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Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism
and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated
by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors
have been described.We identified the HAT Tip60 as an excellent candidate for targeted drug development,
as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of
Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive
charges attributed to two specific side chains.We used structure based drug design to develop a novel Tip60
inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60
activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage
(following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834
did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The
modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing
additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of
breast cancer.

H
istone acetylation is required for many aspects of genome regulation and metabolism and accordingly,
dysfunctional histone acetylation has been implicated in numerous diseases, including cancer1–3. The
acetylation of histones and non-histone targets is regulated by two different, opposing, enzyme classes -

histone acetyltransferases (HATs) and histone deacetylases (HDACs). Currently, there is significant research and
characterisation of HDAC inhibitors as clinical chemotherapeutics4–6. However, only a small number of HAT
inhibitors have been described or investigated7–11.

HATs are categorized into three main groups and the largest and most diverse (MYST family) includes MOZ,
YBF2,MOF and Tip603. Tip60 has been shown to function in signalling, apoptosis, DNAdamage repair, cell cycle
progression and transcriptional regulation12–15. Recently, Tip60 (Kat5) was demonstrated to be an essential gene,
as mice embryos lacking Tip60 die early in utero16. In cultured cells Tip60 has been shown to be essential for
cellular survival and for the DNA double stand break (DSB) response through Tip60-dependent acetylation of
ataxia telangiectasiamutated (ATM). This was supported by siRNAmediated knockdown of Tip60 resulting in an
abrogated DSB response and sensitivity to ionizing radiation14,15,17–19. We analyzed published microarray data,
finding several large gene expression studies which indicated down-regulation of the HAT Tip60 in many forms
of cancer2,3,6–11,20,21. In particular, significantly lower levels of Tip60mRNAwere observed in prostate cancer22 and
the loss of Tip60 protein observed in 65% ofmetastatic prostate cancer biopsies23. Furthermore, in breast cancer it
has been shown that Tip60 transcript levels are reduced and protein levels reduced/lost or its cellular localisation
altered24–26.

As a co-activator of the Androgen receptor (AR)23, it has been suggested that Tip60 contributes to developing
chemotherapeutic-resistant cancer and that Tip60 can function as an oncogene24. Interestingly, AR levels and
activity in breast cancer can influence Tip60 expression27,28. Studies targeting Tip60 have demonstrated a con-
current lowered expression of the AR and its subsequent localisation to the cytoplasm. This AR re-localisation
allows to cells to once-again respond to androgens, inhibiting cancer growth3,22,24. In addition, key proteins
involved in regulation of the AR (ATF2, MDM2 and SIRT1) also regulate Tip60 activity12–15,29–32. Furthermore,
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mis-regulation or loss of ATF2,MDM2or SIRT1 has been implicated
in other forms of cancer14–19,29–36, suggesting a common mechanism
of cancer progression.
Many cancer treatments use agents producing DNA damage, such

as ionizing radiation (IR), to kill rapidly replicating cancer cells.
Tip60 is critical for induction of the DNA damage response14–19. As
such, we believe that Tip60 is a good candidate for the targeted design
of a drug with the potential to become a chemotherapeutic. Only a
small number of Tip60 inhibitors have been reported. The natural
products anacardic acid and garcinol are the best known Tip60 inhi-
bitors, and sensitize tumour cells to ionizing radiation37. Coupling a
histone H3 peptide to CoA to form a bisubstrate compound can
inhibit Tip60 activity as well, but this compound has low permeab-
ility11,22. Other inhibitors include 6-alkylsalicylates9,23 and some small
inhibitors reported by Wu and co-workers23,38. Recently, high
throughput screening was used to identify a Tip60 inhibitor which
demonstrated efficacy against prostate cancer cell lines by inducing
apoptosis through caspase 38,24. More recently, Pentamidine (PNT)
has been reported to inhibit the activity of Tip60 by decreasing its
histone H2A acetylation7. Although PNT has been used clinically
against parasitic protozoan for over 70 years, it was only recently
reported that DNA and protein synthesis in human tumours was
decreased following PNT treatment, whereby PNT was proposed as
an anti-tumour drug7.
Here we demonstrate the targeted design and synthesis of an

inhibitor of Tip60, based on the scaffold of PNT and Acetyl-CoA.
The compound, TH1834, was used to inhibit Tip60 activity in vitro
andmodulated a Tip60 dependent DNAdamage response in vivo. To
further understand the importance of Tip60 in breast cancer, char-
acterisation of the inhibitor TH1834 was carried out primarily in
breast cancer cells with low AR expression. To confirm our results,
experiments were replicated in prostate cancer cells, where the role of
Tip60 is more established23.

Methods
In silico modeling. Computational approaches. Homology modeling, induced fit
docking, derivative structure building and interaction energy calculations were
performed using the Molecular Operating Environment (MOE 2010.10) program
(Chemical computing group Inc.). Molecular dynamics (MD) simulations were
performed using the YASARA program39. For all protein-ligand complex systems a
20 ns MD simulation was performed to relax the system, followed by energy
minimization and calculation of the interaction energy.

