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A Spatio-Temporal Ageing Atlas of the Proximal

Femur
Mohsen Farzi, Member, IEEE, Jose M. Pozo, Eugene McCloskey, Richard Eastell, Nicholas Harvey, J.

Mark Wilkinson∗, and Alejandro F. Frangi∗, Fellow, IEEE

Abstract—Osteoporosis is an age-associated disease char-
acterised by low bone mineral density (BMD) and micro-
architectural deterioration leading to enhanced fracture risk.
Conventional dual-energy X-ray absorptiometry (DXA) analysis
has facilitated our understanding of BMD reduction in specific
regions of interest (ROIs) within the femur, but cannot resolve
spatial BMD patterns nor reflect age-related changes in bone
microarchitecture due to its inherent averaging of pixel BMD
values into large ROIs. To address these limitations and develop
a comprehensive model of involutional bone loss, this paper
presents a fully automatic pipeline to build a spatio-temporal
atlas of ageing bone in the proximal femur. A new technique,
termed DXA region free analysis (DXA RFA), is proposed
to eliminate morphological variation between DXA scans by
warping each image into a reference template. To construct the
atlas, we use unprocessed DXA data from Caucasian women aged
20-97 years participating in three cohort studies in Western Eu-
rope (n>13,000). A novel calibration procedure, termed quantile
matching regression, is proposed to integrate data from different
DXA manufacturers. Pixel-wise BMD evolution with ageing was
modelled using smooth quantile curves. This technique enables
characterisation of spatially-complex BMD change patterns with
ageing, visualised using heat-maps. Furthermore, quantile curves
plotted at different pixel coordinates showed consistently differ-
ent rates of bone loss at different regions within the femoral neck.
Given the close relationship between spatio-temporal bone loss
and osteoporotic fracture, improved understanding of the bone
ageing process could lead to enhanced prognostic, preventive and
therapeutic strategies for the disease.

Index Terms—Spatio-temporal Atlas, DXA, Region Free Anal-
ysis, Osteoporosis.

I. INTRODUCTION

Ageing is associated with a gradual and progressive bone

loss, which predisposes to osteoporosis. Osteoporosis is a
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bone disease characterised by low bone mass and micro-

architectural deterioration, and improving the understanding

of the bone ageing process interests the osteoporosis research

community [1], [2]. To facilitate this understanding, we pro-

pose a method to develop a spatio-temporal atlas of ageing

bone in the femur.

Spatio-temporal imaging atlases quantitatively describe de-

tailed anatomical or functional phenotypes from large imaging

studies. For example, brain atlases enable quantitation of

disease progression in Alzheimer’s Disease [3]. However, to

the best of our knowledge, no spatio-temporal atlas of ageing

bone has been developed in osteoporosis research. Developing

a comprehensive model of involutional bone loss is a challeng-

ing task. First, this requires a robust and accurate quantification

technique for bone mineral density (BMD) measurement and

its spatial distribution. Dual-energy X-ray Absorptiometry

(DXA) is the reference gold standard to measure BMD in

clinical practice [4]. In conventional DXA analysis, BMD data

is acquired at the individual pixel level but at the analysis

stage these values are averaged in a priori specified regions

of interest (ROIs) to compensate for shape variation between

scans (Fig. 1). Data averaging reduces the ability of the

technique to quantitate local variation in textural BMD patterns

of clinical relevance to disease progression with ageing.

The second challenge is the ability to homogenise BMD

measurements across different technologies, as systematic

differences in instrument calibration exist between different

proprietary DXA manufacturers [5], [6], [7]. Two broad cross-

calibration procedures are commonly used. In one approach,

each scanner is separately calibrated by fitting bone phantom

measurements to its nominal density values. Pearson et al. [8]

suggested an exponential curve and explored the technique

using the European Spine Phantom (ESP) prototype. In the

other approach, different scanners are calibrated simultane-

ously using density values measured on a common group of

individuals [5], [6], [7].

Both DXA calibration procedures have several key lim-

itations. Cross-calibration using phantom measurements is

challenged by a study conducted under the auspices of the

International DXA Standardisation Committee (IDSC) [5].

Genant et al. [5] showed a disagreement between regression

curves fitted to the phantom measurements and those fitted

to the human measurements. The second approach requires

repeated measurements of each subject across all machines

[5], [6], [7]. This can be a seriously limiting factor in large

multi-centre studies, where the first approach may be preferred

in practice [9].

Copyright c© 2019 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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Fig. 1. Femoral Regions of Interest (ROIs). The green solid contour around
the bone shows the total hip. The neck and the wards’ triangle regions are
identified with red and yellow rectangles, respectively. The A-B line shows
the hip axis and the black line delineates between the trochanteric and the
inter-trochanteric regions.

This paper offers solutions to these challenges: To main-

tain fidelity to high-resolution pixel BMD values, we have

previously proposed a region free analysis (RFA) approach

and demonstrated its application to analysing periprosthetic

BMD changes for patients who received a hip prosthesis

[10], [11], [12]. DXA RFA aligns each individual scan to

a reference template and so eliminates the morphological

variation between scans. This deformable image alignment

establishes a virtual correspondence between pixel coordinates

enabling statistical inference at the pixel level. To control

the correspondence between scans, the initial RFA technique

used a set of anatomical landmark points selected semi-

automatically around the prosthesis and the bone contour.

