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Methylammonium lead bromide perovskite (MAPbBr3) has been widely investigated for applications in 

visible perovskite light-emitting diodes (LEDs). Fine-tuning of the morphology and of the crystal size, 

from the microscale down to the quantum confinement regime, has been used to increase the 

photoluminescence (PL) quantum yield (QY). However, the physical processes underlying the PL 

emission of this perovskite remain unclear. Here, we elucidate the origin of the PL emission of 

polycrystalline MAPbBr3 thin-films by different spectroscopic techniques. We estimate the exciton 

binding energy, the reduced exciton effective mass and the trap density. Moreover, we confirm the 

coexistence of free carriers and excitons, quantifying their relative population and mutual interaction over 

a broad range of excitation densities. Finally, the enhanced PLQY upon crystal size reduction to the micro- 

and nanometer scale in the presence of additives, is attributed to favored excitonic recombination together 

with reduced surface trapping thanks to efficient passivation by the additives. 
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Hybrid organic-inorganic perovskites are emerging as highly promising new-generation energy 

materials. They are intensively studied for photovoltaic applications, thanks to their high absorption 

coefficients, low exciton binding energies and high carrier mobilities.1,2,3 In addition, aiming to reduce the 

global energetic consumption, perovskites with higher exciton binding energies, wider band gaps and 

narrow emission bandwidth are excellent candidates for energy-efficient photonic and optoelectronic 

applications, such as light-emitting diodes (LEDs).4,5,6,7,8 Methylammonium lead bromide (MAPbBr3) is the 

most studied perovskite for LEDs due to its easy thin-film processing and its green emission. However, 

the low photoluminescence quantum yield (PLQY) of MAPbBr3 limits its use in efficient light-emitting 

applications. The main strategy to foster the emission in this material has been the control over the crystal 

growth, in particular by limiting the grain size to the micro- and nanoscale.9,10,11 Despite growing knowledge 

about the perovskite morphology and its optoelectronic performance, the physical mechanisms governing 

the photoluminescence (PL) in MAPbBr3 thin-films remain unclear. Both free carriers12 and excitons13 have 

been suggested as the emissive species, but their interplay has been studied only at high carrier densities14 

and recently at low temperature.15 Moreover, a systematic correlation between the reduction of the crystal 

size and the origin of the enhanced PLQY is missing. In this context, the dependence of the PL properties 

on the excitation density needs to be examined more exhaustively, since it brings insights about the origin 

of the PL.16,17  

Here, we elucidate the PL properties of solution-processed perovskite thin-films with different 

morphologies and crystal grain sizes by steady-state and time-resolved spectroscopy. Three different 

systems are compared: neat polycrystalline MAPbBr3 (grain size of the order of ~1 μm), a polymer-

MAPbBr3 blend with crystal size in the tens to hundreds nanometer range (50 ± 25 nm, see SEM image 

Fig. S1),18 and a small molecule-MAPbBr3 blend with crystal size in the weak quantum confinement regime 

(9.1 ± 1.6 nm, see TEM image Fig. S1).9 All the material preparation (compounds storage, solution 

preparation, thin film deposition) as well as the photophysical characterization is described in the SI and 

was carried out in inert atmosphere. For simplicity, the samples will be referred to as “polycrystalline 

perovskite”, “microcrystals” and “nanocrystals”. We show the co-existence of both free-carriers and 



excitons in the polycrystalline perovskite and monitor their interaction over a broad range of excitation 

densities. We also find that the increased PLQY with crystal size reduction is due to a bright exitonic 

population even at low excitation density, together with reduced surface trapping thanks to passivation by 

the additives. 