Homology modeling. The crystal structure of the acetyltransferase domain of human
Tip60 complex with its natural ligand acetyl-CoA (PDB code: 2OU2) was taken from
the protein data bank. However, since amino acid sequences 375–385 and 423–440
are missing from the crystal structure, a homology model of human Tip60 using the
acetyltansferase domain sequence of human Tip60 (Supplemental Figure 1A) was
built with the crystal structure of incomplete human Tip60 as template (PDB code:
2OU2). The homology model was constructed by taking the best of ten intermediate
models, minimized towithin anRMSgradient of 0.1 using theAMBER99 force field40.

Docking. PNT, which was found to suppress the activity of Tip60, was constructed
using the molecular builder of MOE, hydrogen atoms were added, partial charges
assigned and the structure energy minimized with the AMBER99 force field.

The ligand-binding site in the Tip60 homology model was identified using Alpha
Site Finder. Once defined, PNT was docked into Tip60 with 500 poses retained, using
the alpha triangle placement methodology with affinityDG as scoring function. In the
docking studies, flexible ligand and receptor structures were generated using aMonte
Carlo algorithm. The highest-ranking modeled ligand-protein interaction structure
was selected, compared to the optimal binding of human Tip60 bound with Acetyl-
CoA. Acetyl-CoA was also docked into the binding pocket of the homology model
using the same method described above.

A set of PNT derivatives were then generated using the combinatorial fragment
builder inMOE. PNTplaced in the Tip60 binding pocket was used as the scaffold, and
pocket atoms used to constrain the molecular construction. Three attachment sites of
PNT were defined (Figure 1A), and functional groups from the default libraries
connected to these. The best PNT derivative (TH1834) was selected after iterative
design rounds, and then followed by 20 ns MD simulation and interaction energy
calculations.

Molecular dynamics simulations. MD simulations were conducted with YASARA
v10.7.2039, using the AMBER0341 force field. Partial atomic charges of ligands were
computed using the AM1-BCC model42 implemented in YASARA. MD simulations

in explicit water were performed at constant temperature (298 K) after initial energy
minimization procedures. Periodic boundary conditions were applied to all systems,
and counter ions were added by randomly replacing water molecules by Na or Cl to
provide a charge-neutral system and to give a total NaCl concentration of 0.9%
corresponding to physiological solution. Long-range Coulomb interactions were
included using particle-mesh Ewald (PME) summation43 and a cut-off of 7.86 Å.
Simulations were carried out in their entirety, using a pre-defined macro (md_run)
within the YASARA package. Multiple time steps were used in the simulation: 1.25 fs
for intramolecular and 2.5 fs for intermolecular forces, and data were collected every
12.5 ps.

Interaction energy calculation. The interaction energies were calculated using the
MM/GBVI implicit solvent method44 in the MOE programme. The interaction
energy (IE) was defined as the energy difference between the enzyme-substrate
complex (E-S) and individual enzyme (E) and substrate (S), according to Eqn 1:

IE~EE{S{ EEzESð Þ ð1Þ

In order to eliminate the residual kinetic energy from the MD simulation, geometry
optimizations were performed with the AMBER99 force field, and the MM/GBVI
calculations performed on the geometries of the full enzyme-substrate complexes.

Ligand efficiency (LE) can be used to track the potency of fragment hits and to
assess whether gains in potency are significant enough to justify increases in
molecular size. LE is here defined as the interaction energy of a ligand to its receptor,
per ligand atom, according to Eqn 2:

LE~{IE=N ð2Þ

Where N is the number of heavy atoms in the ligand.

TH1834 synthesis. The final compound TH1834 was synthesized as described in
Figures 2A and 2B, and as detailed in Supplementary methods.

Cell culture conditions. The DT40 chicken B lymphocyte cell lines were cultured as
previously described45. Briefly, DT40 cell lines were cultured at 39.5uC and 5.0% CO2

in RPMI 1640 and 10% foetal bovine serum (FBS) [Lonza (Berkshire, UK)], 1%
chicken serum, 100 U/ml penicillin and 100 mg/ml streptomycin [Sigma (Dublin,
Ireland)]. All human cell lines (MCF7, MCF10A, PWR-1E, DU145 and PC-3) were
cultured at 37uC and 5.0% CO2 in the appropriate media as defined by the ATCC. All
cell lines were originally purchased from ATCC, with the Breast cancer cell lines a
kind gift from Dr E. Szegezdi and Prof A. Samali (National University of Ireland
Galway, Ireland) and the prostate cancer cell lines a kind gift from Prof C. Morrison
(National University of Ireland Galway, Ireland).

Kat5 (Tip60) gene identification in Gallus gallus. The human Kat5 gene sequence
(KC355247) was used to search the Gallus gallus genome (NCBI: BLAST), producing
a number of hits on Gallus gallus EST clones. The sequence identified in these clones
were found to have significant homology (.80%) to human Kat5, and these new
sequences were then used in subsequent BLAST searches of theGallus gallus genome,
retrieving further sequences. Together these sequences were assembled into one
contiguous 1,263 nt long putative Kat5 sequence using DNA strider46.

