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Abstract

We present a way to deal with dispersion-dominated “shock-type” transition in the
absence of completely integrable structure for the systems that one may character-
ize as strictly hyperbolic regularized by a small amount of dispersion. The analysis
is performed by assuming that, the dispersive shock transition between two different
constant states can be modelled by an expansion fan solution of the associated modula-
tion (Whitham) system for the short-wavelength nonlinear oscillations in the transition
region (the so-called Gurevich – Pitaevskii problem). We consider as single-wave so
bi-directional systems. The main mathematical assumption is that of hyperbolicity
of the Whitham system for the solutions of our interest. By using general proper-
ties of the Whitham averaging for a certain class of nonlinear dispersive systems and
specific features of the Cauchy data prescription on characteristics we derive a set of
transition conditions for the dispersive shock, actually by-passing full integration of
the modulation equations. Along with model KdV and mKdV examples, we consider
a non-integrable system describing fully nonlinear ion-acoustic waves in collisionless
plasma. In all cases our transition conditions are in complete agreement with previous
analytical and numerical results.

Modern theory of dispersive shocks is based on the analysis of the Whitham
averaged equations describing modulations of nonlinear short-wavelength oscil-
lations in the transition region between two smooth regimes. If the wave dy-
namics is governed by one of the completely integrable equations, exact solu-
tions in terms of the Riemann invariants are also available for the corresponding
Whitham system providing full asymptotic description of such a transition. For
nonintegrable systems describing many physically important cases of nonlinear
dispersive wave propagation such modulation solutions are not readily (if at all)
available. In this paper we show that, by using some general properties of the
Whitham equations connected with their “averaged” origin one is able to ob-
tain a set of transition conditions representing the “dispersive” analog of the
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traditional shock conditions of classical dissipative gas dynamics. The devel-
oped method does not make use of the Riemann invariants for the modulation
equations and can be applied to nonintegrable conservative systems. In partic-
ular, the obtained conditions allow for determination of the lead solitary wave
amplitude in terms of a jump for hydrodynamic variables across the dispersive
shock.

1 Introduction

It is well known that the resolution of breaking singularities in dispersive media occurs
through generation of short-wavelength nonlinear oscillations. The wave-like transition be-
tween two smooth or constant hydrodynamic states is generally called a dispersive shock (or
an undular bore, especially in the context of water waves). The main observable feature of
the dispersive shock is formation of solitary waves in the vicinity of one of its edges. At
the opposite edge, the wave structure degenerates into linear wavepacket. The phenomenon
of the dispersive shock formation is quite ubiquitous and its physical contexts range from
gravity water waves and bubbly fluid dynamics to space plasma physics, fibre optics and
Bose-Einstein condensates.

One should be clear from the very beginning that purely dispersive resolution of a shock is
a physical idealization and some amount of dissipation is inevitably present in real continuous
media so we distinguish between two types of dispersive shocks depending on the actual
role of dissipation relative to that of nonlinearity and dispersion in the wave development
and evolution. There is some terminological confusion in the literature where the terms
“dispersive shock”, “undular bore” and “collisionless shock” are used as for the dispersion-
dominated waves so for the waves where dispersion and dissipation are in balance. In both
cases, dispersion plays the decisive role in the formation of local oscillatory structure but
the global properties of the oscillations zone in the two cases are drastically different.

The weakly dissipative undular bores (we use here this term to distinguish from our
main subject – conservative dispersive shocks) despite their oscillatory structure exhibit
global properties characteristic for classical, turbulent bores or shock waves: they have
steady (though oscillatory in space) profile and constant effective width such that the speed
of the shock propagation and the transition conditions can be derived within the frame of
the classical theory of hyperbolic conservation laws (see [1] for instance). The qualitative
theory of such steady undular bores has been first developed by Benjamin and Lighthill [2]
in the context of shallow-water waves and by Sagdeev [3] for rarefied plasma flows. The
quantitative description of the weakly dissipative undular bores has been made in [4], [5],
[6] on the basis of the unidirectional KdV-Burgers equation and in [7] using the integrable
version of the bi-directional Boussinesq equations modified by small viscous term.

The developed in [2] – [7] theory of steady undular bores, however, is valid only for the
fully established regime when nonlinearity, dispersion and dissipation are in balance. Con-
trastingly, in the dispersion-dominated case, the traditional analysis of the mass, momentum
and energy balance across the undular bore transition can not be applied (at least directly).
The reason for that is that the boundaries of the dissipationless undular bore (a dispersive
shock) diverge with time, i.e instead of a single shock speed defined by the jump condi-
tions one has now two different speeds s+ > s− determining motion of the transition region
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boundaries. These speeds , however, can not be found without the analysis of the nonlinear
oscillatory structure of the transition region since in the dissipationless case dispersion not
only dramatically modifies the fine structure of the shock transition but also, along with
nonlinearity, determines its location. The “conservative” dynamics of dispersive shocks is of
a considerable interest on its own and also, in many cases, can be viewed as an unsteady in-
termediate asymptotic in a general setting when the small dissipation is taken into account.
Physical examples of such expanding dispersive shocks include atmospheric undular bores
(morning glory) [8], optical shocks in the long-distance optical communication systems [9]
and collisionless shocks in Bose-Einstein condensates [10].

In a weakly nonlinear case, when the original conservative system can be approximated by
one of the exactly integrable equations, the study of the dispersive shock phenomenon have
stimulated discovery of a whole new class of mathematical problems which can be broadly
described as the singular semi-classical limits in integrable systems. In the Lax-Levermore-
Venakides theory [11], [12] (see also [13]) developed originally for the KdV equation, and
more recently extended to the defocusing NLS [14] and focusing mKdV [15] equations the
evolution of the dispersive shock is modelled by the zero dispersion limit of the exact multi-
soliton (multi-gap) solution of the original dispersive wave equation. The main characteristic
feature of the zero-dispersion limit is co-existence of smooth and rapidly oscillating regions
in the solution after the breaktime. In the smooth regions the zero-dispersion limit exists in
a strong sense and is given by the classical solution of the dispersionless equation whereas
in the oscillating regions this limit exists in a weak, averaged sense and is governed by a
certain system of quasi-linear equations different from the dispersionless limit. This system
turned out to coincide with the modulation equations obtained in 1960’s by Whitham [16] by
averaging nonlinear single-phase wavepackets and later generalised by Flaschka, Forest and
McLaughlin [17] to a multiphase case. The subsequent development of the Lax-Levermore
theory [18], [13] has shown that the local waveform in the oscillating regions is indeed
described by the multiphase solutions. The weak limits in the Lax-Levermore problem then
can be regarded as the result of the Whitham averaging over these solutions.

A direct formulation of the dispersive shock problem in terms of the Whitham equations
had been proposed (although without rigorous justification) much earlier by Gurevich and
Pitaevskii (GP) [19] who supplied the Whitham system for the KdV equation with natural
matching conditions at the boundaries separating smooth and oscillating regions and solved
the problem analytically for the initial data in the form of a step. The discovery by Tsarev
of the generalised hodograph method [20], and Krichever’s algebro-geometric construction
[21] allowed for obtaining of many new exact global solutions to the Whitham equations (see
for instance [22], [23] and references therein). Availability of such solutions heavily relies on
the integrability of the Whitham systems considered and, in particular, on the existence of
the Riemann invariant representation.

Thus, either way, integrability seems to be an essential part of the analytic theory of
dispersive shocks. However, in many physically relevant situations, integrable systems al-
though providing valuable insight into the qualitative properties of nonlinear dispersive wave
propagation fail to yield satisfactory quantitative agreement with experimental data (see for
instance discussion in [24] in the context of finite-amplitude internal shallow water waves).
This explains the growing interest in the derivation of relatively simple non-integrable mod-
els which, while providing a more accurate description of physical effects, still seem to be
amenable to analytic treatment. In the context of the dispersive shock theory this interest
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is supported by a strong numerical evidence that such features of zero-dispersion limits of
integrable systems as formation of oscillatory zones and weak convergence are true for the
systems that are not completely integrable but are structurally similar to integrable ones
(see for instance [13] [25], [26]). On the other hand, the Whitham method used in the direct
Gurevich-Pitaevskii description of dispersive shocks does not require integrability from the
governing system. What is needed is just the existence of the periodic travelling wave solu-
tions and availability of sufficient number of conservation laws. So, in the absence of rigorous
general approach it seems a natural idea to assume the single-phase Whitham description for
a “non-integrable” dispersive shock and explore analytic consequences of such an assump-
tion. Hyperbolicity of the Whitham equations (which also has to be assumed, for instance,
on the grounds of numerical evidence of modulational stability) would be an essential part
of such a problem formulation. Of course, such a heuristic approach requires validation.
This can be made by (i) testing its results on integrable systems where exact solutions are
available and (ii) by comparison with available numerical results for non-integrable systems.