Here, we extend the technique to the native femur and propose

a fully automatic formulation applicable to large-scale datasets

(section II-B).

To amalgamate data from different centres, we propose

a novel calibration procedure termed quantile matching re-

gression. The proposed technique uses BMD measurements

collected from individuals but the requirement for scanning

the same group of subjects on all the machines is moder-

ated. In this method, different subject groups with similar

geographic, ethnic and demographic characteristics scanned on

each machine are assumed to be independent and identically

distributed samples from the same population. The cross-

calibration is achieved by matching the distribution of the

BMD values over the matched sample groups across the

centres.

This paper aims to develop the first spatio-temporal ref-

erence atlas of ageing bone in the femur using DXA data

from over 13, 000 subjects (Fig. 2). To model the temporal

BMD evolution as a function of age, quantile curves were

fitted using vector generalised additive models (VGAMs) per

each pixel coordinate. Preliminary results using a subset of

n = 1, 714 subjects were presented in [13]. This paper expands

our previous work: first, the mathematical details are provided

here and the method is also extended to allow contribution

of confounding variables such as body mass index (BMI)

in the developed atlas. Second, the method is applied to a

considerably larger dataset here. This increase in sample size

reduces the uncertainty around each quantile ageing trajectory
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Fig. 2. Bone ageing analysis pipeline. Scans are automatically organised
into sub-folders according to the study ID, geographic location, subject ID,
anatomic site, and follow-up time points. Each scan is then warped into a
reference domain to eliminate morphological variations. Pixel BMD values
are calibrated across different centres so the probability density functions
match one another for a subset of samples matched for gender, age, body
mass index, ethnicity, scan side, and geographic location. Finally, a set of
smooth quantile curves is fitted to the standardised pixel BMD values for
each pixel coordinate.

leading to a precise and accurate model. Third, extensive

validation using experimental data was performed to evaluate

each module in the proposed pipeline (Fig. 2). Fourth, given

the atlas is developed on cross-sectional data, the ability of

the atlas to predict longitudinal changes is validated using a

subset of data (n = 120) with actual BMD measurements at

baseline and six years later. The proposed atlas is the first

comprehensive spatio-temporal model of ageing bone. The

observed spatially-complex ageing patterns may be used to

better map the development of osteoporosis with ageing and

enhance the prediction of consequent fragility fractures.

II. METHODS

Fig. 2 shows the conceptual outline of the proposed method.

Below, different steps of the proposed framework are explained

in detail: pre-processing and data organisation, region free

analysis, comparative calibration, and quantile regression.

A. Pre-processing and Data organisation

The raw data from the densitometer is not immediately

usable for analysing BMD maps. We used Hologic Apex

v3.2 (Hologic Inc, Waltham, MA) and Lunar enCORE v16

(GE Healthcare, Madison, WI) proprietary software to extract

pixel BMD information for scans collected on a Hologic QDR

4500A or a Lunar iDXA densitometer, respectively.

Spatial resolution and signal-to-noise ratio (SNR) vary be-

tween the 2 densitometer manufacturers. For example, the spa-

tial resolution, expressed as height×width, is 0.50×0.90 mm2
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Fig. 3. Conceptual illustration of region free analysis. Sixty-five landmark
points are automatically selected around the bone contour. A reference shape
is learned by averaging over all the scans after being aligned to a common
position, scale, and orientation. A thin plate spline (TPS) deformation function
is fitted for each individual scan such that the controlling landmark points
are mapped to the corresponding reference landmark points in the template.
Given the warp in the space, pixel intensities are estimated using a linear
interpolation technique.

for a Hologic QDR 4500A scanner and 0.25×0.30 mm2 for a

Lunar iDXA scanner. Based on our measurements, while the

Lunar system provides a better resolution by a factor of two in

height and three in width, pixel-wise SNR is ca. 10 dB higher

in the Hologic system, as estimated using a subset of repeated

DXA measurements. To enable data integration, an appropriate

analysis scale should be selected so both the spatial resolution

and the pixel-wise SNR are consistent across the two systems.

For selection of an appropriate scale, all scans were resampled

at an isotropic spatial resolution of 0.5× 0.5 mm2. Following

resampling, each image was smoothed with a Gaussian kernel

to enhance the SNR. Given the higher SNR for the Hologic

system, σ = 0 and σ = 4.5 were selected for the Hologic

and the Lunar systems so both systems have the same SNR

of 22.4 dB.

B. Region Free Analysis

RFA aims to find a set of coordinate transformations such

that the warped scans are aligned with each other in the

template domain. Therefore, each pixel coordinate in the

template domain corresponds to the same anatomical location

in the image domain. This correspondence allows pixel-level

inference of the BMD values. The RFA technique has three

steps (Fig. 3): automatic landmark extraction, template deriva-

tion, and pairwise registration between the reference template

and each scan.