Figure 1(a) shows the steady-state PL and absorption spectra of the three MAPbBr3 thin-films. Both the 

absorption onset and PL bands are blue-shifted as the size of the perovskite crystals decreases.  The 

exciton Bohr radius of the bulk material has been reported to be 2 nm, 19 while Malgras et al. 20 have observed 

a quantum confinement effect in MAPbBr3 crystals with a diameter up to 7.1. nm. The average size of our 

nanocrystals, 9.1±1.6 nm, can thus justify the existence of weak quantum confinement and the subsequent 

blue-shift compared to the bigger crystals and grains. On the other hand, the blue-shift observed for the 

microcrystals cannot be attributed to quantum confinement.21 Two other possible explanations can be 

given. First, a change in the dielectric screening of the excitons induced by the presence of the additive 

(see Table S1 in the SI) could lead to the blue-shift.22 Second, according to Grancini et al.,23 a stronger 

distortion in the Pb-I bond has been observed upon crystal size reduction in MAPbI3, and D’Innocenzo et 

al. attributed the PL blue-shift in ~100 nm crystals to this strain effect. 24 The lack of a clear excitonic feature 

in the absorption spectra as well as the broad photoluminescence peaks, point to a rather broad distribution 

of particles size in the micro- and nanocrystalline materials (as confirmed in Fig. S1).   

 Figure 1(b) shows the time-resolved photoluminescence (TRPL) dynamics of the three samples under 

similar excitation density (as calculated in the SI). A difference in the PL dynamics obtained at different 

positions of the same sample has been reported in previous studies.25,26 In our study, the probed area was 

too large (8 mm laser spot, see Table S2 in SI) to distinguish any local variation of the excited state 

deactivation dynamics, and the results are an average over the microscale inhomogeneity. The PL decay 

for the micro- and nanostructured films is slower compared to the polycrystalline material, which, together 

with a higher oscillator strength for the emission, can contribute to the much higher PLQY (increase from 

1.2% to 80%, Table 1). This trend contradicts previous reports of faster dynamics in nanocrytsals,20,24 which 

we discuss below in terms of traps. The average PL lifetimes are reported in Table 1, together with the 



radiative (krad) and non-radiative recombination (kn.rad) rate constants. The increase of PLQY in the micro- 

and nanocrystals correlates with an increase in krad (higher oscillator strength) and a decrease in kn.rad. 

Radiative processes include direct band-to-band recombination such as exciton recombination or free 

electron-hole recombination. Non-radiative recombination can occur if excitons or free carriers are 

trapped, via exciton-exciton annihilation or by three-body Auger processes involving free charges. 

 

 

Figure 1. (a) Steady-state PL (left) and absorption spectra (right) and (b) TRPL dynamics of the three 

samples, recorded with excitation at 450 nm with 3 ns duration pulses and repetition rate of 10 Hz at a 

common carrier density of ~1016 cm-3. The detection is at the wavelength of the maximum PL intensity. 
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Table 1. Average PL lifetime, PLQY, radiative and non-radiative constants for the perovskite film series. 

Sample τav (ns) PLQY krad x 107 (s-1) kn.rad. x 107 (s-1) 

Polycrystalline 
perovskite 5.4 1.2% 0.22 18.2 

Microcrystals 21.4 80% 3.73 0.93 

Nanocrystals 12.3 80% 6.5 1.62 

 

The time-integrated PL spectra of the three samples were collected at different excitation densities, 

under excitation with pulses of 3 ns duration at 450 nm. Interestingly, the integrated PL spectra of the 

micro- and nanocrystals were found to be independent of the excitation density, while a clear change in 

the spectral shape was observed for the polycrystalline film (Figures 2a and S2). A possible explanation 

for this behavior might be re-absorption due to an increased penetration depth,27,28  but we exclude this here, 

as the thickness of the perovskite film is only 60 nm. Furthermore, a change in the PL spectra due to 

photo-degradation of the sample with increasing excitation density was excluded, since we showed 

repeatability of the observations when measuring the data again on the same sample spot at zero time 

delay t0 (see Fig. S3). We also found that the emission properties do not change under continuous WL 

illumination (Fig. S4). The observed spectral changes in the polycrystalline perovskite include a shift, a 

spectral narrowing and a reduction of the PL intensity on the high-energy side of the spectrum at high 

excitation intensities. Analysis of the integrated PL spectra with a single Gaussian function was not 

satisfactory. The sum of two Gaussian functions (eq. 1) was needed to reproduce the experimental PL 

spectra, suggesting the co-existence of two emission bands due to excitons and free-charges (Figures 2a 

and S5).  
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In eq. 1, A and B are the amplitudes, E1 and E2 the energies of the maximum PL intensity and w1 and w2 

the widths of the low- and high-energy Gaussian, respectively. E1, E2 and the width of the low-energy 