In this paper, we develop the outlined approach for the the decay of an initial step
problem for a broad class of systems that one may characterise as strictly hyperbolic modified
by weak dispersion. It is clear that in the step decomposition problem the solution of
the (quasilinear) Whitham equations must depend on x/t alone, which implies principal
availability of several integrals of motion for their self-similar reductions. It is also clear that
existence of the similarity solutions does not rely on complete integrability or existence of the
Riemann invariants for the Whitham equations ( this, unfortunately, does not guarantee that
such a solution would be available analytically in the absence of the Riemann invariants).
However, the Whitham equations being obtained by averaging over periodic family have a
number of special properties distinguishing them from the general class of hyperbolic quasi-
linear systems. In particular, they allow for exact reductions to the original dispersionless
equations in the zero-amplitude (linear) and zero-wavelength (soliton) limits. This general
property together with the self-similarity imposes a number of restrictions on possible values
of the modulation parameters at the linear and soliton edges of the dispersive shock defined
by natural boundary conditions. We derive these restrictions by finding a set of integrals
along the edge characteristics of the Whitham expansion fan. These integrals, of course, are
equivalent to the basic integrals for the similarity solution evaluated at the edge points. A
surprising fact is that, the edge parameters are in a simple and universal way expressed in
terms of the linear dispersion relation of the system and one of its nonlinear “dispersionless”
characteristic velocities.

The obtained set of restrictions can be viewed as a “dispersive” replacement for the
classical shock conditions and includes for a general bi-directional case

(i) a condition for admissible jumps for hydrodynamic variables across the dispersive
shock (which does not coincide with the classical jump conditions);

(ii) the speeds of the dispersive shock edges as functions of a given jump satisfying (i);
and, since the parameters in (ii) turn out to be determined not uniquely,

(iii) the set of inequalities selecting the unique valid set of parameters (ii) and providing
consistency of the whole construction. These inequalities represent and analog of entropy
conditions known in classical gas dynamics.

Thus, the obtained conditions allow one to derive main quantitative characteristics of the
dispersive shock transition bypassing the integration of the Whitham system. In particular,
they allow for obtaining the amplitude of the leading (or trailing depending on the sign of
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the dispersion in the system) solitary wave in the dispersive shock, the major parameter in
observational/experimental data. For instance, the conditions readily yield the well-known
result of the original Gurevich-Pitaevskii paper [19] which reads that the amplitude of the
lead solitary wave in the KdV dispersive shock is 2∆ where ∆ is the value of the initial step.

We apply the obtained general dispersive shock conditions to two integrable (KdV and
defocusing mKdV) equations and one non-integrable system describing fully nonlinear ion-
acoustic waves in collisionless plasma. In all cases our description is in complete agreement
with previous analytic/numerical results. We also discuss the accuracy and some restrictions
of the developed approach.

2 Gurevich-Pitaevskii problem for the KdV equation

We start with an exposition of the theory of Gurevich and Pitaevskii (GP) [19] formulated
originally for the KdV equation and later generalised to other integrable equations by differ-
ent authors (see [27] for a detailed introduction and many useful references). Although all
formulas in this section are known very well, it is instructive for the purposes of this paper to
have them handy as they will allow us later to draw parallels with “non-integrable” theory.

We take the KdV equation in the form

ut + uux + uxxx = 0 . (1)

Let the initial perturbation u(x, 0) = u0(x) have the form of a large-scale (∆x À 1) mono-
tonically decreasing function with a single inflection point. As a special important case, one
considers a smooth step

u0(−∞) = u− , u0(+∞) = u+ , u′0(x) < 0 , (2)

so that the characteristic width of the transition region, say l is finite. Of course, without
loss of generality the initial step for the KdV equation can be normalized to unity but for
our purposes it is convenient to retain arbitrary values for u−, u+; we only assume u− > u+.

The qualitative picture of the KdV evolution of a smooth monotonic profile is as follows.
During the initial stage of evolution, |uxxx| ¿ |uux| and one can neglect the dispersive term
in the KdV (1). The evolution at this stage is approximately described by the dispersionless
(classical) limit of the KdV equation:

u ≈ β(x, t) : βt + ββx = 0 , β(x, 0) = u0(x) . (3)

The evolution (3) leads to a gradient catastrophe : t → tb : βx → −∞. For t > tb
(without loss of generality we put tb = 0), the dispersive term uxxx should be taken into
account in the vicinity of the breaking point and, as a result, the regularization of the
singularity happens through the generation of small-scale nonlinear oscillations confined to
a finite, albeit expanding, space region. This oscillatory structure represents a dispersive
analog of a shock wave. Near the leading edge of such a dispersive shock (or an undular
bore in a different terminology) the oscillations are close to successive solitary waves and in
the vicinity of the trailing edge they are nearly linear (see Fig. 1). This structure has been
recovered in a rigorous theory using the complete integrability of the KdV equation (see
for instance [28]) but in the Gurevich-Pitaevskii approach it is an assumption based, say,
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on the results of numerical simulations. This approach is consistent with the aims of this
paper which develops a way to deal with generally non-integrable systems, where the IST
formalism is not available in principle.

u

u

Figure 1: Oscillatory structure of the dispersive shock evolving from the initial step (dashed
line).

We shall model the local waveform of the dispersive shock by the single-phase periodic
solution of the KdV equation travelling with constant velocity c: u(x, t) = u(θ), θ = x− ct.
This solution is specified by the ordinary differential equation

(uθ)
2 = −G(u) , u(θ + 2π/k) = u(θ) , (4)

where

G(u) =
1

3
(u− u1)(u− u2)(u− u3) , (5)

u3 ≥ u2 ≥ u1 being constants of integration. The phase velocity c and the wavenumber k
are expressed in terms of the roots uj as

c =
1

3
(u1 + u2 + u3) , k = π




u3∫

u2

du√
−G(u)



−1

=
π

2
√

3

(u3 − u1)
1/2

K(m)
, (6)

where K(m) is the complete elliptic integral of the first kind. The modulus m and the
amplitude a of the travelling wave are expressed in terms of {uj} as

m =
u3 − u2

u3 − u1

a = u3 − u2 . (7)

Eq. (4) is integrated in terms of Jacobian elliptic function cn(ξ; m) to give, up to an arbitrary
phase shift,

u(x, t) = u2 + a cn2

(√
u3 − u1

3
(x− ct); m

)
. (8)

When m → 0 (u2 → u3) the solution (8) turns into the vanishing amplitude harmonic wave

u(x, t) ≈ u3 − a sin2[k0(x− c0t)] , a = u3 − u2 ¿ 1 , (9)
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where k0 = k(u1, u3, u3), c0 = c(u1, u3, u3). The relationship between c0 and k0 is obtained
from Eqs. (6) considered in the limit u2 → u3:

c0 = u3 − k2
0 (10)

and agrees with the KdV linear dispersion relation for small-amplitude waves propagating
on the background u = u3.

When m → 1 (u2 → u1), the cnoidal wave (8) turns into a soliton

us(x, t) = u1 + assech
2[

√
as/3(x− cst)] , (11)

which speed cs = c(u1, u1, u3) is connected with the amplitude as by

cs = u1 + as/3 . (12)

In Eqs. (11), (12), u1 plays the role of a background which can be put equal to zero for the
uniform solutions (as well as u3 in (9), (10)). However, this is not the case if one is interested
in modulated travelling waves where the local integrals uj become slow functions of x and
t and the background term can not be eliminated by the passage to the moving reference
frame. This simple fact will play an important role in what follows.

