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Summary

A recently proposed phase-field model for cohesive fracture1 is examined. Previ-

ous investigations have shown stress oscillations to occur when using unstructured

meshes. It is now shown that the use of Non-Uniform Rational B-Splines (NURBS)

as basis functions rather than traditional Lagrange polynomials significantly reduces

this oscillatory behaviour. Moreover, there is no effect on the global structural

behaviour, as evidenced through load-displacement curves. The phase-field model

imposes restrictions on the interpolation order of the NURBS used for the three dif-

ferent fields: displacement, phase field, and crack opening. This holds within the

Bézier element, but also at the boundaries, where a reduction to 0-continuity yields

optimal results. Application to a range of cases, including debonding of a hard fibre

embedded in a soft matrix, illustrates the potential of the cohesive phase-field model.
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1 INTRODUCTION

Numerical approaches to the modelling of fracture initiation and propagation can be divided in two main categories, namely

discrete crack models and smeared crack models. In discrete crack models, the discontinuities are introduced into the displace-

ment field using interface elements which are inserted in the mesh a priori2,3,4,5, by means of remeshing6,7,8, or by enriching

the basis by inserting discontinuities9,10. These methods have been investigated widely and successful applications have been

reported. However, robust extensions to complex three-dimensional problems have shown to be non-trivial.

Smeared approaches are an alternative, in which the sharp discontinuity is distributed over a small, but finite width11. Early

smeared approaches appeared to be deficient in the sense that they caused a loss of well-posedness of the boundary value

problem at, or close to structural failure. The concomitant grid sensitivity then prevents physically meaningful answers. A host

of solutions have been proposed as a remedy, but gradient-enhanced damage models appear to be particularly effective and

powerful to model fracture in quasi-brittle and ductile materials12.

More recently, the variational approach has become popular as an elegant and mathematically well-founded approach to brittle

fracture13. In it, the solution to the fracture problem is found as the minimiser of a global energy functional. A phase-field

implementation of this model has been proposed by Bourdin et al.14 and has been cast in a damage-like, engineering format by

Miehe et al.15,16. Indeed, the phase-field approach to brittle fracture can be classified as a smeared approach, and bears much

similarity to gradient-enhanced damage models17.

Cohesive-zone models have become increasingly popular for predicting crack propagation in quasi-brittle and ductile mate-

rials18,19,20,21. Different from Linear Elastic Fracture Mechanics the crack opening is a crucial element in the constitutive

formulation. Typically, the crack opening is not available in the aforementioned phase-field approach to brittle fracture.
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A phase-field model, in which an auxiliary field was introduced for explicitly modelling the crack opening, was therefore

introduced to model cohesive fracture1,22,23. With the phase field also as an independent variable this results in a three-field

approach. To avoid using an auxiliary field, level set methods have also been utilised24,25. Other approaches, which set out to

model cohesive fracture rather exploit the variational phase-field approach to brittle fracture and attempt to obtain a cohesive-like

fracture behaviour by modifying the assumed phase-field distribution perpendicular to the centre of the crack, the degradation

function26,27,28,29,30, or attempt to reconstruct the crack opening from the phase field31,32.

The cohesive phase-field model with an independent interpolation of the crack opening1 is an elegant and, in principle, a very

powerful way to implement cohesive fracture within the context of phase-field modelling. However, subsequent investigations

revealed some issues, such as a difficulty to drive a cohesive crack in an arbitrary direction, i.e. not along a pre-defined crack22,

and stress oscillations for unstructured meshes23. The first issue is likely to be a deficiency of the current formulation. Indeed,

the current formulation for cohesive fracture does not result in set of partial differential equations which completely determines

the evolution of the cracks, as there are ad hoc rules needed to determine crack nucleation, propagation, or bifurcation, which

is in contrast to the phase-field formulations for brittle fracture. Herein, we address the second issue, namely the emergence of

stress oscillations for unstructured meshes. It has been hypothesised before that the fact the interpolations for the displacements

yield an interpolation for the stresses which do not match that of the the cohesive tractions which derive from the interpolation

of the displacement jump (which is forced to be constant normal to the crack) can be responsible for this behaviour23.

Herein, we improve the accuracy by reverting from a standard Lagrangian interpolation1 to a Bernstein-Bézier discretisation.

