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Summary 

Objectives and background: Automatic voice-pathology detection and classification systems effectively 

contribute to the assessment of voice disorders, which helps clinicians to detect the existence of any voice 

pathologies and the type of pathology from which patients suffer in the early stages. This work concentrates 

on developing an accurate and robust feature extraction for detecting and classifying voice pathologies by 

investigating different frequency bands using correlation functions. In this paper, we extracted maximum 

peak values and their corresponding lag values from each frame of a voiced signal by using correlation 

functions as features to detect and classify pathological samples. These features are investigated in different 

frequency bands to see the contribution of each band on the detection and classification processes. 

Material and Methods: Various samples of sustained vowel /a/ of normal and pathological voices were 

extracted from three different databases.  The used database in this study represent three different languages: 

Arabic Voice Pathology Database (AVPD; Arabic), Saarbruecken Voice Database (SVD; German), and the 

Massachusetts Eye and Ear Infirmary (MEEI; English).  A support vector machine (SVM) was used as a 

classifier. We also performed t-test to investigate the significant differences in mean of normal and 

pathological samples. 

Results:  The best achieved accuracies in both detection and classification were varied depending on the 

band, the correlation function, and the database. The most contributive bands in both detection and 

classification were between 1000 ~ 8000 Hz.  In detection, the highest acquired accuracies when using 

cross correlation were 99.809%, 90.979%, and 91.168% in the MEEI, SVD, and APVD databases, 

respectively. However, in classification the highest acquired accuracies when using cross correlation were: 

99.255%, 98.941%, and 95.188% in the three databases, respectively. 
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Introduction 

Recently, lifestyle comes with an increased risk of pathological voice problems. About 25 percent of the 

population are engaged in works that are “vocally demanding.” For these individuals, either their jobs 

require excessive vocalization or their work environments force them to speak above a high noise level. 

Examples of professionals with heavy vocal demands include teachers, lawyers, auctioneers, aerobics 

instructors, singers, actors and manufacturing supervisors. As a consequence, working on digital processing 

of speech signals was found to provide a noninvasive analytical technique that is considered to be an 

effective assisting tool to medical doctors when identifying voice disorders specifically in their early stages. 

Voice pathologies affect the vocal folds, producing irregular vibrations due to the malfunctioning of many 

factors contributing to vocal vibrations. Vocal fold pathologies exhibit variations in the vibratory cycle of 

the vocal folds due to their incomplete closure. Voice disorders also affect the shape of the vocal tract 

(supra-glottal) and produce irregularities in spectral properties [1]. It is well known that there is no 

infralaryngeal (tracheobronchial tree) effect on the vocal tract during the production of a vowel if we 

consider that the voicing source has an infinite resistance. However, an accurate detailed analysis must 

realize that the infralaryngeal structures do an influence on the vocal tract, the articulatory configuration in 

the vocal tract interacts with the articulation in the vocal folds [38]. Upon on that, supplemental vocal tract-

related information is predictable to help in detecting the characteristics of the vocal folds, essentially 

during phonation [39]. In addition, voice disorders affect vocal-fold vibration differently depending on the 

type of disorder and the location of the disease in the vocal folds, making them produce different basic 

tones. Vocal folds' vibration depends on several factors such as mucus present on the vocal folds tissue, 

stiffness, tension, muscles in the larynx, closing and opening of the folds, etc. These factors are affected 

differently for various voice pathologies. Due to the position and the size of the pathologies, vocal folds 

closing behaves differently during the vibration. Therefore, the vibration varies from one type of pathology 

to another. This vibration produces glottal source excitation frequencies, as well as affects the supra-glottal 

(the bottom part of the vocal tract) area, which in turn contributes to the frequency of the output voice 

signal. 



The number of dysphonic patients has increased significantly, and in the United States alone approximately 

7.5 million people have vocal difficulties [2].  It has been found that 15% of all visitors to King Abdul Aziz 

University Hospital, in Riyadh, Saudi Arabia, complain of a voice disorder [3]. The impact of voice 

problems on teaching professionals is significantly greater than for non-teaching professionals. Studies 

revealed that in the United States, the prevalence of voice disorders during a lifetime is 57.7% for teachers 

and 28.8% for non-teachers [4]. Approximately 33% of male and female teachers in the Riyadh area suffer 

from voice disorders [5].  The Communication and Swallowing Disorders Unit at King Abdul Aziz 

University Hospital examines a high volume of voice disorder cases (almost 760 cases per annum) in 

individuals with various professional and etiological backgrounds. The use of computers to detect or 

identify pathological problems in speech, a non-invasive method, is advancing over time. In the last decade, 

much research has been done on the automatic detection of vocal-fold disorders, which continues to require 

further investigation due to the lack of standard automatic diagnostic approaches/equipment for voice 

disorders. Detection of pathology is the first crucial step to diagnose and manage voice disorders correctly. 

Objective assessment, including acoustical analysis, is independent of human bias and can assist clinicians 

in making decisions. We firmly believe that clinicians have the final decision regarding medical diagnosis, 

and an objective assessment can only be used as an assistive tool.  On the other hand, subjective 

measurement of voice quality is based on individual experience, which may vary. Automatic voice-

pathology detection can be accomplished by various types of long-term and short-term signal analyses. 

