
Northumbria Research Link

Citation: Labarbe, Joris and Kirillov, Oleg (2020) Membrane flutter induced by radiation of surface 
gravity waves on a uniform flow. Journal of Fluid Mechanics. ISSN 0022-1120 (In Press) 

Published by: Cambridge University Press

URL: 

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/42954/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


ar
X

iv
:2

00
4.

11
73

6v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

4 
A

pr
 2

02
0

This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Membrane flutter induced by radiation of
surface gravity waves on a uniform flow

Joris Labarbe1 and Oleg N. Kirillov1†
1Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

(Received xx; revised xx; accepted xx)

We consider stability of an elastic membrane being on the bottom of a uniform horizontal
flow of an inviscid and incompressible fluid of finite depth with free surface. The mem-
brane is simply supported at the leading and the trailing edges which attach it to the two
parts of the horizontal rigid floor. The membrane has an infinite span in the direction
perpendicular to the direction of the flow and a finite width in the direction of the flow.
For the membrane of infinite width we derive a full dispersion relation that is valid for
arbitrary depth of the fluid layer and find conditions for the flutter of the membrane due
to emission of surface gravity waves. We describe this radiation-induced instability by
means of the perturbation theory of the roots of the dispersion relation and the concept
of negative energy waves and discuss its relation to the anomalous Doppler effect.

Key words:

1. Introduction

Flutter of membranes is a classical subject for at least seven decades. Membranes
submerged in a compressible gas flow and their flutter at supersonic speeds have
been considered already in the works by Miles (1947), Goland and Luke (1954),
Benjamin (1963), and Bolotin (1963). Bolotin (1963), Spriggs, Messiter and Anderson
(1969), and Kornecki, Dowell and O’Brien (1976) addressed a problem of the so-
called membrane flutter paradox on the relation of stability criteria for an elastic
plate to that for a membrane. Absolute and convective hydroelastic instabilities of
slender elastic structures submerged in a uniform flow were discussed by Triantafyllou
(1992). Recent works on the membrane flutter are motivated by such diverse
applications as stability of membrane roofs in civil engineering (Sygulski 2007),
flutter of traveling paper webs (Banichuk, Jeronen, Neittaanmäki and Tuovinen
2010; Banichuk, Barsuk, Jeronen, Tuovinen and Neittaanmäki 2019), aerodynamics
of sails and membrane wings of natural flyers (Newman and Paidoussis 1991;
Tiomkin and Raveh 2017), as well as design of piezoaeroelastic systems for energy
harvesting (Mavroyiakoumou and Alben 2020).
Surface gravity waves on a motionless fluid of finite depth is a classical subject as well,

going back to the seminal studies of Russell and Kelvin (Carusotto and Rousseaux
2013). Numerous generalizations are known taking into account, for instance, a
uniform or a shear flow and surface tension (Maissa, Rousseaux and Stepanyants
2016), flexible bottom (Mohapatra and Sahoo 2011) or a flexible plate resting on a
free surface (Das, Sahoo and Meylan 2018a,b,c; Bochkarev, Lekomtsev and Matveenko
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2016; Schulkes, Hosking and Sneyd 1987). The latter setting has a straightforward
motivation in dynamics of sea ice and a less obvious application in analogue
gravity experiments (Carusotto and Rousseaux 2013; Barcelo, Liberati and Visser 2011;
Weinfurtner, Tedford, Penrice, Unruh and Lawrence 2011). Recent work (Robertson and Rousseaux
2018) discusses effects of viscous dissipation of surface gravity waves to the analogue
gravity.

Remarkably, another phenomenon that is being analysed from the analogue gravity
perspective is super-radiance (Carusotto and Rousseaux 2013; Barcelo, Liberati and Visser
2011; Brito, Cardoso and Pani 2015) and its particular form, discovered by Ginzburg
and Frank (Ginzburg and Frank 1947; Ginzburg 1996), known as the anomalous Doppler
effect (ADE) (Bekenstein and Schiffer 1998; Nezlin 1976; Nemtsov and Eidman 1987). In
electrodynamics, the ADE manifests itself when an electrically neutral overall particle,
endowed with an internal structure, becomes excited and emits a photon during its
uniform but superluminal motion through a medium, even if it started the motion in its
ground state; the energy source is the bulk motion of the particle (Bekenstein and Schiffer
1998).

Anomalous Doppler effect in hydrodynamics was demonstrated for a mechanical oscil-
lator with one degree of freedom, moving parallel to the border between two incompress-
ible fluids of different densities (Gaponov-Grekhov, Dolina and Ostrovskii 1983). It was
shown that the oscillator becomes excited due to radiation of internal gravity waves if
it moves sufficiently fast. In (Abramovich, Mareev and Nemtsov 1986) the ADE for such
an oscillator was demonstrated due to radiation of surface gravity waves in a layer of an
incompressible fluid.

Nemtsov (1986) was the first who considered flutter of an elastic membrane resting
on the bottom of a uniform horizontal flow of an inviscid and incompressible fluid
as an anomalous Doppler effect due to emission of long surface gravity waves. In the
shallow water approximation, he investigated both the case of a membrane that spreads
infinitely far in both horizontal directions and the case when the width of the membrane
in the direction of the flow (or the chord length) is finite whereas the span in the
perpendicular direction is infinite. Nevertheless, the case of the flow of arbitrary depth
has not been studied in (Nemtsov 1986) as well as no numerical computation supporting
the asymptotical results has been performed. Another issue that has not been addressed
in (Nemtsov 1986) is the relation of stability domains for the membrane of the finite
width to that for the membrane of the infinite width.

Vedeneev (2004) studied flutter of an elastic plate of finite and infinite widths on the
bottom of a uniform horizontal flow of a compressible gas occupying the upper semi-
space. He performed analysis of the relation of stability conditions for the finite plate
with that for the infinite plate using the method of global stability analysis by Kulikovskii
(Doaré and de Langre 2006; Vedeneev 2016). A single-mode high frequency flutter due to
a negative aerodynamic damping and a binary flutter have been identified in (Vedeneev
2016). However, no connection has been made to the ADE and the concept of negative
energy waves.

In the present work we reconsider the setting of Nemtsov in order to address the finite
height of the fluid layer, find flutter domains in the parameter space, analyze them using
perturbation of multiple roots of the dispersion relation and investigate the flutter onset
for the membrane of infinite chord length. We will explain the radiative instabilities via
the interaction of positive and negative energy waves using an explicit expression for the
averaged total energy derived rigorously from physical considerations and relate them to
the anomalous Doppler effect.
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2. Model of a membrane interacting with a free surface

2.1. Physical system

In a Cartesian coordinate system OXY Z consider an inextensible elastic rectangular
membrane strip of constant thickness h and density ρm, of infinite span in the Y -direction,
held at Z = 0 at the leading edge (X = 0) and at the trailing edge (X = L) by simple
supports, Fig. 1.
The membrane is initially still and flat, immersed in a layer of an inviscid, incompress-

ible fluid of constant density ρ with free surface at the height Z = H . The two-dimensional
flow in the layer is supposed to be irrotational and moving steadily with velocity v in the
positive X-direction. The bottom of the fluid layer at Z = 0 is supposed to be rigid and
flat for X ∈ (−∞, 0] ∪ [L,+∞).
Nemtsov (1986) assumed that vacuum is below the membrane. In the present study

we prefer to consider that a motionless incompressible medium of the same density ρ
is present below the membrane with the pressure that is the same as the unperturbed
pressure of the fluid (Vedeneev 2004, 2016).
Assuming small vertical displacement of the membrane w(X, t), where t is time, a

constant tension T along the membrane profile, and neglecting viscous forces, we write
the dimensional membrane dynamic equation as (Tiomkin and Raveh 2017)

ρmh∂2
tw = T∂2

Xw −∆P, X ∈ [0, L] , Z = 0, (2.1)

where ∆P (X, t) is the pressure difference across the interface Z = 0. The simply-
supported boundary conditions for the membrane yield

w(0) = w(L) = 0 at Z = 0. (2.2)

In general, to recover the pressure P (X,Z, t) of the fluid we write the Euler equation for
the vorticity-free flow (Carusotto and Rousseaux 2013; Maissa, Rousseaux and Stepanyants
2016)

