entire implementation process.

In particular, the Java to RTSJ transformation methodology is favourable to those organisations
with a need to re-develop their products to possess real-time features while the RTSJ modelling
approach is valuable when no standard Java reference implementation is available. The complete
standard Java to RTSJ conversion automation architecture is presented, with the required actions
in each transformation phase described in detail. Transformation rules are also presented for
generating major RTSJ facilities and the RTSJ run-time environment based on the JamaicaVM with
the given inputs. In addition, the RTSJ application modelling approach is illustrated and explained,
with output implementation example provided using model-to-text transmissions.

The proposed methodologies raise plenty of research questions and possible research directions,
which can be investigated together by the embedded systems, programming languages as well as
MDE communities. They have been discussed with motivation and preliminary approaches. In
future, we aim to provide a complete and fully functional Java to RTSJ transformation toolchain
and RTSJ modelling tool-kit to fully exploit the potentials of Model-Driven Engineering for real-
time programming using RTSJ, and to evaluate the efficacy of the proposed RTSJ development
automation methods.

REFERENCES

[1] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes, Filip Pizlo, Edward Pla, Marek

Prochazka, and Jan Vitek. 2007. A real-time Java virtual machine with applications in avionics. ACM Transactions on

Embedded Computing Systems (TECS) 7, 1 (2007), 5.

[2] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J Wellings. 1993. Applying new scheduling theory

to static priority pre-emptive scheduling. Software Engineering Journal 8, 5 (1993), 284ś292.

[3] Neil C Audsley, Yu Chan, Ian Gray, and Andy J Wellings. 2014. Real-Time Big Data: the JUNIPER Approach. (2014).

[4] Jason Baker, Antonio Cunei, Chapman Flack, Filip Pizlo, Marek Prochazka, Jan Vitek, Austin Armbruster, Edward Pla,

and David Holmes. 2006. A real-time java virtual machine for avionics-an experience report. In 12th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS’06). IEEE, 384ś396.

[5] Konstantinos Barmpis, Dimitrios Kolovos, and Justin Hingorani. 2018. Towards a framework for writing executable

natural language rules. In European Conference on Modelling Foundations and Applications. Springer, 251ś263.

[6] John Barnes. 1997. High integrity Ada: the SPARK approach. Vol. 189. Addison-Wesley Reading.

[7] Jean Bézivin. 2005. On the unification power of models. Software & Systems Modeling 4, 2 (2005), 171ś188.

[8] Gregory Bollella and James Gosling. 2000. The real-time specification for Java. Computer 33, 6 (2000), 47ś54.

[9] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. 2014. Modisco: A model driven reverse engineering

framework. Information and Software Technology 56, 8 (2014), 1012ś1032.

[10] Alan Burns and Andy Wellings. 2016. Analysable Real-Time Systems: Programmed in Ada. CreateSpace Independent

Publishing Platform.

[11] Alan Burns and Andrew J Wellings. 2001. Real-time systems and programming languages: Ada 95, real-time Java, and

real-time POSIX. Pearson Education.

[12] Alan Burns, Andy J Wellings, and Fengxiang Zhang. 2009. Combining EDF and FP scheduling: Analysis and imple-

mentation in Ada 2005. In International Conference on Reliable Software Technologies. Springer, 119ś133.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

Development Automation of Real-Time Java: Model-Driven Transformation and Synthesis 1:25

[13] Ana Cavalcanti, Alvaro Miyazawa, Andy Wellings, Jim Woodcock, and Shuai Zhao. 2017. Java in the Safety-Critical

Domain. Springer International Publishing, Cham, 110ś150. https://doi.org/10.1007/978-3-319-56841-6_4

[14] Wanli Chang and Samarjit Chakraborty. 2016. Resource-aware automotive control systems design: A cyber-physical

systems approach. Foundations and Trends in Electronic Design Automation 10, 4 (2016), 249ś369.

[15] Wanli Chang, Dip Goswami, Samarjit Chakraborty, and Arne Hamann. 2018. OS-aware automotive controller design

using non-uniform sampling. ACM Transactions on Cyber-Physical Systems 2, 4 (2018), 26.

[16] Wanli Chang, Dip Goswami, Samarjit Chakraborty, Lei Ju, Chun Xue, and Sidharta Andalam. 2017. Memory-aware

embedded control systems design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 4

(2017), 586ś599.

[17] Wanli Chang, Shuai Zhao, Ran Wei, Andy Wellings, and Alan Burns. 2019. From Java to real-time Java: a model-driven

methodology with automated toolchain. In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on

Languages, Compilers, and Tools for Embedded Systems. 123ś134.

[18] Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. Acm

Computing Surveys 43, 4 (2011), 1ś44.

[19] Peter Dibble. 2002. Real-time Java platform programming. Prentice Hall Professional.