Long-term parameters can be derived from the acoustic analysis [6], [7] of speech, and short-term 

parameters can be calculated using linear predictive coefficients [8], [9], linear predictive cepstral 

coefficients [10], Mel-frequency cepstral coefficients (MFCC) [11], [12], and so on. Different pattern-

matching techniques, such as a Gaussian mixture model [13], [14], hidden Markov model [15], support 

vector machine (SVM) [16], artificial neural networks [17], and so on have been used to differentiate 

between disordered and normal samples. Multiple long-term acoustic features, namely pitch, shimmer, 

jitter, amplitude perturbation quotient (APQ), pitch perturbation quotient, harmonic-to-noise ratio, 

normalized noise energy, voice-turbulence index, soft-phonation index (SPI), frequency amplitude tremor, 

and glottal-to-noise excitation ratio are frequently used to diagnose voice pathology (referenced in [14] as 

[2]-[12]). Furthermore, jitter and shimmer capture vocal-fold vibratory characteristics for both pathological 

and normal people, and both parameters are widely used for clinical research purposes [18]. Seven acoustic 

parameters, including shimmer and jitter, are extracted by means of an iterative residual-signal estimator in 

Rosa et al. [19], and jitter provided 54.8% accuracy of detection for 21 pathologies. Thirty-three different 

long-term acoustic parameters with their definitions, derived from the Multi-Dimensional Voice Program 

(MDVP) [20], are listed in Arjmandi et al. [21]. Twenty-two acoustic parameters were selected from the 

list extracted from voice samples in the Massachusetts Eye and Ear Infirmary (MEEI) database. Fifty 

http://encyclopedia.thefreedictionary.com/Massachusetts+Eye+and+Ear+Infirmary


dysphonic patients and 50 normal persons were used for detection. The 22 parameters were calculated for 

each sample and fed to six different classifiers to compare their accuracies. Two feature-reduction 

techniques were also used before applying classification methods. Binary classifier SVM showed the best 

results compared with other classifiers, with a recognition rate of 94.26%. In Wang et al. [22], MFCC and 

six acoustic parameters (jitter, shimmer, NHR, SPI, APQ, and Relative Average Perturbation) were 

extracted, with the results compared with those of the NN-based voice pathology detection system [23]. 

Sáenz-Lechón et al. compared their proposed parameters based on wavelet transform with some of the 

MDVP parameters to discriminate between pathological and normal voices [24]. To ensure the reliability 

of the acoustic MDVP parameters, some of them were compared with the same parameters extracted using 

Praat; results showed no significant difference between the two computer software approaches [25]. 

Recently, MPEG-7 audio descriptors and multi-directional, regression-based features have been used in 

voice-pathology detection, with good accuracy [26, 27]. Another recent study investigated the most 

discriminative frequency region for voice-pathology detection [28].  

Correlation functions are considered as one of the common methods for extracting various characteristics 

from speech signals. They are known as a domain that has certain good properties that can be used as 

features.  The methods based on correlation function applied on a short section of voice signal can provide 

substantial information that enables us to estimate the vocal tract transfer function.  For example, these 

methods result in many peak values with periodicity as the same periodicity as of the input signal. 

Therefore, to examine the periodicity of the signal, it is common to examine its autocorrelation function. 

This indicates that the correlation function of a periodic signal is also periodic. Consequently, finding pitch, 

fundamental frequency, etc. of the signal will be possible by using these methods.  In many researches it is 

observed that the normal voice has more periodicity than the pathological one, and therefore performing 

correlation functions on these types of classes will provide an excellent allusion that can be used to 

discriminate between normal and pathological voices. For instance, Von Leden, Moore, and Timke 

observed that the pathological samples have a strong tendency for frequent and rapid changes in the 

regularity [29]. In addition, Lieberman found that pathological voices tend to show unusually large cycle-

to-cycle fluctuations in the fundamental period [30]. In this work, we performed different forms of 

correlation functions such as autocorrelation on the signal itself frame by frame, cross correlation between 

two successive frames in the same signal, and cross correlation between two successive filters frame by 

frame. It is preferable to use a short segment of the voice signal instead of the whole signal, because the 

noise tends to be cancelled out in the autocorrelation process in this short segment [31].   

As we observe, every voice disorder produces different frequencies depending on the type of voice disorder 

and its location on the vocal fold, as we described before. Consequently, observing the frequency band is 



very important to see which frequency band contributes more to the detection and classification of voice 

disorders. For instance, in [37] the authors found that the lower frequencies between 0 ~ 3000 Hz are more 

suitable for discriminating dysphonic voices than the higher frequencies. In addition, Fraile et al. in [36] 

found that the power in bands between 2000 and 6400 Hz is significantly less stable in dysphonic voices.      

In this paper, we mainly focus on developing a computationally less expensive method for voice pathology 

detection. Specifically, we concentrate on extracting a feature set having low dimension. In the proposed 

method, the input voice is passed through a bank of band pass filters, and each filter output is divided into 

overlapping blocks. Correlation functions are applied to extract peak and lag to be stored as features. In 

order to detect and classify voice pathology, the proposed method is evaluated using three different 

databases that have three voice disorders in common: (i) the MEEI [32]; (ii) the Saarbruecken Voice 

Database (SVD) [33]; and (iii) the Arabic Voice Pathology Database (AVPD).  