∂tv +∇

(
v · v
2

+
P

ρ
+ gZ

)
= 0 (2.3)

with v = veX +∇ϕ, where ϕ(X,Z, t) is the potential of the fluid, eX is the unit vector
in the X-direction, and g stands for the gravity acceleration. This yields the integral of
Bernoulli

P

ρ
+ (∂t + v∂X)ϕ+

1

2
∇ϕ ·∇ϕ+ gZ = constant. (2.4)

The incompressibility condition takes the form

∇
2ϕ = 0. (2.5)

From the equation (2.4) it follows that in the case when a motionless medium of density
ρ is present below the membrane with its pressure equal to the unperturbed pressure of
the fluid above the membrane, the linear in ϕ expression for the pressure difference,
∆P (X, t), is

∆P (X, t) = −ρ (∂t + v∂X)ϕ(X, 0, t). (2.6)

For the sake of completeness, we present also the analogous expression for the pressure
difference for the case when vacuum is below the membrane (Nemtsov 1986)

∆P (X, t) = −ρ (∂t + v∂X)ϕ(X, 0, t)− ρgw(X, t). (2.7)

Impermeability of the rigid bottom implies the condition

∇ϕ · n = 0 at Z = 0, X ∈ (−∞, 0] ∪ [L,+∞). (2.8)
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Figure 1. An elastic membrane with the chord of length L attached to two rigid walls along its
leading (X = 0) and trailing (X = L) edges on the bottom of a fluid layer of depth H moving
with the velocity v. Ω is the fluid domain and ∂Ω0, ∂Ω1, ∂Ω2 are respectively the free surface,
membrane, and rigid wall borders.

The prescription of normal velocity at the boundaries of moving surfaces allows us to
express the kinematic condition for the membrane

∇ϕ · n = − (∂t + v∂X)w at Z = 0, X ∈ [0, L] (2.9)

and to specify the same condition at the free surface

∇ϕ · n = (∂t + v∂X)u, (2.10)

where u(X, t) is the free surface elevation and n is the vector of the outward normal to
a surface. This implies that the projection of the vector ∇ϕ to the normal will coincide
with the pozitive z-direction for the free surface and have the opposite direction for the
membrane, see Fig. 1.
Using the Bernoulli integral (2.4) at the free surface where P = 0 and retaining only

linear in ϕ terms, we find

gu = −(∂t + v∂X)ϕ. (2.11)

Expressing u from (2.11) and substituting it into (2.10) we obtain the boundary condition
at the free surface of the liquid that reads

∇ϕ · n = −1

g
(∂t + v∂X)

2
ϕ at Z = H. (2.12)

2.2. Dimensionless mathematical model

Let us choose the height of the fluid layer, H , as a length scale, and ω−1
0 , where ω0 =√

g/H, as a time scale. Then, we can introduce the dimensionless time and coordinates

τ = tω0, x =
X

H
, y =

Y

H
, z =

Z

H
, (2.13)

the dimensionless variables

ξ =
w

H
, η =

u

H
, φ =

ω0

gH
ϕ, (2.14)

the dimensionless parameters of the added mass ratio (Minami 1998) and membrane
chord length

α =
ρH

ρmh
, Γ =

L

H
, (2.15)

and the two Mach numbers (Vedeneev 2004, 2016)

Mw =
c√
gH

, M =
v√
gH

, (2.16)
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where c2 = T/(ρmh) is the squared speed of propagation of elastic waves in the membrane
and

√
gH is the speed of propagation of long surface gravity waves in the shallow

water approximation. The added mass ratio α is the ratio of the fluid and solid mass
contained, respectively, in the volume delimited by the dashed lines in Fig. 1 and in the
membrane (Minami 1998). In Fig. 1, Ω denotes the fluid domain and ∂Ω0, ∂Ω1, ∂Ω2

stand, respectively, for the free surface, membrane, and solid wall borders.
The dimensionless wave equation (2.1) is therefore

∂2
τξ −M2

w∂
2
xξ = −α

∆P

ρgH
, x ∈ [0, Γ ] , z = 0. (2.17)

Supplementing it with the expression (2.6), which in the dimensionless time and coordi-
nates has the form

∆P

ρ
= −

(
ω0∂τ +

v

H
∂x

)
ϕ, (2.18)

we find

∂2
τ ξ −M2

w∂
2
xξ = α

(
∂τ +

v

ω0H
∂x

)
ω0

gH
ϕ

= α (∂τ +M∂x)φ. (2.19)

The dimensionless boundary condition (2.9) is

∇φ · n = − (∂τ +M∂x) ξ at z = 0, x ∈ [0, Γ ], (2.20)

whereas the boundary condition (2.12) at the free surface in the dimensionless form looks
like

∇φ · n = − (∂τ +M∂x)
2
φ at z = 1. (2.21)

Collecting together the equations (2.19), (2.20), (2.21) and the obvious dimensionless
versions of the equations (2.5) and (2.8) and assuming a time dependence in the form of
φ, ξ ∼ e−iωτ results in the following dimensionless set of equations and their boundary
conditions for the case when a motionless medium is present below the membrane:

∇
2φ = 0, inΩ (2.22a)

∇φ · n = − (−iω +M∂x)
2 φ, on∂Ω0 (2.22b)

∇φ · n = V (x), on∂Ω1 (2.22c)

∇φ · n = 0, on∂Ω2 (2.22d)
[
ω2 +M2

w∂
2
x

]
ξ = −α (−iω +M∂x)φ, on∂Ω1 (2.22e)

ξ(0) = ξ(Γ ) = 0, on∂Ω1 (2.22f )

where V (x) = (iω − M∂x)ξ(x), x ∈ [0, Γ ] is the impermeability condition for the
membrane. For simplicity, we retain the same notation for the membrane displacement
and the fluid potential after the separation of time.
Therefore, due to the irrotational, incompressible and inviscid character of the fluid,

our mathematical model (2.22) consists of the Laplace equation for the fluid potential
(2.22a) supplemented with the kinematic conditions for the free surface (2.22b) and the
membrane (2.22c). The pressure at the surface of the fluid is also prescribed as a dynamic
condition and therefore closes the system of equations for the fluid in this model: the
motion of the membrane is described by a nonhomogeneous wave equation (2.22e) with
the pressure of the fluid (recovered through the Bernoulli principle) as a source term.
The membrane is supposed to be simply supported at its extremities (2.22f).
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Figure 2. Real (red, upper panels) and imaginary (blue, lower panels) parts of the roots of the
dispersion relation (3.13) over the Mach number M for Mw = 1, κ = 1 and (from left to right)
β = 0, β = 0.01, β = 0.1, and β = 1.

3. Methods and Results

3.1. Membrane of the infinite chord length

3.1.1. Dispersion relation for the fluid layer of arbitrary depth

In this paper, we analyse the case when the chord of the membrane is infinite, i.e.
when the membrane extends from −∞ to +∞ in the x-direction. Since the motion of
the fluid is two-dimensional in the (x, z)-plane and the horizontal extension of the fluid
layer is infinite in the x-direction too, we can represent the potential of the fluid φ in
the physical space by means of the inverse Fourier transform of the potential φ̂ in the
wavenumber space as

φ(x, z, ω) =
1

2π

∫ +∞

−∞
φ̂(κ, z, ω)eiκxdκ, (3.1)

where κ is the wavenumber and

φ̂(κ, z, ω) =

∫ +∞

−∞
φ(x, z, ω)e−iκxdx, (3.2)

under standard assumption that both φ(x) and φ̂(κ) are absolutely integrable functions,
implying their vanishing at infinity.
Assuming that ∂xφ is also absolutely integrable, which allows us to use twice the

property ∂̂xφ = iκφ̂, we find the Fourier transform of the Laplace equation (2.22a)

∂2
z φ̂− κ2φ̂ = 0. (3.3)