We now consider slowly modulated cnoidal waves by letting the constants of integration
uj be functions of x and t on a large spatio-temporal scale ∆x À 1, ∆t À 1. Then the
evolution equations for uj(x, t) can be obtained by averaging any three KdV conservation
laws ∂tPj + ∂xQj = 0 over the period of the travelling wave (8) [16] and are referred to as
the modulation, or Whitham, equations. The averaging is made according to (4) as

F (u1, u2, u3) =
k

2π

2π/k∫

0

F (u(θ; u1, u2, u3))dθ =
k

π

u3∫

u2

F (u)√
−G(u)

du . (13)

In particular, the mean is calculated as

ū = u1 + 2(u3 − u1)E(m)/K(m) , (14)

where E(m) is the complete elliptic integral of the second kind.
As a result, the KdV modulation system is obtained in a conservative form

∂

∂t
P j(u1, u2, u3) +

∂

∂x
Qj(u1, u2, u3) = 0 , j = 1, 2, 3 , (15)

where P̄j, Q̄j are expressed in terms of the complete elliptic integrals.
One of the modulation equations can be replaced by the so-called wave number conser-

vation law, which represents a consistency condition in the formal perturbation procedure
equivalent to the Whitham averaging (see e.g. [29]),

∂k

∂t
+

∂ω

∂x
= 0 , (16)

where ω = kc is the frequency. Of course, Eq. (16) can be obtained as a consequence of the
three modulation equations (15) [16].
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It has been discovered in [16] that, upon introducing symmetric combinations

β1 =
u1 + u2

2
, β2 =

u1 + u3

2
, β3 =

u2 + u3

2
(17)

the system (15) reduces to its diagonal (Riemann) form

∂βj

∂t
+ Vj(β1, β2, β3)

∂βj

∂x
= 0 , j = 1, 2, 3 . (18)

where the characteristic velocities V3 ≥ V2 ≥ V1 are certain combinations of complete el-
liptic integrals of the first and the second kind. They can be conveniently represented in a
“potential” form [30], [31]

Vj =
∂(kc)

∂βj

/
∂k

∂βj

(19)

following from the consistency of wave number conservation law (16) with the Riemann
system (18). Here k, m and c are expressed in terms of the Riemann invariants as

k =
π√
6

(β3 − β1)
1/2

K(m)
, m =

β2 − β1

β3 − β1

c =
1

3
(β1 + β2 + β3). (20)

Of course, the existence of the Riemann invariants for the quasi-linear system of the third
order (15) is a nontrivial fact and this feature is connected with the preservation of the KdV
integrability under the averaging. A regular way of obtaining the KdV-Whitham system in
the Riemann form has been developed by Flaschka, Forest and McLaughlin [17] using the
methods of finite-gap integration. For the single-phase case of our interest an elementary
general approach not requiring algebraic geometry can be found in the monograph [27]. The
explicit expressions for Vj in terms of the complete elliptic integrals of the first and the
second kind can be found elsewhere (see for instance [32], [29]). We will present here only
their limiting properties.

In the harmonic limit

m = 0 : V3 = β3 , V2 = V1 = 2β1 − β3 (21)

so that the Whitham system reduces to

β2 = β1 ,
∂β3

∂t
+ β3

∂β3

∂x
= 0 ,

∂β1

∂t
+ (2β1 − β3)

∂β1

∂x
= 0 . (22)

In the soliton limit

m = 1 : V2 = V1 =
1

3
(β1 + 2β3) , V3 = β3 (23)

and the Whitham system reduces to

β2 = β3 ,
∂β1

∂t
+ β1

∂β1

∂x
= 0 ,

∂β3

∂t
+

1

3
(β1 + 2β3)

∂β3

∂x
= 0 . (24)

Thus, the Whitham system admits nontrivial exact reductions to the dispersionless limit via
singular limiting transitions β2 → β1 (linear limit) and β2 → β3 (soliton limit). In both
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limits one of the Whitham equations converts into the Hopf equation, while the remaining
two merge into one for the Riemann invariant along a double characteristics. Such a special
structure of the Whitham equations makes it possible to formulate the following natural
matching problem for (18) [19].

Let the upper (x, t) half-plane be split into three domains : {(x, t > 0) : (−∞, x−(t))∪
[x−(t), x+(t)] ∪ (x+(t), +∞)} (see Fig. 2), in which the solution is governed by different
equations: outside the interval [x−(t), x+(t)] it is governed by the dispersionless limit (3)
while within the interval [x−(t), x+(t)] the dynamics is described by the Whitham equations
(18) so that the following matching conditions must be satisfied:

x = x−(t) : β2 = β1 , β3 = β
x = x+(t) : β2 = β3 , β1 = β

(25)

where β(x, t) is the solution of the Hopf equation (3) and the (free) boundaries x±(t) are
unknown at the onset.

)(tx

x

Whitham 

equations 

Dispersionless limit 

   Dispersionless limit 

)(tx

t

Figure 2: Splitting of the (x, t) - plane in the Gurevich – Pitaevskii problem

Remark. One can notice that formulated in this way, the GP problem contains an
implicit assumption about the spatial structure of the dispersive shock, namely, it identifies
the leading edge with the soliton and the trailing edge with the linear wave from the very
beginning. Of course, for the KdV equation this wave pattern can be inferred from previous
numerical simulations or from simple physical reasoning that owing to the negative sign of
the dispersion in the KdV equation, the longer waves must propagate with greater speed.
However, from mathematical point of view, such an assumption must be confirmed or rejected
by the actual solution so, strictly speaking, at this point we actually don’t know if x+ > x−.

For the initial data with a single breaking point, the conditions (25) uniquely define the
global solution βj(x, t) of the Whitham equations (18) (see [29]). It follows from Eq. (25) and
the limiting properties of the Whitham velocities (21), (23) that the free boundaries x±(t)
are determined by the double eigenvalues of the Whitham system for m = 0 (x = x−(t))
and m = 1 (x = x+(t)) and are found from the ordinary differential equations

dx−/dt = V2(β1, β1, β3)|x=x− = V1(β1, β1, β3)|x=x− ≡ V −(x−, t) , (26)
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dx+/dt = V2(β1, β3, β3)|x=x+ = V3(β1, β3, β3)|x=x+ ≡ V +(x+, t) (27)

where {βj = βj(x, t)} is the solution of the GP problem. We note that the curves x±(t) are
sometimes referred to as the phase transition boundaries since they separate the regions of
the zero-phase (external smooth flow) and the single phase (dispersive shock) solutions.

The local integrability of the Riemann system (18) is based on certain relationships be-
tween the characteristic velocities and has been established by Tsarev [20] who proposed
a generalisation of the classical hodograph method applicable to the hydrodynamic-type
systems with the number of field variables exceeding two. There is, however, a special
important case when the generalised hodograph transform degenerates and the Tsarev in-
tegrability scheme becomes redundant. This is the case of the decay of an initial step (2),
which implies that the modulation variables are the functions of s = x/t alone for t >> l,
where l is the characteristic width of the (smooth) initial step. In this case, the GP problem
has the asymptotic solution in the form of the centred simple wave in which all but one
Riemann invariants are constant:

β1 = u+ , β3 = u− , V2(u
−, β2, u

+) = s , (28)

or explicitly,
1

3
(u− + 2u+ + m∆)− 2

3

(1−m)m∆

E(m)/K(m)− (1−m)
=

x

t
, (29)

where ∆ = u−−u+ is the magnitude of the initial jump. Since the solution (29) represents a
characteristic fan it never breaks for t > 0 and therefore is global. The self-similar boundaries
s− and s+ of the dispersive shock are found from the solution (29) by putting in it m = 0
and m = 1 respectively:

s− = s(0) = u+ −∆ , s+ = s(1) = u+ +
2

3
∆ , (30)

