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The derivation of the ignition energy for fast ignition ICF is reviewed and 1D simulations are used to produce a revised

formula for the ignition energy of an isochoric central hot-spot, which accounts for variation in the radius of the hot-

spot rh as well as the density ρ . The required energy may be as low as 1 kJ when ρrh ≈ 0.36 g cm−2, T ≈ 20 keV , and

ρ ≥ 700 g cm−2. Although there are many physical challenges to creating these conditions, a possible route to producing

such a hot-spot is via a bright source of non-thermal soft x-rays. Further 1D simulations are used to study the non-

thermal soft x-ray heating of dense DT and it is found to offer the potential to significantly reduce hydrodynamic losses

as compared to particle driven fast ignition due to the hotspot being heated supersonically in a layer-by-layer fashion.

A sufficiently powerful soft x-ray source would be difficult to produce, but line emission from laser-produced-plasma

is the most promising option.

In the past two decades there has been considerable interest

in Fast Ignition (FI)1 a variant of Inertial Confinement Fusion

(ICF). This interest is driven by the potential to achieve high

gain (G > 100)2, whilst reducing the overall capital cost (rela-

tive to central hot spot ignition). The central idea of all FI vari-

ants is to separate the compression and heating stages, with

the compression generating a dense (but cool) mass of DT

fuel by established means, and the heating being done by an

additional source of highly penetrating particles or radiation.

Relativistic electrons, multi-MeV ions3, and x-rays have all

been considered as possible ‘ignitors’ by various researchers.

Recently, at least two papers4,5 have been published sug-

gesting that using non-thermal soft x-rays rather than an elec-

tron or ion beam for FI could further reduce the ignition

energy by an order of magnitude. Hu et al.4 claim to be

able to achieve ignition on OMEGA- and NIF-scale targets

at laser energies several times below those predicted by the

well known formula for electron-beam-driven FI6:

Eign = 140ρ−1.85
100 kJ (1)

The explanation given by Hu et al. for this is that there is a

special advantage in the ’layer-by-layer’ heating of the x-ray

pulse, however this was not elaborated upon.

In this letter we begin by re-analysing the isochoric ignition

problem and showing that the requirements for ignition can

be relaxed provided that a hotter hot-spot can be generated.

This condition is not a matter of the details of x-ray heating

so these findings are important for all variants of FI, as they

suggest that tuning FI schemes towards generating hotter hot-

spots with lower ρrh may be a fruitful way to reduce ignition

energies and thus the overall cost of FI schemes.

Secondly, we analyse the radiation hydrodynamics of heat-

ing by bright, non-thermal soft x-rays and hence justify the

use of the isochoric ignition condition we have derived. We

also suggest a possible interpretation of the ‘layer-by-layer’

a)corresponding author, email : alex.robinson@stfc.ac.uk

heating (which we find to be supersonic) as relating to min-

imising hydrodynamic losses. Hu’s results are consistent with

our revised ignition energy, given that the process is indeed

close-to-isochoric. Finally, we discuss possible methods of

producing a sufficiently powerful x-ray beam.

Let us start with a brief review of the different ignition condi-

tions. An analytical form for the isobaric ignition energy was

first proposed by Tabak et al.7 using the simple formula for

the uniform heating of a spherical hot-spot,

Eign = (4/3)πr3
hρCpT. (2)

The ignition conditions on T and ρrh were determined by 1D

numerical simulations. Tabak’s conditions were conservative

first estimates, but were later improved by Atzeni (using the

IMPLO code)8 who gave the conditions as T > 8 keV and

ρrh > 0.25 g cm−2. The resulting ignition energy as a function

of density is,

Eign = 6ρ−2
100 kJ. (3)

However, the isochoric ignition energy is more relevant

for fast ignition as the fuel is of almost uniform density,

and the hot-spot is at a significantly higher temperature

than its surroundings. Accounting for the difference in the

amount of mechanical work, the ignition conditions become

T > 12 keV and ρrh > 0.5 g cm−2. Replacing Cp with

CV = 1.15× 108 J g−1 keV−1 in Eq. 1, he obtains the iso-

choric ignition energy function8,

Eign = 72ρ−2
100 kJ. (4)