[20] Ian Gray, Neil Cameron Audsley, Jamie Garside, Yu Chan, and Andrew John Wellings. 2015. FPGA-based acceleration

for Real-Time Big Data Systems. In 9th HiPEAC workshop on Reconfigurable Computing.

[21] Ian Gray, Yu Chan, Jamie Garside, Neil C. Audsley, and Andy J. Wellings. 2015. FPGA-based hardware acceleration for

Real-Time Big Data systems.

[22] Les Hatton. 2004. Safer language subsets: an overview and a case history, MISRA C. Information and Software

Technology 46, 7 (2004), 465ś472.

[23] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. 2009. Closing the gap between modelling

and java. In International Conference on Software Language Engineering. Springer, 374ś383.

[24] Thomas Henties, James J Hunt, Doug Locke, Kelvin Nilsen, Martin Schoeberl, and Jan Vitek. 2009. Java for safety-critical

applications. In 2nd international workshop on the certification of safety-critical software controlled systems (SafeCert

2009).

[25] Erik Yu-Shing Hu, Eric Jenn, Nicolas Valot, and Alejandro Alonso. 2006. Safety critical applications and hard real-time

profile for Java: a case study in avionics. In Proceedings of the 4th international workshop on Java technologies for

real-time and embedded systems. ACM, 125ś134.

[26] Ari Jaaksi. 2002. Developing mobile browsers in a product line. IEEE software 19, 4 (2002), 73ś80.

[27] A Juan, Jorge Garrido, Juan Zamorano, and Alejandro Alonso. 2014. Model-driven design of real-time software for an

experimental satellite. IFAC Proceedings Volumes 47, 3 (2014), 1592ś1598.

[28] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. 2009. Evaluating the use of domain-specific modeling in practice.

In Proceedings of the 9th OOPSLA workshop on Domain-Specific Modeling.

[29] Timothy Patrick Kelly. 1999. Arguing safety: a systematic approach to managing safety cases. Ph.D. Dissertation.

University of York York, UK.

[30] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. The epsilon transformation language. In International

Conference on Theory and Practice of Model Transformations. Springer, 46ś60.

[31] Dimitrios S Kolovos, Ran Wei, and Konstantinos Barmpis. 2013. An approach for efficient querying of large relational

datasets with ocl-based languages. In XM 2013śExtreme Modeling Workshop. 48.

[32] Björsn Konieczek, Michael Rethfeldt, Frank Golatowski, and Dirk Timmermann. 2015. Real-time communication for

the internet of things using jcoap. In 2015 IEEE 18th International Symposium on Real-Time Distributed Computing.

IEEE, 134ś141.

[33] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien Gerard, Patrick Tessier, Remi Schneken-

burger, Hubert Dubois, and François Terrier. 2009. Papyrus UML: an open source toolset for MDA. In Proc. of the Fifth

European Conference on Model-Driven Architecture Foundations and Applications (ECMDA-FA 2009). Citeseer, 1ś4.

[34] Shaoshan Liu, Jie Tang, Chao Wang, Quan Wang, and Jean-Luc Gaudiot. 2017. Implementing a Cloud Platform for

Autonomous Driving. arXiv preprint arXiv:1704.02696 (2017).

[35] Shaoshan Liu, Jie Tang, ChaoWang, QuanWang, and Jean-Luc Gaudiot. 2017. A unified cloud platform for autonomous

driving. Computer 50, 12 (2017), 42ś49.

[36] No Magic. 2007. MagicDraw. (2007).

[37] HaiTao Mei, Ian Gray, and Andy Wellings. 2016. Real-Time stream processing in java. In Ada-Europe International

Conference on Reliable Software Technologies. Springer, 44ś57.

[38] Parastoo Mohagheghi and Vegard Dehlen. 2008. Where is the proof?-A review of experiences from applying MDE in

industry. In European Conference on Model Driven Architecture-Foundations and Applications. Springer, 432ś443.

[39] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier. 2015. Spoon: A Library

for Implementing Analyses and Transformations of Java Source Code. Software: Practice and Experience 46 (2015),

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

1:26 Wanli Chang, Ran Wei, Shuai Zhao, Andy Wellings, Jim Woodcock, and Alan Burns

1155ś1179. https://doi.org/10.1002/spe.2346

[40] Ben Potter, David Till, and Jane Sinclair. 1996. An introduction to formal specification and Z. Prentice Hall PTR.

[41] Ragunathan Rajkumar. 2012. Synchronization in real-time systems: a priority inheritance approach. Vol. 151. Springer

Science & Business Media.

[42] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. 2008. The epsilon generation language. In

European Conference on Model Driven Architecture-Foundations and Applications. Springer, 1ś16.