Non-Uniform Rational B-Splines (NURBS) are used as in standard IsoGeometric Analysis, except that the basis functions are

now not p−1 continuous across element boundaries. We exploit this lower order to improve the modelling of the displacement

jump at the crack, since interpolations which are 0-continuous at element boundaries yield better results. To this end the

sensitivity of the results with respect to the orders of the discretisation and the element continuity of the three fields have

investigated. We furthermore examine the performance of the present phase-field model when considering interfaces between

materials with significantly different stiffnesses.

In Section 2 we succinctly summarise the phase-field model for cohesive fracture, followed by the discretisation in Section

3 for sake of completeness. Some of the fundamental issues are examined next for a one-dimensional bar subject to tension.

More challenging two-dimensional cases are investigated in Section 5, including the loss of adhesion between a stiff fibre and

its surrounding matrix.

2 PHASE-FIELD MODEL FOR COHESIVE FRACTURE

We consider a volume Ω with an internal discontinuity boundary Γ. The position of a material point is determined by the

coordinate x in a Cartesian reference frame. Displacement and traction components are prescribed along disjoint parts of the

external boundary of the domain, )Ωgi
and )Ωℎi

, respectively.

2.1 Cohesive fracture

The essential difference between brittle and cohesive fracture models is the dependence of the fracture energy on the crack

opening for the latter type of models. While in the former class of models the fracture energy c is instantly dissipated upon the

creation of a unit crack surface, the energy is released gradually in cohesive-zone models, as the energy dissipation is governed

by a fracture energy function:

 = (JuK, �
)

(1)

which depends on the jump of the displacement field JuK across the discontinuity Γ and on a history parameter �. The cohesive

tractions are obtained through differentiation of the fracture energy with respect to the crack opening:

t
(
JuK, �

)
=

)
)JuK

(2)

As starting point for the derivation of the phase-field approximation to cohesive fracture, we first consider the total potential

energy in the sense of Griffith’s theory for brittle fracture13:

Ψpot = ∫
Ω

 e(")dV + ∫
Γ

cdA (3)
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We assume small strain deformations, and define the infinitesimal strain tensor, ", with components

"ij = u(i,j) =
1

2

( )ui
)xj

+
)uj

)xi

)
(4)

as the deformation measure. We assume isotropic linear elasticity, such that the elastic energy density is given by

 e =
1

2
�"ii"jj + �"ij"ij (5)

with � and � the Lamé constants and using the Einstein convention. In Equation (3), the fracture energy is denoted by c . An

irreversibility condition is included which enforces that cracks can only nucleate and propagate, and not heal14, but we note that

not all forms of an irreversibility condition may be appropriate33. Similar to brittle fracture, but now using the fracture energy

function (1), the potential energy for cohesive fracture reads:

Ψpot = ∫
Ω

 e(")dV + ∫
Γ

(JuK, �
)

dA (6)

2.2 Phase-field formulation and boundary conditions

The variational approach to brittle fracture13 estimates the nucleation, propagation and interaction of cracks by finding a global

minimiser of the total potential energy. Solving this variational problem numerically for discrete cracks can be difficult because

the crack path, Γ, evolves with time. In order to overcome this difficulty, a volumetric approximation to the surface integral has

been proposed14:

∫
Γ

(JuK, �
)

dA ≈ ∫
Ω

(JuK, �
)

cdV (7)

The phase-field approximation introduces a crack density, 
c , which depends on a length-scale parameter l and the continuous

scalar-valued phase-field, c ∈ [0, 1], to represent the crack, with c = 0 away from the crack and c = 1 at the crack14,16,16:


c =
1

4l

[
c2 + 4l2|∇c|2

]
(8)

which can be derived by approximating the Dirac delta function � for the strain field at a discontinuity by an exponential

function1,15,16. Minimising the above functional under the constraints c(0) = 1 and c(x) → 0 as |x| → ∞ leads to the Euler

equation:

c − 4l2Δc = 0 (9)

The boundary condition, c(0) = 1, can be applied either strongly or weakly. It is simpler to impose the boundary condition in

a strong format when dealing with less complicated crack patterns. However, for modelling complicated crack patterns a weak

format is more suitable1. To this end, the Dirichlet constraint is added to the weak form of Eq. (9) in a weighted sense. Using

the test function w, the weak form can be written as:

∫
Ω

(
wc + 4l2 )w

)xi

)c

)xi

)
dV + C

4l2

ℎ ∫
Ω

w(c − 1)�(xn)dV = 0 (10)

with C a positive constant that balances the weights of the differential equation and the boundary condition, ℎ a parameter

proportional to the mesh size, xn = (x−xc)⋅n(xc) with n(x) the unit vector normal to the fracture surface, and xc = argmin
y∈Γ

(‖y−
x‖). The weak form of the phase field equation is obtained after rewriting Eq. (10) as:

∫
Ω

[
w(1 +ℱ)c + 4l2 )w

)xi

)c

)xi

]
dV = ∫

Ω

wℱdV (11)

with the ℱ term given by

ℱ = C
4l2

ℎ
�(xn) (12)

From Eq. (11) we observe the dependence of the phase field on the driving force ℱ. If ℱ ≪ 1, then c → 0, whereas if ℱ ≫ 1,

then c → 1. To allow for numerical integration of the constraint term, the Dirac function is approximated as follows:

�(xn) =

{
1

ℎ

(
1 −

|xn|
ℎ

)
− ℎ ≤ xn ≤ ℎ

0 otherwise
(13)
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Equation (11) can be rewritten to yield the strong form:

(1 +ℱ)c − 4l2Δc = ℱ (14)

2.3 Phase-field formulation for cohesive fracture

Combining Eqs (6) and (7), and introducing the auxiliary field w(x), which models the jump, results in a volume integral for

the potential energy:

Ψpot = ∫
Ω

(
 e("

e) + (w, �)
c
)

dV (15)

where "e is the elastic strain tensor. The displacement jump is strictly confined to the internal discontinuity Γ and we approximate

the discrete displacement jump at xc using the auxiliary field1 w as:

JuK(xc) ≈

∞

∫
−∞

w(x)
cdxn. (16)

We emphasise that this is a major deviation from the traditional phase-field approach, in which the crack only exists in a smeared

sense. Assuming that the auxiliary field is constant in the direction normal to the fracture leads to:

w(x) = w(xc + xnn) = w(xc) (17)

with xn the coordinate along n. By inserting Eq. (17) into Eq. (16) we obtain:

JuK(xc) ≈

∞

∫
−∞

w(x)
cdxn = w(xc)

∞

∫
−∞


cdxn = w(xc) (18)

which shows that w(x) represents the crack opening at the closest point xc on the discrete internal boundary. The constraint that

the auxiliary field is constant in the direction normal to the crack is enforced weakly through the addition of a penalty term in

the internal energy functional:

Ψpot = ∫
Ω

(
 e("

e) + (w, �)
c + 1

2
�
|||
)w

)xn

|||
2

)
dV (19)

with � a penalty parameter1.

The weak form of the cohesive phase-field problem is obtained by taking variations of the displacement field u and the

auxiliary field w, while keeping the phase-field constant

�Ψpot = ∫
Ω

(
�ij�"

e
ij
+ ti

(
w, �

)

c�wi + �

)wi

)xn

)�wi

)xn

)
dV = �Ψext (20)

where in the absence of body forces,

�Ψext = ∫
)Ω

ℎi�uidA (21)

with ℎi representing the traction along the Neumann boundary )Ωℎi
. In Eq. (20), �ij =

) e

)"e
ij

are the components of the Cauchy

stress and ti =
)
)wi

are the cohesive tractions.

The elastic strain tensor, "e, is related to the displacement field u and the auxiliary field w via

"e
ij
= u(i,j) − sym

(
winj

)

c (22)

In Eq. (22), the first term is the symmetric part of the gradient of the displacement field and the second term is the strain caused

by the displacement jump. Substituting the variation of Eq. (22) into Eq. (20) we obtain the following weak forms

∫
Ω

�ij�uijdV = ∫
)Ω

ℎi�uidA (23)

and

∫
Ω

(
− 
c�ijsym(winj) + 
cti�wi + �

)wi

)xn

)�wi

)xn

)
dV = 0 (24)
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We finally use Eqs (23) and (24) to derive the governing equations in a strong format:{
)�ij

)xj
= 0 x ∈ Ω

�ijnj = ℎi x ∈ )Ω
(25)

and ⎧
⎪⎨⎪⎩



l

(
ti − �ijnj

)
= �

)2wi

)x2
n

x ∈ Γc
)wi

)xn
= 0 x ∈ )Γc

(26)

It is noted that Γc =
{
x ∈ Ω

||| c(x) > tol
}

marks the smeared internal discontinuity, with tol ≪ 1 a small tolerance.