 

Materials and Methods 

Data 

In this study, we used three different databases (MEEI, SVD, and AVPD), and we chose only three types 

of pathological voices — (1) vocal fold cyst; (2) unilateral vocal fold paralysis; and (3) vocal fold polyp — 

because only these pathologies are common in all three databases. The number of samples in each database 

is shown in Table 1, where the numbers of male and female speakers are shown, respectively, inside 

parentheses. The three used databases are each described below. 

Table 1: Normal and pathological samples from three different databases. 

Database Normal 

Pathological 

Cysts Paralysis Polyp Total 

AVPD 

169     

(102,67) 

25       

(8, 17) 

56 

(35, 31) 

46 

(26, 20) 127 

MEEI 

53         

(19, 34) 

10  

(6,  4) 

71 

(39, 32) 

20 

(11, 9) 101 

SVD 

266   

(130, 136) 

6 

(1, 5) 

212        

(73, 139) 

45 

(26, 19) 263 

 



 

Massachusetts Eye and Ear Infirmary (MEEI) Voice Disorder Database 

This database was developed by the MEEI Voice and Speech Lab and includes more than 1,400 voiced 

samples of the sustained vowel /a/ and the first part of the Rainbow Passage. It is commercialized by Kay 

Elemetrics [32] and was recorded in two different environments. The sampling frequency for normal 

samples was 50 kHz, while that of the pathological samples was 25 kHz or 50 kHz. It is used in most studies 

of voice-pathology detection and classification even though it has many disadvantages, such as the different 

environments and sample frequencies used to record normal and pathological voices.  In this database, 

many tools were used to evaluate voice condition, including stroboscopy, acoustic aerodynamic measures, 

and a physical examination of the neck and mouth (this information is provided by Kay Elemetrics). In the 

CD Kay Elemetrics provides, we filtered the filenames according to the three diseases; if there were 

multiple pathologies for a file, we ignored that file. For normal speakers, we chose all available 53 samples. 

We selected only sustained vowel /a/ samples. 

  

Saarbruecken Voice Database (SVD) 

The SVD is a freely downloadable database [33], recorded by the Institute of Phonetics of Saarland 

University. This database contains sustained vowels /a/, /i/, and /u/ with different intonations (normal, low, 

high, and low-high-low), along with a spoken sentence in German “Guten Morgen, wie geht es Ihnen?” 

which translates into English as “Good morning, how are you?” These attributes make it a good database 

for researchers to conduct experiments. All recorded voices in the SVD database were sampled at 50 kHz 

with 16-bit resolution. This database is new, and thus very few studies of voice-pathology detection have 

been done using it. We downloaded the files from the website mentioned in [33] using the criteria of the 

three diseases. We selected only sustained vowel /a/ samples produced at normal pitch. 

      

Arabic Voice Pathology Database (AVPD) 

The voice and speech samples in this database were collected in different sessions at the Communication 

and Swallowing Disorders Unit [3] of King Abdul Aziz University Hospital in Riyadh, Saudi Arabia, by 

experienced phoneticians in a sound-treated room using a standardized recording protocol. This database 

collection was one of the major tasks of the ongoing project funded by the National Plans for Science and 

Technology, Saudi Arabia, over the duration of two years. The protocol of the database was designed to 

avoid the various shortcomings of the MEEI database [24]. AVPD database has recordings of sustained 

vowels as well as the speech of patients who have vocal-fold pathologies, along with the same recordings 



of persons with normal speech. Normal and pathological vocal folds were determined after clinical 

assessment using a laryngeal stroboscope. In case of pathology, the perceptual severity of voice disorders 

was rated on a scale of 1–3, where 3 represents the most severe case. A severity rating was associated with 

each sample based upon the consensus of a panel of three expert medical doctors. The recording has 

different types of texts: (1) three sustained vowels with onset and offset information; (2) isolated words 

including Arabic digits and some other common words; and (3) continuous speech. The selected text was 

carefully chosen to cover all Arabic phonemes. All speakers recorded three utterances of each vowel /a/, 

/u/, and /i/, while isolated words and continuous speech were recorded once to avoid burdening patients. 

The sampling frequency in the database was 50 kHz, and the speech was recorded using the computerized 

speech lab program. The voice disorders recorded in this database were evaluated and validated by different 

specialist doctors at King Abdul Aziz University Hospital. Among the recorded samples, only recordings 

of patients with vocal-fold cysts, vocal-fold polyps, and unilateral vocal-fold paralysis pathologies were 

included in this study. We selected only sustained vowel /a/ samples. 

Proposed Method 

The main aim of the current study is to extract robust and reliable features that can contribute to a detection 

and classification of voice pathologies, and to investigate the effect of different frequency regions (bands) 

on the detection and classification processes using these features. We used a correlation function to extract 

the peaks and their corresponding lag values from the voiced signals to represent the features, which are 

used to discriminate between normal and pathological classes. As we can see from Figures 1 and 2, which 

illustrate the proposed method, the voice signal is fed to a filter bank, which is composed of eight band pass 

filters.  

 

Figure 1: Block diagram of the proposed method  

 



 

Figure 2: Detailed block diagram of the proposed method 



These filters represent the band pass of finite impulse response  (FIR) filters with center frequencies spaced 

on an octave scale. The center frequencies are 31.25, 93.75, 187.5, 375, 750, 1.5K, 3K, 6K, and 10K Hz. 