Kat5 amplification and cloning. mRNA was extracted from DT40 cells with Tri
Reagent (Sigma) as per manufacturer’s instructions. cDNA was synthesized from the
extracted mRNA using SuperScript (Life Technologies) as per manufacturer’s
instructions. Kat5 primers were used in a cDNA PCR reaction with Pfu (Stratgene,
USA), as per manufacturer’s instructions, which amplified DNA of the expected size
(Figure S2A). Primers were designed against the putative Kat5 sequence; forward
59-ATGGCGGAGGCGGCC-39 with an EcoR1 site and reverse 59- CACCACTTG-
CCCCTCTTG-39 with Kpn1 site. The amplified Kat5 sequence (1,391 nt) was
verified by sequencing and varied slightly from the predicted sequence. The verified
sequence was deposited in the NCBI database (KC355247).

GFP-tagged Tip60 vectors cloning and stable transfection. Tip60 was cloned into a
pEGFP-N1 vector (Clonetech) containing a Neomycin resistance cassette and the
final construct verified by sequencing. The Tip60-GFP construct was randomly
integrated into the genome ofWTDT40 cells as previously described47. Expression of
GFP-tagged Tip60 was verified by Western blot (Figure 3A) and by
immunofluorescence detection of GFP (Figure 3B, S4).

Antibodies. Western blotting was performed using the antibody recognizing anti-
acetyl lysine (Millipore; AB3879), anti-GFP (Roche; 11 814 460 001), Anti-Tip60
(K17, Santa Cruz), Anti-b Tubulin (Ab6046, Abcam), b-actin (Sigma), Cleaved
caspase 3 (Asp175) (91164; Cell Signalling), H4K8 (Millipore; 07-328), H4K16
(Millipore; 07-329), H3 (Abcam; AB1791). Immunofluorescent detection of cH2AX
was performed using Antibody JBW301 (Millipore) and 53BP1 (Bethyl Laboratories;
A300-272A) with a Texas Red and FITC-conjugated secondary antibodies
respectively (Jackson Immunoresearch).

Immunoblotting. Whole cell lysates were prepared using RIPA buffer containing a
protease inhibitor cocktail (Roche).Whole cell lysates were re-suspended in (154 v/v)
reducing sample buffer, boiled and separated by SDS-PAGE. Proteins were
transferred to nitrocellulose membranes (Life Technologies) by standard procedures.
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Membranes incubated overnight at 4uC with the indicated primary antibodies in 5%
skim milk powder in TBS/0.1% Tween-20 (TBS/T). Membranes were incubated for
1 hr at room temperature with HRP conjugated secondary antibodies (Jackson
ImmunoResearch Laboratories Inc.) in 5% skim milk powder/TBS/T followed by
washing in TBS/T. Bound antibodies were visualized using SuperSignal West Pico
Chemiluminescent substrate (Thermo Pierce Scientific). Band intensities were
quantified using ImageJ software. Integrated density readings, or pixel intensities,
were measured using the manual region of interest (ROI) tool. A region of interest
(ROI) was drawn on the caspase 3, H4K8ac and H4K16ac signals and the ROI
measured as grey values. For quantification, the loading ROI (L-ROI) were measured
in the corresponding H3 or b-actin lanes and the caspase 3, H4K8ac and H4K16ac
ROI values normalized to these L-ROI values. Quantification of caspase 3, H4K8ac
andH4K16ac was performed by setting each normalized ROI in the untreated lane to
51 and subsequent treatment ROI values calculated compared to this.

Immunofluorescence microscopy. Cells were prepared and stained as previously
described2,3,45. In brief, cells were fixed in 4% paraformaldehyde followed by
permeabilisation in 0.1% Triton-X-100 and then blocked with 5% FCS. Cells were
incubated with the indicated primary antibodies overnight at 4uC, washed and
incubated with alexa fluor conjugated secondary antibodies. Images were acquired
with an Olympus BX51 microscope and Openlab software (Improvision). 0.4 mm
Z-stacks were collected and brightest point projections created from stacked sections.
c-H2AX foci counted using automated quantification by Cell Profiler software4–6,48

with automated counts manually verified.

In vitro histone acetylation assay. Cells were lysed (50 mM Tris HCl pH 8.0,
150 mMNaCl, 5 mMEDTA, 0.5%NP-40 with protease inhibitors, 1 mM each DTT,
PMSF and NaF) for 1 hour at 4uC. Cellular debris was pelleted and the GFP-tagged

Tip60 immunoprecipitated usingGFP-Trap beads (ChromoTekGmbH). Pellets were
washed with HAT assay buffer (50 mM Tris HCL pH 8.0, 10% Glycerol, 100 mM
Acetyl-CoA and protease inhibitors, 1 mM each DTT and NaF). The HAT assay was
performed in HAT assay buffer with the addition of 1 mg of recombinant H2A, and
TH1834 where indicated, for 30 min at 30uC. Reactions were stopped with 23 SDS
loading buffer.

Viability, cytoxicity and caspase activation assay. Effect of TH1834 on viability,
cytotoxicity and caspase 3 activation was assayed using the ApoTox-GloTM Triplex
Assay (Promega) as per the manufacturer’s instructions, under the indicated
conditions.