The general solution to equation (3.3) is

φ̂(κ, z, ω) = A(κ, ω)eκz +B(κ, ω)e−κz, (3.4)

where A(κ, ω) and B(κ, ω) are yet to be determined from the Fourier-transformed
boundary conditions.
The boundary condition (2.22c), expressing the impermeability of the membrane at

z = 0, takes the form

− ∂zφ = V (3.5)

because the outward direction of the normal vector n to the surface of the membrane is
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opposite to the positive z-direction, see Fig. 1. The Fourier transform of (3.5) reads

∂zφ̂ = −V̂ (κ, ω), (3.6)

where

V̂ (κ, ω) =

∫ +∞

−∞
(iωξ(s)−M∂sξ(s)) e

−iκsds

= i (ω − κM) ξ̂. (3.7)

Substituting (3.4) into (3.6) yields at z = 0

κ (A−B) = −i (ω − κM) ξ̂. (3.8)

Similarly transforming the boundary condition (2.22b) at the free surface we find

∂zφ̂ = (ω − κM)
2
φ̂. (3.9)

Substituting (3.4) into (3.9) yields at z = 1

κ
(
Aeκ −Be−κ

)
= (ω − κM)

2 (
Aeκ +Be−κ

)
. (3.10)

Solving equations (3.8) and (3.10) simultaneously with respect to A and B, we obtain

A(κ, ω) =
−iξ̂[(ω − κM)

2
+ κ] (ω − κM)

κ[(ω − κM)
2 − κ]e2κ + κ[(ω − κM)

2
+ κ]

,

B(κ, ω) =
iξ̂[(ω − κM)2 − κ] (ω − κM)

κ[(ω − κM)2 − κ] + κ[(ω − κM)2 + κ]e−2κ
. (3.11)

The Fourier transform of the non-homogeneous wave equation (2.22e) for the mem-
brane displacement evaluated at z = 0 reads

(
ω2 − κ2M2

w

)
ξ̂ − iα (ω − κM) φ̂(κ, 0, ω) = 0. (3.12)

Inserting the expression (3.4) for φ̂ with the coefficients (3.11) into (3.12), discarding

ξ̂ in the result and introducing the new parameters, the phase velocity σ = ω/κ and the
coupling parameter β = α/κ2, we obtain the following dispersion equation in the case
where a medium with constant pressure is present below the membrane

β =
(M2

w − σ2)
[
κ(σ −M)2 − tanhκ

]

κ(σ −M)2 [κ(σ −M)2 tanhκ− 1]
. (3.13)

It is instructive to show another way of deriving the dispersion equation (3.13). For this,

we notice that (3.6) and (3.7) allow us to express ξ̂ by means of ∂zφ̂. Using the result

in (3.12), we can obtain a boundary condition for φ̂(z) at z = 0. This new boundary
condition together with the boundary condition (3.9) and the equation (3.3) produce a
closed-form boundary value problem for the Laplace equation with the Robin boundary
conditions:

∂2
z φ̂− κ2φ̂ = 0,

∂zφ̂
(
ω2 − κ2M2

w

)
− α (ω − κM)

2
φ̂ = 0, z = 0,

∂zφ̂− (ω − κM)2φ̂ = 0, z = 1. (3.14)

Substituting the general solution (3.4) into the boundary conditions of the problem (3.14)
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results in the system of two linear equations with respect to A and B

κ(A−B)
(
ω2 − κ2M2

w

)
− α (ω − κM)

2
(A+B) = 0,

κ(Aeκ −Be−κ)− (ω − κM)2(Aeκ +Be−κ) = 0. (3.15)

This system can be written in the matrix form as

(ω2M1 + ωM2 +M3)f = 0, f :=

(
A
B

)
, (3.16)

where the 2× 2 matrices involved are

M1 = −
(

α− κ α+ κ
eκ e−κ

)
,

M2 = 2κM

(
α α
eκ e−κ

)
,

M3 = −
(

κ2(M2α+M2
wκ) κ2(M2α−M2

wκ)
κeκ(M2κ− 1) κe−κ(M2κ+ 1)

)
. (3.17)

Computing the determinant of the matrix polynomial we arrive at the dispersion equation

D(ω, κ) = det(ω2M1 + ωM2 +M3)

= −α(Mκ− ω)2[(Mκ− ω)2 tanhκ− κ] + κ(M2
wκ

2 − ω2)[(Mκ− ω)2 − κ tanhκ]

= 0, (3.18)

which, with the notation σ = ω/κ and β = α/κ2, transforms exactly to (3.13).
For the sake of completeness we present also the dispersion relation for the system

with vacuum below the membrane

β =
(M2

w − σ2)
[
κ(σ −M)2 − tanhκ

]

[κ2(σ −M)4 − 1] tanhκ
. (3.19)

In the shallow water approximation corresponding to the limit κ → 0, the expression
(3.19) reduces to

β = (σ2 −M2
w)
(
(σ −M)2 − 1

)
, (3.20)

which is nothing else but the shallow water dispersion relation derived in (Nemtsov 1986).
In order to get the dispersion relation (3.19), one must take the pressure difference

(2.7), make it nondimensional and use in the expression (2.17) which then reads as

∂2
τ ξ −M2

w∂
2
xξ − αξ = α (∂τ +M∂x)φ.

After separation of time it reduces to the analogue of the boundary condition (2.22e)
[
−ω2 −M2

w∂
2
x − α

]
ξ − α (−iω +M∂x)φ(x, 0, t) = 0,

which has the following Fourier transform
[
ω2 − κ2M2

w + α
]
ξ̂ − iα (ω − κM) φ̂(κ, 0, ω) = 0. (3.21)

Inserting the expression (3.4) for φ̂ with the coefficients (3.11) into (3.21) results after
familiar algebraic manipulations in the dispersion relation (3.19).

3.1.2. Analysis of the dispersion equation

In the absence of coupling between the free surface and the membrane, i.e. for β = 0,
both the dispersion relation (3.13) and the dispersion relation (3.19) reduce to

(σ2 −M2
w)
[
κ(σ −M)2 − tanhκ

]
= 0, (3.22)
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Figure 3. For Mw = 1, κ = 1, and β = 0.1 real and imaginary parts of the roots of the
dispersion relation (red) (3.13) and (blue, dashed) their approximations by the equations (3.28)
and (3.32) near the crossing points that exist at β = 0, M = M±

0
, σ = σ0. Notice an avoided

crossing above the line Re(σ) = M and the bubble of instability below this line.

which yields the dispersion relation of the elastic waves in the free membrane σ2 = M2
w

and that of the surface gravity waves on a uniform flow: κ(σ−M)2 = tanhκ. The latter
acquires a more familiar traditional form (Maissa, Rousseaux and Stepanyants 2016)

(ω − κFr)2 = κ tanhκ

after taking into account that σ = ω/κ and that M as it is defined in (2.16) can also be
interpreted as the Froude number, Fr.
The roots of the decoupled dispersion equation (3.22) are real

σ±
1 = ±Mw, σ±

2 = M ±
√

tanhκ

κ
. (3.23)

If we consider the roots (3.23) as functions of the fluid Mach number, M , we find that
σ±
1 are two horizontal straight lines and σ±

2 are two straight lines with the slope equal to
1, see the leftmost panels in Fig. 2. One can see that at β = 0 the root branches intersect
at four points forming the double roots σ0 = Mw at

M±
0 = Mw ±

√
tanhκ

κ
(3.24)

and the double roots −σ0 at −M±
0 . The relation Mw = M+

0 −
√

tanhκ
κ = σ−

2 = σ+
1 = σ0

following from (3.24) and (3.23) is the condition of ‘phase synchronism’ for the case
of arbitrary height of the fluid layer that extends the corresponding result obtained in
(Nemtsov 1986) in the shallow water limit, κ → 0.
With the increase in β the roots ±σ0 situated at M = ±M−

0 split into simple real
ones and this splitting is accompanied by unfolding the crossings into avoided crossings,
Fig. 2.
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Figure 4. Stability maps of the dispersion equation (3.25) given by its discriminant for (upper
left) Mw = 1 and κ = 1, (upper right) Mw = 1 and β = 0.1, (lower left) Mw = 1 and M = 1.6,
and (lower right) β = 0.5 and κ = 1. The regions of real phase speed σ are shown in white
(stability) and that of the complex σ (temporal instability) in light blue. The red dotted curves
is the approximation (3.31). Notice the absence of instabilities for Mw > M in the lower right
panel.