Although we also performed experiments with the Mel scale, the octave scale showed better performance 

in detection and classification. The reason behind using filter banks is to analyze the voiced signal in 

different frequency bands. The filter bands are slightly overlapping, and their frequency magnitude 

responses are shown in Figure 3.  The output of each filter is divided into frames with a specific size of 40 

ms with an overlap of 50% (20 ms). Extracting peak and lag values can be achieved by applying different 

forms of the correlation function. For instance, (1) the autocorrelation function was applied frame by frame 

in the same filter, (2) cross correlation was applied between two successive filters’ frames, and (3) cross 

correlation was applied between two successive frames in the same filter. In each form of the correlation 

function, we chose the maximum peak value and its corresponding lag. The proposed method will be 

described below.  

 

Figure 3: Frequency responses of the eight FIR filters used in the proposed method 

 

Correlation Function 

 

As illustrated in Figures 1 and 2, the correlation function in different forms is applied individually frame 

by frame and then the highest peak value (after 2 ms lag, because we assume that the first harmonic appears 

after that duration) and its corresponding lag are taken to represent finally a feature vector. The idea behind 

using autocorrelation is that for a normal sustained voice the peak will be high and the lag value will be 

inside the first half of the autocorrelation. Moreover, the normal sustained voice will be more harmonic if 

it is compared with the pathological sustained voice, and therefore using the correlation function is 

beneficial. From these two reasons, we believe that the peaks and lags will contribute in discriminating 

between the normal and pathological samples.  The autocorrelation (AC) function of a signal (s) in a frame 

can be computed as follows: 

https://en.wikipedia.org/wiki/Finite_impulse_response
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Where 10 − L , L is the maximum lag value, N is the number of samples in a frame, and  is the lag. 

The cross correlation between two successive frames (cross frame correlation: CFC) can be computed as 

follows: 
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Where i represents the frame number. 

In addition, the cross correlation between two successive filters (filter cross correlation: FCC) can be 

computed as follows: 
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Where s(n) and g(n) represent the frames in filter j and filter j+1, respectively. 

 

Setup of the Experiments 

First, for every database we down sampled the selected sustained vowel /a/ samples to 25 kHz to ensure the 

same sampling frequency for all the samples. Second, we performed three experiments on each database 

individually to extract the peaks and their corresponding lags depending on the type of correlation function.  

When the features for each database were ready, we performed 100 (=36+36+28) experiments on each 

database to detect pathology based on individual filters and on their combination. In case of autocorrelation 

and cross frames correlation, 36 experiments were performed for each case: eight experiments for each 

filter and the rest for the combination between filters by combining two successive filters, three successive 

filters, and so on until eight combined filters were achieved. However, in case of cross correlation between 

two successive filters, we performed 28 experiments with the same previous scenario. These experiments 

were performed by using two features (peak and lag) and they were repeated on an individual basis (peak 

or lag) to see the contribution of each feature separately on the detection process. In addition to these 

experiments, we performed 21 experiments on each database for the classification process by choosing the 

best different cases that achieved the best detection accuracy from cross correlation between successive 

filters (FCC), because this function better performed than the other two functions. We only used peak and 

lag values to perform the experiments of the classification. Finally, to obtain the p-value, we performed the 

t-test between two classes of normal and pathological samples on the three different databases separately 

with the following null hypothesis: “there is no significant difference between the two classes.”   

 



Results 

The results of the performed experiments for pathology detection and classification are expressed in terms 

of accuracy (ACC: the ratio between correctly detected samples and the total number of samples), 

sensitivity (SN: the proportion of pathological samples that are positively identified), specificity (SP: the 

proportion of normal samples that are negatively identified), and the area under the Receiver Operating 

Characteristic (ROC) curve, called the Area Under Curve. These terms can be calculated using the 

following distinct equations: 
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where true negative (TN) means that the system detects a normal subject as a normal subject, true positive 

(TP) means that the system detects a pathological subject as a pathological subject, false negative (FN) 

means that the system detects a pathological subject as a normal subject, and false positive (FP) means that 

the system detects a normal subject as a pathological subject. 

To verify the validity of the extracted features from the three different databases in the detection and 

classification process of pathological and normal samples, various experiments were performed. To ensure 

accuracy, various experiments were performed individually for each filter and their combination (10 folds 

and 100 experiments on each database, which equals 1000 runs).  The achieved accuracies varied from one 

database to another with the same correlation function that was used to extract the features. Moreover, the 

obtained accuracies in the same database were also varied depending on the number of features that were 

used to carry the experiments. Two features were used in each filter, but this number is increased in case of 

the combination between filters (number of combined filters multiplied by two). In case of the detection 

process, Table 2 shows the best achieved accuracies on each database by using three different correlation 

functions. As we can see from Table 2, the accuracies vary from one database to another and these 

accuracies are varied in the same database depending on the used correlation function. For example, the 

achieved accuracies in case of autocorrelation were different than those in case of cross filter correlation 

and cross frame correlation. In general, as it is shown in Table 2, the highest acquired accuracies are 

99.809%, 93.85%, and 90.979% in the three databases MEEI, AVPD, and SVD, respectively. To see the 

performance of each individual filter and the combined filters on the detection and classification, various 

experiments were performed, but we report the best individual filter and best combination that have the 



highest results.  For instance, Table 3 shows the best obtained accuracies by performing the experiments 

on an individual filter, and on combined successive number of filters in case of using the autocorrelation 

function. 