1) Automatic Landmark Extraction: This section addresses

the problem of automatically locating prominent feature points

in the femur. These feature points are used to compute the

geometrical warp between the image domain and the template

(see section II-B3). A standard approach to this problem is

to first build a model of shape and texture variation from a

manually labelled training set, and then fit the model to an

unseen image [14]. For improved localisation accuracy, here

we used constrained local model (CLM) algorithm, which

combines the flexibility of appearance models with global

shape constraints [15].

In CLMs, a joint shape and texture model is learned in

a similar manner to Statistical Appearance Models (SAMs)

[16]; however, the texture sampling method is in the form

of rectangle patches around landmark points. In the CLM

framework, a response image is generated per each landmark

point independently. To generate a response image for the mth

landmark point, random patches at its local neighbourhood are

selected and the correlation of each patch with a priori trained

template is computed. Then, the objective function J (bs) is

maximised to find the optimal shape parameters [15].

J (bs) = α

M
∑

m=1

Rm(x′
1,m, x′

2,m)−
J
∑

j=1

b2j

λj
, (1)

where [x′
1,m, x′

2,m]T is the current estimation of landmark

point m, Rm is the response image for point m, J is the total

number of shape parameters, and λj are the corresponding

eigenvalues of the shape model. The algorithm iterates until

convergence happens.

Lindner et al. [17] applied CLMs in the setting of femur

segmentation. However, instead of computing the correlation

with a template, random forest voting was deployed to gen-

erate the response images where the decision trees voted for

the required displacements. To initialise the landmark points,

a Hough-like approach was utilised to automatically detect

the femur in the scan [18]. Here, we deployed BoneFinder

v.1.2.0, a software implementation provided by Lindner et al.

[17], to segment the femoral scans using the CLM approach.

All parameters were set as explained in [17].

2) Template Generation: General Procrustes analysis is

adopted to find the reference template T [19]. First, all scans

are aligned to a common position, scale, and orientation. Next,

the reference template is updated as the average of the aligned

shapes. The algorithm iterates between these two steps until

convergence as detailed below.

The Procrustes analysis converges to a unique solution ex-

cept for a scaling, rotation, or translation factor. To cancel out

the arbitrary scaling of the template, the converged template

was normalised with the scale k =
[

1
N (k∗1 + · · ·+ k∗N )

]−1

where k∗n is the final scale factor after convergence for each

individual shape. To cancel out the arbitrary rotation of the

template, the template was rotated such that the bottom cross-

section at the femoral shaft is parallel to the horizontal axis. To

cancel out the arbitrary translation, the centre of gravity, i.e.

the average of all landmark points on the template, is shifted

to the origin at the [0, 0]T coordinate.
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3) Pairwise Registration: To eliminate morphological vari-

ation between scans, each individual scan is warped to the tem-

plate domain using thin-plate spline (TPS) registration [20]. In

this technique, a geometrical transformation is found such that

the landmark points in the source image are exactly mapped to

their corresponding landmark points in the reference template.

Given the transformation, the whole image space is warped

to the template domain and the intensity values are linearly

interpolated.

C. Comparative Calibration

Systematic measurement differences occur between densit-

ometers from different manufacturers [5], [6], [7]. Discussing

the biological or technical reasons for this discrepancy is

not the purpose of this study, but to provide a universal

standardisation of BMD values. The first attempt at cross-

calibration between DXA scanners, sponsored by the Interna-

tional DXA Standardisation Committee (IDSC), showed that

measurements across different machines are highly correlated

[5]. In this study 100 healthy women were measured on three

different scanners, i.e. Norland XR26 Mark I1; Lunar DPXL;

and Hologic QDR 2000, demonstrating a linear relationship

between each pair of scanners. To avoid designating one

machine as the gold standard, they proposed an ad-hoc method

to measure true or standard BMD (sBMD) [5]. This ad-hoc

method has a few problems, as detailed in [6]. Later, Lu et

al. [7] proposed a fully statistical methodology to solve this

problem known as comparative calibration.

Assume C systems are each used to measure the same

characteristics on a common set of N subjects. Each system

may not be consistent in the repeated measurements of the

same patient resulting in a within-patient sampling variation.

However, this variation is assumed to be consistent for differ-

ent patients. Ignoring this sampling fluctuation, the mean of

repeated measurements is deemed to be the true underlying

value that is not directly observable. Furthermore, we assume

that a linear relationship exists between each pair of systems

given the true underlying measurements. Then, comparative

calibration refers to the problem of simultaneous estimation

of the pairwise relationships between these systems [21], [7].

Let the latent random variable X represent the underlying

true value and the random variable Y c represents the observed

value measured on the machine c. Barnett [21] proposed a

linear model for comparative calibration between the systems:

Y (c) = acX + bc + E(c), for c = 1, · · · , C. (2)

E(c) ∼ N (0, σ2
c ) represents the measurement noise for

each system and X ∼ N (µx, σ
2
x) represents the distribu-

tion of the population. Given the observed measurements

yn =
[

y1n, · · · , y
C
n

]T
for the subject n, the objective is to

estimate the model parameters {ac, bc, σc}
C
c=1. This model is

overparametrised and to resolve this identifiability problem, it

is common to take one system, e.g. c∗, as the reference. For

this system, then, it is assumed that ac∗ = 1 and bc∗ = 0 [21].