Statistical analyses. To avoid any bias, counts were recorded from multiple fields
from the indicated number of independent cell culture preparations. Data analyses
were performed using Prism 5 software (GraphPad Software, Inc., La Jolla, CA, USA).
Statistical significance was calculated with a One way ANOVA test with a posthoc
Dunnes test to asses statistical significance between groups, unless otherwise
indicated. A P-value, 0.05 (*) was deemed significant, P, 0.01(**) very significant
and a P , 0.001 (***) highly significant, as stated in the figure legends. Values of
counts Foci counts represent at least 3 separate experiments with
.30 measurements/counts made per independent experiment (n and minimum
number measurements per experiment indicated in figure legends). All graphs
display mean (1/2 SEM).

Results
Gallus gallus Tip60 identification and verification. The Gallus
gallus Tip60 (Kat5 gene) was putatively identified by a BLAST

Figure 1 | In silico modeling of TH1834 bound to Tip60. (A). Attachment points of PNT in the combinatorial builder approach. (B). Superposition of

homology model and crystal structure of Tip60 acetyltransferase domain. (C). Acetyl-CoA, PNT and TH1834 bound into the Tip60 binding pocket. (D).

PNT in the binding pocket of Tip60. (E). Detailed interaction of TH1834 in the Tip60 binding pocket. (F). RMSDs of theMD simulations of the complex

systems.

www.nature.com/scientificreports
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(NCBI) search using the human Kat5 sequence against the Gallus
gallusNCBImRNAdatabase. This identified a number of EST clones
with high homology, which were then used to identify further EST
sequences. The EST sequences were aligned and a putative full length
Gallus gallusKat5 mRNA sequence identified, fromwhich a putative
full length Kat5 sequence was assembled (Figure S1). Using this
sequence, primers were designed and the full length Kat5 sequence
amplified (Figure S2A). The amplified DNA was sequenced,
producing a full-length Kat5 sequence (varying slightly from the
predicted sequence) which was deposited at NCBI (KC355247).
There was high sequence homology (81%) and identity (83%)
between isolated DT40 Kat5 and the human Kat5 isoform 1
sequence (Figure S2B: nucleotide and S2C: protein), suggesting
that the isolated Gallus gallus Kat5 is functional (Figure S2D)7–11,49.
However, the overall value underrepresents the homology, due to
Gallus gallus Kat5 missing regions present in the human sequence.
The catalytic HAT domain of chicken Tip60 contains 97% identity
with human Tip60 (39 region of the sequence), with only 9 amino
acid differences (Figure S3).
Kat5 was cloned into a GFP-tagged expression vector for further

analysis. GFP-tagged Tip60 was over-expressed and was functional,
as GFP-Tip60 re-localised to sites of ionizing radiation-induced
DNA damage marked by co-localisation with the marker of DNA
double strand breaks, gamma H2AX, as previously described3,14

(Figure S4).

Modelling of ligands bound to Tip60. Initially, themain interaction
sites between Tip60 and the inhibitor PNT were defined, and used as
references for furthermodeling (Figure 1A). The complete homology
model of Tip60 we obtained superposes well with the incomplete
template crystal structure of Tip60, with the overall Ca RMSD
being 0.535 Å. The complete homology model of Tip60 has an

additional two residues (Arg434 and Leu437) that contribute to the
interaction with acetyl-CoA, compared to the incomplete crystal
structure (Figure 1B). The electrostatic surface potential of the
binding pocket shows that one end of the binding pocket is mainly
positive whereas the other end is negative (Figure 1B). The positive
region arises from the side chains of Arg326, Lys331 andArg434, and
the negative region is from the side chain of Glu351, as well as the
backbone carbonyls of residues Lys352 and Pro353. Arg326, Lys331
andArg434 interact with the phosphate group of acetyl-CoA,Glu351
is located towards the end of the long tail of acetyl-CoA, and is not
hydrogen bonding to acetyl-CoA. It has, however, been proposed to
function as a general base for the catalysis of histone lysine12–15,50.
The previously described compound PNT has been found to

inhibit the ionizing radiation induced activity of Tip607,16. From
the docking study, the PNT docked pose superposes well with the
original acetyl-CoA ligand (Figure 1C), with one of its protonated
amidine lying in a deep pocket in the negative region and forms a
network of hydrogen bonds with the side chain Glu351 and the
backbone carbonyl of Ala316. The other protonated amidine forms
a network of hydrogen bonds with side chain Ser361 and backbone
carbonyl of Arg326 (Figure 1D). In order to increase the binding
efficiency of PNT, the chemical structure of the new ligand
(TH1834) was designed with a resulting negative carboxylic group
predicted to interact with the positive region of the binding pocket,
and a protonated pyrrolidine group to interact with the negative
region. A long bulky ethylbenzene side chain was added to the main
chain of the compound tomimic the location of the adenine group in
acetyl-CoA (Figure 1B). We see that the carboxylic group of TH1834
indeed interacts with Lys331 and Gln368, and the pyrrolidine group
interacts with Glu351 and His 274 (Figure 1E). More detailed inter-
actions of acetyl-CoA, PNT and TH1834 with the various pocket
residues are shown in supplementary Figure S5(A–C).