Gaussian (w1) were kept constant, while A and B and the width of the high-energy Gaussian (w2) were left 

as free parameters. w1 was fixed to the value obtained by analyzing the excitonic peak present in the 



absorption spectrum of the polycrystalline sample with a single Gaussian (78 meV), as shown in the inset 

of Figure 2(a). The very good agreement between the experimental low-energy PL band and the fit, as 

well as the small Stoke’s shift of 49 meV, confirm the excitonic origin of this emission band.  

The width of the high-energy Gaussian w2, which we assign to free carrier emission, was found to 

increase only after a certain carrier density. This behavior is characteristic of the Burstein-Moss shift due 

to band filling with free carriers upon photo-excitation at increasing carrier densities.29, 30, 31, 32,33 Figure 2(b) 

shows the evolution of w2 at different no
3/2, where no is the excitation density (Burstein-Moss analysis, eq. 

2): 

𝛥𝛦456 = ℏ/

89∗
(3𝜋8𝑛?)8 A⁄    (2) 

In eq. 2, 𝛥𝛦456 is the change in the optical band gap, μ* is the exciton reduced effective mass and ℏ is 

the reduced Planck constant.32 From the slope of the high excitation density part of Figure 2b, a value of 

0.051·mo for the reduced effective mass was extracted (mo being the electron mass). This value is  smaller 

but on the same order of magnitude compared to previous reports.34, 35, 36, 37, 38, 39, 40 According to Manser et al. 32 

and Christians et al.33, the abrupt increase of w2 that is observed at an excitation density of 7·1015 cm-3 

(no
2/3~3.6·1010 cm-2) can be attributed to the process of trap filling (which competes with band filling at low 

excitation densities). This threshold can thus be used as a measure of the trap density in the material. The 

value is in agreement with the trap densities of polycrystalline perovskite films.41 The plateau at higher 

excitation densities (> 1017 cm-3) is likely related to  band-gap renormalization, becoming more prominent 

due to the increased electron-electron interactions,42, 43 but also due to the decreased population of free-

carriers. Indeed, the emission spectra measured at high excitation densities become increasingly 

dominated by the excitonic band (Figure 2a). 

By dividing the amplitudes of the two Gaussians by their sum, the relative population of the species 

contributing to each of the two emission bands at different excitation densities was estimated (Figure 2c). 

Already at the lowest excitation density, almost 40% of the excited species are excitons. At higher 

excitation densities, the exciton population increases while the free carrier population decreases almost to 

zero.  This is an indication of the favored conversion of free carriers to excitons at high excitation 



densities, which results in the inversion of the majority population in the excited state. This conversion 

has been previously observed for MAPbBr3,14,15 and other perovskite materials.44 As a consequence, the 

energy difference between the maximum PL intensity of the two Gaussians can be used to estimate the 

exciton binding energy to 110 meV, in agreement with previously reported values for MAPbBr3 (ranging 

between 35 and 320 meV, depending on the crystal size and the dimensionality).38,37,14,45,46 The value is further 

influenced by the chemical environment and dielectric constant of the surroundings.47, 48, 49   

Figure 2(d) shows the ratio of the squared free-carrier population over the population of excitons. The 

Saha equation, correlating this ratio of free carriers and excitons to the excitation density in hot electron-

hole plasma, was used to model the obtained data:29, 5,  44, 50  51  

𝑅 = DE,G
/

DH
= I

D
)8J9

∗KLM
N/

.
A
8O 𝑒(

*L
PLQ  (3) 

In eq. 3, ne,h is the population of free carriers and nX is the population of excitons, both divided by their 

sum, which accounts for the total population. μ* is the exciton reduced effective mass (estimated with the 