Quite in contrast, the roots ±σ0 situated at M = ±M+
0 split into complex-conjugate

pairs that form bubbles of instability at moderate values of β that open up with the
increase in β to originate disclosed complex branches, as is seen in the rightmost panels
of Fig. 2.
Let us re-write the dispersion relation (3.13) as follows

D(σ,M, β) := βκ(σ−M)2
[
κ(σ −M)2 tanhκ− 1

]
−(M2

w − σ2)
[
κ(σ −M)2 − tanhκ

]
= 0.

(3.25)
Then, we can apply to it the perturbation theory derived in the Appendix A.
Consider the double root σ0 at M = M+

0 and β = β0 = 0. Adapt the approximate
equation (A 16) to our model

∆σ(∂2
σMD∆M + ∂2

σβD∆β) + 1
2

[
∂2
MD(∆M)2 + 2∂2

MβD∆M∆β + ∂2
βD(∆β)2

]

+ 1
2∂

2
σD(∆σ)2 + ∂MD∆M + ∂βD∆β = 0, (3.26)

where ∆σ = σ − σ0, ∆M = M −M+
0 , and ∆β = β. Calculating the partial derivatives

at σ = σ0, M = M+
0 , and β = β0 = 0, we find

∂2
σD = −8Mwκ

√
tanhκ

κ , ∂2
σMD = 4Mwκ

√
tanhκ

κ ,

∂2
MD = 0, ∂2

MβD = −∂2
σβD = 2κ(2(tanhκ)2 − 1)

√
tanhκ

κ , ∂2
βD = 0,

∂MD = 0, ∂βD = (tanhκ)3 − tanhκ. (3.27)
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Figure 5. Stability maps of the dispersion equation (3.25) given by its discriminant for
M = M0 = 2 and (from upper left to lower right) κ = 0.5, κ = 0.55, κ = 0.58, κ = 0.8,
κ = 1.5, κ = 3. The regions of real phase speed σ are shown in white (stability) and that of the
complex σ (temporal instability) in light blue. The black dotted curves is the approximation
(3.31) and the solid red ellipse is the conical approximation (3.38). When κ → ∞, the central
part of the instability domain approximated by (3.38) dominates over the side parts of the
domain. Notice the absence of instabilities for Mw > M0.

With the derivatives (3.27) the approximation (3.26) to the dispersion equation (3.25)
near the crossing takes the form

(σ −Mw)

[
σ −M +

√
tanhκ

κ

]
= β

√
tanhκ

κ

(tanh κ)2 − 1

4Mw
. (3.28)

For any β > 0 the crossing of the real roots σ at M = M+
0 unfolds into two hyperbolic

branches of the real roots

β

√
tanhκ

κ

[1− (tanh κ)2]

4Mw
=

1

4

(
M −Mw −

√
tanhκ

κ

)2

−
(
Reσ − Mw +M

2
+

1

2

√
tanhκ

κ

)2

, Imσ = 0(3.29)

that are connected to the “bubble” of complex eigenvalues with the real parts Reσ =

1
2

(
M +Mw −

√
tanhκ

κ

)
and with the imaginary parts that form an ellipse in (M, Imσ)-

plane

(Imσ)2 +
1

4

(
M −Mw −

√
tanhκ

κ

)2

= β

√
tanhκ

κ

[1− (tanhκ)2]

4Mw
, (3.30)

see Fig. 3. Equating to zero the discriminant of the quadratic in σ equation (3.28), we
arrive at the following quadratic approximation to the neutral stability curve at the
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Figure 6. Real parts of the dispersion equation (3.25) for M = M0 = 2 and (left) β = 0.05 and
κ = κ0 − 0.1, (centre) β = 0 and κ = κ0 ≈ 0.5218134478, (right) β = 0.05 and κ = κ0 + 0.3.
Notice that the bubbles of instability develop only for Re(σ) < M0 = 2.

crossing point M = M+
0

β = Mw

(
M −Mw −

√
tanhκ

κ

)2

(1− (tanhκ)2)
√

tanhκ
κ

. (3.31)

The bubble of instability (3.30) corresponds to the inner points of the instability domain
bounded by (3.31).
Using the same methodology to approximate the avoided crossing close to M = M−

0 ,
σ = σ0 and β = β0 by equation (3.26), we obtain

(σ −Mw)

[
σ −M −

√
tanhκ

κ

]
= −β

√
tanhκ

κ

(tanhκ)2 − 1

4Mw
. (3.32)

Separating real and imaginary parts of σ in (3.32) similarly to how it has been done in
the previous case, one can see that the bubble of instability does not originate for β > 0
in the unfolding of the crossing at M = M−

0 , see Fig. 3.
In Fig. 4 we show that the exact neutral stability boundaries obtained from equating

the discriminant of the fourth-order polynomial (3.25) in σ to zero and their approxima-
tion (3.31) calculated at the crossing point at M = M+

0 are in a very good agreement.
It is instructive to change the point of view and to look at the critical values of

parameters as functions of the Mach number Mw of elastic waves in the membrane. In
Fig. 5 we present stability maps of the dispersion equation (3.25) given by its discriminant
in the (Mw, β)-plane for the fixed value of M = M0 = 2 and increasing values of κ. We
see that for all κ the instability is possible only in the interval |Mw| < M0 = 2, which
agrees with Fig. 4. For β = 0, the instability domain touches the Mw-axis at the points

Mw = M0 −
√

tanhκ
κ and Mw = −M0+

√
tanhκ

κ . In the limit κ → 0, the touching occurs

at Mw = M0 − 1 = 1 and Mw = −M0 + 1 = −1.
A qualitative change happens when κ > κ0 where κ0 > 0 is uniquely determined by
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Figure 7. (Left) Stability map of the dispersion equation (3.25) given by its discriminant for
M = M0 = 2 and β = 0.03. The regions of real phase speed σ are shown in white (stability)
and that of the complex σ (temporal instability) in light blue. The black dotted curves is the
approximation (3.31) and the solid red line is the conical approximation (3.38). When β = 0,
the blue instability domains degenerate (central) to the ray κ > κ0 ≈ 0.5218134478 and (sides)
to the curves (3.34) shown as solid black lines. (Right) Stability boundary with the conical
singularity at κ = κ0, β = 0 and Mw = 0, according to (blue, internal surface) the discriminant
of the dispersion equation (3.25) and (red, external surface) to the approximation of the cone
(3.38).

M0 > 0 from the equation

κ0 tanhκ0 =
1

M2
0

. (3.33)

For instance, M0 = 2 yields κ0 ≈ 0.5218134478. At κ = κ0 a new, isolated, domain
of instability originates that touches the Mw-axis at β = 0 and is growing when κ is
further increasing, Fig. 5. At some value of κ the two domains touch each other and then
form a unified domain. At κ → ∞ the central part of the unified domain dominates over
its side parts corresponding to the instability found by Nemtsov in the shallow-water
approximation when κ → 0 and the coupling β is weak, Fig. 5.

To understand the origin of the new instability, we plot the real and imaginary values
of σ as functions of Mw in Fig. 6 for a given M = M0 = 2. The central panel of Fig. 6
corresponding to β = 0 and κ = κ0 shows four straight lines intersecting at five points,
including the origin. The upper horizontal line corresponds to the fast surface gravity

wave with σ = M0 +
√

tanhκ0

κ0

≈ 3 whereas the lower horizontal line to the slow surface

gravity wave (Nemtsov 1986) with σ = M0 −
√

tanhκ0

κ0

≈ 1. The two inclined lines

correspond to the forward and backward elastic waves in the membrane with σ = ±Mw.
When β and κ depart respectively from zero and κ0, all the five crossings unfold either
into avoided crossings (as the elastic and fast surface gravity waves) or into bubbles of
instability (as the elastic and slow surface gravity waves) resulting in the high-frequency
flutter due to radiation of long surface gravity waves. For β > 0 the crossing at the origin
transforms into an avoided crossing at κ < κ0 or into the bubble of instability at κ > κ0,
which yields low-frequency flutter at short wavelengths κ.