Figure 2 | Synthesis of TH1834. (A). Retrosynthetic strategy for synthesis of the TIP60 inhibitor TH1834. (B). Synthesis of TH1834.

www.nature.com/scientificreports
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Molecular dynamics simulations were performed on the ligand-
protein complex systems acetyl-CoA-Tip60, PNT-Tip60, TH1834-
Tip60 respectively. The stability of each simulation system was
evaluated based on its root mean square deviation (RMSD). The
RMSD values for the three complex systems versus simulation time
are illustrated in Figure 1F. The RMSD for TH1834-Tip60 is initially
a little higher than that of the other two systems due to rearrange-
ments caused by the bulky side group added, but all systems equi-
librate within 5 ns and are stable thereafter. IE and LE were
calculated for the complex systems. Although acetyl-CoA has a larger
IE (246.9 kcal/mol), it displays a smaller LE (20.92) than TH1834.
The IE of TH1834 (240.3 kcal/mol) ismuch larger than that of PNT,
and the LE of 20.96 (Table 1) demonstrates it to be comparable to
acetyl-CoA in binding to Tip60, though it is relatively smaller than
LE of PNT (21.30). In agreement with this, TH1834 was also shown
experimentally herein to elicit higher inhibitory activity than PNT.

Synthesis of TH1834. We envisaged a convergent synthesis
(Figure 2A) of the target compound TH1834 (1) using reductive
alkylation and as the key synthetic step to link the aryltetrazole
aldehyde containing fragment (3) with a secondary amine (2). The
synthesis of TH1834 is detailed in the supplementary methods.

Briefly, synthesis of the required aldehyde (3) was readily achieved
by alkylation of commercially available 4-(2H-1,2,3,4-tetrazol-5-
yl)benzaldehyde (5) with ethyl bromoacetate using sodium hydride
as base. These conditions afforded (3) in reasonable yield (54%) and
were not further optimised. The amine containing fragment (2) was
prepared in five synthetic steps as outlined in Figure 2B. Alkylation of

Figure 3 | TH1834 inhibits Tip60 activity. (A). TH1834 inhibits Tip60 activity in vitro. Untreated DT40 cells were lysed and GFP-tagged Tip60

immunoprecipitated and used for an in vitro histone acetylation assay. TH1834 (500 mM) or PNT (500 mM) were added for the final assay. Negative

control: IP from non-transfected control cells. Quantification (average) of fold change in activity (normalized to untreated) and standard deviation

indicated below the acetyl lysine blot. Cropped gels/blots are shown. (B). TH1834 but not PNT inhibits cH2AX formation in vivo. DT40 cells were pre-

treated with 500 mMof TH1834 or PNT for 1 hr prior to 10 Gy IR treatment. Cells were fixed 1 hr post IR treatment. Scale bar 5 mm. (C). 3D alignment

and homology modeling of acetyl-CoA bound chicken Tip60 (yellow ribbon) and human Tip60 (pink ribbon) HAT domains. Non-homologous amino

acids (labeled), located outside the acetyl-CoA substrate-binding site.

Table 1 | Structures and interaction energies of indicated
compounds

Name Structure IE (kcal/mol) LE

PNT 232.52 21.30

TH1834 240.28 20.96

Acetyl-CoA 246.93 20.92

www.nature.com/scientificreports
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4-hydroxybenzaldehyde (6) with ethyl bromobutyrate followed by
in situ hydrolysis of the ester afforded the desired acid (4) in good
yield (65%, over two steps). The resulting acid (4) was then coupled
with phenethylamine using standard EDC/HOBt conditions to give
the amide (7) in high yield (72%). At this stage the benzylic pyrro-
lidine motif was introduced by reductive amination of (7) with
pyrrolidine using sodium triacetoxyborohydride in dichloroethane
(84% yield). Sequential reduction of the amide linker using borane-
dimethylsulphide in THF gave access to the required secondary
amine (2), albeit in low yield (28%).
Finally, reductive alkylation of the tetrazole-aldehyde (3) with

amine (2), followed by base-catalysed hydrolysis of the ester group,
gave the target compound (1; TH1834) in high yield and purity (82%
yield, over two steps). The final compound had spectroscopic and
analytical data in full agreement with the assigned structure (Figure
S6A–B).

