
This is a repository copy of LEVAX : An Input-Aware Learning-Based Error Model of
Voltage-Scaled Functional Units.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159680/

Version: Accepted Version

Article:

Jiao, Xun, Ma, Dongning, Chang, Wanli orcid.org/0000-0002-4053-8898 et al. (1 more
author) (Accepted: 2020) LEVAX : An Input-Aware Learning-Based Error Model of Voltage-
Scaled Functional Units. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

LEVAX: An Input-Aware Learning-Based Error

Model of Voltage-Scaled Functional Units
Xun Jiao, Dongning Ma, Wanli Chang, Yu Jiang

Abstract—As Moore’s Law comes to an end and transistor
scaling increasingly falls short in improving energy efficiency,
alternative computing paradigms are direly needed. This need is
further highlighted by the overwhelming increase in computing
demand posed by emerging applications such as multimedia and
data analysis. Fortunately, such driving workloads also present
new opportunities since, thanks to their inherent error tolerance,
they do not require completely accurate computations. Thus, by
trading off accuracy for better performance or improved effi-
ciency, approximate computing promises tremendous growth for
future computing. Various approximation methods demonstrate
the effectiveness of voltage scaling in functional units (FUs) for
exploring this energy-error trade-off. Yet, while an accurate error
model is critical for assessing the error behavior of voltage-
scaled FUs and its effects on application quality, existing error
models of voltage-scaled FUs overlook the effects of input data
and error rate disparity among different bits. To tackle this
challenge, we propose LEVAX, an input-aware learning-based
error model of voltage-scaled FUs that can predict the timing
error rate (TER) for each output bit. This model is trained using
random forest methods, with input features and output labels
extracted from gate-level simulations. To validate its effectiveness
and demonstrate its prediction accuracy, we use LEVAX on
various FUs. Across all bit positions, voltage levels, and FUs,
LEVAX achieves, on average, a relative error of 1.20%. LEVAX
also achieves an average per-voltage Root Mean Square Error
(RMSE) of 1.03% and per-bit RMSE of 1.17%. Exposing this
error rate even up to the application level, LEVAX can estimate
the quality of four image processing applications under voltage
scaling with an average accuracy of 97.9%. To the best of our
knowledge, LEVAX is the first voltage scaling error model of
FUs that can incorporate the effects of input data.

I. INTRODUCTION

Many applications exhibit tolerance to computations with

relaxed precision, e.g., multimedia processing [22], financial

analysis [1], and machine learning applications [25]. Such

intrinsic error tolerance is exploited by approximate computing

to achieve improved performance and efficiency. Recently, var-

ious approximation methods have demonstrated the effective-

ness of voltage scaling in functional units (FUs) for improved

energy efficiency. This is mainly in adders and multipliers [7],

[12], [19], [20] as these two operators represent the majority

of computing workloads for many applications. For example,

more than 98% of computations in convolutional neural net-

works (CNNs) are additions and multiplications, making them

X. Jiao and D. Ma are with the Department of Electrical and Com-
puter Engineering, Villanova University, Villanova, PA 19085, USA (E-mail:
dma2@villanova.edu, xun.jiao@villanova.edu)

W. Chang is with the Department of Computer Science, University of
York, UK (E-mail: wanli.chang@york.ac.uk).

Y. Jiang is with the School of Software, Tsinghua University, China.
(E-mail: jy1989@mail.tsinghua.edu.cn).

popular targets for voltage scaling seeking energy savings [30],

[4], [10]. While effective, voltage scaling has the disadvantage

of changing circuit delay, which causes timing errors that can

lead to degradation of application quality. Thus, to enable

precise error control, an accurate error model is of critical

importance for predicting the error behavior of FUs and its

effects on application quality.

Static timing analysis (STA) is a well-established method

for measuring the timing performance of circuits under differ-

ent operating conditions. However, STA cannot measure the

timing errors under different input data because STA does

not consider dynamic runtime information. For this reason,

dynamic timing analysis, e.g., gate-level simulation, is adopted

to measure the “true” timing performance under different input

workloads [18], [16], [27], [23]. However, gate-level simu-

lation has several shortcomings. First, accessing commercial

simulation tools requires expensive licenses. Second, gate-

level simulation is often prohibitively slow, which creates a

bottleneck for the error-tolerant research [27]. Lastly, its setup

requires multiple steps and domain knowledge in the electronic

design automation (EDA) including logic synthesis, place-and-

route, STA, and back-annotated simulation. This lengthy and

tedious process can prohibit software developers and designers

from taking this path [7], [12], [19], [20].

As a result, approximate computing researchers and de-

signers have developed various error models including single

bit flip [20], random values [19], and bit flip with uniform

probability [7], [12]. Nonetheless, these error models are

unable to fully capture the error behavior of circuits. First, they

overlook the probable error rate disparity among different bit

positions. For example, bit flip with uniform probability [7],

[12] assumes that each bit has the same error rate. However,

each bit locates on different circuit paths that probably have

different delays. Second, these error models overlook the

effects of input data (operands) in errors. Actually, input data

have direct effects on timing errors because they can affect

the dynamic path sensitization [11]. Thus, it is important

to consider input data for predicting voltage scaling-induced

errors. When used in approximate computing, the misinter-

pretation of error behavior can lead to either an aggressive

voltage scaling strategy that may render unacceptable output

quality or a conservative strategy that may not fully explore

the approximation benefits.

To overcome the aforementioned limitations, we pro-

pose LEVAX, an input-aware learning-based error model for

voltage-scaled FUs that can predict the TER of each bit

position. First, under voltage scaling, we characterize the

timing error behavior of each bit position of various FUs.