One can see that s+ > s− so the assumed wave pattern with the leading soliton and trailing
linear wavepacket was indeed correct. Now the amplitude of the lead soliton is simply

a+ = 2(β3 − β1) = 2∆ , (31)

whereas the value of the wavenumber of the trailing wave packet follows from Eq. (20a)
evaluated for β2 = β1 which yields

k− =

√
2

3
(β3 − β1) =

√
2

3
∆ . (32)

We see that the simple form (28) of the analytic solution to the GP problem is possible
owing to the availability of the Riemann invariant form (18) which admits βj = constant
as an exact solution. The formulas (30) – (32) are obtained as consequences of this global
solution. So, since the existence of the Riemann invariants is due to complete integrability
of the original KdV equation one may conclude that the possibility of obtaining the “global”
formulas (30)–(32) relies on the integrability as well. This is not in fact so. In the next
section, we will show that these formulas can be drawn directly from the Whitham system
in “physical” variables using some very general properties of the Whitham systems subjected
to natural boundary (matching) conditions of the GP type. Actually, Eqs. (31), (32) will
be obtained without making use of the Riemann invariant form for the Whitham equations,
and bypassing their explicit integration.
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3 “Non-integrable” reformulation of the Gurevich -

Pitaevskii problem

3.1 Formulation

Let us reformulate the GP problem in terms of the Whitham system in its original, non-
diagonal form (15). Along with the set of natural “mathematical” variables u1, u2, u3 we will
use an equivalent set of “physical” variables ū, k, a which are connected with u1, u2, u3 by
means of Eqs. (14), (6), (7).

From here on we are not going to exploit subtle algebraic properties underlying the inte-
grability of (15). Instead, we will use some general properties of the system (15) connected
with its ”averaged” origin and distinguishing it from a general class of hyperbolic quasi-linear
systems of the third order. In all relevant cases we will indicate if the obtained relationships
could be extended to a more general context.

We start with the KdV modulation system in conservative form (see [16] for instance)

∂ū

∂t
+

∂

∂x

(
u2

2

)
= 0 ,

∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3
− u2

θ

2
+ uuθθ

)
= 0 ,

∂k

∂t
+

∂ω(ū, k, a)

∂x
= 0 .

(33)
It is not difficult to show that the averaging (13) over the period of the travelling wave
specified by Eqs. (4), (5) implies the following general relationships for the averaged variables
in the harmonic (m = 0) and soliton (m = 1) limits

F (u)|u2=u3 = F (u3); F (u)|u2=u1 = F (u1); (34)

In particular, this implies that ū(u1, u3, u3) = u3 and ū(u1, u1, u3) = u1 (this can also be
directly seen from the explicit expression (14)). Then, since u2 = u3 is equivalent to a = 0
and u2 = u1 to k = 0, the relationships (34) assume in the physical variables the form

F (u)|a=0 = F (ū); F (u)|k=0 = F (ū); (35)

The relationships (35) immediately imply that in both harmonic and soliton limits, u2 = ū2

hence the first modulation equation (33) turns into the Hopf equation for the mean value
ūt + ūūx = 0. It can also be readily show shown using (4), (13) that the same is true for the
second modulation equation (33) as well. Therefore:

i) the modulation system (33) admits exact reduction to a lower order system both for
a = 0 and k = 0. The limiting transitions a → 0 and k → 0 are, therefore, singular;

ii) the limiting transitions a → 0 and k → 0 provide two possible ways of passage to the
dispersionless limit in the modulation equations.

We note that the same conclusions have been inferred from the Riemann equations (22),
(24).

Of course, the described limiting behaviour is quite expected for a modulation system
since in both afore-mentioned limits the oscillations do not contribute into the averaging
hence the averaged (semi-classical) system must agree with non-oscillatory classical limit
of the original equation. It is also clear that this fact is not unique to the KdV equation
and must hold for other dispersive-hydrodynamics systems supporting the periodic travelling
waves with the quadratic behaviour of the potential curve G(u) (5) near its extrema. One
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can see, in particular, that this (generic for weakly dispersive systems) behaviour of the
potential curve guarantees exponential decay for the soliton solutions so that they do not
contribute into the averaging.

Now the GP natural boundary conditions (25) can be reformulated in terms of the match-
ing of the mean flow in the oscillatory region with the smooth external flow

x = x−(t) : a = 0 , ū = β ,
x = x+(t) : k = 0 , ū = β ,

(36)

where β(x, t) is defined by the classical limit (3). Using explicit expression for ū (14) and the
relationships (17) one can easily see that the conditions (36) indeed equivalent to (25). For
the particular case of the decay of an initial discontinuity (2), the conditions (36) assume
the form

x = s−t : a = 0 , ū = u− ,
x = s+t : k = 0 , ū = u+ .

(37)

We note that when passing from (36) to (37) we have made an implicit assumption about
the structure of the dispersive shock by implying that s+ > s−.

The boundaries x±(t) of the modulation solution are defined by Eqs. (26), (27) in terms
of the characteristic velocities of the modulation systems where either m = 0 (trailing edge)
or m = 1 (leading edge). This definition, of course, does not rely on the existence of the
Riemann invariants and must hold in general case. This can be explained in the following way.
It is clear that in order to provide continuous matching of the solutions of two (consistent)
quasilinear hyperbolic systems of different order (the Whitham system and the Hopf equation
in our case) the matching lines must necessarily be the multiple characteristics for the system
with a higher order. Thus, the natural matching conditions (36) must be supplemented with
the definition of the boundaries x±(t) in terms of the double eigenvalues of the modulation
system (see [33] for a detailed description of the characteristics behaviour in the GP problem).

We represent the Whitham system (15) in a generic quasi-linear form

yt + A(y)yx = 0 , (38)

where y = (ū, k, a)T and A(y) is the coefficient matrix. As is well known (see for instance
[34], [35]) the quasilinear system (38) can be represented in a characteristic form

3∑
j=1

b
(m)
j

dmyj

dt
= 0 ,

dm

dt
≡ ∂

∂t
+ Vm

∂

∂x
, m = 1, 2, 3 , (39)

where the characteristic velocities Vj(y) are the eigenvalues of the matrix A(y), and b(m)(y)
is its left eigenvector corresponding to m-th eigenvalue: b(m)A = Vmb(m). We assume that
the characteristic velocities V1(y) ≤ V2(y) ≤ V3(y) are real for the solutions of our interest
so the system (38) is hyperbolic (of course, for the KdV equation, the hyperbolicity of
the Whitham system is a proven fact [36] but in our, “non-integrable” approach it is an
assumption).

It can be readily seen using an equivalent characteristic representation (39) in “mathe-
matical” coordinates, y 7→ y∗ = (u1, u2, u3), that the fact that the modulation system (38)
admits exact reductions for u2 = u3 (a = 0) and u2 = u1 (k = 0)implies that the multiple
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roots of the potential curve G(u) necessarily correspond to multiple eigenvalues of the av-
eraged system. This, again, is a consequence of the properties of the Whitham averaging
(13). It follows from the characteristic velocities ordering that the double eigenvalues can
be either V2 = V3 or V2 = V1. The remaining single eigenvalue in both cases is ū since the
Hopf equation is an exact reduction of the Whitham system in both limits. If the explicit
expressions for the characteristic velocities are known, the correspondence between the dou-
ble roots of the travelling wave potential function G(u) and the double eigenvalues of the
averaged system is established directly (see (21), (23)). Alternatively, one can perform an
asymptotic analysis of the modulation system for m ¿ 1 (a ¿ 1) and (1−m) ¿ 1 (k ¿ 1)
and establish the sought correspondence. Either way, even without additional analysis it is
clear that, due to the accepted ordering of Vj’s, the double eigenvalues should be identified
with the values of the middle characteristic velocity V2 in the harmonic and the soliton lim-
its. So we define the boundaries x±(t) of the KdV modulation solution by the characteristic
equations (cf. (26), (27))

dx−/dt = V2(ū, k, 0)|x=x− , dx+/dt = V2(ū, 0, a)|x=x+ . (40)

For the decay of an initial discontinuity Eqs. (40), in view of (37), assume the form

s− = V2(u
−, k−, 0) , s+ = V2(u

+, 0, a+) (41)

where the values a+ and k− are to be found from the solution of the GP problem.
In the subsequent sections we will find simple effective expressions for double characteris-

tics of the Whitham system using physical variables ū, k, a and bypassing the full eigenvalue
analysis. Moreover, we will show that the edge parameters a+, k− and hence s+, s− can be
found from a certain set of conditions not involving the global integration of the Whitham
equations. As a result, we will present a way to “fit” the dispersive shock into the solution
of the dispersionless limit equations without the detailed analysis of its internal oscillatory
structure in the same manner as the traditional shock is embedded in the solution of the
inviscid equations of ideal gas. As will follow from the construction, the availability of these
conditions does not depend on the existence of the Riemann invariants for the Whitham
system.