The left panel in Fig. 7 allows us to track the evolution of the flutter domains as κ
varies from zero to infinity at M0 = 2 and β = 0.03. Nemtsov’s radiation-induced flutter
domain is the widest in the shallow water limit and evolves along the curves (shown as
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Figure 8. For M = M0 = 2 (left) cross-section of the instability domain with the conical
singularity shown in Fig. 7(right) by the plane (3.40). The regions of real phase speed σ are
shown in white (stability) and that of the complex σ (temporal instability) in light blue. The
red lines crossing at the apex of the cone at κ = κ0 ≈ 0.5218134478 is a linear approximation
given by Eq. (3.41). (Centre) Cross-section by the plane Mw = 0 of the instability domain and
(red line) its linear approximation (3.39) at the conical point κ = κ0. The black dotted line
is given by the Eq. (3.40). (Right) Similar cross-section by the plane Mw = 0.1 where the red
curve is the approximation (3.38).

black solid lines in Fig. 7(left))

(M0 ±Mw)
2 =

tanhκ

κ
(3.34)

to which the Nemtsov domains degenerate at β = 0. Note that the Nemtsov flutter
domain is perfectly approximated by the formula (3.31) obtained from the unfolding of
the eigenvalue crossing corresponding to the slow surface gravity wave and the elastic
wave (dotted lines in Fig. 7(left)).
To understand the central instability domain shown in Fig. 7(left) for a given β

we plot it in the (Mw, κ, β)-space in the right panel of Fig. 7, given M = M0. One
can see that the domain is symmetric with respect to the plane Mw = 0 and has
a pronounced conical singularity at κ = κ0 determined by the equation (3.33) when
β = 0 and Mw = 0. Equation (3.33) follows from the discriminant of the dispersion
equation (3.25) at β = 0 and Mw = 0. The conical singularity of the stability boundary
therefore exactly corresponds to the crossing of the eigenvalue curves at the origin in
the central panel of Fig. 6. Usually, the conical singularity of the stability boundary is
associated with a double semi-simple eigenvalue with two linearly-independent eigenvec-
tors (Kirillov and Seyranian 2004; Kirillov 2009, 2010, 2013; Guenther and Kirillov 2006;
Kirillov, Guenther and Stefani 2009).
By this reason, we apply the perturbation theory of double eigenvalues presented in

Appendix A to the double zero eigenvalue σ = σ0 = 0 at the crossing shown in the
central panel of Fig. 6 and corresponding to the values of parameters β = β0 = 0,
κ = κ0, M = M0, Mw = Mw,0 = 0. A natural extension of the approximation formula
(A 16) to the case of four parameters β, κ, Mw, and M yields

(∆σ)2 1
2∂

2
σD +∆σ

(
∂2
σβD∆β + ∂2

σκD∆κ+ ∂2
σMD∆M + ∂2

σMw

D∆Mw

)
+ ∂2

βκD∆β∆κ

+ 1
2

[
∂2
βD(∆β)2 + ∂2

κD(∆κ)2 + ∂2
MD(∆M)2 + ∂2

Mw

D(∆Mw)
2
]
+ ∂2

MκD∆M∆κ

+∂2
MwκD∆Mw∆κ+ ∂2

βMD∆β∆M + ∂2
βMw

D∆β∆Mw + ∂2
βMD∆Mw∆M

+∂βD∆β + ∂κD∆κ+ ∂MD∆M + ∂Mw
D∆Mw = 0. (3.35)

Computing the corresponding partial derivatives of the left part of the dispersion
equation (3.25), and evaluating them at β = β0 = 0, κ = κ0, M = M0, Mw = Mw,0 = 0,
where M0 and κ0 are related by the equation (3.33), we find that the only non-zero
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derivatives are

∂2
σD = −∂2

Mw

D = 2κ0M
2
0 − 2

κ0M2

0

, ∂2
MβD = −∂2

σβD = 2κ0M0,

∂2
κβD = M4

0κ
2
0 +M2

0 − 1. (3.36)

Taking this into account in (3.35), we find a simple approximation describing the
unfolding of the double zero eigenvalue

(M4
0κ

2
0−1)(σ2−M2

w)−2κ2
0M

3
0σβ+κ0M

2
0 (M

4
0κ

2
0+M2

0−1)(κ−κ0)β+2κ2
0M

3
0 (M−M0)β = 0.

(3.37)
Let us further assume that M = M0 is fixed. Then the last term in (3.37) vanishes,

and the discriminant of the resulting quadratic polynomial in σ produces the equation
of a cone with the apex at κ = κ0, Mw = 0, and β = 0

M6
0κ

4
0β

2 −M2
0κ0(M

4
0κ

2
0 +M2

0 − 1)(M4
0κ

2
0 − 1)(κ− κ0)β +M2

w(M
4
0κ

2
0 − 1)2 = 0. (3.38)

The cone (3.38) is shown in red in the right panel of Fig. 7. With β = 0.03, M0 = 2 and
κ0 computed by means of the equation (3.33), the approximation (3.38) fits the boundary
of the exact instability domain with a remarkable precision, as is evident in Fig. 7(left).
It is easy to see that in the plane Mw = 0 the cone (3.38) defines the two lines

β =
(M4

0κ
2
0 − 1)(M4

0κ
2
0 +M2

0 − 1)

M4
0κ

3
0

(κ− κ0), β = 0 (3.39)

that approximate the instability domain near κ = κ0, see the central panel in Fig. 8.
As soon as Mw deviates from zero, the cone (3.38) again provides a very good fit to the
actual stability boundary, Fig. 8(right). In the plane

β =
(M4

0κ
2
0 − 1)(M4

0κ
2
0 +M2

0 − 1)

2M4
0κ

3
0

(κ− κ0) (3.40)

the cross-section of the cone (3.38) is described by the two lines

κ = κ0 ±Mw
2κ0M0

M4
0κ

2
0 +M2

0 − 1
(3.41)

that constitute a linear approximation to the stability boundary shown in Fig. 8(left).

3.1.3. Wave energy of the Nemtsov system with the membrane of infinite chord length

Let us use physical considerations to derive the expression for the averaged over the
wave period energy of the Nemtsov system with the membrane of infinite chord length,
by combining the approaches of the works by Maissa, Rousseaux and Stepanyants (2016)
and Schulkes, Hosking and Sneyd (1987).
In the linear wave theory, the energy is a function of the squared wave amplitude

(Maissa, Rousseaux and Stepanyants 2016). Therefore, the total energy per surface area
of the membrane resulting both from the wave velocity of the structure and the elastic
energy due to its tension is

Em = Km + Pm =
1

2
(Re[∂τ ξ(x, τ)])

2
+

1

2
M2

w (Re[∂xξ(x, τ)])
2
, (3.42)

where Re stands for the real part of the vibration amplitude that is complex-valued
because of the assumed plane wave solution

[φ(x, z, τ), η(x, τ), ξ(x, τ)] ∼ [φ̂(z), η̂, ξ̂]ei(κx−ωτ). (3.43)

Recall that φ̂(z) is determined by the expression (3.4) with the coefficients (3.11) and η̂,

ξ̂ are respectively displacement amplitudes of the free surface and the membrane.
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The energy of the fluid depends on whether we assume a vacuum below the membrane
(Nemtsov 1986) or a motionless medium of the same density as the fluid above the
membrane and with the pressure equal to the pressure of the unperturbed fluid (Vedeneev
2004, 2016). The gravitational potential energy of the free surface is the only term
contributing to the total potential energy of the fluid in the latter context. Therefore,

Pf =
1

2
α (Re[η(x, τ)])

2
. (3.44)

The kinetic energy of the flow per unit area is determined by the velocity field u =
∇φ+Mex, where u = v√

gH
, that needs to be directly integrated within the limits given

by the surface of the membrane and the free surface of the fluid

Kf =
1

2
α

∫ Re η

Re ξ

||Re(u)||2dz =
1

2
α

∫ Re η

Re ξ

[
(Re[∇φ])

2
+ 2MRe[∂xφ] +M2

]
dz

=
1

2
α

∫ Re η

Re ξ

[
(Re[∂xφ])