Alternatively, Lu et al. [7] added two extra linear equations:

1

C

∑

c

bc = B0 and
1

C

∑

c

ac = A0, (3)

where B0 and A0 are two constants defined based on either

hypothetical assumptions or phantom measurements. Barnett

[21] presented the solution for C = 3 using second order

moment estimates. Lu et al. [7] presented an expectation

maximisation (EM) approach to estimate model parameters

for C > 3. For C = 2, the problem is known as Deming

Regression [22].

These techniques require a complete set of measurements

yn for each subject and may not be deployed when only

one single measurement is available for each subject due to

insufficient statistics [7]. Requiring multiple measurements of

each subject on all machines is a seriously limiting factor

in large multi-centre studies [9]. Here we propose a novel

technique called quantile matching regression to tackle this

problem.

Quantile Matching Regression: The new technique is de-

veloped based on two assumptions: First, a unique distribution

of the latent variable X exists independent of the measurement

systems. Second, the SNR is sufficiently large such that

QY (c)(u) ≈ acQX(u) + bc, (4)

where QX(u) and QY (c)(u) denote the quantile functions. For

a random variable X , the quantile function u → QX(u) is

defined as QX(u) := inf {x : u ≤ P(X ≤ x)} . Therefore,

if the noise power is zero, then the approximation would

be replaced with equality in Eq. 4. With this assumption,

estimation of the model parameters Θ = {ac, bc} can be

decoupled from the estimation of noise variances, i.e. {σ2
c}.

This technique cannot estimate the noise variances because of

insufficient statistics due to missing multiple measurements.

However, this technique can provide reliable estimations for

the slope ac and intercepts bc as detailed below.

The parameters Θ are estimated by minimising

J =
1

2

C
∑

c=1

∫ 1

0

(QY (c)(u)− acQX(u)− bc)
2du,

subject to
∑

c

bc = 0 and
1

C

∑

c

ac = 1. (5)

To set the constants in Eq. 3, we assume that the true value

X equals the average of the expected observations given the

latent variable X , i.e. X = 1
C

∑

c E(Y (c)|X). This results in

B0 = 0 and A0 = 1.

Optimisation: To convert the constrained optimisation

problem into an unconstrained one, we can simply express

the parameters aC and bC based on the other parameters:

aC = C −
∑

c 6=C

ac and bC = −
∑

c 6=C

bc (6)

To estimate the parameters, an alternating minimisation

technique is adopted (Algorithm 1): Given the model param-

eters, the latent variable xn for each of N subjects can be

estimated as (step 1),

xn = E(X|y(cn)n ; acn , bcn) ≈
1

acn
(y(cn)n − bcn), (7)

where cn is the corresponding system for subject n. To update

the model parameters, the gradients ∂J
∂ac

and ∂J
∂bc

are set to
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Algorithm 1 Quantile Matching Regression

1: Input: Y = {y
(cn)
n }Nn=1

2: Parameters: ǫ ⊲ Convergence tolerance

3: Output: Θ = {ac, bc}
C
c=1

4: procedure QUANTILE-MATCHING(Y)

5: for c = 1 : C do

6: QY (c)(u)← Estimate quantile values for

Yc = {y
(cn)
n : cn = c}

7: i← 1 ⊲ Number of iterations

8: ac ← 1 and bc ← 0 for c = 1, · · · , C.

9: while
∑C

c=1(a
(i)
c − a

(i−1)
c )2 + (b

(i)
c − b

(i−1)
c )2 ≤ ǫ2 do

10: i← i+ 1

11: for n = 1 : N do

12: xn ← E(X|y
(cn)
n ; Θi) (Eq. 7)

13: QX(u)← Estimate quantile values for

X = {x1, · · · , xN} ⊲ (step 1)

14: a
(i)
c , b

(i)
c ←argmin

ac,bc

1
2

∑

c

∫ 1

0
(QY (c)(u)− acQX(u)− bc)

2du

⊲ (step 2)

Fig. 4. Quantile matching regression technique for comparative calibration
between C systems (Eq. 5). For each system, the quantile curve Q

Y (c)

is estimated using samples collected on the same system. Next, calibration
parameters ac and bc are iteratively estimated by alternating between two
steps: step one, estimate the standard quantile curve QX using samples
collected on all systems, and step two, minimise the sum of difference between
QX and each system-specific quantile curve Q

Y (c) .

zero.

∂J

∂ac
= (ac +

∑

c′ 6=C

ac′ − C)

∫ 1

0

QX(u)2du

+ (bc +
∑

c′ 6=C

bc′)

∫ 1

0

QX(u)du

+

∫ 1

0

QX(u)(QY (C)(u)−QY (c)(u))du = 0, (8)

∂J

∂bc
= (ac +

∑

c′ 6=C

ac′ − C)

∫ 1

0

QX(u)du+ (bc +
∑

c′ 6=C

bc′)

+

∫ 1

0

(QY (C)(u)−QY (c)(u))du = 0. (9)

Computing QX(u) using the estimated latent variables, Eq. 8

and Eq. 9 are linear with respect to the model parameters; we

have 2(C − 1) linear equations with 2(C − 1) parameters for

which a closed-form solution exists (step 2). The algorithm

iterates between these two steps until the root mean square of

the difference between estimated parameters at two consecu-

tive iterations is less than a user-defined tolerance ǫ.