3 DISCRETISATION

Different from earlier work on cohesive phase-field models1,22,23, we use NURBS for the spatial discretisation34. NURBS basis

functions can be constructed for an arbitrarily high degree of continuity, and although the isotropic phase-field model permits the

use of classical 0-continuous elements, the use of a smooth basis is beneficial, as the stresses are represented more accurately35.

Bézier extraction constructs the minimal set of Bézier elements defining a NURBS36. A Bézier element is a region of the physical

domain in which the basis functions are p−1-continuous. Furthermore, Bézier extraction also builds an extraction operator for

each Bézier element that maps a Bernstein polynomial basis defined on the Bézier element to the global smooth basis.

For the discretisation of the weak form of Eq. (11) we approximate the phase field as:

c(x) = N c(x)ac (27)

where ac is an array which contains the control variables of the phase field and N c contains the NURBS basis functions. By

differentiation, we obtain:
)c

)x
(x) = Bc(x)ac (28)

where Bc contains the gradients of the basis functions. Using a Galerkin approach, the following system then results from Eq.

(11): (
∫
Ω

[
w(1 +ℱ)NT

c
N c + 4l2BT

c
Bc

]
dV

)
ac = ∫

Ω

wℱdV (29)

The parameter ℎ in the definition of the driving force ℱ, Eq. (12), directly relates to the mesh size. When the system (29) has

been solved, the crack density, Eq. (8), follows from:


c = aT
c

[
1

4l
NT

c
N c + lBT

c
Bc

]
ac . (30)

Eqs (25) and (26) are solved monolithically for a given phase field c. The discretisation of the displacement field is given by:

u = Nuau , sym

(
)u

)x

)
= Buau (31)

while that of the auxiliary field reads:

w = Nwaw , sym
(
w⊗ n

)
= Bwaw ,

)w

)xn
= Gwaw (32)

From this, the following system, which is non-linear due to the cohesive law, results:

f int,u(au,aw) = f ext,u

f int,w(au,aw) = 0

(33)

with the internal force vectors defined as:

f int,u = ∫
Ω

BT

u

(
CBuau − 
cCBwaw

)
dV (34)
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and

f int,w = ∫
Ω

(
− 
cB

T

w

(
CBuau − 
cCBwaw

)
+ 
cN

T

w
t(w) + �GT

w
Gwaw

)
dV (35)

with C the elasticity matrix. The system of Eq. (33) is solved using a standard Newton-Raphson procedure with the tangent

stiffness matrix:

K =

[
Kuu Kuw

Kwu Kww

]
(36)

with

Kuu =
)f int,u

)au
= ∫

Ω

BT

u
CBudV (37)

Kuw =
)f int,u

)aw
= ∫

Ω

−
cB
T

u
CBwdV (38)

Kwu = KT

u,w
= ∫

Ω

−
cB
T

w
CBudV (39)

Kww =
)f int,w

)aw
= ∫

Ω

(

2
c
BT

w
CBw + 
cN

T

w

)t

)w
+ �GT

w
Gw

)
dV (40)

FIGURE 1 Bar with an elastic interface,  =
1

2
kJuK2, at the centre.

4 ANALYSIS AND DISCUSSION

We now investigate the sensitivity of the cohesive phase-field formulation with respect to the discretisation and the order of the

continuity of the basis functions for a one-dimensional test problem. In all examples the constant C = 101, which enforces the

Dirichlet constraint in a weak sense, while the tolerance which marks the smeared internal discontinuity tol = 10−3.

4.1 Discretisation sensitivity

We consider a one-dimensional domain of unit length with a modulus of elasticity E = 1 and an elastic interface as depicted in

Figure 1. The energy in the interface, with an stiffness k = 1, is assumed as:

 =
1

2
kJuK2 =

1

2
kw2 (41)

so that t = kw. The length scale parameter l = L∕20 and � = 0.1.