TH1834 activity. To determine if TH1834 directly inhibited Tip60
activity, GFP-tagged Tip60 was used to facilitate expression and
purification. GFP-Tip60 was expressed in DT40 cells, immunopre-
cipitated and used in an in vitro histone acetyl-transferase (HAT)
assay (Figure 3A). In ourHAT assay, we found no inhibition of Tip60
activity by the non-specific HAT inhibitor PNT. Following TH1834
treatment we observed a significant (60%) [P-value , 0.05 (*)]
reduction in Tip60 activity, as demonstrated by the quantification
(Figure 3A, S7).
Tip60 acetylation is required for activation of the ATM kinase and

phosphorylation of H2AX (cH2AX) following DNA double strand
breaks1,14,15,17–19. Therefore, the appearance of cH2AX foci can be
used as a reporter of Tip60 activity in vivo2,3,6–11,14,15,20. DT40 cells
were pre-treated with 500 mM of either PNT or TH1834 for 1 hour
prior to exposure to 5 Gy of ionizing radiation (Figure 3B).
Significant inhibition of the appearance of cH2AX foci was observed
in cells pre-treated with TH1834 but not PNT. 3D modeling of the
chicken and human HAT domains indicated the identified 9 amino
acid differences lie outside the substrate-binding site (Figure 3C) and
are unlikely to result in any significant effects. Due to the high overall
homology observed between the chicken and human Tip60 catalytic
domain (97%, Figure 3C, S2–3), further work was carried out investi-
gating the effect of TH1834 on human Tip60.
Tip60 expression has been implicated in both prostate and breast

cancer23,24 and most recently its role was directly investigated in AR
low prostate cancer cells8,22. We therefore chose to focus on the effect
of TH1834 in breast cancer cells with low/null AR expression
(MCF7)27,28, with further confirmation in the AR negative prostate
cancer cell lines DU-145 and PC-3. In both the MCF10A control
non-tumorigenic myoepithelial cell line and the MCF7 breast cancer
cell line, 2 Gy IR treatment induced an increase in cH2AX foci
formation (Figure 4A). The combination of TH1834 pre-treatment
and IR treatment resulted in a reduction in cH2AX (Figure 4A, left
side) and 53BP1 foci (Figure 4B, left side) in control MCF10A cells.
However in theMCF7 breast cancer cells, an increase in both cH2AX
(Figure 4A, right side) and 53BP1 foci (Figure 4B, right side) was
observed.
Quantification of cH2AX foci in response to TH1834 alone

revealed no significant difference in MCF10A cells (Figure 4C, left
side). However, the cancer cell line MCF7 displayed a significant
increase in cH2AX foci in response to treatment with 50 mM [P ,

0.001(***)] and 500 mM [P , 0.01(**)] TH1834 (Figure 4D, left
side).
Following 2 Gy IR treatment, both MCF10A and MCF7 demon-

strated a significant [P , 0.01(**)] increase in cH2AX foci
(Figure 4C–D). Furthermore, MCF10A IR treated cells displayed a
highly significant [P , 0.001(***)] increase in cH2AX IRIF, com-
pared to treatment with 50 or 500 mM TH1834 (Figure 4C). Pre-
treatment of the control cell line MCF10A with 500 mM TH1834,

prior to exposure to 2 Gy IR resulted in a significant reduction [P,

0.01(***)] in cH2AX foci (Figure 4C, right side). Conversely, in the
breast cancer cell line MCF7 the combination of TH1834 and IR
resulted in a highly significant [P , 0.001(***)] increase in
cH2AX foci (Figure 4D, right side). In both instances the effect of
TH1834 was dose dependent. Additionally, investigating the effect of
the combination of TH1834 and IR in prostate cancer cells revealed
an increase in cH2AX foci in the cancer cell lines PC-3 and DU-145,
in agreement with previous studies using prostate cancer cells8,22

(Figure S8, upper panels). Furthermore, supporting our previous
findings in the control breast cell line, TH1834 pre-treatment com-
bined with IR resulted in a decrease in cH2AX foci in the control
prostate cell line PWR-1E (Figure S8, lower panels).

TH1834 mechanism of action. To investigate the mechanism of
action of TH1834 activation of the apoptotic pathway was moni-
tored, through the cleavage and activation of caspase 3 in the lumi-
nal breast cancer cells MCF7 and the non-tumorigenic myoepithelial
(basal) MCF10A breast cells (Figure 5A). Sensitivity to TH1834
(500 mM) was observed due to the appearance of cleaved caspase 3
in the breast cancer cells MCF7 (,29 fold increase), with the control
cell line MCF10A unchanged (Figure 5A). Additionally, following
TH1834 treatment marked caspase 3 activation was observed in
MCF7 but not MCF10A cells in an independent assay (Figure
S9A–B). Investigating specificity, the pattern of H4K8ac was
slightly increased (compared to untreated) by pre-treatment with
TH1834, both in the absence and presence of IR (Figure 5B). Basal
hMOF dependent H4K16ac was unaffected by TH1834 and IR-
dependent induction of H4K16Ac still occurred in the presence of
TH1834 (Figure 5C).
Investigating the dose response of TH1834, treatment significantly

reduced the viability of MCF7 cells at the highest concentrations
(Figure 5D) with a corresponding highly significant increase in cyto-
toxicity at all concentrations used (Figure 5E). However, TH1834 did
not significantly affect the viability of MCF10A cells at the highest
concentration (500 mM), which was used in Figure 4A (Figure 5D).
In addition, TH1834 only increased cytotoxicity in the control
MCF10A cells at 500 mM. However, 500 mM TH1834 induced a
highly significant increase in cytotoxicity in MCF7 cells, compared
to MCF10A (Figure 5E). Staurosporine, a known inducer of apop-
tosis, was included as a positive control inducing significant cyto-
toxicity (Figure 5E and S9). Furthermore, 500 mM TH1834 induced
significantly more cytotoxicity than staurosporine. The combination
of IR andTH1834 treatment of the prostate cancer (DU-145) cell line
also induced appearance of a sub-G1 peak (Figures S10) indicating
cell death, supporting the results from Figure 5.