D. Quantile Regression

Assume the real-valued random variable Y with cumulative

distribution function (CDF) FY (y) = P (Y ≤ y) represents

a response variable of interest, e.g. BMD values at a single

pixel coordinate, and the multivariate random variable X =
[X1, · · · , Xp]

T
represents an explanatory covariate vector,

e.g. age, BMI, etc. Then, the conditional quantile function

(u,x) 7−→ QY |X=x(u,x) is defined as

QY |X(u,x) := inf
{

y : u ≤ FY |X=x(y)
}

, (10)

where 0 < u < 1. The main objective is to estimate

QY |X(u,x) from N observed scattered points (yn,xn).
In [13], we formulated the problem for a scalar covariate,

i.e. age. Here, we extend the methodology to include other

covariates of interest, e.g. BMI, using the vector generalised

additive models (VGAMs) [23]. VGAMs model the condi-

tional probability distribution P(y|x) = h(y, η1, · · · , ηM ),
where h(.) is a known function and η = [η1, · · · , ηM ]

T
are

linear predictors. The mth predictor ηm is estimated as the

sum of smooth functions of the individual covariates xp,

ηm = ηm(x) = f(m)0 +
P
∑

p=1

f(m)p(xp). (11)

To parametrise the model, we use the LMS technique [24]

and thereby M = 3, η1 = λ, η2 = µ, and η3 = σ. The

LMS method assumes a Box-Cox transformation (Eq. 12) with

appropriate parameters exists such that the positive random

variable Y can be mapped to a standard normal distribution

Z ∼ N (0, 1).

Z =











( Y
µ(x)

)λ(x)−1

σ(x)λ(x) , λ(x) 6= 0;

1
σ(x) ln(

Y
µ(x) ), λ(x) = 0.

(12)

Under the LMS normality assumption, the log-likelihood of

the parameters is

ℓ =

N
∑

n=1

[

λ(xn) ln
yn

µ(xn)
− lnσ(xn)−

1

2
z2n

]

. (13)

To estimate smooth functions f(m)p(x), we deployed the R-

package VGAM to maximise the penalised likelihood below

[23].

J = ℓ−
1

2

P
∑

p=1

M
∑

m=1

α(m)p

∫

f
′′

(m)p(xp)
2
dxp. (14)

Estimating smooth functions λ(x), µ(x), and σ(x), quan-

tiles can be simply computed;

QY |X(u,x) =






µ(x) [1 + λ(x)σ(x)QZ(u)]
1/λ(x)

, λ(x) 6= 0;

µ(x) exp (σ(x)QZ(u)) , λ(x) = 0.

(15)

In our experiments, we have modelled the two parameters

λ and σ as intercepts. To control the smoothness on the

parameter µ, the equivalent degree of freedom (edf) was set to

3. The optimisation procedure is numerically complex and the

algorithm failed to converge for a fraction of pixels (≈ 1.3%).

For these pixels, the outliers are first removed and then the

algorithm was run on the cleaned data.

To assess the precision of the estimated quantile curves,

a bootstrapping procedure was deployed; subjects were ran-

domly sampled with replacement and the quantiles were re-
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estimated. This procedure was repeated 1, 000 times, collect-

ing a distribution of possible quantile values. From these

observations, the confidence intervals at 5% significance level

were estimated [25].

III. RESULTS AND EXPERIMENTS

A. Data

To generate the spatio-temporal bone ageing atlas over

the adulthood (20-97 years), we integrated data from three

Western European population studies: The UK Biobank [26]

(n = 6, 918, age=45 − 80 years, White women), the Os-

teoporosis and Ultrasound study (OPUS) [27] (n = 1, 402;

age=20−39 and 55−79 years; White women), and the MRC-

Hip study [28] (n = 5, 018; age=75−97 years; White women).

Scans were collected using either an iDXA Lunar GE (the UK

Biobank study) or a Hologic QDR4500 Acclaim densitometer

(the OPUS and MRC-Hip study cohorts).

B. Segmentation Accuracy

To evaluate the segmentation accuracy, a subset of scans

(n = 32) randomly selected from the database were manually

annotated. The segmentation accuracy was evaluated using the

Dice similarity coefficient (DSC). DSC is defined as the twice

the areal size of the overlap between two binary masks divided

by the sum of the areal size of each mask. The mean and the

standard deviation for DSC over the 32 selected scans were

0.9698 and 0.0048, respectively. Fig. 5 shows the worst and

the best segmentation results based on the DSC metric. Since

the cut-off point at the femoral shaft is arbitrary, the shorter

distal cut-off point between the manual and the automated

masks is used to cancel out the variation in the shaft before

computing the DSC metric.

(a) DSC = 0.9801 (b) DSC = 0.9620

Fig. 5. The best and the worst femoral segmentation in the test dataset (n =

32). The green and the red contours show the ground truth and the automatic
segmentation, respectively.