[43] RTEMS. Accessed: 21-02-2020. http://www.rtems.org/

[44] Douglas C Schmidt. 2006. Model-driven engineering. COMPUTER-IEEE COMPUTER SOCIETY- 39, 2 (2006), 25.

[45] Martin Schoeberl, Andreas Engelbredt Dalsgaard, René Rydhof Hansen, Stephan E Korsholm, Anders P Ravn, Juan Ri-

cardo Rios Rivas, Tórur Biskopstù Strùm, Hans Sùndergaard, Andy Wellings, and Shuai Zhao. 2017. Safety-critical Java

for embedded systems. Concurrency and Computation: Practice and Experience 29, 22 (2017), e3963.

[46] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P Ravn. 2007. A profile for safety critical java. In

10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC’07).

IEEE, 94ś101.

[47] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. 1990. Priority Inheritance Protocols: An Approach to Real-Time

Synchronization. 39, 9 (1990).

[48] Fridtjof Siebert. 2007. Realtime garbage collection in the JamaicaVM 3.0. In Proceedings of the 5th international workshop

on Java technologies for real-time and embedded systems. Citeseer, 94ś103.

[49] Fridtjof Siebert. 2010. Concurrent, parallel, real-time garbage-collection. In ACM Sigplan Notices, Vol. 45. ACM, 11ś20.

[50] Rashmi P Sonar and Rani S Lande. 2018. Javolution-Solution for Real Time Embedded System. In 2018 International

Conference on Research in Intelligent and Computing in Engineering (RICE). IEEE, 1ś10.

[51] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF: eclipse modeling framework. Pearson

Education.

[52] Sparx Systems. 2012. Sparx Systems SysML. https://sparxsystems.com/. (2012). [Accessed: 23/03/2020].

[53] Chris Tapp. 2008. An introduction to MISRA C++. SAE international journal of passenger cars-electronic and electrical

systems 1, 2008-01-0664 (2008), 265ś268.

[54] Kleanthis Thramboulidis. 2007. IEC 61499 in factory automation. In Advances in Computer, Information, and Systems

Sciences, and Engineering. Springer, 115ś124.

[55] Kleanthis Thramboulidis and Alkiviadis Zoupas. 2005. Real-time Java in control and automation: a model driven

development approach. In 2005 IEEE Conference on Emerging Technologies and Factory Automation, Vol. 1. IEEE, 8śpp.

[56] Christian Wawersich, Michael Stilkerich, and Wolfgang Schröder-Preikschat. 2007. An OSEK/VDX-based multi-JVM

for automotive appliances. In Embedded System Design: Topics, Techniques and Trends. Springer, 85ś96.

[57] Ran Wei, Tim P Kelly, Xiaotian Dai, Shuai Zhao, and Richard Hawkins. 2019. Model based system assurance using the

structured assurance case metamodel. Journal of Systems and Software 154 (2019), 211ś233.

[58] Andrew J Wellings. 2004. Concurrent and real-time programming in Java. John Wiley New York.

[59] Shuai Zhao. 2018. A FIFO Spin-based Resource Control Framework for Symmetric Multiprocessing. Ph.D. Dissertation.

University of York.

[60] Shuai Zhao, Jorge Garrido, Alan Burns, and Andy Wellings. 2017. New schedulability analysis for MrsP. In 2017 IEEE

23rd International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 1ś10.

[61] Shuai Zhao, Jorge Garrido, RanWei, Alan Burns, AndyWellings, and A Juan. 2020. A complete run-time overhead-aware

schedulability analysis for MrsP under nested resources. Journal of Systems and Software 159 (2020), 110449.

[62] Shuai Zhao, Andy Wellings, and Stephan Erbs Korsholm. 2015. Supporting multiprocessors in the ICECAP safety-

critical java run-time environment. In Proceedings of the 13th International Workshop on Java Technologies for Real-time

and Embedded Systems. ACM, 1.

[63] Athanasios Zolotas, Ran Wei, Simos Gerasimou, Horacio Hoyos Rodriguez, Dimitrios S. Kolovos, and Richard F. Paige.

2018. Towards Automatic Generation of UML Profile Graphical Editors for Papyrus. In Modelling Foundations and

Applications, Alfonso Pierantonio and Salvador Trujillo (Eds.). Springer International Publishing, Cham, 12ś27.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2020.

	Abstract
	1 Introduction
	2 Model-Driven Engineering
	3 Real-Time Specification for Java
	3.1 Programming Specification
	3.2 RTSJ Implementations and VMs
	3.3 Targeted RTSJ Run-Time Environment

	4 Java to Real-Time Java Transformation
	4.1 Reverse Engineering Transformation (T2M)
	4.2 Model Validation
	4.3 RTSJ Model Transformation

	5 Modelling Support of RTSJ Applications — A Synthesis Methodology
	6 Open Challenges and Further Research Directions
	7 Conclusion
	References