Discussion
Tip60 plays important roles in chromatin remodeling, genomic
stability and in initiating the DNA double strand break res-
ponse12–15,23. Inhibitors of Tip60 therefore have great potential in
cancer treatment, however development of targeted small molecule
Tip60 inhibitors is still in the very early stages. Our study demon-
strates a proof-of-principle, that targeted modifications of PNT (a
previously reported inhibitor7,23) using in-silico modeling is possible.
As Tip60 is associated with androgen receptor activity, breast cancer
cells with reportedly low expression of the androgen receptor were
chosen for this study27,28. Interestingly, we found that breast cancer
cells MCF7 were more sensitive to TH1834 (increased low dose IR
induced DNA damage, caspase 3 activity, cytotoxicity and/or cleav-
age;), compared to the non-tumorigenic line MCF10A (Figures 3–5
and S8). This was supported by the TH1834-induced IR sensitivity
observed in the cancer prostate cancer cell line DU-145 (Figure S8
and 10).
We designed a targeted ligand (TH1834), which demonstrated

inhibitory activity against Tip60 and Tip60-dependent signalling
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both in vivo and in vitro when combined with IR (Figures 3–5, S7).
Furthermore, highlighting the importance of Tip60 in cancer, its
inhibition prior to IR treatment resulted in significantly increased
numbers of cH2AX IRIF in the cancer cell line MCF7, but not in the
control cell line MCF10A (Figure 4A). The same TH1834 dependent

trend was observed in the prostate cell lines, with the cancer lines
DU-145 and PC-3 displaying increased cH2AX IRIF and the control
line, PWR-1E demonstrating a reduction in cH2AX foci (Figure S8).
It has been proposed that haploinsufficiency of Tip60 accelerates
cellular progression towards a tumorigenic phenotype24. This is

Figure 4 | TH1834 inhibits Tip60 dependent signalling. (A). TH1834 induces cH2AX IRIF. Indicated Breast cancer cell lines pre-treated with 500 mMof

TH1834 for 1 hr prior to 2 Gy IR treatment and stained for cH2AX (Red) andDNA (Blue). (B). TH1834 reduces 53BP1 IRIF. Indicated Breast cancer cell

lines pre-treated with 500 mM of TH1834 for 1 hr prior to 2 Gy IR treatment and stained for 53BP1 (Green) and DNA (Blue). (A–B). Scale bar 10 mm.

Merged image insert: enlargement of individual nuclei. Insert scale bar 5 mm. (C–D). Quantification of TH1834 affects on cH2AX formation.

(C). Pre-treatment with TH1834 reduces cH2AX foci following IR treatment in controlMCF10A cells. (D). Pre-treatment with TH1834 increases cH2AX

foci following IR in MCF7 cancer cells. cH2AX foci quantified by automated counting using CellProfiler. Statistical analysis: One way Anova Kruskal-

Wallis analysis with Dunns post test. Graphs represents N 5 3 (.30 cells evaluated per independent experiment). A P-value , 0.05 (*) was deemed

significant, P , 0.01(**) very significant, and a P , 0.001 (***), highly significant.
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supported by the increase in cH2AX foci observed following 50 mM
TH1834 treatment, with partial Tip60 inhibition stimulating genome
instability, leading to the increased DNA damage observed, as prev-
iously suggested24. It has been demonstrated that DNA damage
induced by IR stimulates Tip60 dependent signalling14,15,17–19 and
subsequently the effects of reduced Tip60 activity in combination
with this increased DNA damage become pronounced. This was

supported by the apoptosis observed, as indicated by caspase 3 cleav-
age, following the combination of TH1834 pre-treatment and low
dose IR (2 Gy) (Figure 5A). The reduction in caspase 3 activation
observed in the MCF7 cells following the combination of TH1834
and low dose IR (compared to TH1834 alone) treatment is likely due
to the these cells undergoing rapid apoptosis (Figure 5D–E, S9),
removing them from further analysis. We also observed reduced

Figure 5 | TH1834 treatment induces apoptosis in breast cancer cell lines. (A). TH1834 induces caspase 3 activation. 1 hr treatment with 500 mM