Figures 2(a) and 2(b) show the corresponding stress field and the strain contributions when all fields are discretised using

piecewise linear basis functions. The solution of the stress field reveals an oscillatory behaviour. This can be explained by

considering the elastic strain, which, for this one-dimensional case, is given by1:

"e =
du

dx
− 
cw =

du

dx
−

[
c2

4l
+ l

(
dc

dx

)2
]
w (42)
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FIGURE 2 (a) Stress field obtained using a discretisation based on piecewise linear NURBS for all fields; (b) Strain contributions

for a discretisation based on piecewise linear NURBS for all fields.
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FIGURE 3 (a) Stress field obtained using a discretisation based on piecewise linear NURBS for the phase field and the dis-

placement jump field, and cubic NURBS for the displacement field with 0-continuous basis functions across the elements; (b)

Strain contributions.

Since the displacement, u, is approximated by a piecewise linear function, the strain distribution is piecewise constant, Figure

2(b). When we consider the contribution to the elastic strain of the jump field, we observe that 
c has a quadratic contribution

and w is approximated by piecewise linear functions. The jump is forced to be constant in the direction perpendicular to the

discontinuity, which effectively makes the contribution of the jump field to the strain quadratic. The stress oscillations observed

in Figure 2(a) are a direct consequence of the mismatch in the approximation orders of the two strain contributions.

From Eq. (42), it is observed that, when the order of the NURBS for the displacement field is taken as equal to three, the

orders of the strain contributions do match, see Figure 3(b). Figure 3(a) shows that a discretisation with piecewise linear basis

functions for the phase field and the displacement jump field, and cubic NURBS for the displacement field with 0-continuous

basis functions across the elements, fully eliminates the stress oscillations. This observation is in line with conclusions reached

when using Lagrange polynomials instead of NURBS1. It is noted that the solution slightly deviates from the exact solution,

because the internal boundary is enforced weakly using the constant C . Upon mesh refinement the difference disappears.
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FIGURE 4 (a) Stress field obtained using a discretisation based on piecewise linear NURBS for the phase field and the displace-

ment jump field, and cubic NURBS for the displacement field with 0-continuity across the elements. (b) Stress field obtained

using a discretisation based on quadratic NURBS for the phase field and the displacement jump field, and quintic NURBS for

the displacement field with 1-continuity across the elements.

4.2 Sensitivity to the order of continuity

Figure 4(a) shows that changing to NURBS which have 2-continuity for the displacement field across element boundaries re-

introduces stress oscillations (drawn line). This can be explained by considering Eq. (42). The second term, 
cw, is approximated

by 0-continuous basis functions across the elements. In order to have consistency in the order of continuity, the first term,
du

dx
,

must be expressed by 0-continuous basis functions across the elements. This can be achieved using knot insertion37,38. Then,

the stress oscillations again disappear, see the dashed line in Figure 4(a). This behaviour is reminiscent of that of isogeometric

interface elements, where the introduction of 0 lines also eliminated traction oscillations, at least when using Newton-Cotes

integration as is customary in standard (Lagrange) interface elements39.

The stress oscillations can also be eliminated by considering a higher-order interpolation for the displacements, for example

using quintic NURBS in combination with having 1 continuity for all fields at the element boundaries, and using quadratic

NURBS for the phase field and the displacement jump field. This is shown by the dashed line in Figure 4(b). However, due to

the constraint on the jump, the optimal choice is still 0 continuity for all fields at the element boundaries. As also shown in

Figure 4(b), the use of the 1-continuous basis functions can reduce oscillations significantly and more accurate stress fields are

obtained compared to standard finite elements.

FIGURE 5 Bar with a cohesive interface at the centre.



Yousef Ghaffari Motlagh and René de Borst 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5

– t

–
u

Phase field (32)
Phase field (64)

Phase field (128)
Discrete (exact)

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5

– t

–
u

Discrete (Exact)
Cubic (32)

Quintic (32)

(b)

FIGURE 6 Force-displacement curve for the one-dimensional cohesive fracture of a rod. (a) Piecewise linear NURBS are

used for the phase field and the displacement jump field, and piecewise cubic NURBS is utilised for the displacement field. (b)

Comparison between quintic and cubic NURBS used for the displacement field.