C. Point Localisation Accuracy

The same dataset (n = 32) used for the evaluation of

segmentation accuracy was deployed here. To evaluate the

point localisation accuracy, five landmark points were selected

manually at key prominent geometrical locations: centre of the

femoral head; the centre, superior, and inferior positions at the

femoral neck; and, finally, the apex at the greater trochanter.

The landmarks were then transferred to the template using the

same TPS warping transformation computed per each image

(Fig. 6). The overall error was 1.57 mm [29].

0 20 40 60 80

0

20

40

60

80

Fig. 6. Point localisation error. Five landmark points (blue dots) were selected
manually at anatomically correspondent locations and then mapped to the
reference domain using the estimated TPS transformations for each image
(n = 32). The average error was 1.57 mm. The space is shown in millimetre.

D. Precision Analysis

Precision or reproducibility of a quantitative measurement

technique describes its ability to produce consistent results

when measuring the same quantity repeatedly. In other words,

precision is a description of random errors in the system. Three

sources of error exist [30]: the machine (e.g., the scanner

noise), the operator (e.g., patient positioning), and the software

(e.g., femur segmentation and deformable image alignment).

To assess the overall precision of the RFA technique,

25 Caucasian women (mean age = 70.1 ± 6.2 years) were

scanned on the same day twice with repositioning between

the scans. This data had been collected as part of the OPUS

study in Sheffield. In conventional DXA analysis, precision

is reported as the coefficient of variation (CV), i.e. the root

mean square standard deviation divided by the mean of paired

measurements, for the selected ROIs [31].

CV = 100%×

√

1
N

∑N
n=1

(yn−y′

n)
2

2

1
N

∑N
n=1

(yn+y′

n)
2

(16)

Here, N = 25 is the number of paired measurements; y

and y′ are the measured BMD values at the two independent

positions.

Table I reports the precision of conventional region-based

DXA analysis at four common ROIs. To use RFA to reproduce

conventional region-based analysis, pixel BMD values of the

warped scans were aggregated at each ROI in the template

domain. RFA resulted in similar precision scores to those

reported in the literature at these ROIs (Table I). However,

as anticipated, a finer pixel-level analysis using the RFA

technique results in poorer precision. Fig. 7(a) shows the

distribution of pixel-level CV values at the proximal femur.

Precision was worse around the bone contours. This may

be explained due to the inaccuracy in placing controlling

landmark points around the bone. Fig. 7(b) shows the his-

togram of pixel-level CV values where the median is 7.96%
and the interquartile range is 6.69% − 10.05%. The worse

precision in comparison to conventional region-based analysis

is a compromise that is offset against the substantially finer

spatial analysis that is necessary for characterising spatially

complex bone remodelling events.
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TABLE I
COEFFICIENT OF VARIATION (%) AT FOUR COMMON ROIS.

method scanner subjects No.×scans No.
CV%

total hip neck trochanter intertrochanter

RFA
Hologic

25 × 2 1.05 1.73 1.87 1.14
QDR 4500A

[32]
Hologic

71 × 2 1.2 1.7 1.4 1.7
QDR 2000

[33]
Hologic

27 × 2 1.69 1.11 1.27 -
QDR 4500A

[34]
Lunar

6 × 6 0.65 1.66 1.16 -
Prodigy

[31]
Hologic

95 × 2 1.59 2.25 - -
QDR 2000

(a) Heat-map
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(b) Histogram

Fig. 7. DXA RFA precision analysis. (a) The pixel level CV (%) is visualised
using a heat-map. Precision is worse around the bone contour. This may be due
to the inaccuracy in placing controlling landmark points at the bone surface.
(b) The distribution of pixel-level CV values in the femur. The median is
7.96% and the interquartile range is 6.69%− 10.05%.