2

Based on such characterization, we extract the useful features.

We then apply random forest learning methods to fit the

extracted features and the corresponding timing errors. This

leads to LEVAX. Note that while this process involves EDA

design flow and gate-level simulation, this is a one-time effort

that can be done offline. Next, we use LEVAX to predict the

TER of each bit position and compare it with simulation-based

ground truth so as to evaluate the prediction accuracy. We then

inject the LEVAX-predicted errors into several error-tolerant

applications and estimate the corresponding application qual-

ity. The advantages of LEVAX are three-fold: (1) improved

accuracy from considering input data and bit position; (2)

accelerated execution (5X-45X) over gate-level simulation; (3)

friendly interface for software developers and designers as

LEVAX is a standalone Python module to be open-sourced

for the research community.

Main Contributions:

• We characterize the timing error behavior of various FUs

under a wide range of supply voltages. We analyze the

effects of voltage scaling and input data on the timing

errors, based on which we extract useful features to train

an error model.

• We propose LEVAX, an input-aware learning-based error

model for voltage-scaled FUs to predict the TER of each

bit position. We evaluate several machine learning meth-

ods and, due to the accuracy and efficiency of lEVAX,

choose the random forest method for its construction.

• We apply LEVAX to various types of FUs including

logically exact FUs (INT ADD, INT MUL, FP ADD,

FP MUL) and logically inexact FUs (XINT ADD,

XINT MUL) under 28 different voltage levels. On av-

erage across these FUs and voltage levels, LEVAX can

predict timing error rates with an RMSE (Root Mean

Square Error) and relative error at around 1% compared

to the gate-level simulation.

• We use LEVAX to estimate the quality of error-tolerant

applications as either acceptable or unacceptable under a

given voltage scaling strategy. The estimation accuracy is

97.9% on average. The high accuracy and fast execution

make LEVAX a promising alternative for evaluating

voltage scaling-induced TERs to commercial simulators.

Organization of the Paper: Section II describes the necessary

background. Section II-C to Section V present the proposed

model. The experimental results are reported in Section VI.

Section VII discusses possible limitations and potential im-

provements. Section VIII summarizes the related work, and

Section IX concludes the paper.

II. BACKGROUND AND MODEL OVERVIEW

In this section, we describe two root causes of timing

errors: dynamic path sensitization and voltage scaling. We also

present an overview of LEVAX.

A. Dynamic Path Sensitization

Timing errors occur when the circuit delay is beyond the

clock period. As a matter of fact, the circuit delay is dynamic

as shown in Fig. 1: under different input operands, the circuit

delay will change. Under the initial state (case (a)), both of

the inputs are 0. If the first input is changed from 0 to 1

(case (b)), then the circuit path denoted by the purple line

will be sensitized, exhibiting a delay of 2.0ns. Later, if the

second input is also changed from 0 to 1 (case (c)), then

the circuit delay will become 1.5ns because the purple line-

denoted circuit path is sensitized. Depending on the clock

period, there could be different outcomes. If the clock period

is set as 1.7ns, then case (b) will incur a timing error because

2.0ns is greater than 1.7ns. In contrast, case (c) will not have

a timing error because 1.5ns is less than 1.7ns. To prevent

such timing errors from happening, circuit designers typically

set the clock period based on the critical path and via static

timing analysis, which is greater than 2.0ns.

B. Voltage Scaling

As stated above, a conservative clock period is used for

error-free operation. However, recent work has studied volt-

age scaling as a potential method of approximate computing

and have demonstrated its effectiveness [7], [12], [19], [20].

Reducing the voltage improves the energy efficiency. Voltage

scaling can, however, change the path delay in circuits [9].

Specifically, reducing the voltage can increase the path delay.

For example, the delay of case (b) can be increased beyond

2.0ns, leading to timing errors even if the clock period is set

to 2.0ns. This indicates that voltage scaling can lead to timing

errors even if the clock period is set based on critical paths

and via static timing analysis.

C. Proposed Model

LEVAX has three phases as illustrated in Fig. 2: Data

Collection, Model Construction, and Model Utilization. The

Data Collection phase uses gate-level simulations of post-

layout FUs to collect the training data. The Model Con-

struction phase uses the random forest method to train the

LEVAX model, with features/labels extracted from training

data. The Model Utilization phase predicts the TERs of FUs,

which are then injected into applications to estimate the

quality of applications. We compare the prediction results with

simulation results to evaluate the accuracy of LEVAX. More

details about the three phases are presented as follows.

III. DATA COLLECTION

A. Training Data Generation

It is impossible to generate an exhaustive training dataset

for a regular-size circuit. For example, for a circuit with two

32-bit inputs, we need to generate 264 input patterns to cover

all possible scenario of a circuit. Thus, we propose to use

machine learning methods, which are designed for learning

the behaviors from limited input data. To evenly distribute the

training data, we randomly generate 1M input data with each

bit randomly assigned 0 or 1.

3

x
y

1ns

0.5ns

1ns

0

0

CLK

0

1

0 0

(a) Initial state

x
y

1ns

0.5ns

1ns

0->1

0

CLK

circuit timing delay (2ns)

0->1

1

0->1 0->1

(b) First input changes

x
y

1ns

0.5ns

1ns

1

0->1

CLK

circuit timing delay (1.5ns)

1

1->0

1->0 1->0

(c) Second input changes

Fig. 1: Different delay under different input

001111000001

001010101010

111010101010

….

Training Data

Gate-level

Simulation

C[0]

C[1]

C[2]

…

Timing Error

101111100000

101011100011

010000100011

….