5 CASE STUDIES

5.1 Cohesive fracture of a rod

We consider a one-dimensional rod with a cohesive interface, see Figure 5. The length of the rod is L = 1 and the modulus of

elasticity E = 1. The interface energy is taken as5:

 = c
[
1 −

(
1 +

JuK

�n

)
exp(−

JuK

�n
)

]
t = c JuK

�2
n

exp(−
JuK

�n
) (43)

with �n = c∕(tue) , e = exp(1), from which the traction follows as

t = c JuK
�2
n

exp

(
−

JuK

�n

)
(44)

The fracture strength and the fracture energy are taken as tu = 0.75 and c = 1, respectively. The length scale parameter

l = L∕20 and the penalty parameter � = 0.1. The rod is discretised using linear NURBS for the phase field and the displacement

jump field, and cubic NURBS with 0-continuity at the element boundaries for the displacement field. The equilibrium path is

traced using displacement control with a Newton-Raphson solver. Figure 6(a) shows the response for various mesh refinements

of the phase field (32, 64 and 128 Bézier elements) and a comparison is given with the exact solution to the discrete problem.

Already the coarse (32 element) mesh yields almost the exact solution, which is a direct consequence of the use of NURBS

basis functions. Even more accurate results can be obtaind using higher-order basis functions, e.g. quintic NURBS for the

displacement and quadratic NURBS for the phase field and the displacement jump, see Figure 6(b).

5.2 One-dimensional bar in a two-dimensional domain

We now consider a bar with L = 1, l = 0.1 and c = 1 as shown in Figure 7. Cubic NURBS basis functions are used to

approximate the displacement, and the phase field and the crack opening field are approximated using linear basis functions.

0 continuity is enforced at all element boundaries. A two-dimensional setting is used, but a purely one-dimensional stress is

obtained by setting Poisson’s ratio � = 0 and by prescribing all shear components of the smeared jump to zero: ws = wy = 0.

The other parameters are as in the purely one-dimensional case.

A 10×10 structured mesh is used for the baseline solution. As stated in the Introduction stress oscillations have been observed

when displacing nodes to yield an unstructured mesh. In order to further examine this issue some nodes have been displaced

in subsequent (linear) calculations. Figure 8 depicts three meshes, with a high, a medium and a low degree of irregularity, i.e.
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FIGURE 7 Bar with an elastic interface,  =
1

2
kJuK2, in the centre.
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FIGURE 8 Three Bézier meshes with a high, a medium and a low degree of irregularity and the resulting stress profiles.

the initial displacement of the centre node of the distorted patch is ℎ∕2, ℎ∕4 and ℎ∕8, respectively. As shown in Figure 8, even

the most irregular mesh results in very limited stress oscillations. In fact, different from previous hypotheses23, it turns out

that the oscillations are due to the fact that the Dirichlet constraints are weakly imposed in the current phase-field approach

to cohesive fracture. Moreover, improving the approximation reduces the oscillations considerably, as the present oscillations

are much smaller than when Lagrange interpolation functions were used23. In sum, with a suitable, higher-order and matched

approximation of the three fields, an acceptable performance of the weak imposition of the Dirichlet constraints is obtained.

Next, we replace the elastic interface with the cohesive interface used in the previous one-dimensional numerical simulation.

The force-displacement curves for the structured and the unstructured meshes are identical, see Figure 9, giving further evidence

of the good performance of the weakly imposed Dirichlet constraints.
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FIGURE 10 Geometry of the delamination peel test

5.3 Delamination peel test

To investigate the applicability of the formulation in a real two-dimensional problem, we consider the delamination peel test

of Figure 10. The test consists of two cantilever beams that are 10 mm long and 0.5 mm high, and are connected over 90%

of their length by means of an adhesive layer. Upon increasing the externally applied displacement, u, this adhesive layer will

debond progressively. The bulk material is modelled as a linear isotropic material with a modulus of elasticity E = 100 MPa

and a Poisson’s ratio � = 0.3. Plane-strain conditions are assumed. The behaviour of the adhesive layer is modelled using the

Xu-Needleman decohesion relation5, which, for mode-I crack opening, reduces to Eq. (43). The fracture strength and fracture

energy are taken as tu = 1 MPa and c = 0.1 N/mm, respectively. For the length scale parameter, we take l = 0.05 mm and

l = 0.1 mm, while � = 1 MPa.