3.2 Trailing edge

We start with the determination of the trailing edge speed s− for the problem of the decay of
an initial discontinuity (2) in the KdV equation using the reformulation of the GP problem
in physical variables made in the previous subsection. The trailing edge is defined for the
solution of the GP problem by the characteristic where a = 0. Our analysis below will be
based on the special features of the Cauchy data prescription on characteristics (see e.g.
[35]).

It follows from the characteristic form (39) that the differentials of the modulation vari-
ables along the i-th characteristic are not independent but related by means of the expression

b
(i)
1 (ū, k, a)diū + b

(i)
2 (ū, k, a)dik + b

(i)
3 (ū, k, a)dia = 0 . (42)

Let a = 0 on this characteristic (which necessarily implies that it is a double characteristic
– see explanation in the previous section). Since a = 0 must be an exact solution of the
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modulation system, the ordinary differential equation

b
(i)
1 (ū, k, 0)diū + b

(i)
2 (ū, k, 0)dik = 0 (43)

necessarily represents a characteristic equation for the reduction as a = 0 of the full mod-
ulation system. This equation can always be integrated using an integrating factor to give
the relationship between admissible values of ū and k on the characteristic, i.e:

Φi(ū, k) = C0 , (44)

C0 being constant of integration. The point is that this relationship is local, so it does not
depend on the specific solution under study but is determined (up to a constant) only by
the coefficients of the Whitham system evaluated for a = 0. Therefore, the integral (44)
can be derived, bypassing the technically involved route via full characteristic form (42), by
a direct substitution of the ansatz k = k(ū) into the reduction of the Whitham system for
a = 0. We also remark that the value C0 represents, in fact, a Riemann invariant for this
2× 2 reduction. Of course, the existence of this Riemann invariant does not depend on the
existence of the Riemann invariants for the full Whitham system (15).

It follows from the relationship (35a) and Eqs. (6), (14) considered for u2 = u3, that

lim
a→0

u2 = ū2 , lim
a→0

ω = lim
u2→u3

ck = kū− k3 ≡ ω0(ū, k) . (45)

Obviously, the second expression in Eq. (45) represents the KdV linear dispersion relation,
where the linearization is made about the slowly varying mean background ū(x, t). Now we
can immediately obtain the reduction of the Whitham equations (33)

a = 0 , ūt + ūūx = 0 , kt + (ω0(ū, k))x = 0 . (46)

The equations (46) form a closed system. We emphasize that the system (46) is not an
asymptotic system, it is an exact reduction of the full modulation system. Of course, the
reduction (46) is equivalent to the limiting diagonal system (22) (which is readily verified by
a direct calculation) but here it was derived directly from the original modulation equations
(33) without using the Riemann invariant form. Actually, the limit (46) has a clear meaning
of the formal modulation system for a zero-amplitude wave packet propagating on a slowly
varying background flow ū and can be postulated on the physical level of reasoning directly,
even without turning to the Whitham equations (33) and the formal derivation of the linear
dispersion relation (45) for modulated waves via nonlinear travelling wave solution. Now,
looking for the integral k(ū) of Eqs. (46) we arrive at the ordinary differential equation
(which is an equivalent of Eq. (43)),

dk

dū
=

∂ω0/∂ū

ū− ∂ω0/∂k
, (47)

which, upon substituting the linear dispersion relation from (45) is readily integrated to give

k =

√
2

3
(ū + C1) . (48)

Thus Eq. (48) is a relationship between values of k and ū on the characteristic of the Whitham
system on which a = 0 (there is no relation to any particular global solution yet).

14



Now we apply the relationship (48) to the GP problem (37), where the characteristic
where a = 0 is associated with the trailing edge x = s−t. First, we find the constant C1 from
the second boundary condition (37) which, in the space of the field variables prescribes k = 0
when ū = u+ (this condition does not contain the amplitude a so it must hold everywhere in
the plane k = 0 of the three-dimensional space with the coordinates {ū, k, a}, including the
line (ū, 0, 0) as well). Thus C1 = −u+. Then, putting ū = u− in (48) we obtain the value of
the wavenumber at the trailing edge of the dispersive shock x = s−t,

k− =
√

2∆/3 , (49)

where ∆ = u− − u+ is the jump across the dispersive shock. This agrees with the value of
k− given by Eq. (32) obtained as a consequence of the full modulation solution (61).

Now we find the self-similar co-ordinate (the speed) of the trailing edge s− which, ac-
cording to (40), is calculated as the double characteristic velocity of the Whitham system
for the solution of the GP problem. It readily follows from the limiting system (46), that its
characteristic velocities are

ū ,
∂ω0

∂k
(ū, k) = ū− 3k2 . (50)

The latter, of course, is the group velocity of the linear wave packet propagating on the
varying mean flow background ū(x, t), which is perfectly reasonable from physical point of
view. Now we need to identify one of the velocities (50) with the double eigenvalue V2(ū, k, 0)
in (41a) to evaluate the trailing edge speed. It is clear from physical reasoning that this must
be the linear group velocity. Later we will present additional formal conditions eliminating
any possible ambiguity in the identification of the double eigenvalue. Of course, for the
KdV case it is not difficult to show using explicit formulas (14), (6) that expressions (50)
are equivalent to those obtained from the Riemann form of the Whitham equations in the
harmonic limit (see Eq. (21)) and our identification V2(ū, k, 0) = ∂ω0/∂k is indeed correct.
Thus, we get from Eq. (41a) for the trailing edge

s− =
∂ω0

∂k
(u−, k−) . (51)

In this form the equation of the trailing edge can be interpreted as a kinematic bound-
ary condition for linear modulated waves and can be postulated as a part of the problem
formulation.

Setting (50), (49) into (51) we obtain for the trailing edge

s− = u− − 3(k−)2 = u+ −∆ . (52)

This value, again, agrees with the full solution of the GP problem (see Eq. (30)).

3.3 Leading edge

In principle, one could proceed with the leading edge in the same fashion as we did with the
trailing edge i.e. by indirect integration of the full characteristic 3-form along a characteristic
where k = 0, where this form degenerates into

b
(i)
1 (ū, 0, a)diū + b

(i)
2 (ū, 0, a)dia = 0 . (53)
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That would imply finding the integral a(ū) for the exact zero-wavenumber reduction of the
modulation system. Such a reduction, however, must include full modulation equation for the
soliton amplitude, which can be obtained without too much trouble for the KdV equation
but is not readily available for more complicated systems, especially if the solitary wave
solution can not be found explicitly. One should remark that the “obvious” universal soliton
amplitude equation at + cs(a)ax = 0 (see [34], Sec. 16.6) is correct only if the background
flow ū is constant. The full amplitude equation for solitary waves (see [37], [38] for instance)
takes into account variations in all modulation parameters and inevitably contains the term
proportional to ūx which is vital for deriving the characteristic equation (53). As a result,
unlike the wave number conservation law, the full soliton amplitude equation does not have an
explicit universal form and a straightforward application of the method proposed in Section
3.2 would be essentially equivalent to the consideration of the general characteristic equation
(42) in the soliton limit. For “real” non-integrable systems that could be a very difficult
technical task. This complication, however, can be bypassed by introducing a conjugate
wavenumber defined for the KdV as

k̃(u1, u2, u3) = π




u2∫

u1

du√
G(u)



−1

=
π

2
√

3

(u3 − u1)
1/2

K(m′)
, m′ = 1−m (54)

– instead of the amplitude a and the ratio Λ = k/k̃ instead of the original wavenumber k
(6). The new set of modulation variables we are going to use is (ū, Λ, k̃). It is readily seen
that the soliton limit k = 0 (m = 1) corresponds to Λ = 0, k̃ =

√
as/3 = O(1) in new

variables. On the other hand, in the harmonic limit a = 0 (m = 0) one has k̃ = 0. So k̃
indeed plays the role analogous to the amplitude. For further convenience, we rewrite the
matching conditions (37) using new variables

x = s−t : k̃ = 0 , ū = u− ,
x = s+t : Λ = 0 , ū = u+ .