Testing Data

LEVAX Model

C[0]

C[1]

C[2]

…

Timing Error

Timing Error

Rates
Error Injection

Application

Quality

(e.g., PSNR)

Count Errors

Phase 2: Model Construction Phase 3: Model Utilization

Phase 1: Data Collection

001111000001

001010101010

111010101010

….

001111000001

001010101010

111010101010

….

C[0]

C[1]

C[2]

…

C[0]

C[1]

C[2]

…

C[0]

C[1]

C[2]

…

C[0]

C[1]

C[2]

…

C[0]

C[1]

C[2]

…

Random Forest

Fitting

Feature

Extraction

Fig. 2: LEVAX overview with three phases: 1) phase 1 generates timing errors under different voltages and input operands;

b) phase 2 extracts useful features and applies random forest learning methods to train an error model; c) phase 3 estimates

the application quality using the predicted timing error rates.

B. Timing Error Extraction

We use 32-bit integer and single-precision floating point

units (FPUs) as our benchmarks, both generated from

FloPoCo [6]: integer adder (INT ADD), integer multiplier

(INT MUL), floating point adder (FP ADD), and floating

point multiplier (FP MUL), all implemented in synthesizable

VHDL. FPUs follow the IEEE-754 standard and provides

more complex structures compared to their integer coun-

terparts. To better evaluate the robustness of LEVAX, we

change the data types and circuit topology. We also use

approximate FUs from lpACLib [21], an open-source library

for low-power approximate integer adders (XINT ADD) and

multipliers (XINT MUL). We extract timing errors through a

standard gate-level simulation process, which is divided into

several steps.

We use Synopsys Design Compiler to synthesize the VHDL

codes and Synopsys IC Compiler to place and route the design,

in TSMC 45nm technology. Then, we use Synopsys PrimeTime

to conduct static timing analysis, and inject different voltages

into the design. This results in the corresponding standard

delay format (SDF) files that contain the delay information

under each voltage. We use a wide range of voltage from

0.72V to 0.99V with a step size of 0.01V . Thus, we use 28

voltage levels in total. Mentor Graphics ModelSim is used

to perform SDF back-annotation gate-level simulation. For

each voltage, we perform gate-level simulation to characterize

the corresponding TERs of each bit. The input stimuli for

simulation is 1 million random data. (This random data set is

also served as our training data set).

At each clock cycle, we identify the timing error at each

bit by comparing each output bit with the clean output.

Specifically, we identify a timing error if the simulation output

is not matched with the clean output. Thus at cycle t, we

classify the output bit C[t] to two classes: Cc means timing

correct and Ce means timing erroneous.

IV. MODEL CONSTRUCTION

A. Feature Extraction

Timing errors are generated when the circuit delay is beyond

the circuit clock period. As shown in Section II, circuit delay

can be affected by two classes of factors. The first class is the

circuit-associated parameters such as voltage scaling. In this

paper, we focus on using voltage scaling as an approximation

strategy. Thus, we assume the other parameters (process,

temperature, aging, etc.) remain unchanged. The second class

of factors that can affect the circuit delay is the input data. In

fact, while input data do not directly affect the delay of cells

or paths, they can determine which circuit paths are sensitized.

Consequently, the delay of the longest sensitized path becomes

the “actual” circuit delay. Therefore, the joint effects of voltage

and input data determine the circuit delay and hence the timing

errors.

Thus, to predict the timing errors, we need to consider

both voltage and input data. Since the voltage scaling is

4

typically performed at limited discrete levels within a specific

range [29], it is possible to train the model using all possible

voltage levels. In this paper, we consider the range of supply

voltages from 0.72V to 1.00V with a step size of 0.01V.

However, it is impossible to be exhaustive and use all

potential input data because two 32-bit input data can make

264 different possible vectors. Therefore, the critical accom-

plishment of LEVAX is to predict timing errors under unseen

input data. That is, the model needs to capture the “actual”

circuit delay by learning the path sensitization behavior under

unseen input data. Therefore, we also use random data as our

training dataset because we want to maximally randomize the

dynamic path sensitization behavior so we can capture the

sensitization behavior under unseen data.

To do this, we start with a path sensitization analysis.

According to [3], a sensitized path would have all of its

nodes toggled. For a node to be toggled, the current signal

value at the node needs to be different than the previous

one. Thus, for a combinational circuit, both the current input

and the previous input determine whether a node gets toggled

and hence the path sensitization. That is, the joint effects of

previous and current input determine the sensitized paths and

the “actual” circuit delay. To verify this hypothesis, we conduct

two experiments.

• Experiment 1: fix the input at cycle t (x[t]) but randomly

vary the input at cycle t−1 (x[t−1]), where t is randomly

selected throughout the simulation trace;

• Experiment 2: fix both the input of cycle t (x[t]) as well

as t−1 (x[t−1]), where t is randomly selected throughout

the simulation trace;

We observe that in Experiment 1, the timing error behavior

of the bits in output y[t] varies irregularly, e.g., bit position 5

in y[10] is Ce while bit position 5 in y[30] is Cc. While in

Experiment 2, all the bits in output y[t] are fixed in timing error

behavior, e.g., the same bit positions in y[10], y[30], ... y[t]
are all either Ce or Cc. This verifies the previous hypothesis

of joint effects on previous and current input. Through such

analysis and experiments, we set the input features as {x[t−
1], x[t], V } and set C[t] at each bit position as our label.

B. Random Forest-based Training

The training data is fed into gate-level simulation to generate

timing error labels. The training data is used in a feature

extraction module to extract useful features. We then use

random forest methods to fit these data and train LEVAX.