The widely used formula given in Eq. 1 is the result of a

subsequent 2D numerical study by Atzeni and Ciampi using

the DUED hydrodynamics code9. This assumes that the uni-

form density DT fuel is heated for 10 ps by a beam of fast

unspecified particles. The particles are assumed to follow a

straight path (so their penetration depth and range are equal),

have uniform stopping power, and deflections and straggling

are ignored. The range used is R = 0.6 g cm−2 but Atzeni

also showed that the variation of ignition energy with range is

weak8 for 0.15 ≤ R ≤ 1.2 g cm−2.
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Ignition Criteria for XFI ICF 2

In the case of x-ray fast ignition, it is apparent from the

assumptions that the numerical model does not apply, because

photons transfer their energy to electrons instantaneously by

inverse-Bremsstrahlung absorption10, whereas electrons will

be slowed down gradually by drag11, so the energy deposition

profile will be completely different.

However, the ignition energies quoted by Hu et al. are

still significantly below what we would expect from Atzeni’s

analytical expression for the isochoric ignition energy, Eq.

4. Atzeni derived this expression by performing 1D simu-

lations to produce a plot showing the ignition region in ρrh-T

space, then choosing an arbitrary point (ρrh = 0.5 g cm−2,

T = 12 keV ) close to the separatix between ignition and

quenching as the minimum requirement for ignition. This

point corresponds to the "minimum hot-spot energy" while

still at "moderate temperature"6. However, examination of

his plot12 suggested it may be possible to choose a point at

a smaller value of ρrh and a larger but still reasonable T .

The fact that we have freedom to choose the ‘reference point’

has quite profound consequences, because the ignition energy

must scale as,

Eign ∝

(ρrh)
3T

ρ2
, (5)

and thus modest changes in ρrh can still lead to significant

changes in the ignition energy.

We now determine the values of ρrh and T which min-

imise the ignition energy, and find a general form for the

ignition energy in terms of ρ , rh, and T .

To do this we carried out an array of simulations in ρrh-

T space using the 1D Lagrangian radiation hydrodynamics

code HYADES13, and employed a quotidian equation of state

(QEOS)14 and Thomas-Fermi ionisation model. Thermonu-

clear reactions may take place between light isotopes, as well

elastic scattering reactions.15 The useful energy produced was

calculated using the number of thermal neutrons produced by

the T +D →4 He+n reaction.

The target consists of a spherical DT pellet of radius 100µm

(comparable to an imploded NIF capsule) with an initially

uniform density ρ and temperature 200 eV, with a perfectly-

heated central hot-spot of radius rh and temperature T . These

initial conditions are plotted in Fig. 1.

We have defined the gain as the ratio of the output neutron

energy to the input thermal energy, and this is recorded at 1400

points in ρrh-T space in Fig. 2. Both ρ and rh were varied and

we found the ignition temperature depended primarily on their

product ρrh.

We repeated some of the simulations used to produce Fig.

2 using a Gaussian density distribution with standard devia-

tion σ = r f /2 = 50µm. We found that if the peak density is

ρp, then the ignition temperature is within 10% of the igni-

tion temperature of a uniformly distributed pellet of the same

size, where ρ = ρp everywhere, which demonstrates that our

assumption of a uniform density pellet is valid.

The points at which the fuel just ignites in Fig. 2 have been

plotted in Fig. 3. We have plotted (4/3)π(ρrh)
3CvT rather

than T , to illustrate that Atzeni’s coefficient in Eq. 4 varies

FIG. 1. The initial

temperature and

density profiles

used for our sim-

ulations of the

isochoric ignition

problem.

significantly with ρrh, and thus cannot be taken to be 72 ev-

erywhere. The minimum value of this coefficient is obtained

at ρrh = 0.36 g cm−2, which corresponds to a temperature of

21 keV. There are many issues assoicated with producing such

a hot-spot relating to the collimation and stopping distance of

the source, instabilities, and hydrodynamic losses,16 but us-

ing a soft x-ray driver may have advantages, particularly with

regard to optimising stopping distance and reducing hydrody-

namic losses, as is discussed below.