Burstein-Moss model), kb the Boltzmann constant, h is the Planck constant, T the temperature in Kelvin 

and EB the exciton binding energy of 110 meV. The calculation of the uncertainties of each parameter 

contributing to the error bars shown in Figure 2(d) is reported in the SI. The good agreement of the 

experimental data with the Saha model confirms the coexistence of free carriers and excitons in 

polycrystalline MAPbBr3 thin films, even at low carrier densities. This is important, as this carrier 

concentration range corresponds to the working regime of optoelectronic devices, such as LEDs and solar 

cells.52  

In contrast to the polycrystalline perovskite, neither the microcrystals nor the nanocrystals show any 

variation in the shape of the integrated PL spectrum with increasing excitation density (Fig. S2). This 

indicates that only a single excited species, which we assign to excitons, governs the emission. The direct 

formation of excitons upon photo-excitation is expected to be enhanced for the nanocrystals compared to 

the polycrystalline perovskite, because of the weak quantum confinement. A larger exciton binding 

energy, that favors the formation of excitons upon photo-excitation, has also been observed for small 



MAPbBr3 crystals even outside the quantum confinement regime.53 Changes in the dielectric environment 

due to the high volumetric fraction of the additive might enhance this effect (Table S1). This justifies an 

enhanced excitonic character for both the nano- and microcrystals. The higher electron-hole coupling for 

radiative excitonic recombination also explains the higher oscillator strength of the emission (higher krad, 

Table 1) compared to the polycrystalline perovskite, where both excitons and free charges contribute to 

the emission. In agreement, krad is highest in the nanocrystals (highest binding energy due to the weak 

confinement). 

 

Figure 2. (a) Time-integrated PL spectra obtained under different excitation densities, and simulated by 

a double Gaussian function, for the polycrystalline perovskite film. The absorption of the same sample, 

with the excitonic peak analyzed by a single Gaussian function is shown in the inset. (b) Width of the 

high-energy Gaussian (w2) versus no
2/3, analyzed by a linear equation. (c) Population of free-carriers and 

excitons over the total population of the excited state. (d) Ratio of the squared population of free carriers 

over that of the excitons at different carrier densities.  A theoretical model, with our experimentally 

derived values implemented into the Saha equation, is shown on the same graph, together with error bars.  
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Further evidence that both excitons and free carriers are present in the polycrystalline perovskite, while 

excitons are predominant for the micro- and nanocrystal, is shown in Figure 3. This depicts the fluence-

dependence of the excited-state population rate, which can be described by a polynomial function 

containing the generation rate G0 and decay rates of different orders (k1, k2 and k3), see eq. 4.  

  (4) 

Here, n is the density of either free carriers or of excitons, and it has been shown that the recombination 

terms in a free carrier semiconductor have different origins compared to excitonic materials.54,55,56 For free 

carriers, k1 is the monomolecular decay indicative of free carrier trapping, k2 is the bimolecular electron-

hole emission, and k3 is the three-body Auger recombination term.57, 58, 59 In the case of an excitonic 

semiconductor, k1 represents the monomolecular excitonic and/or trap-assisted recombination, and k2 the 

exciton-exciton annihilation.60,61,62,63 The third order term k3 is absent since there are no free carriers formed 

upon photo-excitation,63 although it might become relevant if excitons dissociate to free carriers. 

By combining data from nanosecond-resolved TRPL with nano- and femtosecond transient absorption 

(TA) spectroscopy (450 nm excitation), dn/dt was obtained over a broad regime of excitation densities 

and time scales, as shown in Figure 3 (see SI and Fig. S6 for details). The number of polynomial terms 

necessary to describe the data for the different samples provides information about the recombination 

process. We found above that both excitons and free carriers co-exist in polycrystalline MAPbBr3. In 

agreement, a complete description of the recombination rates can be obtained using three polynomial 

terms. For the micro- and nanocrystals containing only excitons, two polynomial terms are sufficient. The 

smaller kn.rad compared to krad (Table 1) suggests that the radiative recombination of the excitons is more 

efficient compared to monomolecular trapping, thus governing the monomolecular term (see discussion 

below), while exciton-exciton annihilation governs the bimolecular term. The rate constants that were 

derived by the aforementioned analysis are reported in Table 2. 