(we compare the random forest method with other machine

learning methods in Section VI-B).

Random forest is an ensemble-learning method that is

composed of multiple decision trees. Decision tree methods

use Boolean logic to construct a set of learning decision rules

from training data. The biggest advantage of decision trees

is their easy interpretation. However, decision trees can be

overfitted easily by learning irregular patterns with a large

variance. Compared to decision tree, the random forest method

controls the overfitting by constructing multiple decision trees

and taking a weighted vote of their predictions. In our case,

the random forest method constructs trees (decision rules)

considering different bit positions and the interaction between

them.

S =











f1A f1B f1C ... f1N C[1]
f2A f2B f2C ... f2N C[2]

...
...

... ...
...

...

fdA fdB fdC ... fdN C[d]











(1)

Our training features and labels are illustrated in 1. The

feature vectors are {f1A, f1B , ...f1N}, {f2A, f2B , ...f2N}, etc.,

where N is the number of bits in the combined input pattern,

e.g., 128 for a 32-bit FU. Each feature, e.g., f1A, is a binary

value of a bit. Therefore, for an FU with two 32-bit inputs, the

feature size is 4 ∗ 32 = 128 dimensions (including preceding

and current inputs) and an additional dimension for voltage.

The labels are C[1], C[2], etc., where each label, e.g., C[1], is

either correct or erroneous. If we use M decision trees, then

random forest will split this whole S matrix into an M sub-

matrix and fit a decision tree for each sub-matrix. The machine

learning library is adopted from Scikit-Learn [15]. We use the

default parameter configurations of random forest methods in

the Scikit-Learn module, e.g., 10 trees in the forest.

V. MODEL UTILIZATION

LEVAX’s goal is to predict the timing error rate for each bit,

which can then be used as the bit flip probability for injecting

errors into applications [7], [12], [19], [20].

A. Timing Error Prediction

Since LEVAX’s actual predicted result is the timing class of

each bit at each clock cycle, i.e., C[t], we just need to count

the portion of timing errors to calculate the timing error rates

of bit i under voltage v as follows:

TER(i, v) =
#Ce(i, v)

#Ce(i, v) + #Cc(i, v)
(2)

where #Ce and #Cc are the number of erroneous classes and

the number of correct classes respectively. We also use gate-

level simulation (gls) to calculate the timing error rates of each

bit under each voltage. We compute the relative error for each

bit under each voltage level as follows:

RE(i, v) =
|TERlevax(i, v)− TERgls(i, v)|

TERgls(i, v)
(3)

where TERlevax(i, v) and TERgls(i, v) are LEVAX pre-

dicted TER and simulation-based TER of bit i at voltage v,

respectively.

We also use root mean squared error (RMSE) to evaluate

the modeling accuracy of LEVAX. We compute per-bit RMSE

across all voltages and per-voltage RMSE across all bits:

RMSE(i) =

√

√

√

√

1

28

28
∑

v=1

(

TERlevax(i, v)− TERgls(i, v)
)2

RMSE(v) =

√

√

√

√

1

32

32
∑

i=1

(

TERlevax(i, v)− TERgls(i, v)
)2

(4)

5

B. Application Quality Estimation

LEVAX predicts the timing error rates for each bit under a

given voltage. Then, we inject these timing errors into the cor-

responding arithmetic operations in applications and evaluate

the resulting application quality. We also inject the simulation-

based errors to the application and obtain the resulting appli-

cation quality. For image processing applications, the quality

is typically considered acceptable if PSNR ≥ 30dB, and

otherwise unacceptable [2]. Thus, we compare the estimated

application quality under LEVAX-based errors and simulation-

based errors to evaluate the accuracy of LEVAX in estimating

application quality.

VI. EXPERIMENTAL RESULTS

A. Timing Error Characterization

Fig. 3 presents the bit-level TERs of all six FUs, while for

the sake of readability we draw only five evenly-distributed

voltage levels from which we can observe several important

facts. First, the TER varies dramatically with different bit

positions. For example, in INT MUL under 0.72V, bit 0

exhibits almost zero TER while bit position 20 has 60%

TER. This bit-level TER disparity justifies the importance

of predicting the TER for each bit position. Second, the

TER varies dramatically with different voltage levels. For

example, the TER of bit 0 of INT ADD under 0.72V is

around 50% while under 0.90V is around 0%. This significant

disparity in TERs among different voltage levels justifies the

necessity of developing such a voltage scaling model. Third,

the TER varies dramatically with different FUs. For example,

INT ADD has TERs less than 10% for all bits while FP MUL

has TERs greater than 10% for all bits.

B. Accuracy of Timing Error Prediction

The testing data is 1 million unseen random data. Fig. 4

presents the reliability (1-TER) based on LEVAX and the

actual TERs derived by gate-level simulations (gls), but due to

space limitations, under only four evenly distributed voltages

— 0.76V, 0.82V, 0.88V and 0.94V. Nonetheless, these four

demonstrate that the LEVAX-based TER closely follows the

trend of gls-based TERs. The figure also presents the relative

error for each bit (bar denoted). We can see that almost all of

them are below 5%. Actually, the average relative error across

all FUs, voltages, and bit positions is 1.20%.

We include a holistic evaluation and calculate the per-

voltage RMSE and per-bit RMSE using equation 4 as illus-

trated in Table I and Table II. We can observe that LEVAX’s

prediction deviates only slightly from the gls-based TERs.

The per-voltage RMSE as shown in Table I ranges from 0

to 2.793%, with most values less than 1%. The average per-

voltage RMSE across all functional units is 1.03%. Table II

presents the per-bit RMSE, which ranges from 0.009% to

2.213%. The average per-bit RMSE across all functional units

is 1.17%.