(55)

Now, as was shown in Section 3.1, the two first averaged conservation laws (33) in the soliton
limit reduce to the Hopf equation:

Λ = 0 : ūt + ūūx = 0 . (56)

To obtain the equation for k̃ in the soliton limit we set the new variables in the wave number
conservation law in (33) to obtain:

k̃Λt + ω̃Λx + Λ(k̃t + ω̃x) = 0 , (57)

where ω̃ = ω̃(ū, Λ, k̃) = k̃c is the conjugate frequency.
Now, using the arguments identical to those in the previous subsection we infer that

if Λ = 0 on some characteristic then the values of k̃ and ū on this characteristic must be
connected by a local relationship k̃(ū) which must not depend on the particular solution.
We consider equation (57) in the small vicinity of the mentioned characteristic where Λ ¿ 1.
Then, using k̃ = k̃(ū) and Eq. (56) for the leading order, we obtain an asymptotic equation

∂Λ

∂t
+

ω̃s

k̃

∂Λ

∂x
+

Λ

k̃

∂ū

∂x

{
dk̃

dū

(
∂ω̃s

∂k̃
− ū

)
+

∂ω̃s

∂ū

}
= O

(
Λ

∂Λ

∂x

)
, (58)
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where the reduction ω̃s(ū, k̃) = ω̃(ū, 0, k̃) can be called a soliton dispersion relation. Since
the sought characteristic integral k̃(ū) must not depend on the way Λ tends to zero, the
expression in the brackets (which does not depend on Λ) must be identically zero and Eq. (58)
splits into

dk̃

dū
=

∂ω̃s/∂ū

ū− ∂ω̃s/∂k̃
(59)

and
∂Λ

∂t
+

ω̃s

k̃

∂Λ

∂x
= O

(
Λ

∂Λ

∂x

)
. (60)

Eqs. (59), (60) have been obtained in [39] using somewhat more particular arguments. One
can not help noticing that the equations (47) and (59) for the characteristic integrals k(ū)
(linear characteristic) and k̃(ū) (soliton characteristic) are identical in terms of the corre-
sponding dispersion relations ω0(ū, k) and ω̃s(ū, k̃). The latter, however, is yet to be found.

It follows from (60), (56) that in the soliton limit the characteristic velocities of the
Whitham system are

ω̃s

k̃
, ū . (61)

One can see from the definition of ω̃s that the characteristic velocity ω̃s/k̃ coincides with
the soliton speed cs(ū, k̃) = c(u1, u1, u3), which is, of course, expected. We identify cs with
the double characteristic velocity V2 = V3 of the full Whitham system in the soliton limit,
then the classical speed ū would correspond to V1. The conditions eliminating possible
ambiguity in the characteristic velocity identification for the reduced Whitham system will
be presented later. Now, similarly to the trailing edge case, the definition of the leading edge
in Eq. (41) can be represented as a kinematic boundary condition for the lead soliton (cf.
(51) )

s+ = cs(u
+, k̃+) , (62)

where k̃+ = k̃(u+). One can see that in this form the definition of the leading edge can be
adopted as a part of the problem formulation.

At this point, one may take advantage of the explicit expressions (14), (6) for ū(u1, u2, u3),
k̃(u1, u2, u3) and c(u1, u2, u3) to find ω̃s(ū, k̃) and solve Eq. (59) using the matching conditions
(55). Such an attractive route, however, might not be readily (if at all) available for actual
non-integrable systems, where the physical modulation parameters often can not be expressed
in a simple way in terms of the roots of the potential curve. So we proceed with some
apparently ”roundabout” way, which would be more universally applicable to other systems.

We observe that k̃ and ω̃ = k̃c defined by (54) and (6a) as functions of the roots u1, u2, u3

can be viewed as the wavenumber and the frequency in the conjugate travelling wave associ-
ated with the same set of roots uj as in Eq. (4) but inverted potential curve (now oscillations
occur between the roots u1 and u2):

(ũθ̃)
2 = G(ũ) , ũ(θ̃ + 2π/k̃) = ũ(θ̃) . (63)

where ũ is new field variable and θ̃ = x̃− ct̃ is a new travelling phase associated with “old”
phase velocity c = (u1 + u2 + u3)/3. Eq. (63) can be obtained from (4) by the change of
variables u 7→ ũ, x 7→ ix̃, t 7→ it̃, which corresponds to a mere change of the dispersion sign
in the KdV equation (1),

ũt̃ + ũũx̃ − ũx̃x̃x̃ = 0 . (64)
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As a matter of fact, in our particular KdV case the functions u(θ) and iũ(−iθ̃) defined for the
same set of roots uj represent the same analytic (elliptic) function in the complex x-plane
with the periods 2π/k and 2πi/k̃ along the real and the imaginary axes. Generally, of course,
this is not the case, so we are not going to take advantage of the analytic properties of u(θ)
here. Instead, we observe that the soliton limit for the original travelling wave equation (4)
(u2 → u1) corresponds to the harmonic limit for the conjugate equation (63). Therefore, the
relation between ω̃s and k̃ can be obtained as a linear dispersion relation for the conjugate
KdV equation (64), i.e.

ω̃s = k̃ < ũ > +k̃3 , (65)

where the brackets < ... > denote the averaging over the conjugate family (63) (cf. (13))

< F > (u1, u2, u3) =
k̃

π

u2∫

u1

F (ũ)√
G(ũ)

dũ . (66)

It is not difficult to show by a direct calculation that < F > (u1, u1, u3) = F (u1) . Then, it
follows from Eq. (34) that for u2 = u1 (k = 0) we have

< F (u) > |k=0 = F (u)|k=0 (67)

and, in particular, < u >= ū. Again, similarly to Eqs. (34), (35) this property is due to
the quadratic behaviour of the potential curve G(u) (5)in the vicinity of the double root
corresponding to the soliton limit and is not confined to the KdV example alone.

It follows from Eq. (67) that ω̃s(< u >, k̃) = ω̃s(ū, k̃) and therefore, the soliton dispersion
relation can be obtained from the original linear dispersion relation ω0(ū, k) by the formal
change

k 7→ ik̃ , ω0 7→ iω̃0 (68)

In other words, the soliton dispersion relation is found as

ω̃s(ū, k̃) = −iω0(ū, ik̃) = k̃ū + k̃3 . (69)

Of course, in view of k̃(u1, u1, u3) =
√

as/3 and ū(u1, u1, u3) = u1, Eq. (69) is equivalent
to the classic relationship (11) between the speed and the amplitude of the KdV soliton
but here it was obtained in terms of the linear dispersion relation so the outlined procedure
can be easily generalised to more complicated systems, where the explicit analysis of the
travelling wave solution is not as readily available as in the KdV case.

The possibility of expressing the soliton speed in terms of the linear dispersion relation
might look somewhat surprising but can be explained by the following simple argument (see
[40]): the value of u in the soliton tail, which moves with the same speed as the rest of the
soliton, is very small, so one can, in principle, infer this speed from the linear theory.

Remark. We emphasize that the obtained relationships between the original and the
conjugate averaged variables essentially represent algebraic identities between integrals of
the form (13) and (66) associated with a given Riemann surface µ2 = G(u) and do not imply
any connection between the spatio-temporal modulation dynamics for the original and the
conjugate equations (1) and (64).

Now setting Eq. (69) into Eq. (59) we obtain after elementary integration

k̃ =

√
2

3
(C2 − ū) , (70)
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where C1 is constant of integration. We emphasize that Eq. (70) (as well as Eq. (48) in the
linear case ) is a general relationship between values of k̃ and ū on the characteristic of the
Whitham system where Λ = 0 and is not tied to any particular global solution.