2
+ (Re[∂zφ])

2
]
dz

+ αM

∫ Re η

Re ξ

[
Re[∂xφ] +

M

2

]
dz. (3.45)

From the assumption (3.43) and the explicit form of the complex amplitude φ̂(z)
determined by (3.4) with the coefficients (3.11), it follows that

Re[∂xφ] = iκφ̂(z) cos (κx− ωτ), Re[∂zφ] = i∂zφ̂(z) sin (κx− ωτ),

Re ξ = ξ̂ cos (κx− ωτ), Re η = η̂ cos (κx− ωτ). (3.46)

Taking into account the expressions (3.46) in (3.45), we find

∫ Re η

Re ξ

(Re[∂xφ])
2
dz = −κ2 cos2 (κx− ωτ)

∫ Re η

Re ξ

φ̂(z)2dz. (3.47)

Similarly, with the help of the integration by parts, the Laplace equation (3.3), and
the expressions (3.46), we obtain

∫ Re η

Re ξ

(Re[∂zφ])
2
dz = − sin2 (κx− ωτ)

{[
φ̂∂zφ̂

]Re η

Re ξ
−
∫ Re η

Re ξ

φ̂(∂2
z φ̂)dz

}

= − sin2 (κx− ωτ)

{[
φ̂∂zφ̂

]Re η

Re ξ
− κ2

∫ Re η

Re ξ

φ̂(z)2dz

}
. (3.48)

Finally, following (Maissa, Rousseaux and Stepanyants 2016), we evaluate the last
integral term in (3.45) with the help of the Lagrange mean value theorem, which is
justified by the assumption that η and ξ are infinitesimally small perturbations of the
surface boundaries ∂Ω0 and ∂Ω1. Performing this procedure, and then taking into account
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expressions (3.46), we derive

∫ Re η

Re ξ

[
Re[∂xφ] +

M

2

]
dz

=

∫ 0

Re ξ

Re[∂xφ]dz +

∫ 1

0

Re[∂xφ]dz +

∫ Re η

1

Re[∂xφ]dz +
1

2

∫ Re η

Re ξ

Mdz

= Re η Re[∂xφ]|z=1 − Re ξ Re[∂xφ]|z=0 +

∫ 1

0

Re[∂xφ]dz +
M

2
Re (η − ξ)

= iκ
[
η̂φ̂(1)− ξ̂φ̂(0)

]
cos2 (κx− ωτ) +

[
iκ

∫ 1

0

φ̂(z)dz +
M

2
(η̂ − ξ̂)

]
cos (κx− ωτ).

(3.49)

Notice that the right hand sides in the expressions (3.47), (3.48), and (3.49) are T -periodic
functions of time, where T = 2π/ω. Averaging these expressions over the wave period T
according to the rule

〈f(τ)〉 = 1

T

∫ T

0

f(τ)dτ, (3.50)

we deduce the mean kinetic energy of the fluid

〈Kf 〉 =
1

4
α

{
−
[
φ̂∂zφ̂

]∂Ω0

∂Ω1

+ 2iκM
[
η̂φ̂(1)− ξ̂φ̂(0)

]}
. (3.51)

The term φ̂∂zφ̂ in (3.51) is evaluated with the help of the Bernoulli principle (2.11) and
the free surface kinematic condition (2.10) at ∂Ω0, and the wave equation (2.22e) with
the impermeability condition (2.22c) at ∂Ω1. This yields, respectively,

φ̂
∣∣∣
∂Ω0

=
η̂

i(ω − κM)
, φ̂

∣∣∣
∂Ω1

=
ω2 − κ2M2

w

iα(ω − κM)
ξ̂,

∂zφ̂
∣∣∣
∂Ω0

= −i(ω − κM)η̂, ∂zφ̂
∣∣∣
∂Ω1

= −i(ω − κM)ξ̂. (3.52)

Substituting expressions (3.52) into (3.51) we obtain the final expression for the mean
kinetic energy of the fluid

〈Kf 〉 =
1

4

{
αη̂2 −

(
ω2 − κ2M2

w

)
ξ̂2 + 2iακM

[
η̂φ̂(1)− ξ̂φ̂(0)

]}
. (3.53)

The other energies of the system, after taking into account (3.46) and time-averaging
(3.50), become

〈Pm〉 = 1

4
κ2M2

wξ̂
2, 〈Km〉 = 1

4
ω2ξ̂2, 〈Pf 〉 =

1

4
αη̂2. (3.54)

Notice that in the absence of the background flow (M = 0) the system respects the
equipartition of energy

〈Pf 〉+ 〈Pm〉 = 〈Kf 〉+ 〈Km〉 ,
in accordance with the virial theorem (Landau and Lifschitz 1987), because the flow is
irrotational and thus derived from a fluid potential (Schulkes, Hosking and Sneyd 1987).
After summing up all the different terms given by the equations (3.53) and (3.54) we

obtain the total averaged energy

〈E〉 = 1

2

{
κ2M2

w ξ̂
2 + αη̂2 + iακM

[
η̂φ̂(1)− ξ̂φ̂(0)

]}
, (3.55)
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Figure 9. The averaged wave energy (upper panels) 〈E〉 given by the expression (3.58) and the
action (lower panels) 〈A〉 = 〈E〉/ω over the Mach number M evaluated for Mw = 1, κ = 1,

ξ̂ = 0.01 and (from the left to the right) α = 0.1, α = 0.5, α = 1 and α = 5. Positive (respectively
negative) energy/action is represented in red (respectively green).

thus providing an extension to the case when the velocity field contains a background
flow (M 6= 0).
A more suitable expression for the mean total energy can be obtained by expressing

the different amplitudes of the system in (3.55) in terms of a unique one, for instance,

ξ̂. From the kinematic condition (2.10) on the free surface with the plane wave solution
(3.43) and the coefficients (3.11), it is straightforward to express the surface amplitude
η̂ as

η̂ =
iκ

(ω − κM)

[
Aeκ −Be−κ

]
=

(ω − κM)2ξ̂

(ω − κM)2 coshκ− κ sinhκ
. (3.56)

Substituting (3.56) into (3.55) and using the complex amplitude φ̂(z) recovered from
the boundary value problem (3.14), we find

〈E〉 = ξ̂2

2

{
κ2M2

w + α
(ω − κM)4(1 − (tanhκ)2)

[(ω − κM)2 − κ tanhκ)]
2

+αM(ω − κM)

[
(ω − κM)4 + κ2

]
tanhκ− 2κ(ω − κM)2(tanhκ)2

[(ω − κM)2 − κ tanhκ)]2

}
. (3.57)

Next, expressing the term κ2M2
w by means of the dispersion relation (3.18) and

substituting the result into (3.57) yields a more compact formula for the total energy:

〈E〉 = 1

4
ω

{
2ω +

α

κ

2(ω − κM) tanhκ
[
(ω − κM)4 + κ2 − 2κ(ω − κM)2 tanhκ

]

[(ω − κM)2 − κ tanhκ]2

}
ξ̂2.

(3.58)
Notice that the term in the braces in Eq. (3.58) is nothing else but the partial derivative

∂D
∂ω of the dispersion relation (3.18) written in the following equivalent form

D(ω, κ) := Dm(ω, κ) +
α

κ

(ω − κM)2[(ω − κM)2 tanhκ− κ]

Df (ω, κ)
= 0, (3.59)

where Dm = ω2−κ2M2
w and Df = [(ω−κM)2−κ tanhκ] stand for the dispersion relation

of, respectively, the free membrane and the free surface flow with a rigid boundary at the
bottom. This proves that our total energy per unit area, averaged over the wave period,
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Figure 10. The averaged wave energy (upper panels) 〈E〉 given by the expression (3.58) and

the action (lower panels) 〈A〉 = 〈E〉 /ω over the Mach number Mw for ξ̂ = 0.01, M = M0 = 2,
and (left) β = 0.05 and κ = κ0 − 0.1, (centre) β = 10−3 and κ = κ0 ≈ 0.5218134478, (right)
β = 0.05 and κ = κ0 + 0.3.

possesses the following simple representation in terms of the dispersion relation

〈E〉 = 1

4
ω
∂D
∂ω

ξ̂2. (3.60)

The representation (3.60) can be found, e.g. in (Cairns 1979), and can be derived
in the frame of the general Lagrangian variational approach (Whitham 1999;
Ostrovskii, Rybak and Tsimring 1986), see also the recent work (Fukumoto, Hirota and Mie
2014) for historical notes and application to stability of vortices. Notice that
according to (3.60) the energy vanishes at the points where ω = 0 or ∂D

∂ω = 0, the
latter condition corresponding to the existence of multiple roots of the dispersion
relation. Correspondingly, the ratio 〈E〉 /ω, which is the averaged wave action 〈A〉
(Zhang, Qin, Davidson, Liu and Xiao 2016), vanishes only at the locations of the
multiple eigenvalues, cf. Fig. 2 and Fig 9. In the latter figure as well as in Fig. 10
we show several computations of the averaged wave energy and wave action over the
fluid Mach number M , and, respectively, the membrane Mach number Mw, where ω is
calculated with the use of the dispersion relation (3.18).