We also measure the training and inference time of LEVAX

and compare it with the gate-level simulation. To simulate

1 million data on a machine with 2-core Intel(R) Xeon(R)

CPU E5504@2.00GHz and 50GB memory, Mentor Graphics

Modelsim typically takes more than 100s for integer units,

580s for FP ADD, and 935s for FP MUL. LEVAX takes less

than 40s to train integer or floating point units and takes around

20s to perform inference for 1 million data. Considering that

the training is a one-time process that can be done offline,

LEVAX can characterize the timing errors 5X-45X faster

than gate-level simulation. Actually, after only one session of

offline training, we dump the LEVAX as a standalone Python

module using the joblib module. The high prediction accuracy

and significant acceleration over gate-level simulation make

it possible to use LEVAX as an alternative to commercial

simulators.

We also evaluate some widely-used machine learning meth-

ods such as logistic regression, support vector machine, and

nearest neighbor (all with default parameter settings). Nearest

neighbor provides useful theoretical properties [5] and has

limited parameters to train. Logistic regression and support

vector machine can learn and assign different weights to each

feature. Compared with these methods, random forest can

achieve significantly higher prediction accuracy with a 10X

smaller RMSE. Actually, random forest fits our task better

than other methods because random forest can better represent

how paths are sensitized by different bits of input operands.

First, different bits play different roles in sensitizing paths.

Compared with nearest neighbor which does not distinguish

between bits, random forest can interpret the significance

disparity between different bits. Second, the role of each bit

will be affected by other bits. Compared with support vector

machine and logistic regression which assigns fixed weight

to each bit, random forest considers the interactions between

different bits.

C. Accuracy of Application Quality Estimation

We use LEVAX-based error models to evaluate the effect

of voltage scaling on application quality via error injection.

We consider four widely-used error-tolerant image process-

ing applications, Sobel filter, Roberts filter, Sharpen filter,

and Scharr filter. We profile the application specific input

data of FUs using an architectural simulator Multi2Sim [24].

These input data are fed into gate-level simulation (gls) and

LEVAX to measure (predict) their TERs under all 28 voltage

scaling levels. Then, we inject the corresponding errors to

Multi2Sim [24] for quality estimation by modifying the source

code of Multi2Sim. Because the timing errors manifest as bit

flips, we then locate each target instruction and flip each output

bit with a probability based on the bit-level TER. For example,

if the TER for the 5th bit of FP MUL is 1%, we randomly flip

such bit with a probability of 1%. This is similar to existing

studies in approximate computing [7], [12], [19], [20]. We use

butterfly image dataset from Caltech-101 [8] as the input data

to Multi2Sim.

We use four different sources for voltage scaling-induced

errors: gls (gate-level simulation) as ground truth, LEVAX,

single-bit flip [20], and uniform bit flip [7]. We consider

all the voltages from 0.72V to 0.99V with a step size of

0.01V. For each tested image under each voltage, we generate

6

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

T
E

R
 (

%
)

Bit Position

(a) INT ADD

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

T
E

R
 (

%
)

Bit Position

(b) INT MUL

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

T
E

R
 (

%
)

Bit Position

(c) FP ADD

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

T
E

R
 (

%
)

Bit Position

(d) FP MUL

0.96V 0.9V 0.84V 0.78V 0.72V

Fig. 3: Timing error rates of different bit positions

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.76 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.82 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.88 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.94 V

(a) INT ADD

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.76 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.82 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830
|

g
ls

 -
cl

im
|

/g
ls

re
lia
bi
lit
y

Bit Position

0.88 V

0.00

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.94 V

(b) INT MUL

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.76 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.82 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.88 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.94 V

(c) FP ADD

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.76 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.82 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.88 V

0

0.01

0.02

0.03

0.04

0.05

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 1012141618202224262830

|
g

ls
 -

cl
im

|
/g

ls

re
lia
bi
lit
y

Bit Position

0.94 V

(d) FP MUL

|gls - clim| / gls clim gls

Fig. 4: Performance of LEVAX prediction

7

TABLE I: Per-Voltage RMSE of four functional units.

0.72V 0.73V 0.74V 0.75V 0.76V 0.77V 0.78V 0.79V 0.80V 0.81V 0.82V 0.83V 0.84V 0.85V

INT ADD 0.604% 0.569% 0.388% 0.340% 0.442% 0.392% 0.474% 0.490% 0.645% 0.619% 0.773% 0.638% 0.707% 0.812%

INT MUL 0.910% 1.131% 1.047% 0.983% 0.962% 1.023% 0.817% 0.768% 0.495% 0.579% 0.457% 0.672% 0.614% 0.664%

FP ADD 0.964% 1.138% 1.163% 1.198% 1.153% 1.448% 1.578% 1.647% 1.977% 2.220% 2.400% 2.487% 2.625% 2.624%

FP MUL 0.748% 0.688% 0.750% 0.719% 0.520% 0.479% 0.429% 0.551% 0.731% 1.063% 1.468% 1.768% 1.866% 1.768%

0.86V 0.87V 0.88V 0.89V 0.90V 0.91V 0.92V 0.93V 0.94V 0.95V 0.96V 0.97V 0.98V 0.99V

INT ADD 0.582% 0.570% 0.418% 0.370% 0.230% 0.116% 0.049% 0.013% 0.004% 0.002% 0.001% 0.001% 0.000% 0.000%

INT MUL 0.818% 0.951% 1.089% 1.109% 1.036% 1.141% 1.260% 1.541% 1.729% 2.441% 2.267% 1.512% 0.577% 0.104%

FP ADD 2.627% 2.680% 2.611% 2.729% 2.740% 2.625% 2.107% 1.283% 0.634% 0.194% 0.023% 0.001% 0.000% 0.000%

FP MUL 1.746% 1.751% 1.885% 2.035% 2.309% 2.793% 2.709% 1.867% 0.769% 0.216% 0.027% 0.000% 0.000% 0.000%

TABLE II: Per-bit RMSE of four functional units.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