Now we apply the relationship (70) to the GP problem (55), where the characteristic
on which Λ = 0 is associated with the leading edge x = s+t. First, we find the constant
C2 from the first boundary condition (55) which prescribes k̃ = 0 when ū = u− in the
three-dimensional space with the coordinates {ū, Λ, k̃}. This condition does not contain Λ
so it must hold on the line {ū, 0, 0} as well and, therefore, can be applied to (70). Thus
C2 = u−. Then, putting ū = u+ in (70) we obtain the value of the conjugate wavenumber
at the trailing edge of the dispersive shock s = s+:

k̃+ =
√

2∆/3 . (71)

We observe that, for the KdV equation k̃+ = k− (see (49)). Of course, this is not a general
relationship although one can expect significant symmetry between the expressions for k−

and k̃+ in other dispersion-hydrodynamic systems.
The speed of the leading edge (62) is now calculated with the aid of the conjugate

dispersion relation (69) as

s+ =
ω̃s(u

+, k̃+)

k̃+
= u+ +

2

3
∆ , (72)

which agrees with the global solution of the full Whitham system (see Eq. (30) ). The
KdV soliton amplitude is connected with its velocity by the relation (12), which in our case
assumes the form s+ = u++a+/3. Hence the lead soliton amplitude is a+ = 3(s+−u+) = 2∆,
which, again, agrees with the full modulation solution.

3.4 “Entropy” conditions.

One can see that the valid solution to the GP problem with u− > u+ must satisfy the
inequalities

s− < u− , s+ > u+ , s+ > s− , (73)

These inequalities ensure that the “external”, Hopf characteristics x = u−t and x = u+t
starting from the x-axis on either side of the dispersive shock region intersect its edges when
continued in the direction of increasing t thus transferring the initial data into the dispersive
shock zone s−t < x < s+t (see Fig. 3). The inequalities (73) represent a dispersive-
hydrodynamic analog of the classical gas- dynamic entropy conditions [1]. As a matter of fact,
these inequalities are redundant when the explicit solution of the GP problem is available
(one can see that conditions (73) are indeed satisfied by the boundaries of the solution (28)).
However, in the absence of the full modulation solution, and without physical assumptions
about the spatial structure of the dispersive shock there is an ambiguity in the determination
of the edges using the construction proposed in Sections 3.2, 3.3. This ambiguity has been
pointed out when we made an identification of the leading and trailing edges with the soliton
and the harmonic wave in the natural boundary conditions (37) and when we identified linear
group velocity and the soliton velocity with the double eigenvalues of the full Whitham
system in respective limits. One may speculate about the possible analog of the entropy for
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Figure 3: Classical (Hopf) characteristics transfer initial data into the Whitham zone

dispersive hydrodynamics. An attractive candidate is given by the integral

S ∝
x∫

−∞

kdx′ ≥ 0 . (74)

For the KdV dispersive shock the positive function k(x, t) is supported on the interval s−t <
x < s+t and one can see that the integral (85) increases when crossing the dispersive shock.

3.5 Geometric interpretation

We now place the obtained relationships in a more general context. The quasilinear hyper-
bolic system of the third order (38) admits the centred expansion fan solution

F1(ū, k, a) = I1 , F2(ū, k, a) = I2 , Vk(ū, k, a) = x/t , (75)

I1, I2 being constants and Vk is one of the characteristic velocities so that the solution
satisfied the GP matching conditions (37) (we know that for the KdV equation this is V2 –
see Eq. (28)). The two first expressions in (75) define, for given I1, I2, two integral surfaces
in the space of the field variables ū, k, a with k > 0, a > 0 (physical restrictions). Their
intersection yields the solution curve {Γ(s; I1, I2) : ū = ū(s) , k = k(s) , a = a(s)}, where
the parameter s = x/t changes on the interval [s−, s+] so that a(s−) = 0 and k(s+) = 0.

We now briefly outline how one proceeds with this geometric construction. First we
observe that, the endpoints of the solution curve Γ(s) lie on the lines of intersection of two
integral surfaces parametrised by I1 and I2 with the coordinate planes a = 0 and k = 0. It
follows from (75) that there are four these lines: F1,2(ū, k, 0) = I1,2 and F1,2(ū, 0, a) = I1,2 .
Since the Whitham system admits exact 2 × 2 hyperbolic reductions for a = 0 and k = 0,
the equations of the intersection lines can be obtained directly, as the characteristic integrals
(Riemann invariants) of the reduced systems, i.e as solutions in the form k(ū) and a(ū)
respectively. The constants I1,2 are then expressed in terms of the initial parameters u−, u+

by applying the boundary conditions (37) to the characteristic integrals as it was done in
Sections 3.2, 3.3. Then, using the kinematic conditions (51), (62), one evaluates the speeds
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of the trailing and the leading edges and only after that, the valid pair of the endpoints is
selected by the “entropy” inequalities (73).

Essentially, this general construction has been realised in Sections 3.2, 3.3 by using the
arguments from the characteristics theory and introducing a different (conjugate) basis of
the field variables when considering the leading edge.

4 Dispersive shocks in simple-wave led dispersive equa-

tions

It is clear that the presented construction is not restricted by the KdV equation alone, and
can be naturally generalised to the ”KdV-like” nonlinear dispersive systems possessing the
basic properties necessary for the Whitham averaging. We represent the governing equation
in the form

ut + V (u)ux + K3[u] = 0 , (76)

where V (u) is a real function and K3 is a real differential operator of the third order with
respect to spatial or mixed derivatives such that the equation (76) has real linear dispersion
relation ω = ω0(k). We assume the following general properties for the equation (76):

(i) it admits the hyperbolic classical (dispersionless) limit obtained formally by introduc-
ing the stretched independent variables x′ = εx, t′ = εt and tending ε → 0 while assuming
finiteness of the derivatives with respect to x′ and t′,

ut′ + V (u)ux′ = 0 . (77)

In terms of the linear dispersion relation this property implies ω0 ∼ k for k ¿ 1 and is
associated with weakly dispersive waves.

(ii) it possesses at least two conservation laws;
(iii) it supports periodic travelling waves parametrised by three independent integrals of

motion such that the travelling wave solution allows for a harmonic (zero-amplitude) and a
solitary wave (zero wavenumber) limits. We will assume the following KdV-like behaviour for
the “potential” function G(u) in the ordinary differential equation (uθ)

2 = −G(u) specifying
the travelling wave solution (cf. Eq. (5)): a) The function G(u) has at least three real zeros
u3 ≥ u2 ≥ u1 such that the oscillations occur between u2 and u3 (the latter is assumed
just for sake of definiteness); b) In both nearly linear (u3 − u2)/(u3 − u1) ¿ 1 and nearly
soliton (u2− u1)/(u3− u1) ¿ 1 configurations the generic (quadratic) asymptotic behaviour
is assumed:

G(u) = (u− u1)(u− u2)(u3 − u)G∗(u) , (78)

where

G∗(u) = O(1) for

∣∣∣∣
u− u2

u3 − u1

∣∣∣∣ ¿ 1 (79)

so that the limiting transitions (34), (67) for the mean values can be easily shown to take
place;

(iv) the corresponding Whitham system of the third order (two averaged “hydrodynamic”
conservation equations plus the wave number conservation law) is hyperbolic for the solutions
under study.
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The equations of the form (76) possessing the mentioned properties (i) - (iv) may be
characterised as simple-wave led weakly dispersive. We note that all assumptions except (iv)
can usually be explicitly verified for a specific system. We partially address the hyperbolicity
issue (iv) in the end of this section.

We consider initial data in the form of an arbitrary step

u0(x) = u− for x < 0 ; u+ for x > 0 , . (80)

and assume that the dispersive shock transition for t > 0 can be modelled by the centred
expansion fan solution to the Whitham equations. Now one can see that all arguments
used in the derivation of the dispersive shock conditions for the KdV equation in a “non-
integrable” reformulation hold for the case being considered: one just needs to replace the
Hopf “dispersionless” speed with V (u) and the KdV linear dispersion relation with the
dispersion relation corresponding to (76). So we present only the final relationships without
making any assumptions about mutual position of the soliton and harmonic edges.