E. Comparative Calibration

1) Validation: Since no paired measurements acquired on

both the Hologic and the Lunar systems were available for

analysis, it was not possible to test the viability of the

proposed quantile matching regression technique directly for

DXA cross-calibration. Alternatively, we tested the technique

in the setting of bilateral hip calibration using n = 6, 916 DXA

measurements from both left and right hips as part of the UK

Biobank study. Given the good correlation between BMD of

the left and the right hips (Fig. 8(a)), one can postulate that

bilateral BMD values are noisy measurements of the same

underlying hidden variable except for a linear transformation

(Eq. 2). Since we had access to paired measurements for each

subject, Deming regression would give the ground truth for

the calibrations parameters (Figs. 8(b) and 8(c)). Ignoring the

fact bilateral hip scans came from the same subject, quantile

matching regression was deployed to approximate the calibra-

tion parameters (Figs. 8(d) and 8(e)). The estimated parameters

are similar to those computed using Deming regression. Over

the region with a high correlation between the left and the

right hips (r2 ≥ 0.5), the RMS error was 0.013 for the slope

a and 0.017 for the intercept b, respectively

2) DXA Cross-Calibration: In this study, scans were col-

lected either on a Hologic QDR 4500A or an iDXA Lunar

GE scanner. For each scanner, n = 406 white British women

matched for age and BMI with an scan on the left side were

selected. Fig. 9 shows the age distribution of subjects before

and after this sample selection step. No significant difference

in age or BMI distribution was observed between the two

groups using a two-sample Kolmogorov-Smirnov test (p-value

= 0.9). Note that although the calibration factors depend only

on the technical properties specific to each imaging system,

our proposed quantile matching regression still requires age-

1.00

0.75

0.50

0.25

0.00

r2

(a) r2

1.2

1.1

1.0

0.9

0.8

(b) Slope a

0.2

0.1

0.0

-0.1

-0.2

(c) Intercept b

1.2

1.1

1.0

0.9

0.8

(d) Slope a

0.2

0.1

0.0

-0.1

-0.2

(e) Intercept b

Fig. 8. Bilateral hip calibration. (a) The left and the right hips are highly
correlated inside the femur, but the correlation is worse at the boundary.
Estimated cross-calibration parameters between the left and the right hips,
i.e. [left] = a [right] + b, are shown for the Deming regression technique
in panels (b) and (c); and for the quantile matching regression technique in
panels (d) and (e).

(a) (b)

Fig. 9. Sample selection for cross-calibration between Hologic QDR4500A
and iDXA Lunar GE scanners. (a) The probability distribution of the age for
white British women recruited in this study before sample selection. (b) The
probability distribution of the age for n = 406 subjectes matched for age and
BMI to be used in quantile matching regression. No significant difference
was observed between the age distributions following sample section using a
two-sample Kolmogorov-Smirnov test (p-value = 0.9).

and BMI-normalisation to ensure any variation in BMD dis-

tributions is due only to the difference in imaging system

technologies rather than patient characteristics. The average

and standard deviation of the estimated parameters over all

pixels within the femur were 1.019 (SD, 0.140) for the slope

a and 0.170 (SD, 0.130) for the intercept b.

We conducted a further validation experiment to confirm

the independence of estimated calibration parameters from

cohort age. Out of 406 subject pairs matched for age and

BMI, subjects from two age segments 60-65 years and 70-

75 years (n=148) were left out for testing and the remaining

scans (n=258) were deployed for estimation of calibration

parameters. Next, we tested the validity of the fitted parameters

on the test data using a two-sample Kolmogorov-Smirnov test

with FDR correction. No significant differences were observed

between the testing versus the training datasets, confirming

that the calibration parameters are extendable to age segments

60-65 and 70-75 years.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2945219, IEEE

Transactions on Medical Imaging

8

F. The Spatio-Temporal Atlas

Fig. 10 shows the constructed atlas; visualising median

BMD values at different values of age and BMI using heat-

maps. Low BMI was associated with an overall decrease in

bone mass, where as high BMI resulted in increased bone

mass especially at the diaphysis and Ward’s triangle regions.

An overall decline in BMD with increasing age was observed

throughout the proximal femur. However, the observed bone

loss patterns were site-specific and spatially-complex. Cortical

thinning was observed consistently with ageing around the

femoral shaft from the 6th decade onwards. Widespread bone

loss was also observed in the trochanteric area.

Quantile regression curves demonstrated different rates of

bone loss at different anatomic locations within the proximal

femur (Figs. 11 and 12). For example, the decrease in BMD at

the superior femoral neck cortex was bimodal; the bone loss

slowed down from the 70s onwards (Fig. 11(a)). BMD at the

mid-femoral neck showed a steady decrease throughout the

whole age range (Fig. 11(b)), whilst bone mass was preserved

the most in the inferior femoral neck cortex (Fig. 11(c)). Fig.

12 shows quantile regression curves at the intertrochanteric

region. Bone mass at the superior trochanteric region was

preserved until just before 70 years, and was followed by a

decline with a similar slope to the other trochanteric regions

(Fig. 12(a)). Bone loss was observed at a consistent rate at

the mid trochanteric region throughout the whole age range

(Fig. 12(b)). BMD in the inferior cortex close to the lesser

trochanter was maintained until the 60th year, following which

point BMD showed a steady decline (Fig. 12(c)).

The inflection point observed at age 75 in Fig. 12 is indeed

due to ageing rather than the integration of the MRC-Hip

dataset (age range: 75-97 years). Repeating the same analysis

using only the UK Biobank dataset (age range: 45-80 years)

demonstrated similar ageing trends (data not shown). Here, the

results for the integration of all datasets together is presented.

G. Atlas Validation using Longitudinal Data

The bone ageing atlas was developed based on cross-

sectional data. We acknowledge that this atlas does not nec-

essarily provide an ideal prediction of individual ageing, for

which, longitudinal data with the same subjects repeatedly

scanned along several years is required. However, the utility

of the developed atlas to predict longitudinal changes is tested

here using a subset of scans from the OPUS dataset (n=120;

age range=55-60 years) with follow-up measurements at 6

years (mean time lapse, 70.9 months; standard deviation, 1.2
months). The hypothesis tested here is that no significant

BMD change should be observed between the expected BMD

values at 6 years based on the projected BMD atlas and the

actual measurements at 6 years. For this analysis, a paired

t-test preceded by false discovery rate (FDR) analysis [11]

was used once between the baseline and the actual follow-up

measurements, and another time between the projected and the

actual follow-up BMD values.