INT ADD 0.181% 0.365% 0.591% 0.476% 0.625% 0.692% 0.725% 0.525% 0.673% 0.810% 0.756% 0.516% 0.498% 0.476% 0.497% 0.328%

INT MUL 0.006% 0.258% 0.528% 0.878% 1.131% 1.057% 1.029% 1.257% 1.087% 1.188% 1.019% 1.073% 1.154% 1.100% 0.958% 1.201%

FP ADD 1.696% 1.872% 1.819% 1.959% 2.009% 2.121% 1.874% 1.830% 1.851% 1.844% 2.044% 1.766% 2.059% 2.011% 1.695% 2.067%

FP MUL 0.883% 1.195% 1.278% 1.252% 1.208% 1.203% 1.105% 1.219% 1.198% 1.143% 1.147% 1.106% 1.142% 1.188% 1.221% 1.255%

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

INT ADD 0.378% 0.445% 0.306% 0.369% 0.194% 0.275% 0.261% 0.197% 0.196% 0.211% 0.187% 0.171% 0.139% 0.130% 0.512% 0.417%

INT MUL 1.336% 1.369% 1.093% 1.253% 1.138% 1.340% 1.203% 1.249% 1.484% 1.296% 1.274% 1.229% 1.192% 1.160% 1.257% 1.413%

FP ADD 2.175% 2.035% 1.916% 2.254% 2.050% 2.237% 1.939% 1.914% 1.951% 1.588% 1.694% 1.486% 1.679% 0.000% 1.798% 1.104%

FP MUL 1.305% 1.473% 1.538% 1.402% 1.152% 1.451% 2.213% 2.296% 1.908% 2.087% 1.936% 1.737% 1.628% 0.000% 1.535% 1.067%

(a) gls-based (28.38dB) (b) LEVAX-based (27.17dB)

(c) single-based (43.14dB) (d) uniform-based (16.79dB)

Fig. 5: Output quality based on gls, LEVAX, single, and

uniform models under 0.94V

four different versions of output image — gls-based, LEVAX-

based, single-based, and uniform-based. If any model-based

output image has the same quality classification as gls-based,

we count that as a correct estimation.

Fig. 5 shows an example of an output image of Roberts filter

under 0.94V. We can see that the LEVAX-based image quality

is very similar to that of the gls-based, where the pixel noise

distribution is also very similar between these two images.

(Note that this is hard to read in printed papers). The single-

based image has little noise while the uniform-based image

is full of noisy pixels. More specially, both gls-based and

LEVAX-based models lead to a PSNR around 28dB while

the single-based model leads to a PSNR at 43dB and the

uniform-based model leads to 17dB. LEVAX achieves the

same estimation with gls because the timing error rates are

very close. The single-bit model only assumes one bit flipped

at each time thus significantly underestimating the errors. In

contrast, the uniform model overestimates the errors because it

assumes the same error rates for each bit. Generally speaking,

the single-bit model tends to underestimate the errors while

the uniform model tends to overestimate the errors.

In this example, because gls-based quality measurement is

unacceptable (25dB ≤ 30dB), the uniform model also makes

a correct prediction. As shown in Table III, we use the same

process for all the voltages and have seen that LEVAX-based

quality estimation is on average 97.9% accurate, while single-

based and uniform-based models only achieve 71.48% and

89.5% estimation accuracy. The uniform-based model achieves

this degree of accuracy because it tends to overestimate the

errors and predict an image quality to be unacceptable, while

the actual image quality also drops rapidly as the voltage is

down-scaled.

TABLE III: Application quality estimation using three

models.

Application LEVAX single-bit uniform

Sobel 96.6% 75.8% 78.3%
Robert 97.5% 57.5% 95.8%
Schaar 99.0% 88.5% 86.4%

Sharpen 98.5% 64.1% 97.5%

8

D. Comparison with Related Works

We compare LEVAX with some existing studies in model-

ing voltage-induced timing errors.

• Single-bit [20]: The single-bit model only assumes one bit

is erroneous (and will be flipped) when there is a timing

error, and, hence, may underestimate the impact of timing

errors. As shown in Fig. 3, each bit has its own TER

and, hence, multiple bits can have errors simultaneously.

Therefore, LEVAX considers and predicts TER for each

bit position.

• Uniform [7]: In contrast to the single-bit model, the

uniform model assumes the same error rates for each bit.

Similarly, as shown in Fig. 3, we can see that each bit can

have different TERs. Therefore, LEVAX treats each bit

position differently and predicts their TER independently.

• B-Hive [23]: LEVAX is significantly different than B-

Hive in several major aspects: (1) B-Hive divides the

output into five classes based on the relationship between

previous output and current output, e.g., previous ob-

served class, previous correct class, etc. It is not straight-

forward to measure whether an output has timing errors

based on such classification. LEVAX, instead, forms a

binary classification problem and intuitively predict each

output as either correct or erroneous, hence directly

predicting timing error rates. (2) B-Hive is based on the

strong assumption that each output is visible to the model

and can be used to predict next output. This assumption is

not practical because it requires running (or simulating)

the circuit and perform a value check for every clock

cycle. LEVAX, instead, only uses input information and

does not need to simulate or check the output value.