Figure 11 shows the force-displacement curves for different refinement levels, and are in good agreement with results obtained

before1. Evidently, the smaller value for the length scale parameter, l, yields a higher peak load, see Figure 12, which confirms

that it should be regarded as a material parameter rather than a numerical parameter. Finally, Figure 13 shows the stress field at

three progressive stages of the peel test as well as the deformed geometry.

5.4 Peel test with propagating interface

We reconsider the peel test, but now with only a traction-free pre-crack as shown in Figure 14. The crack is allowed to propagate

into the bulk material when the displacement load is increasing. The material properties are taken the same as before, which

also holds for the decohesion relation. Only the larger value of the internal length scale, l = 0.1 mm, has been used.

As alluded to in the Introduction, the present formulation seems deficient in modelling the propagation of cracks in arbitrary

directions, and the ad-hoc crack evolution model used by Verhoosel and de Borst1 was used for crack nucleation and propagation.

First, a pre-crack is defined, Γ0, which is represented by a set of position and normal vectors sampled along the interface:

0 ⊂

{(
x,n(x)

)
∈ Γ0

}
(45)
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FIGURE 11 Force-displacement diagram for the delamination peel test computed for various meshes.
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FIGURE 12 Force-displacement curve for the delamination peel test

The point set 0 is used to evaluate the driving force, Eq. (12). Then, the phase-field problem, Eq. (29) is solved. After obtaining

the smeared crack representation by this field, 
c , we compute the displacements and displacement jumps for the next time step

through the solution of Eq. 33. Now, we are able to compute the nucleation criterion, Σnuc(�i) > tu, in all integration points and

extend the point set  t of the previous time step with the points for which the nucleation criterion is now satisfied:

 t+Δt =  t ∪
{(

xi,ni
)|||Σnuc(�i) > tu , i ∈ int

}
(46)

where �i are the stresses in all integration points of the set int. The nucleation/propagation model also yields a normal vector,

ni, in all points where the criterion is met. The normal vector is calculated by means of a maximum principal stress criterion as

is commonly done in the cohesive-zone approach. In the example the crack has been forced to remain straight by constraining

the normal vector to be vertical.
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FIGURE 13 Deformed geometry and �yy stress field at three progressive stages in the delamination peel test

Figure 15 shows the phase field at three progressive stages in the peel test with propagating crack. The force-displacement

curves for the peel test with propagating crack computed for various meshes are depicted in Figure 16.

5.5 Fibre-epoxy debonding experiment

A fibre with a 5 μm radius embedded in a 30 × 30 μm square block of epoxy is considered, see Figure 1737. The specimen

is loaded in the horizontal direction by gradually increasing the displacement ū of the left and right edges. The symmetry of

the specimen permits restriction of the computational domain to the top right quadrant of the specimen, in combination with

horizontal rollers along the x-axis and vertical rollers along the y-axis.

The fibre as well as the epoxy are modelled as linear elastic. For the epoxy a Young’s modulus E = 4.3 GPa and a Poisson’s

ratio � = 0.34 have been used. For the fibre the moduli are: E = 22.5 GPa and � = 0.2. The traction at the interface is assumed
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FIGURE 14 Geometry of the delamination peel test with a propagating discontinuity

FIGURE 15 Phase field at three progressive stages in the peel test with propagating crack.

to be given by the Xu-Needleman relation5.

tn =
c
�n

JunK

�n
exp

(
−

JunK

�n

)
exp

(
−

JusK
2

�2
s

)
(47)

and

ts =
2c
�s

JusK

�s

(
1 +

JunK

�n

)
exp

(
−

JunK

�n

)
exp

(
−

JusK
2

�2
s

)
(48)

for loading. The fracture strength and fracture energy in normal (mode I) and in shear (mode II) are taken as tu = 50 MPa and

c = 4 × 10−3 N/mm, respectively. The parameters �n and �s are related to the fracture strength and the fracture toughness via

�n = c∕(tue) and �s = c∕
(
tu

√
1

e

)
. The loading condition is checked on the basis of the history parameter � and the loading

function f =
√⟨JunK⟩2 + �−1JusK2 − �, with ⟨JunK⟩ = 1

2

(
|JunK| + JunK

)
and � = 2.3 the mode-mixity parameter. The history

function f evolves according to the Kuhn-Tucker conditions

f ≤ 0 �̇ ≥ 0 �̇f = 0 (49)

In the case of unloading (f < 0), the traction components are related to the crack opening through the secant stiffnesses.