4. Discussion

Comparing the eigenvalue plots of Fig. 2 and Fig. 6 with the corresponding to each
branch averaged wave energy and wave action that are shown in Fig. 9 and Fig. 10, respec-
tively, we notice that flutter instability is necessarily accompanied with the interaction
of waves of opposite sign of energy/action. In contrast to the action, the energy changes
sign also at the points where the phase velocity σ changes sign, quite in accordance with
(3.60).
Looking now at the roots (3.23) of the decoupled dispersion equation (3.22), we

conclude that the elastic waves σ±
1 = ±Mw propagating in the membrane always have

positive energy whereas among the surface gravity waves σ±
2 = M ±

√
tanhκ

κ it is the
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Figure 11. Dispersion curves ((red) real and (blue) imaginary parts of the roots ω of the
dispersion relation (3.18)) for M = 2, α ≈ 0.0036725648, and (from upper left to lower right)
Mw = 0, Mw = 0.09, Mw = 0.0967, Mw = 0.1, Mw = 0.5, Mw = 1. Vertical dashed lines in
the upper left panel correspond to κ = κ0 ≈ 0.5218134478 and mark the onset of instability
corresponding to the central instability zone in Fig. 7(left) and the conical instability zone in
Fig. 7(right).

energy of the slow wave σ−
2 that becomes negative for M > 0 as soon as M >

√
tanhκ

κ .

Therefore at the crossing (3.24) corresponding to M+
0 = Mw +

√
tanhκ

κ the positive-

energy/action elastic wave meets the slow surface gravity wave that carries negative-
energy/action (Nemtsov 1986).
With β increasing from zero the crossing unfolds causing the eigenvalue branches to

merge on the interval bounded by the points where ∂ωD = 0. At these exceptional points
(Kirillov 2013) both the energy and the action change sign, see Fig. 9 and Fig. 10. On the
interval the roots are complex and form the bubble of instability, see Fig. 2 and Fig. 6.
Since the fast surface gravity wave carries positive energy, one needs to add energy
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to the flow in order to excite this wave on the flow. In contrast, in order for the slow
surface gravity wave carrying negative energy to build up on the flow, the energy must be
extracted from the flow (Nezlin 1976) via some mechanism for dissipation of its energy.
In the Nemtsov problem, such a mechanism is the energy transfer from the slow surface
gravity wave to an elastic wave associated with the membrane, which is a stationary
medium and therefore has positive energy (Nezlin 1976). One can say that this transferred
energy yields flutter of the membrane due to emission of the slow surface gravity wave
carrying negative energy.
In Fig. 2 and Fig. 6 as well as in Fig. 9 and Fig. 10 we observe that the flutter

instability of the membrane occurs only if the velocity of the flow is higher than the
phase velocity of the oscillations on the surface of the flow, σ < M , i.e. the flow
moves faster than the waves it can excite (Nemtsov and Eidman 1987; Nezlin 1976).
The condition ω = Mκ or σ = M is known as the Cerenkov condition for emission of
radiation by a moving source (Nezlin 1976; Ginzburg and Frank 1947; Ginzburg 1996;
Bekenstein and Schiffer 1998; Carusotto and Rousseaux 2013). Being substituted into
a dispersion relation, the Cerenkov condition transforms the latter into the expression
defining a surface in the space of wave numbers that determines the wake pattern behind
the source (Carusotto and Rousseaux 2013; Schulkes, Hosking and Sneyd 1987). For the
supercritical velocitiesM > σ the surface in the space of wave numbers develops a conical
singularity known as the Cerenkov cone (Carusotto and Rousseaux 2013; Nemtsov 1986)
with the angular aperture

2 arccos
( σ

M

)
.

Anomalous Doppler effect (ADE) is the change in the sign of the field frequency
radiated into the Cerenkov cone as compared with the field radiated outside this
cone (Nezlin 1976; Nemtsov 1986; Gaponov-Grekhov, Dolina and Ostrovskii 1983;
Abramovich, Mareev and Nemtsov 1986; Carusotto and Rousseaux 2013). It is exactly
the slow surface gravity wave that satisfies this condition

σ−
2 −M = −

√
tanhκ

κ
< 0.

Hence, for the one-dimensional or, more precisely, plane two-dimensional waves, both
the negative energy waves and the ADE correspond simply to waves with phase velocity
lower than the flow velocity and wave-vector pointing in the same direction as the flow
(Ostrovskii, Rybak and Tsimring 1986; Nemtsov 1986). In our case, the radiated slow
gravity wave increases the energy of oscillations of the membrane at the expense of the
energy of the flow that supports this wave.
Finally, we plot the dispersion curves ω(κ) in Fig. 11, which show that the slow surface

gravity wave branch and the membrane branch interact under the line Re(ω) = κM , if
κ > 0. Substituting the Cerenkov condition in the dispersion relation (3.18) we reduce it
to (M2

w −M2) tanhκ = 0, thus providing a rationale for the absence of instabilities for
M2

w > M2 that is evident in all our stability diagrams.

5. Conclusion

Through the revival of a classical hydrodynamical model performed in this work, we
have been able to extend the stability analysis and to enhance knowledge of the under-
lying physics by making connections with the fundamental concepts such as negative
energy waves and the anomalous Doppler effect, supported by advanced mathematical
tools.
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Our continuation of Nemtsov’s investigation of the radiation-induced flutter of a
membrane in a uniform flow with the new derivation of the dispersion relation for the fluid
layer of arbitrary depth and membrane of infinite chord length has led to a significant
improvement in the computation of stability diagrams without any limitation on the
range of the system parameters.
The exhaustive stability analysis has been performed using the original perturbation

theory of multiple roots of the dispersion relation to compare with the exact stability
domains and both computations are proven to be in an excellent agreement. More
precisely, the crossings and avoided crossings of the dispersion curves are very well
approximated by the simplified expressions for the phase speed of the membrane and
fluid modes derived with the perturbation approach.
After computing the discriminant of the full dispersion relation, we have identified a

new instability domain arising from a conical singularity in the parameter space that
was not present in the early study of Nemtsov. This new domain is associated with a
low-frequency flutter for short wavelengths and corresponds to the case when the velocity
of propagation of elastic waves in the membrane is much smaller than the velocity of the
flow.
Moreover, following the procedures used in previous studies on simplified hydrody-

namical systems to calculate the averaged wave energy and after developing the method
further to take into account the coupling between the free surface of the flow and the
elastic membrane on the bottom, we have obtained an elegant and applicable expression
for the total averaged energy. We have verified that in the absence of the background flow,
the system respects the equipartition of energy in accordance with the virial theorem,
thus confirming that the existence of the negative energy waves can only be possible
when the flow is in motion.
We have shown that the formula for the total averaged energy recovered in our work by

means of the direct integration of different physical fields is expressed via the derivative
of the dispersion relation with respect to the frequency of oscillations and reduces exactly
to the form described by Cairns (1979).
The anomalous Doppler effect (ADE) is a direct consequence of the relative motion of