 

Table 2:  Best detection accuracies in the three different databases using various correlation functions 

Methods Database 
Accuracies  % 

SN SP ACC 

A
u

to
co

rr
el

a
ti

o
n

 

MEEI 87.511 93.090 99.673 

SVD 88.690 88.707 88.696 

AVPD 90.324 93.052 91.690 

C
ro

ss
 c

o
r
re

la
ti

o
n

 

b
et

w
e
en

 f
il

te
rs

 

MEEI 98.571 99.545 99.809 

SVD 90.201 91.720 90.979 

AVPD 85.552 94.796 91.168 

C
ro

ss
 c

o
r
re

la
ti

o
n

 

b
et

w
e
en

 f
ra

m
es

 

MEEI 87.511 93.090 99.736 

SVD 84.723 88.101 86.413 

AVPD 93.463 94.237 93.850 

 

Moreover, Table 4 also shows the highest acquired results from the experiments that use cross correlation 

between two successive filters to extract the features from the mentioned databases. The highest achieved 

accuracies in this case are 99.81%, 91.17%, and 90.98% in the MEEI, AVPD, and SVD databases, 

respectively. These accuracies were achieved when we combined more than one filter as shown in this 

table. 

 

Table 3: Best accuracy on different filter number from the three used databases using autocorrelation 

function to extract the features 

N
u

m
b

e

r 
o
f 

fi
lt

er
(s

) 

Best Filter performance Best Accuracy % 



MEEI SVD AVPD MEEI SVD AVPD 

1 (6) (6)  (2) 98.056 66.332 81.805 

2 (4,5) (3,4)  (6,7) 99.155 75.512 84.824 

3 (5,6,7) (5,6,7) (5,6,7) 99.466 82.619 89.261 

4 (5,6,7,8) (4,5,6,7) (4,5,6,7) 99.442 84.550 91.043 

5 (4,5,6,7,8) (4,5,6,7,8) (3,4,5,6,7) 99.554 86.784 89.728 

6 (3,4,5,6,7,8) (3,4,5,6,7,8) (2,3,4,5,6,7) 99.570 86.409 90.742 

7 (2,3,4,5,6,7,8) (2,3,4,5,6,7,8) (1,2,3,4,5,6,7) 99.554 87.242 91.690 

8 (1~8) (1~8) (1~8) 99.673 88.696 90.295 

  

Table 4: Best accuracies on different filter number from the three used database using cross correlation 

function between two successive filters to extract the features 

N
u

m
b

e
r 

o
f 

fi
lt

er
(s

) Best Filter performance Best Accuracy % 

MEEI SVD AVPD MEEI SVD AVPD 

1 (5) (6) (3) 97.124 67.738 74.552 

2 (5,6) (5,6) (5,6) 99.394 82.001 83.290 

3 (5,6,7) (4,5,6) (5,6,7) 99.753 85.692 88.483 

4 (4,5,6,7) (4,5,6,7) (3,4,5,6) 99.809 90.025 90.490 

5 (3,4,5,6,7) (3,4,5,6,7) (3,4,5,6,7) 99.777 90.979 91.168 

6 (1,2,3,4,5,6) (2,3,4,5,6,7) (2,3,4,5,6,7) 99.562 90.856 90.914 

7 (1~7) (1~7) (1~7) 99.753 89.519 91.038 

 

In addition, Table 5 also shows the best obtained results from the experiments that use cross correlation 

between two successive frames in the same filter to extract the features from these databases. As we can 

see from that table, the highest attained accuracies are 99.74%, 93.85%, and 86.41% in the MEEI, AVPD, 

and SVD databases, respectively. These accuracies were obtained in case of the combined filters too.  



Table 5: Best accuracies on different filter numbers from the three used databases using cross correlation 

between the two successive frames to extract the features 
N

u
m

b
e
r 

o
f 

fi
lt

er
(s

) 

Best Filter Performance Best Accuracy (%) 

MEEI SVD AVPD MEEI SVD AVPD 

1 (6) (7) (1) 98.932 70.460 76.234 

2 (6,7) (5,6) (1,2) 99.704 77.447 86.825 

3 (5,6,7) (4,5,6) (5,6,7) 99.598 81.597 88.807 

4 (2,3,4,5) (5,6,7,8) (4,5,6,7) 99.704 85.108 91.205 

5 (2,3,4,5,6) (4,5,6,7,8) (3,4,5,6,7) 99.715 85.329 91.726 

6 (2,3,4,5,6,7) (2,3,4,5,6,7) (2,3,4,5,6,7) 99.693 85.535 92.288 

7 (1,2,3,4,5,6,7) (2,3,4,5,6,7,8) (1,2,3,4,5,6,7) 99.567 86.413 93.850 

8 (1~8) (1~8) (1~8) 99.736 83.394 93.446 

 

To see the effect of each feature (peak or lag) on the detection process, seven additional experiments were 

performed using one type of feature separately. These experiments were only performed using cross filter 

correlation to extract features. Table 6 shows the obtained accuracies for each individual feature, and for 

them together. As we can see from this table, each feature contributes differently than the other one. The 

highest obtained detection accuracy for peak are 75.79%, 98.717%, and 73.131% in SVD, MEEI, and 

AVPD respectively while the highest obtained detection accuracy in case of lag are 78.78%, 92.996%, and 

75.863%  in the same mentioned databases.   