(3) B-Hive uses a frequency-of-occurrence-based method

to model the errors and does not consider the effects

of input operands. LEVAX, on the other hand, explores

the root cause of timing errors, which is related to the

dynamic path sensitization. As shown in Section II, path

sensitization is determined by the input operands, based

on which we predict errors. We use B-Hive’s frequency-

of-occurrence-based method to predict timing errors of

all four FUs and compare with LEVAX, as illustrated

in Table IV. We can observe that LEVAX’s RMSE is

significantly smaller than B-Hive.

TABLE IV: Comparison between LEVAX and B-Hive.

FU
Per-voltage RMSE Per-bit RMSE

LEVAX B-Hive LEVAX B-Hive

INT ADD 0.366% 16.586% 0.410% 23.298%
INT MUL 1.025% 35.421% 1.100% 37.301%
FP ADD 1.603% 23.617% 1.823% 27.532%
FP MUL 1.131% 30.710% 1.358% 35.245%

VII. DISCUSSION

Scope: Voltage scaling, as an approximation method, is mainly

performed on arithmetic units [7], [12], [19], [20], i.e., FUs,

because many modern applications can tolerate inaccuracy

in computation. However, approximate computing is rarely

performed on control operations because that can lead to

catastrophic results in application quality or even system

corruption such as segmentation fault [28]. Thus, in this work,

we specifically focus on the error modeling for FUs rather than

other parts of the system such as memory. The same approach

may not be generalized to them because they may not follow

the same path sensitization principle as FUs.

Learning Methods: While there is a large parameter space

and a wide range of learning methods we can use, the main

contribution of this paper is the formulation of the error

modeling by considering input data and bit positions. In this

work, the default parameter configurations of Scikit-Learn [15]

have already shown a high prediction accuracy. Thus, we leave

the tuning of machine learning parameters for future work.

Future Work: Possible future work may entail mainly two

areas of exploration: 1) developing a system-level error model

for processors and chips; the challenges in developing such a

model lie in the even more complicated dynamic path sensiti-

zation behavior and the control paths activation, for example,

how to define proper features for multiple pipeline stages and

2) crafting a more selective training dataset with even more

coverage on dynamic path sensitization; for example, we can

consider automatic test pattern generation (ATPG) tools used

in circuit testing to improve the process.

VIII. RELATED WORK

Approximate computing improves the operational efficiency

of computing systems by allowing occasional errors so long

as the application output quality is acceptable. Voltage scaling

on FUs has been shown to be effective in exploiting such

efficiency-accuracy tradeoff. Voltage scaling-induced error

models that are currently being used in approximate computing

include single bit flip [20], random values [19], and bit flip

with uniform probability [7], [12]. One randomly chosen bit is

flipped if there is a voltage scaling-induced timing error [20].

Single bit flip, last value, and random value models are

considered in [19]. The last value model (or random value

model) means that the last output of a specific operation (or

a random value) will be returned if the operation has timing

errors that are caused by voltage scaling. The bit flip model

is based on a per-component probability that is used in [7].

Another study models the error rate as a function of supply

voltage only and does not differentiate the error rate between

each bit position [12]. B-Hive [23] predicts bit-level error rates

using a frequency-of-occurrence-based Modeling.

Another set of studies has used analytical and learning

models to estimate voltage scaling-induced errors of approxi-

mate circuits. A simulation-based approach is used in [13] to

evaluate several statistical error metrics such as error distance

and the mean error distance for inexact adders. Han et.al

proposed an analytical model to evaluate similar statistical

error metrics for approximate adders [14]. These works mainly

focus on evaluating the error caused by inexact logic design

rather than those caused by voltage scaling, which can be more

random and lack statistical properties. MACACO uses Monte-

Carlo simulation to evaluate several metrics of voltage scaling-

induced errors such as worst-case error, average-case error,

9

and error distribution [26]. Rahimi et.al proposed a variation-

aware error model for functional units [17]. However, all of

these works do not consider the error rate disparity among

different bit positions and mainly focus on integer functional

units. B-Hive [23] divides the bit errors into five classes based

on the relationship between previous output and current output

and uses a frequency-of-occurrence-based method to model the

errors. It does not consider the effects of input operands and

only uses the statistical metric to predict the voltage scaling-

induced errors.

Our work is different from these aforementioned works in

two ways: 1) LEVAX considers the effects of input data in

predicting voltage scaling-induced errors. It requires no prior

knowledge of input distribution and output history, and it can

predict errors for any unseen input. 2) LEVAX considers the

error behavior disparity among different bit positions and is

able to predict the timing error rate for each bit position.

IX. CONCLUSION

In this paper, we propose LEVAX, an input-aware learning-

based model that can predict timing error rates of each bit in

functional units. We perform extensive error characterization

under various voltage levels and extract useful features from

the input data to predict the timing errors. We apply random

forest methods to train LEVAX. LEVAX can obtain a high

prediction accuracy, i.e., within a small deviation from gate-

level simulation and with significant acceleration. We further

use LEVAX to estimate the application quality for four image-

processing applications and LEVAX outperforms the existing

error models in estimation accuracy. The high accuracy and

fast computing speed make LEVAX an alternative to commer-

cial simulation tools for evaluating the voltage scaling-induced

errors. Our future work focuses on developing error models

for even more complicated circuits and processors.

REFERENCES

[1] Woongki Baek and Trishul M Chilimbi. Green: a framework for sup-
porting energy-conscious programming using controlled approximation.
In ACM Sigplan Notices, volume 45, pages 198–209. ACM, 2010.