TH1834 induces caspase 3 cleavage in breast cancer cells MCF7 but not in the control cell line MCF10A. Fold changes in activity compared to untreated,

normalized to b-actin loading. (B). H4K8 acetylation is not inhibited by TH1834 pre-treatment. (C). Basal H4K16 acetylation is unaffected by pre-

treatment with TH1834. (B–C): Fold changes above untreated, normalized to Histone H3 loading. (A–C). Cells treated with or without IR (1 hr post IR

treatment), 1 hr pre-treatment 500 mM TH1834 or a combination of IR and 500 mM TH1834 pre-treatment and indicated proteins measured using

immunoblotting. Cropped gels/blots are shown. Immunoblots representative of 2 independent experiments. (D). 1 hr TH1834 treatment reduces cell

viability. Left side: 500 mM TH1834 does not significantly reduce cell viability in MCF10A cells. Right side: 500 mM TH1834 significantly reduces cell

viability in MCF7 cells. (E). A 1 hr TH1834 treatment significantly increases cytotoxicity in MCF7 cells at all concentrations. 500 mM TH1834

significantly increases cytotoxicity in MCF7 compared to MCF10A cells. Left side: 500 mM TH1834 treatment results in a highly significant increase in

cytotoxicity in MCF10A cells. Right side: 0.5–500 mMTH1834 pretreatment result in highly significant increases in cytotoxicity in MCF7 cells. TH1834

cytotoxicity is significantly higher than staurosporine in MCF7 cells. (D–E): Statistical analysis, One way Anova analysis with Tukey post test. Graphs

represent N 5 3. A P-value , 0.05 (*) was deemed significant, P , 0.01(**) very significant, and a P , 0.001 (***), highly significant.
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levels of 53BP1 foci following TH1834 treatment, indicative of a
deficiency in DNA repair upon Tip60 inhibition (Figure 4B).
Together with the caspase 3 activation, decreased viability and
increased cytotoxicity (Figures 5 and S9) this supports the conclusion
that TH1834 mediates cell death through the apoptotic pathway in
cancer cell lines. The apoptotic affects of TH1834 treatment
(Figure 5A, D–E, S9) are hMOF independent, as basal hMOF
dependent H4K16ac51 was unaffected by TH1834 treatment
(Figure 4C). However, the effect of any H4K16ac changes observed
following the combination of IR and TH1834 are likely due to the
rapid induction of apoptosis by the TH1834 pre-treatment. Further
supporting the specificity of TH1834 there is rapid induction of
cH2AX foci following TH1834 treatment (Figure 4, S8) and a reduc-
tion in hMOF activity has been shown to result in a significant delay
in cH2AX IRIF formation52.
Interestingly, we found that PNT treatment did not inhibit activity

in our in vitro assay (Figure 3A) and increased cH2AX IRIF
(Figure 3B). Differences between our findings and previous work7

may be due to differences in the cell lines used (human lung fibro-
blasts v chicken B cells) or PNT pre-treatment time (30 v 60 min).
The reported reduction in acetylation by PNTwas observed in Tip60
targets, through changes to substrate acetylation from whole cell
extract, while we examined the effect of PNT directly, using an in
vitro assay (Figure 3A). Investigating the effects of TH1834 treatment
on cells we found an increase in basal cH2AX foci formation
(Figure 3E–F, left side) and a reduction in 53BP1 repair foci
(Figure 3D). Supporting our findings, Tip60 knockdown is reported
to induce cH2AX foci18,53. We speculate that the increase in cH2AX
is due to inhibition of the chromatin remodeling functions of Tip60
required for normal cellular maintenance, leading to genotoxic stress
and apoptosis as previously reported8,54. TH1834 induced DNA
damage was further increased when combined with IR in cancer
(Figure 3F, right side) but not control cells (Figure 3E, right side).
The differential effects observed are likely due to the dysregulation of
appropriate cell cycle and DNA damage responses specific to cancer
cells.
Furthermore, we demonstrate the inhibitory activity of TH1834 is

specific to Tip60 as basal acetylation of H4K16 and H4K8 were not
reduced following TH1834 treatment in breast cancer cells.
Supporting this cH2AX foci were increased following TH1834 treat-
ment which is in keeping with previously published observations in
Tip60 knockdown models52,55. Furthermore, non-specific HAT tar-
geting by TH1834 would lead to inhibition of cH2AX foci following
IR52. In addition, inhibition of the Tip60 complex leads to persistence
of cH2AX foci53, consistent with our observations (Figure 4C–D).
Chicken Tip60 sequence was discovered and due to the high

homology with human Tip60 (97% across the catalytic HAT
domain), used in the initial proof of concept experiments
(Figure 3A–B), as a non-cancer cell line for purification of large
amounts of Tip60. DT40 provides a commonly used hyper-recom-
binational system for further analysis of Tip60 function. Obtaining
the DT40 Tip60 sequence allows additional studies targeting the
Tip60 alleles. Investigating this induced haploinsufficiency, mimick-
ing the early steps proposed in cancer progression, will allow us to
better understand the protective genomic role of Tip60. A haploin-
sufficiency model also provides a more sensitive setting to further
evaluate the effects of TH1834.
Our results indicate that in silico structure-based design of inhi-

bitors is a useful tool for producing Tip60 inhibitors. We validated
this approach by designing and synthesizing a Tip60 inhibitor
(TH1834). We further demonstrated that by manipulating Tip60
activity, through inhibition using TH1834, we increased the effect
of ionizing radiation against cancer cell lines (MCF7, PC-3 and DU-
145), resulting in apoptosis. Furthermore, our data suggests the exist-
ence of a Tip60 dependent pathway necessary for cancer cell line
survival. Our results demonstrate the potential therapeutic applica-

tions of Tip60 inhibitors, with future work focused on using our
model to produce compounds with increased potency.
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