Table 6: Best detection accuracies for different number of filters using cross correlation between two 

successive filters 

Number of 

Filters 

SVD Database 

Accuracies 

MEEI Database 

Accuracies 

AVPD Database 

Accuracies 

Both Peak Lag Both Peak Lag Both Peak Lag 

1-(6) 67.738 56.564 60.104 89.960 89.203 73.052 68.683 64.396 70.195 

2-(5,6) 82.001 59.959 70.481 97.602 95.211 80.757 83.290 68.628 72.036 

3-(4,5,6) 85.692 67.804 72.319 99.602 98.279 84.940 87.844 69.093 72.507 

4-(4,5,6,7) 90.025 75.793 77.152 99.737 98.717 92.112 90.417 71.068 74.496 

5-(3,4,5,6,7) 90.979 75.787 77.269 99.793 98.669 92.996 91.168 72.954 74.700 

6-(2,3,4,5,6,7) 90.856 74.581 79.106 99.817 98.598 92.829 90.914 72.807 74.929 

7-(1,2,3,4,5,6,7) 89.519 74.531 78.782 99.825 98.534 92.940 91.038 73.131 75.863 

 



 

In case of the classification process, we chose the best acquired accuracies in case of the detection process 

shown in Table 4 that belongs to the cross filter correlation function between two successive filters’ frames 

(features contain both peak and lag), then we performed three different experiments on each database 

individually depending on the classification type. In this case, 21 experiments were performed on each 

database with different types of classification. Table 7 shows the achieved accuracies of classification on 

these databases by using the cross correlation function to extract the features. The obtained accuracies in 

this case vary from one classification type to another in the same database. The highest attained accuracies 

are 99.255%, 98.941, and 95.188% in the MEEI, SVD, and AVPD databases, respectively, for cyst vs 

others.  

Table 7: Best accuracies for classification on the three used database 

Classification type Number 

of filter(s) 

Databases Accuracy (%) 

MEEI SVD AVPD 

cyst vs (Paralysis & Polyp) 

1 92.836 98.379 81.768 

2 98.737 98.379 89.266 

3 99.255 98.379 94.344 

4 98.716 98.379 93.495 

5 98.323 98.818 95.188 

6 98.737 98.721 93.720 

7 98.716 98.941 94.610 

Paralysis vs (Cyst & Polyp) 

1 78.820 81.770 66.667 

2 94.658 87.306 86.083 

3 97.288 91.447 88.642 

4 96.605 91.867 89.376 

5 95.424 92.222 89.936 

6 96.915 92.138 89.977 

7 96.170 92.255 90.139 

Polyp vs (Cyst & Paralysis) 

1 84.265 83.269 68.764 

2 95.528 87.371 87.343 

3 96.998 92.158 90.121 

4 96.211 92.339 90.786 

5 96.542 91.156 90.445 

6 96.874 90.233 90.497 

7 97.081 92.080 89.440 

 

Finally, we performed a t-test between two classes of normal and pathological samples on each database 

separately and computed the p-values of the two extracted features (peak and lag) for each class. In our 



work, the p-values probability are computed for the extracted features where three correlation functions are 

used for each database to extract them.  For example, Table 8 shows the p-value for the autocorrelation 

function which was performed on the three databases for each individual filter.  

Table 8: p-values for the extracted peak and lag using autocorrelation function from the three different 

databases. 

F
il

te
r 

N
o

. Databases 

MEEI  SVD AVPD 

Peaks Lags Peaks Lags Peaks Lags 

1 0 1.667E-304 4.1688E-39 0.36516378 8.9921E-14 0 

2 0 1.445E-304 1.159E-39 0.29408271 2.0607E-13 0 

3 0 6.618E-303 4.9559E-42 0.30095416 4.355E-12 0 

4 0 1.119E-302 8.3193E-52 0.26644587 2.1886E-07 0 

5 0 2.017E-292 4.267E-104 0.20139113 0.00824899 0 

6 0 2.452E-219 0 0.0537987 2.255E-250 0 

7 0 2.386E-29 3.559E-101 6.8811E-55 0.52072373 0 

8 1.9034E-77 0.15735378 4.699E-142 9.7787E-31 9.4469E-88 4.0865E-69 

 

However, Table 9 shows the p-value for the cross correlation function for each filter, where filter one 

represents the cross correlation between filters one and two, filter two represents filters two and three, and 

so on until filter seven represents the cross correlation between filters seven and eight.  

Table 9: p-values for the extracted peak and lag using cross correlation function between two successive 

filter from the three different databases. 

F
il

te
r 

N
o

. Databases 

MEEI  SVD AVPD 

Peaks Lags Peaks Lags Peaks Lags 

1,2 0 3.196E-304 7.8997E-37 0.0038409 0.09947441 8.853E-152 

2,3 0 2.545E-304 4.4936E-38 0.00561598 0.05795023 3.158E-190 

3,4 0 5.359E-303 1.791E-43 0.00607769 0.00375946 9.69E-196 

4,5 0 1.373E-297 6.4922E-69 0.00983982 9.7901E-13 9.948E-196 

5,6 0 1.085E-252 8.098E-221 0.01998128 1.2E-141 2.213E-198 

6,7 0 6.276E-102 1.98E-244 2.295E-159 3.934E-123 0.01530406 

7,8 0.85627226 3.0194E-27 2.285E-123 1.8356E-81 5.501E-93 1.0664E-29 

 



In addition, Table 10 shows the p-values for the cross correlation between two successive frames in the 

same filter.  