[2] Mauro Barni. Document and Image compression. CRC press, 2006.

[3] Michael Bushnell and Vishwani Agrawal. Essentials of electronic testing

for digital, memory and mixed-signal VLSI circuits, volume 17. Springer
Science & Business Media, 2004.

[4] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh.
Sensitivity based error resilient techniques for energy efficient deep
neural network accelerators. In Proceedings of the 56th Annual Design

Automation Conference 2019, page 204. ACM, 2019.

[5] Thomas M Cover and Peter E Hart. Nearest neighbor pattern classifi-
cation. IEEE Transactions on Information Theory, 13(1):21–27, 1967.

[6] Florent De Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with flopoco. IEEE Design & Test of Computers, 28(4):18–27,
2011.

[7] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Architecture support for disciplined approximate programming. In ACM

SIGPLAN Notices, volume 47, pages 301–312. ACM, 2012.

[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories. Computer vision and Image understand-

ing, 106(1):59–70, 2007.

[9] Ricardo Gonzalez, Benjamin M Gordon, and Mark A Horowitz. Supply
and threshold voltage scaling for low power cmos. IEEE Journal of

Solid-State Circuits, 32(8):1210–1216, 1997.

[10] Xun Jiao, Mulong Luo, Jeng-Hau Lin, and Rajesh K Gupta. An assess-
ment of vulnerability of hardware neural networks to dynamic voltage
and temperature variations. In Proceedings of the 36th International

Conference on Computer-Aided Design, pages 945–950. IEEE Press,
2017.

[11] Veit B Kleeberger, Petra R Maier, and Ulf Schlichtmann. Workload-and
instruction-aware timing analysis: The missing link between technology
and system-level resilience. In Proceedings of the 51st Annual Design

Automation Conference, pages 1–6. ACM, 2014.
[12] Evgeni Krimer, Patrick Chiang, and Mattan Erez. Lane decoupling for

improving the timing-error resiliency of wide-simd architectures. In
ACM SIGARCH Computer Architecture News, volume 40, pages 237–
248. IEEE Computer Society, 2012.

[13] Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the
reliability of approximate and probabilistic adders. IEEE Transactions

on computers, 62(9):1760–1771, 2013.
[14] Cong Liu, Jie Han, and Fabrizio Lombardi. An analytical framework

for evaluating the error characteristics of approximate adders. IEEE

Transactions on Computers, 64(5):1268–1281, 2015.
[15] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of machine learning research, 12(Oct):2825–2830,
2011.

[16] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. Application-adaptive
guardbanding to mitigate static and dynamic variability. IEEE Transac-

tions on Computers, 63(9):2160–2173, 2013.
[17] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. Hierarchically focused

guardbanding: An adaptive approach to mitigate pvt variations and
aging. In 2013 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1695–1700. IEEE, 2013.
[18] Sanghamitra Roy and Koushik Chakraborty. Predicting timing violations

through instruction-level path sensitization analysis. In Proceedings

of the 49th Annual Design Automation Conference, pages 1074–1081.
ACM, 2012.

[19] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. Enerj: Approximate data types
for safe and general low-power computation. In ACM SIGPLAN Notices,
volume 46, pages 164–174. ACM, 2011.

[20] John Sartori, Joseph Sloan, and Rakesh Kumar. Stochastic computing:
embracing errors in architectureand design of processors and applica-
tions. In Proceedings of the 14th international conference on Compilers,

architectures and synthesis for embedded systems, pages 135–144. ACM,
2011.

[21] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel.
A low latency generic accuracy configurable adder. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2015.

[22] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger.
General-purpose code acceleration with limited-precision analog com-
putation. ACM SIGARCH Computer Architecture News, 42(3):505–516,
2014.

[23] G Tziantzioulis, AM Gok, SM Faisal, Nikolaos Hardavellas, S Ogrenci-
Memik, and Srinivasan Parthasarathy. b-hive: A bit-level history-based
error model with value correlation for voltage-scaled integer and floating
point units. In Proceedings of the 52nd Annual Design Automation

Conference, page 105. ACM, 2015.
[24] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David

Kaeli. Multi2sim: a simulation framework for cpu-gpu computing.
In 2012 21st International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 335–344. IEEE, 2012.
[25] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand

Raghunathan. Axnn: energy-efficient neuromorphic systems using
approximate computing. In Proceedings of the 2014 international

symposium on Low power electronics and design, pages 27–32. ACM,
2014.

[26] Rangharajan Venkatesan, Amit Agarwal, Kaushik Roy, and Anand
Raghunathan. Macaco: Modeling and analysis of circuits for approx-
imate computing. In 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 667–673. IEEE, 2011.
[27] Jing Xin and Russ Joseph. Identifying and predicting timing-critical

instructions to boost timing speculation. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages
128–139. ACM, 2011.

[28] Yavuz Yetim, Margaret Martonosi, and Sharad Malik. Extracting useful
computation from error-prone processors for streaming applications.

10

In Proceedings of the Conference on Design, Automation and Test in

Europe, pages 202–207. EDA Consortium, 2013.
[29] Bo Zhai, David Blaauw, Dennis Sylvester, Dennis Sylvester, and Krisz-

tian Flautner. Theoretical and practical limits of dynamic voltage scaling.
In Proceedings of the 41st annual Design Automation Conference, pages
868–873. ACM, 2004.

[30] Jeff Zhang, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg.
Thundervolt: enabling aggressive voltage underscaling and timing error
resilience for energy efficient deep learning accelerators. In Proceedings

of the 55th Annual Design Automation Conference, page 19. ACM, 2018.