−
dn
dt
= −G0 + k1n+ k2n

2 + k3n
3



The values obtained for the polycrystalline films are in agreement with values reported for MAPbBr3 

by Yang et al,64 but are higher than those observed by Richter et al,12 which we attribute to different 

preparation conditions. The higher monomolecular recombination rate we observe in MAPbBr3 compared 

to free carrier perovskites such as MAPbI3,52,57 can be explained considering that not only monomolecular 

trapping but also excitonic recombination takes place in this material (we have shown the co-existence of 

the two species). The value of k1 is almost the same for all investigated samples. Either excitonic 

recombination or trapping is included in this monomolecular term. We will show that excitonic 

recombination becomes more important with the reduction of the crystal size, while trapping becomes 

less pronounced, resulting in the increased contribution of radiative recombination for the micro-and 

nanocrystals (Table 1). The bimolecular recombination constant, k2, is smaller for the microcrystals 

compared to the polycrystalline sample, as it reflects only exciton-exciton annihilation and not free carrier 

recombination. The larger k2 for the nanocrystals compared to the microcrystals is due to the enhanced 

exciton-exciton annihilation because of their spatial confinement. Despite the increase in k2, it is still lower 

compared to other perovskite nanocrystals.65 Importantly, the fact that the third order polynomial term, 

including the three-body Auger recombination,  is not necessary for the micro- and nanocrystals, indicates 

that excitons created directly upon photo-excitation are stable and do not dissociate to free carriers even 

at high excitation fluencies. The generation of stable excitons was also shown by Sarritzu et al. in 

MAPbBr3 crystals.15 

 

Table 2. Polynomial coefficients obtained by the analysis of the data shown in Figure 3 by a second or 

third order polynomial function. 

Sample Polynomial Order k1 x 107 (s-1) k2 x 10-10 (cm3·s-1) k3 x 10-28 (cm6·s-1) 

Polycrystalline perovskite 3rd 1.8 ± 0.8 1.0 ± 0.9 5.3 ± 0.2 

Microcrystals 2nd 1.6 ± 0.2 0.37 ± 0.02 -- 

Nanocrystals 2nd 1.5 ± 0.2 1.3 ± 0.1 -- 

 



 

 

Figure 3. Population rate versus carrier density derived from ns-TRPL, ns-TA and fs-TA measurements 

for the three systems. The black line represents an analysis with a 3rd order polynomial for the case of the 

polycrystalline perovskite (a) and with a 2nd order polynomial in the case of the microcrystals (b) and the 

nanocrystals (c).  

 

To further investigate the recombination mechanism in the MAPbBr3 thin films, the time-integrated PL 

intensity (at the spectral maximum) was plotted as a function of the excitation density (Figure 4, only data 

below the threshold of exciton-exciton annihilation and Auger recombination is shown). The result was 

analyzed with a power law function of the form	𝑃𝐿~𝐹K, where F is the excitation fluence or density, and 

k is a real number exponent, which provides information about the order of the recombination process.13,66,67 
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In the polycrystalline perovskite, the value of 1.5 agrees with the co-existence of free carriers (bimolecular 

emission) and excitons (monomolecular emission), and with other measurements on perovskite thin-

films.13 For the microcrystals and nanocrystals, the dependence of the integrated PL intensity on the 

excitation density becomes linear (k ≈ 1), indicating predominantly monomolecular recombination. A 

similar behavior was observed when plotting PL0, the maximum of the PL decay trace at t0 within our 3 ns 

time resolution, as a function of fluence (Fig. S3), confirming the above-mentioned results and the photo-

stability of the samples (the PL0 data was obtained with the same samples right after the time-integrated 

PL measurements).  The monomolecular recombination in the micro- and nanocrystals could originate 

from either excitonic recombination (radiative) or trap-assisted recombination (non-radiative).68 To 

distinguish between the two, the TRPL dynamics were recorded under different excitation densities. 

 

 

Figure 4. Graphs of the time-integrated PL intensity (at the maximum) versus the excitation density (or 

fluence) for (a) the polycrystalline perovskite, (b) the microcrystals and (c) the nanocrystals. 