To find a general expression for the ignition energy valid for

all rh and ρ , we have plotted the ignition temperature against

ρrh in Fig. 4. The equation of the fitting curve is,

Tign =
0.85

(ρrh −0.15)2
+2.5 keV (6)

where ρrh is in g cm−2. This is only a fit for the ignition

temperature, and is not analytically derived. However, it is

a good fit for 0.25 ≤ ρrh ≤ 0.8 g cm−2, where ignition can

realistically be achieved.

Eq. 6 can be substituted into Eq. 2 to give the ignition

energy of a perfectly heated isochoric central hot-spot,

Eign =
(ρrh)

3

ρ2
100

(

41

(ρrh −0.15)2
+120

)

kJ. (7)

It can be seen from Eq. 7 and Fig. 3, that the minimum ig-

nition energy will occur when ρrh = 0.36 g cm−2 and ρ is

as large as possible. These results are not specific to x-ray

heating, but are true for any isochoric hot-spot.

To compare this with the inverse square laws stated above,

they have all been plotted in Fig. 4, assuming rh = 5 µm. Also

included in Fig. 4 is data from Hu et al.’s simulations of x-ray

driven FI4. They claim that they can achieve (1) break-even

ignition at E = 850J using an OMEGA-sized target17 with

maximum density ρ = 720 g cm−3 and (2) ignition with gain

30 at E = 1.65 kJ using a NIF-sized target18 with maximum

density ρ = 550 g cm−3.

Fig. 5 demonstrates that the quoted ignition energies

lie very close to our relaxed condition for ignition. This

shows that their results are are not so surprising as they

might seem at first glance. They do not ‘beat’ the isochoric

ignition condition, because the commonly cited version of

this condition is based on an arbitrary reference point and
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Ignition Criteria for XFI ICF 3

FIG. 2. The gain for a DT pellet of radius r f = 100 µm in ρrh −T

space. There is a clear boundary between ignition and quenching

because of the ‘runaway burn’.

FIG. 3. The value of the coefficient as a function of the ρrh. We var-

ied ρ at constant rh = 5 µm and varied rh at constant ρ = 600 g cm−2.

Atzeni’s coefficient of 72 (corresponding to ρrh = 0.5 g cm−2 and

T = 12 keV ) is also shown.

one can thus relax this condition if one can produce a hotter

hot-spot.

We have also briefly analysed how bright x-rays deposit

their energy in a dense DT plasma, and therefore how the ig-

nition energy for heating using a non-thermal soft x-ray beam

should compare with that of a perfect isochoric hot-spot. We

used HYADES with a QEOS and Thomas-Fermi ionisation

model (and thermonuclear reactions turned off) to model a

monochromatic 500 eV x-ray beam (with temporal profile

given by Fig. 6) incident on a DT slab with density profile

given in Fig. 7(a). The total energy deposited by the beam

over 20 ps in a 5µm radius is 2 kJ, which is what we expect

would be required for isochoric ignition from Eq. 7. The

FIG. 4. The ignition temperature as a function of ρrh with a fit given

by Eq. 6. The analytical self-heating region12 (SHR) has also been

plotted.

FIG. 5. The ignition energy functions discussed above and the data

from Hu4. Eq. 7 is plotted assuming rh = 5 µm. The others are in-

dependent of rh. The ‘NIF’ point is slightly lower than expected be-

cause Hu gives the energy when gain = 1, rather than when runaway

burn begins - these points do not coincide at very high temperatures.

results of the simulation at 10 ps intervals are given in Fig. 7.

The x-rays initially penetrate by a Planck mean free path

into the plasma, heating and ionising the outer layer. As it

is heated, its opacity to the incident radiation reduces, allow-

ing the radiation to penetrate to the layer below.19 Assuming

all of the soft x-ray power is transferred to the region imme-

diately ahead of the heatfront, for an adiabatic shock travel-

ling through a perfect gas, the change in the internal energy

ε = P/ρ(γ −1) of the heated region of length w can be writ-

ten in terms of the x-ray intensity I and heating time theat as,

I =
w

theat

ρε =
w

theat

P

γ −1
(8)

where P is the pressure ahead of the heatfront. We expect a

rarefaction to propagate a distance w at the speed of sound in
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Ignition Criteria for XFI ICF 4

time texpand =w/cs =w
√

µ/RT , where R is the ideal gas con-

stant and µ = A/(Z + 1) is the fully ionised mean molecular

mass, which is 5/4 for DT. Using the ideal gas equation and

taking γ = 5/3 we have,20

texpand

theat

=
I

3
2
ρ(4RT/5)3/2

(9)