Table 10: p-values for the extracted peak and lag using cross correlation function between two successive 

frames from the three different databases. 
F

il
te

r 
N

o
. Databases 

MEEI  SVD AVPD 

Peaks Lags Peaks Lags Peaks Lags 

1 0 0 8.8838E-44 1.6175E-12 7.4443E-29 0 

2 0 0 2.3235E-44 2.5858E-53 2.4358E-28 0 

3 0 0 1.0088E-46 1.6688E-53 2.0378E-26 0 

4 0 0 5.3195E-57 1.8255E-55 3.3386E-19 1.119E-303 

5 0 0 1.871E-111 2.954E-64 0.18796485 1.355E-234 

6 0 0 0 2.232E-121 1.324E-203 1.217E-247 

7 0 0 2.66E-29 0 5.1327E-25 5.431E-09 

8 3.046E-99 0 1.74E-157 1.164E-252 1.332E-99 3.409E-255 

 

We performed multiple t-test on the three databases with the three different correlation functions that used 

to extract features to see the individual performance of these correlation functions in discriminating between 

normal and pathological samples on each database. As we can see from tables 8, 9, and 10 the ability of 

discriminating between normal and pathological subjects are varies for each database from one correlation 

function to another. For example, in case of MEEI database the contribution of peak and lag in the three 

methods are much closer if we compare their contribution to the contribution of peak and lag on the other 

two databases with the three correlation functions. The lowest contribution for peak and lag in the 

discrimination between normal and pathological subjects is occurred in case of using SVD database with 

the three correlation functions. From these multiple t-test we can infer that whether these correlation 

function will perform well or not. 

In this study, we performed an additional experiment of pathology detection using the MEEI subset 

consisting of 53 normal samples and 173 pathological samples. By comparing the results, we conclude that 

the proposed method is robust against the sample size. Table 11 shows the obtained accuracies for the three 

correlation function with different samples size. For example the difference between the two obtained 

accuracies in case of autocorrelation is 0.048 which represents very small values. Which indicate that the 

sample size does not affect the robustness of the proposed method.  



Table 11: The obtained accuracies from the three different correlation function on MEEI database using 

different samples. 

Correlation 

Functions 
Samples (53 N - 173 P) Samples (53 N - 101 P) 

Autocorrelation 99.625 99.673 

Cross Filter 

correlation 
99.750 99.753 

Cross Frames 

Correlation 
99.075 99.736 

 

Finally, we performed different experiments using Mel filter bank for the eight filters individually and for 

the eight combined filters. Table 12 shows the obtained accuracies for each filter and for the combined 

filters for the octave and Mel scales. As we can see from this table, generally, the performance of octave 

scale is better than Mel scales in term of the obtained accuracies. In addition, it can be inferred that the 

proposed method is robust and reliable because of the use of different type of scales did not affect the 

obtained accuracies.     

Table 12: The obtained accuracies for each filter with two different scales 

Scale Filters 

1 2 3 4 5 6 7 8 1 ~ 8 

Octave 95.649 95.625 95.721 94.861 95.960 98.056 90.127 78.685 99.673 

Mel 95.697 96.112 96.143 96.677 97.355 97.418 90.191 82.319 99.474 

 

Figure 4-(a) shows the ROC curve of the highest achieved detection accuracy in case of using 

autocorrelation to extract the feature from the three databases. It demonstrates that the best performance is 

obtained with the features extracted from the MEEI. In addition, Figure 4-(b) shows the ROC curve of the 

highest achieved detection accuracy in case of using cross frame correlation to extract the feature from the 

three databases. As we can see from that figure, the best performance was obtained with the feature 

extracted from the MEEI.  

 



 

(A) Autocorrelation 

 

(B) Cross frames correlation 

 

 (C) Cross filters correlation  

Figure 4: Best accuracies for features extracted from the three databases 

 

Finally, Figure 4-(c) shows the ROC curve of the highest achieved detection accuracy in case of using the 

cross filters correlation to extract the feature from the three databases. Also, the best performance was 

obtained with the feature extracted from the MEEI. In all ROC curves mentioned, the 95% confidence 

interval is 0.9449-0.9870, and the 1-tail p-value is zero (<0.05) describing the significance of the data in 

the two classes.  
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Discussion 

We investigated the extracted features using different correlation functions on different frequency bands 

for voice pathology detection and classification. Based on the obtained result, mentioned above, we can 

infer that the variation in the achieved accuracies in the same database is referred to the type of correlation 

function that was used to extract the features. The reason behind this variation is that every method has 

different values in performing the operation of the correlation. For example, in case of autocorrelation it is 

performed frame by frame in the same filter, while in case of cross frame correlation it is performed on two 

successive frames in the same filter. In addition, in case of cross filter correlation, it is performed in frame 

one from filter one with frame one from filter two and so on (two successive filters). This variation of the 

accuracies in the three different databases may be caused by different reasons: (1) the severity of voice 

disorders, which are not the same between the three databases, as shown, for instance, in Table 2, where 

sensitivity (to pathological samples) varies from one database to another; (2) the recording environment 