The debonding between fibre and epoxy leads to a structural softening. When the fibre and epoxy have fully debonded, the

force increases again as the epoxy continues to carry load, Figure 18. The debonding process is visualised in Figure 19. From

the contour plot, Figure 19(a), it is observed that the �xx component is continuous in either subdomain, as are the other stress

components. Figure 19(b) shows the normal and the tangential components of the displacement jump along the fibre-matrix

interface at ū = 0.165 �m for the 4 × 16 mesh.
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FIGURE 16 Force-displacement diagrams for the peel test with a propagating crack computed for various meshes.

(a) (b)

FIGURE 17 (a) A fibre with a circular cross section embedded in a square block of epoxy. Dimensions in �m; (b) 8×32 element

mesh used for the fibre-epoxy simulations.

6 CONCLUDING REMARKS

We have examined a phase-field method for cohesive fracture. The salient characteristic of the approach is that the crack opening

is modelled explicitly, in addition to the displacement field and the phase field. The phase field therefore has the sole purpose

of locating the crack. Different from the phase-field approach for brittle fracture, separate criteria for crack nucleation and

crack propagation are therefore needed. While being straightforward when simple configurations are considered, like debonding

along a straight, pre-defined surface, this necessitates ad-hoc rules for nucleation and propagation. In this sense, the current

formulation of the cohesive phase-field model is therefore still immature. Indeed, the phase field evolution is now decoupled

from the displacement field. Although this is a reasonable assumption for adhesive interfaces, the nucleation and propagation

of cracks with an arbitrary topology should follow from the energy balance of a fully coupled model.
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FIGURE 19 (a) Contour plot showing the �xx stress in the fibre-epoxy system at ū = 0.165 �m using the 8 × 32 element

discretisation; (b) the normal and the tangential components of the displacement jump along the fibre-matrix interface at ū =

0.165 �m using the 4 × 16 mesh. The angle is measured from the horizontal x-axis.

The current phase-field formulation for cohesive fracture requires that the phase field at the centre of the crack is imposed

as a Dirichlet boundary condition, either strongly or weakly. A weak imposition of the boundary condition is more generally

applicable1. However, its use in unstructured meshes leads to stress oscillations22,23. This issue has now been examined in detail,

and disappears rather quickly when higher-order approximations are used. Indeed, different from previous investigations22,23,

where Lagrange interpolations were used, the current investigation exploits Non-Uniform Rational B-Splines (NURBS), which

are very beneficial in this context. Non-linear calculations involving decohesion show that the differences between structured

and unstructured meshes are indistinguishable, thereby validating the weak imposition of the boundary condition for the phase

field at the centre of the crack.

More in general, NURBS yield a considerably higher accuracy, or put differently, the same accuracy can be obtained with

less elements, as has been found also in the current simulations. The cohesive phase-field approach, however, imposes some

restrictions. In particular, continuity at element boundaries should be reduced in order that the interpolations between the three

fields continue to match. It turns out that a reduction to 0-continuity for all fields is the optimal choice.
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The approach has been illustrated for a number of boundary value problems, all showing a good behaviour. It is noteworthy

that coarser meshes could be used than is usual in phase-field simulations of brittle fracture, which is due to the fact that the

displacement jump is interpolated explicitly rather than being considered in a smeared sense, and the fact that cohesive fracture

removes the stress singularity at the crack tip which is inherent in brittle fracture. Of particular interest is the case of debonding

of a hard, circular fibre in a soft epoxy matrix, where the ability of NURBS to exactly capture the circular geometry of the fibre

is an additional advantage. Good results have been obtained which well match results from a discrete cohesive-zone model37.
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