 

For the polycrystalline sample (Figure 5a), the dynamics become slower as the excitation density 

increases until a value of 7·1015 cm-3. According to the analysis with the Burstein-Moss equation (Figure 

2b) this excitation density coincides with the one for which traps are filled. By further increasing the 

excitation density, the dynamics become faster again (inset of Figure 5a), due to higher order interactions 

such as Auger recombination. A similar trend has been observed in previous studies.69, 59, 70 We note that a 

non-reversible behavior of the TRPL dynamics when increasing and decreasing the excitation density has 

been reported due to photoinduced changes of the sample (e.g. photoinduced trap formation or ion 
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migration).71,72 We could exclude a significant contribution of such effects here, since the emission 

properties were reproducible and did not change in the presence of a continuous white light illumination 

(see Fig. S3, S4 and discussion in the SI). To explain the slower dynamics upon trap filling, we consider 

a distribution of trap states as suggested by Yamada et al.69 and Wright et al.73 Filling of the trap states that 

lie deep in the bandgap (and which cause non-radiative recombination) leaves only shallow traps unfilled. 

Chirvony et al. showed that  carriers temporarily trapped in the shallow states can be thermally de-trapped, 

leading to delayed PL,74 and explaining the long-lived (hundreds of ns) tail in the PL dynamics at the 

intermediate fluences. We have used the carrier density for which the inversion of the dynamics takes 

place to estimate a trap density of 4·1014 cm-3 for the microcrystals and of 5.9·1013 cm-3 for the nanocrystals 

(Figures 5b, c). These values are much smaller compared to polycrystalline MAPbBr3, suggesting that 

these materials have little traps and are therefore suitable candidates for applications in LEDs.68  

The reduction in trap density between the polycrystalline sample and the films with reduced crystal size 

is consistent with the strong reduction of kn.rad (Table 1). It shows that the monomolecular recombination 

in the latter samples is predominantly excitonic. It also explains the slower PL decay in the micro- and 

nanocrystals in Figure 2b. In the polycrystalline perovskite, the deep traps are filled at excitation densities 

where higher-order effects are already significantly present and reduce the overall excited-state lifetime. 

In contrast, delayed PL is seen more effectively at lower fluences in the systems with reduced crystal size. 

It is worth to mention that the reduction of the crystal size of MAPbBr3 should in fact lead to an increase 

of surface trap density due to the higher surface to volume ratio of smaller structures.75 However the 

additives present in the micro- and nanocrystals apparently passivate the surface traps, leading to the 

reduced trap density. This then enhances the PLQY by reducing kn.rad and by favoring delayed PL. Finally, 

it is worth mentioning that the improved film morphology with the reduction of the crystal size could also 

result in better out-coupling of the emitted light, as shown by Richter et al.12 Although this factor cannot 

be excluded, it would not affect the nature of the emissive state and the PL lifetime, as we report here. 

 

 



 

Figure 5. TRPL dynamics of (a) the polycrystalline perovskite, (b) the microcrystals and (c) the 

nanocrystals obtained at different excitation densities with excitation at 450 nm with pulses of 3 ns 

duration and a repetition rate of 10 Hz. The insets show the PL dynamics recorded at high excitation 

densities where the dependence of the lifetime on the excitation density is opposite than the one observed 

at low ones. The arrows indicate an increase in the excitation density.  

  

In summary, the origin of the PL in polycrystalline MAPbBr3, as well as in micrometer- and nanometer-

sized perovskite crystals has been studied. By combining both time-integrated PL, time-resolved PL and 

transient absorption techniques, a broad range of excitation densities could be accessed. The results show 

that both free carriers and excitons co-exist in the polycrystalline perovskite, and that free carriers are 

converted into excitons at high excitation densities. On the other hand, in the micro- and nanocrystals, 
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directly photo-generated excitons are predominant. The contributions of non-radiative trapping and 

radiative exciton recombination upon crystal size reduction was studied. We found that the excitonic 

character is enhanced with the size reduction, while trapping is suppressed. Thus, the large increase of the 

PLQY for micro- and nanocrystals is attributed to a combination of increased oscillator strength of the 

radiative transition, due to the purely excitonic character of these materials, and of reduction of the surface 

traps by passivation induced by the additives.   
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