and the regulation of the recording are not the same between the three databases; (3) in the case of the MEEI 

database, the recording environments for pathological and normal samples were not the same; and (4) the 

number of samples taken from each database in this study are not the same. Besides that, the achieved 

accuracies vary within the same database depending on the correlation function used to extract the features 

due to the performed calculations, which are different from one method to another. Moreover, the variation 

in the accuracies in the same database also were different from one filter to another as a result of the fact 

that the frequency bands of each filter were not the same, which indicates that every frequency band has a 

different contribution to the detection and classification of pathologies. Figure 5 reflects this variation in 

the accuracies in case of the extracted feature from the SVD database using the three forms of the correlation 

functions. As it is seen from that figure, the greatest contribution for detection and classification is achieved 

in case of filters 4, 5, 6, and 7.  This also confirms the findings of Fraile et al. [36], which state that “power 

in bands between 2000 and 6400 Hz is significantly less stable in dysphonic voices.” Besides that, as we 

notice from the experimental result, the highest achieved accuracies occurred in the combined filters in all 

experiments, because each filter has the ability to detect some components in the specified range of 

frequencies components than the other filter, and when we combine more than one filter together their 

frequency range is expanded, which leads to higher accuracy of detection and classification.  



 

Figure 5: Three correlation functions applied to the SVD database 

 

In addition, the calculated p-values for peaks and lags shown in Tables 7, 8, and 9 indicate the contribution 

of each feature to discriminating between normality and pathology. The contribution of peaks and lags 

separately for detection varies between the databases. Peaks have a more positive contribution in the MEEI 

database and the SVD in most cases, whilst lags have a more positive contribution in the AVPD. They 

performed very well in all the databases in case of their combination. For instance, Table 10 shows the best 

achieved accuracies from a different number of filters in the SVD database. It can be seen that the individual 

performance for peaks and lags is less when compared with them together. As we previously mentioned, 

each individual feature has a contribution to the detection and classification processes, but this varies from 

low to high and when we found it to be very low we stopped performing the experiment on this feature and 

continued doing the experiments with the other feature that had a high contribution. We made this decision 

depending on the obtained result shown in Tables 8, 9, and 10.  From the results of all experiments, we 

found the following: 

• Every extracted feature has a contribution to the classification and detection processes, but the two 

features together performed better than the individual feature.  

• The performance of each frequency band varied from one to another and the best performance was 

in the bands of frequency range 1000 ~ 8000 Hz. 

• The combined filters performed better than the individual filter in both processes (detection and 

classification). 
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• There is a need for a mixed database experiment between the three databases to ensure the 

independency of features from the database that were used to extract features. This is a point to 

investigate as a future work. 

• The severity of voice disorder did not addressed in this study and it was left for future work. 

• The proposed method is not dependent on the recording environment, because it achieved high 

accuracies in the MEEI database (where the recording environments are different), and the SVD 

and the AVPD (where the recording environments were the same per database).  

• The proposed method is robust against the sample size. 

• Both the peaks and the lags are used (to get the highest accuracy), the final system is independent 

of choosing a particular one. 

In general, our results are better than, or comparable with, other reported accuracies using the MEEI and 

SVD databases in different studies. For example, the reported results in [21] were 94.26% for detection and 

91.55% for classification, where Arjmandi et al. used the MEEI database and the same classifier that we 

used, but different pathological samples. Moreover, in [14] Godino et al. used the MEEI database and the 

achieved accuracy in this study was 94.07%, while in [34] Martinez et al. used the SVD database and the 

same classifier that we used and the attained accuracy in this study was 81%. They also used the MEEI 

database and the achieved accuracy was 94.80%. In addition, Markaki et al. in [35] used the MEEI database 

and the achieved classification accuracy was 94.10%. Further, in [26] Muhammad et al. used MPEG 

features to detect and classify voice pathology using the MEEI database and the SVM classifier, obtaining 

99.994% with 45 features, and 99.412% accuracy with only seven features. In this study the authors used 

the same database and classifier that we used, but with a different number of samples and more features. In 

our study the highest achieved accuracies in detection were 99.809%, 90.979%, and 91.168% in the MEEI, 

SVD, and APVD databases, respectively. However, in classification, the highest acquired accuracies were 

99.255%, 98.941%, and 95.188% in the three databases, respectively. Figure 6 shows the comparison 

between our method and the other methods used in different studies in detection using the MEEI database. 

 



 

Figure 6: Different achieved accuracies from various studies 

 

 

Conclusion 

In this study, we evaluated the features (peak and lag) on three different databases (MEEI, SVD, and AVPD) 

with three different correlation functions used to extract these features. In addition, we investigated the 

performance of these features on eight frequency bands to see the effects of each band on the detection and 

classification processes. The accuracies of detection and classification varied from one database to another 

with the same correlation function used in extracting the features. The best accuracies we obtained in case 

of detection were 99.809%, 90.979%, and 91.168% in the MEEI, SVD, and APVD databases, respectively, 

while the best accuracies of classification were 99.255%, 98.941%, and 95.188% in the three databases, 

respectively. 

Some of the frequency bands performed better in comparison with others.  The best performance was in the 

bands of frequency range 1000 ~ 8000 Hz. In a future study, we will perform experiments on mixed 

databases samples to verify the independency of the proposed features across databases.   
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