an oscillator in a medium and more precisely, it occurs when the internal energy of the
system increases due to the emission of negative energy waves (NEW). In our context,
while the system is composed of a fluid layer and a membrane, such phenomenon has
been proved by Nemtsov to exist only when the conditions of phase synchronism and
NEW emission are satisfied. The criterion for the phase synchronism in the system is
easily identified in the computations of the dispersion curves as the crossings of the
different branches that lead to the onset of positive growth rate and therefore to temporal
instability. The latter phenomenon is a natural consequence of the highly excited state of
energy that the system transit to due to the dominance of NEW over the waves carrying
positive energy. Indeed, NEW emission is known as a process that increases the total
energy of an oscillatory system while radiating energy away from the oscillator and, only
when this gain in internal energy exceeds the loses from the contribution of positive
energy modes, the total energy of the system starts growing in amplitude. Hence, it
requires to have waves carrying energy of opposite signs that interact for the instability
to develop.
Our expressions for the action and energy of the Nemtsov system demonstrated as

expected the collision of waves carrying positive and negative energy as the onset for the
radiative instability and the flutter of the membrane. Such phenomenon is well-known
in the community of dynamical systems but in this context, it is associated with the
emission of NEW in the region of ADE. Hence, in addition to improving the stability
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analysis of the Nemtsov system and computing the averaged wave energy, our study
provides a further, more detailed, examination of the ADE in hydrodynamics. Despite
our problem is restricted to the study of planar waves, with the latter being emitted
only in the horizontal direction, it is still sufficient to explore the connection between the
ADE and the flutter theory.
An extension of this work to the case of a membrane with a chord of finite size, as

described by the system of equations (2.22), is a promising necessary next step requiring
asymptotic methods for the global stability analysis and numerical computations that
we leave for future work.

J.L. was supported by a Ph.D. Scholarship from Northumbria University.

Appendix A. Sensitivity analysis of dispersion equations

In contrast to other works on frequency coalescence, e.g. (Triantafillou and Triantafillou
1991), we adapt a more systematic multiparameter sensitivity analysis that can
be found, e.g., in (Kirillov and Seyranian 2002, 2004; Kirillov 2007a,b, 2009;
Kirillov, Guenther and Stefani 2009; Kirillov 2010, 2013).
Let us consider the dispersion equation

D(ω, p, q) = 0, (A 1)

where D is a smooth function of scalar arguments ω, p, and q. Assume that D(ω) is a
polynomial of degree n in ω.

A.1. Sensitivity of simple roots

Let at p = p0 and q = q0 (A 1) have a simple root ω0 such that

D0 := D(ω0, p0, q0) = 0,

where we use the symbol := to indicate a definition.
Following (Kirillov and Seyranian 2002, 2004; Kirillov 2007a,b, 2010, 2013) we assume

that p = p(ε) and q = q(ε). For |ε| being sufficiently small we can represent these
functions as Taylor series

p(ε) = p0 + ε
dp

dε
+

ε2

2

d2p

dε2
+ o(ε2),

q(ε) = q0 + ε
dq

dε
+

ε2

2

d2q

dε2
+ o(ε2), (A 2)

with the derivatives evaluated at ε = 0, and p0 := p(0) and q0 := q(0). Then, ω = ω(ε)
is also a root of (A 1), i.e., it satisfies the equation

Dε := D(ω(ε), p(ε), q(ε)) = 0. (A 3)

Differentiating (A 3), we find

d

dε
Dε = ∂ωD

dω

dε
+ ∂pD

dp

dε
+ ∂qD

dq

dε
= 0,

where the partial derivatives are evaluated at ω = ω0, q = q0, p = p0.
Denoting ∆ω = εdω

dε ≈ ω−ω0, ∆q = εdq
dε ≈ q− q0, and ∆p = εdp

dε ≈ p− p0, we find the
expression for the increment of the simple root ω0 of (A 1) when the parameters depart
from the values q0 and p0:

∆ω = − ∂pD

∂ωD
∆p− ∂qD

∂ωD
∆q + o(|∆p|, |∆q|). (A 4)
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A.2. Double root of the dispersion relation: Generic case

Let at p = p0 and q = q0 the dispersion equation (A 1) have a double root ω0, which
implies

D0 = 0,

∂ωD0 := ∂ωD(ω0, p0, q0) = 0. (A 5)

Assume that the perturbation of the parameters (A 2) causes splitting of the double root
ω0 which generically is described by the Newton-Puiseux series (Kirillov and Seyranian
2002, 2004; Kirillov 2007a,b, 2010, 2013)

ω(ε) = ω0 + ω1ε
1/2 + ω2ε+ ω3ε

3/2 + ω4ε
2 + o(ε2). (A 6)

Expanding Dε as

Dε =

n∑

s=0

(ω(ε)− ω0)
s

s!

(
∂s
ωD + ε∂s

ωD1 + ε2∂s
ωD2 + o(ε2)

)
, (A 7)

where

D1 := ∂pD
dp

dε
+ ∂qD

dq

dε
,

D2 :=
1

2
∂pD

d2p

dε2
+

1

2
∂qD

d2q

dε2
+

1

2

(
∂2
pD

d2p

dε2
+ 2∂2

pqD
dp

dε

dq

dε
+ ∂2

qD
d2q

dε2

)
, (A 8)

substituting expansion (A 6) into (A 7), and collecting the coefficients at the same powers
of ε, we find

D0 = 0,

ω1∂ωD0 = 0,

D1 + ω2
1

1

2
∂2
ωD + ω2∂ωD0 = 0. (A 9)

Looking for the coefficient ω1 6= 0, we see that the first two equations of (A 9) are satisfied
in view that ω0 is a double root of the dispersion equation (A 1). Taking this into account,
the last of the equations (A 9) yields the expression for the coefficient ω1 in the expansion
(A 6):

ω2
1 = −D1

(
1

2
∂2
ωD

)−1

(A 10)

where all the partial derivatives are calculated at p = p0, q = q0, ω = ω0.
Therefore, if D1 6= 0, the double root ω0 splits under variation of parameters (A 2)

according to the formula

ω = ω0 ±

√
−εD1

(
1

2
∂2
ωD

)−1

+ o(|ε|1/2). (A 11)

In terms of the increments of the parameters, we can re-write (A 11) as

∆ω = ±

√
−(∂pD∆p+ ∂qD∆q)

(
1

2
∂2
ωD

)−1

+ o(|∆p|1/2, |∆q|1/2). (A 12)

A.3. Double root of the dispersion relation: Degenerate case

The case D1 = 0 is degenerate, because the leading term in (A 11) of order ε1/2

vanishes and the expansion (A 6) is no longer valid, see e.g. (Kirillov and Seyranian 2004).
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Substituting expansion (A 11) with ω1 = 0 into (A 7) and collecting the coefficients at
the same powers of ε, we obtain

D1 + ω2∂ωD0 = 0,

ω3∂ωD0 = 0,

D2 + ω2
2

1

2
∂2
ωD + ω2∂ωD1 + ω4∂ωD0 = 0. (A 13)

Taking into account that ∂ωD0 = 0 since ω0 is the double root and that D1 = 0 due to
our assumption, we conclude that the first two of the equations (A 13) hold automatically.
The third one simplifies as follows:

ω2
2

1

2
∂2
ωD + ω2∂ωD1 +D2 = 0, (A 14)

where all the derivatives are calculated at ω = ω0, p = p0, and q = q0.
Therefore, the degeneracy, D1 = 0, implies that the double root ω0 splits according to

the formula

ω = ω0 + ω2ε+ o(ε), (A 15)

where the coefficient ω2 is a root of the polynomial (A 14).
In combination with (A 8) and (A 15) the polynomial (A 14) transforms into

(∆ω)2 1
2∂

2
ωD +∆ω(∂2

ωpD∆p+ ∂2
ωqD∆q) + 1

2

[
∂2
pD(∆p)2 + 2∂2

pqD∆p∆q + ∂2
qD(∆q)2

]

+∂pD∆p+ ∂qD∆q = 0. (A 16)

Extension to the case of more than two parameters is straightforward, see e.g.
(Kirillov and Seyranian 2002, 2004; Kirillov 2007a,b, 2009; Kirillov, Guenther and Stefani
2009; Kirillov 2010, 2013).
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