For the duration of pulse (0-20 ps) the ratio texpand/theat ≫ 1,

meaning that the time taken for a region of depth w to heat

up to temperature T is much less than the time for a rarefac-

tion to propagate a distance w, so the heat front propagates

supersonically. At the end of the pulse, the intensity of the

radiation arriving at the heat front falls to zero, so texpand/theat

falls below 1 and the heat front becomes subsonic, allowing a

shockwave to begin to form ahead of it.

Since the heating process is supersonic for most of the du-

ration of the pulse, we would expect an ignition scheme which

is close to the isochoric volumetric scheme, and we can there-

fore justify the use of the isochoric ignition condition found

above.

Given that we have used 1D simulations to compute the x-

ray heating, and thermonuclear reactions cannot be included

in HYADES in this geometry, it is difficult to determine if and

when ignition would occur. However by comparing Fig. 7

with our ignition condition it seems possible the plasma would

ignite at about 20 ps in a comparable fast ignition geometry.

At this point, in our 1D simulations, approximately 65% of

the beam’s initial energy have been converted into ion thermal

energy.

Going back to Hu’s initial analysis, and the unexplained

comment which is made there regarding the benefit of the

’layer-by-layer’ heating, the authors suggest that a possible

reason for the for the high radiation-ion coupling observed

is that the hot spot heating here transitions from supersonic

to subsonic at approximately the same time as we would

expect ignition to occur. It is well known that in fast ignition,

hydrodynamic losses are a significant concern, and such

a heating scheme effectively reduces the forward going

hydrodynamic losses to a negligible level. In other words,

the key difference as compared to a particle heated hotspot is

that the x-ray heated hotspot boundary only reaches optimum

size at the end of the heating pulse, and up to this time it

moves supersonically outward, which means that at no point

are there significant hydrodynamic losses in the forward

direction.

However, it remains very difficult to produce an x-ray

source capable of meeting these requirements. The most pow-

erful source of uncollimated non-thermal soft x-rays is line

emission from laser-produced plasma, but even the most pow-

erful examples21 are at least 100x weaker than we would re-

quire. In order to focus the uncollimated rays onto a hotspot,

a material with very high normal-incidence soft x-ray re-

flectivity would be needed: Cr/Sc multilayer mirrors22 have

been produced with a experimental reflectivity of 14.5% at

λ = 3nm, but this is only for a particular angle of incidence

(∼ 2.5◦ from normal) and it is not clear how well they would

perform at the very high intensities we are proposing.

FIG. 6. Intensity pro-

file for the 10 ps

FWHM, 500 eV pulse.

(a) 0 ps

(b) 10 ps

(c) 20 ps

FIG. 7. Density and temperature profiles of a NIF-scale DT pel-

let resulting from heating by non-thermal soft x-ray pulse (a) before

heating, (b) at the peak of the pulse, and (c) immediately after the end

of the pulse. Note that thermonuclear reactions were not included in

this model.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
0
4
1
1
2



Ignition Criteria for XFI ICF 5

In conclusion, we have argued in this paper that the results

of Hu et al.4 are mostly the result of the isochoric ignition

condition being relaxable as a result of producing a very hot

hot-spot, rather than violating the isochoric ignition condi-

tion. These findings are not specific to x-ray heating and thus

suggest that any FI variant might be able to reduce the ig-

nition condition provided that it can produce hot-spots with

ρrh near 0.36 g cm−2 and temperatures in excess of 20 keV,

although we acknowledge this is on the limit of what is phys-

ically possible. We have also produced 1D simulations of a

high-brightness soft x-ray ray beam incident on a DT plasma,

and our results suggest the radiation-ion coupling is very ef-

ficient, and may even reduce the hydrodynamic losses below

what is assumed by the isochoric ignition condition, due to the

transition form supersonic to subsonic coinciding with the ex-

pected ignition point. We hope this letter can stimulate further

research into fast ignition using x-ray drivers as well as more

powerful laser-produced-plasma line emission sources.
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