To project BMD values six years into the future, firstly, the

quantile value for the given pixel BMD at the baseline age

Fig. 10. Pixel-level median BMD values are visualised using heat-maps as a
function of age for 20, 35, 50, 65, 80, and 95 years and BMI values of 15,
20, 25, 30, 35, 40, and 45 kg/m2. The atlas is shown for the Hologic system
at the left hip.

is read from the atlas. Next, the corresponding BMD value at

the follow-up age is read from the same quantile trajectory.

Significant bone loss was observed in the trochanteric region

and the medial femoral shaft; however, the projected BMD

values using the constructed atlas fits the actual measurements

where no significant BMD change was observed between the

projected and the actual BMD values (Fig. 13).

IV. CONCLUSION

This work presents the development of a reference spatio-

temporal atlas of ageing bone in the proximal femur using

cross-sectional data from a large cohort of Western Euro-

pean Caucasian women (n=13,338). Here, we presented three

key contributions: first, the proposed DXA RFA framework

allowed high-resolution pixel-level BMD analysis. The in-

creased spatial detail made it possible to observe spatially-

complex bone ageing patterns for which conventional region-

based bone densitometry routine is insensitive. Second, the

proposed calibration technique allowed the integration of data

from different DXA manufacturers. The new method does

not require multiple scans from the same subject and so

is applicable to large multi-centre studies. Third, a fully

automatic bone ageing analysis pipeline was proposed that

would streamline the atlas generation process. This automation

would facilitate population-specific atlas generation from other

ethnic libraries.

Each module in the pipeline was evaluated separately. The

average segmentation accuracy expressed as the Dice index

was 0.97. The average point localisation error was 1.57 mm

equivalent to 3.15 pixels. The RFA precision expressed as

median pixel-level coefficient of variation was 7.96%. The
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a
b

c

(a) Superior Femoral Neck (b) Mid Femoral Neck (c) Inferior Femoral Neck

Fig. 11. Three examples of fitted quantile curves at three different pixel locations at the femoral neck region. The solid, dashed, and dotted lines show the
median, 50% and 90% quantile ranges, respectively. The green shadow shows the 95% confidence interval. The curves are shown for the Lunar system at the
left hip at median BMI = 25.4 kg/m2.

a

b

c

(a) Superior Trochanteric Region (b) Mid Trochanteric Region (c) Inferior Trochanteric Region

Fig. 12. Three examples of fitted quantile curves at three different pixel locations at the intertrochanteric region. The solid, dashed, and dotted lines show
the median, 50% and 90% quantile ranges, respectively. The green shadow shows the 95% confidence interval. The curves are shown for the Lunar system
at the left hip at median BMI = 25.4 kg/m2.
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(f)

Fig. 13. Atlas validation using paired longitudinal data collected at baseline
and 6 years later (n = 120). (a) Normalised BMD change between baseline
and follow-up measurements at six years. (b) FDR q-map corresponding to
panel a indicating regions with a significant BMD change at 6 years. (c) The
PP-plot corresponding to panel b. If the null hypothesis of no significant BMD
change is true, then the blue line follows the identity (dashed red line). (d)
Normalised BMD difference between baseline maps projected at 6 years and
the actual follow-up measurements at 6 years. (e) FDR q-map corresponding
to panel d. (f) The PP-plot corresponding to panel e. These data show that
the BMD change projected by the atlas and the directly observed BMD
change are quantitatively and statistically similar, confirming the viability of
the developed atlas to predict temporal BMD change.

RMS error for quantile matching regression tested in the

setting of the bilateral hip calibration was 0.013 and 0.017

for the slope and the intercept parameters, respectively. The

precision of the LMS quantile regression for modelling the

temporal BMD evolution was tested using a bootstrapping

procedure. The overall uncertainty was sufficiently small so

the ageing effect was observable (Figs. 11 and 12). We

demonstrated the utility of the proposed bone ageing analysis

pipeline using three large-scale datasets with n > 13, 000
scans collected on two different manufacturer’s densitometers.

However, the proposed pipeline would facilitate population-

specific atlas generation from other ethnic libraries, gender,

and anatomic sites. This, in turn, would allow the analysis of

variations in ageing patterns across different populations.

This technique also had limitations. The areal BMD mea-

sured by DXA does not represent the true volumetric BMD,

and so the constructed atlas is a 2D projection of the actual

3D patterns. A 2D/3D approach could address this issue

[35], [36]. These techniques are often based a 3D statistical

shape/appearance model learned from a small subset of QCT

images, for example, n = 57 (all highly osteoporotic women)

[35]. Hence, the learned atlas cannot account for the full

population variation (cf. n = 13, 338 in this study). If a large

QCT dataset was available, the ageing atlas could have been

directly developed from them where the principle applied here

can be readily transferred to 3D imaging.

This technique shows promise in characterising spatially-

complex BMD changes with ageing. These patterns were visu-

alised using heat-maps. Furthermore, quantile curves plotted at

different pixel coordinates showed consistently different rates

of bone loss at different regions of the femoral neck. Our future

work aims at improving fracture risk assessment using the

developed atlas to determine whether this increased resolution

enhances the fracture predictive ability of DXA.
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