First we introduce the linear dispersion relation for Eq. (76) by considering an infinites-
imal perturbation of a mean level ū

u ≈ ū + u1e
i(kx−ωt) , u1 ¿ 1 , (81)

which yields ω = ω0(ū, k) to leading order. Let the dispersive shock transition be confined
to an interval s−t ≤ x ≤ s+t. We introduce two sets of parameters {k−, s−; k̃+, s+}1 and
{k̃−, s−; k+, s+}2 . The set {k−, s−; k̃+, s+}1 is associated with the negative dispersion wave
pattern when the soliton appears at the leading edge of the dispersive shock. We define
this set in the following way. First we find two functions k(ū) and k̃(ū) from the ordinary
differential equations

dk

dū
=

∂ω0/∂ū

V (ū)− ∂ω0/∂k
, k(u+) = 0 , (82)

dk̃

dū
=

∂ω̃s/∂ū

V (ū)− ∂ω̃s/∂k̃
, k̃(u−) = 0 . (83)

Then the values of the wavenumber at the trailing edge k− and the lead soliton conjugate
wavenumber k̃+ are found as k− = k(u−), k̃+ = k̃(u+). By definition, they must be real.
The speeds of the dispersive shock edges are found from the expressions

s− =
∂ω0

∂k
(u−, k−) , s+ =

ω̃s(u
+, k̃+)

k̃+
, (84)

where ω̃s(ū, k̃) = −iω0(ū, ik̃). The second set of parameters {k̃−, s−; k+, s+}2 associated
with the reversed, positive dispersion pattern, is obtained from the same system (82) –
(84) in which one replaces “−” with “+” which is equivalent to a respective replacing of
the parameter subscripts directly in the set {·}1. The valid set is selected by the reality
condition for the wavenumber and by the “entropy” conditions,

s− < V (u−) , s+ > V (u+) , s+ > s− . (85)

In principle, the solution can switch between the sets {·}1 and {·}2 depending on the initial
conditions. “Switching” of the edge parameter sets implies the reversion of the spatial
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structure of the dispersive shock. Another possibility is that for some domain of the initial
data (u+, u−) both sets {·}1 and {·}2 fail to satisfy either reality or “entropy” condition. This
would imply that a genuine global solution to the dispersionless limit equations is available
for such initial data and no breaking occurs. This solution, of course, is a classical rarefaction
wave.

We also briefly address the issue of the modulational stability. Our main mathematical
assumption in this paper is that of the hyperbolicity of the Whitham system for the solutions
under study. This ensures global modulational stability of the dispersive shock. For non-
integrable dynamics, establishing the region of hyperbolicity for the modulation system is
a separate, often technically involved, problem. However, in a more restricted context of
the dispersive shock description, some effective necessary conditions of global modulational
stability can be formulated in the following way.

We evaluate the the frequency and conjugate frequency at the respective boundaries
of the dispersive shock transition using the solutions of the ordinary differential equations
(82), (83). We denote these frequencies as ω0[u

−, u+] and ω̃s[u
−, u+]. Then, given the

strict hyperbolicity of the dispersionless limit, the necessary criterion for global modulational
stability of the dispersive shock is given by the conditions

Im ω0[u
−, u+] = 0 , Im ω̃s[u

−, u+] = 0 , (86)

which are equivalent to the natural requirement for the speeds s−, s+ to be real. The
conditions (86) define the domain D in the initial data plane (u+, u−) which corresponds to
modulationally stable solutions. It is not clear if the formulated criterion is the sufficient
condition so the obtained region D[u+; u−] could be corrected by some additional conditions.

We note that, for non-integrable equations some additional restrictions on admissible
values of initial data can occur due to existence conditions for the single-phase travelling wave
solutions, for instance, due to the presence of the upper bound for the soliton amplitude.

Example: Decay of a step problem for the defocusing mKdV equation
As the next simplest example of an effective construction of the dispersive shock transition

in the simple-wave led dispersive equation we consider the step resolution problem for the
defocusing mKdV (mKdV(d)) equation

ut − u2ux + uxxx = 0 , (87)

u(x, 0) = u− for x < 0 ; u+ for x > 0 . (88)

Equation (87) is an exactly integrable equation and can be treated by the IST method. It
belongs to the defocusing NLS hierarchy (self-adjoint spectral operator) and its Whitham
system is known to be hyperbolic [14]. Actually, the modulation system for mKdV(d)
equation in Riemann invariants is identical to that for the KdV equation (this fact had been
established in [41] by a direct calculation before the methods of finite-gap modulation theory
became available). That, however, does not imply that the physical modulation solutions for
KdV and mKdV(d) in terms of initial data u+ and u− will be the same or even have same
properties. We will demonstrate now how major qualitative and quantitative characteristics
of the modulation solution can be derived from the dispersive shock conditions (82) – (84)
without derivation of the Whitham system and analysis of its full solution.
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We infer from (87) that V (ū) = −ū2, ω0(ū, k) = −kū2 − k3. Then using (82) – (84) we
readily obtain two possible sets for the edge parameters:

k−1 = k̃+
1 =

√
2

3
(u2

+ − u2−) , s−1 = u2
− − 2u2

+ , s+
1 = −1

3
u2

+ −
2

3
u2
− , (89)

k+
2 = k̃−2 =

√
2

3
(u2− − u2

+) , s−2 = −1

3
u2
− −

2

3
u2

+ , s+
2 = u2

+ − 2u2
− . (90)

There are three cases to consider.
(i) Let u2

+−u2
− > 0. Then the second set (90) must be discarded by failure to satisfy the

reality condition for the wavenumbers. The first set (89) satisfies both the reality condition
and the “entropy” conditions. Thus, for u2

+− u2
− > 0 one gets the dispersive shock with the

negative dispersion wave pattern. The width of the dispersive shock is (s+ − s−)t = 5
3
(u2

+ −
u2
−)t. The amplitude of the lead soliton is found from the relationship between the velocity

and the amplitude for the mKdV(d) solitons moving on the background ū: cs = −ū2 + as/3.
Since by the kinematic condition (62) cs(u

+, a+) = s+ one gets a+ = 2(u2
+−u2

−). One should
also note that mKdV(d) equation (87) can have soliton solutions of different polarities for
u, depending on the initial conditions.

(ii) u2
+ = u2

−, which implies u+ = u− (trivial case) or u+ = −u−. The width of the
dispersive shock becomes zero, which implies that symmetric initial discontinuity with u+ =
−u− does not break and propagates as a whole with the velocity −u2

+. This corresponds to
the exact solution of the mKdV(d) equation in the form of a smooth kink (in the Whitham
approximation its width is equal to zero, hence the propagating discontinuity).

(iii) If u2
+−u2

− < 0, the first set of parameters (89) fails to satisfy the reality condition for
the wavenumbers while the second set (90) does not pass the “entropy” test. This implies
that there exists a genuine global solution to the dispersionless limit which does not require
a dispersive shock. This solution is a rarefaction wave x/t = −u2 confined to the interval
−u2

−t 6 x 6 −u2
+t.

Of course, these results could have been obtained with the aid of Miura transform which
maps solutions {u}KdV 7→ {−u2}mKdV (d). For the modulation solution this implies in the
current notations a simple change (u+; u−)KdV 7→ (−u2

+; −u2
−)mKdV (d). Our aim here,

however, was to demonstrate effectiveness of the dispersive shock conditions rather than to
study particular equation.

5 Bi-directional dispersive hydrodynamics

5.1 General setting and formulation of the problem

We now generalise the obtained results to a physically important case of 2 × 2 strictly
hyperbolic systems modified by weak dispersion. We represent such a system in a symbolic
form

φt = K4(φ, φx, φxx, φxt . . . ) . (91)

where φ is 2-vector, K4 is vector differential operator of fourth order with respect to spa-
tial/mixed derivatives so that the system (91) has real linear dispersion relation ω = ω0(k)
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so that ω0 → k as k ¿ 1 (weak dispersion). We assume that the system (91) has at least
three independent conservation laws

∂Pj

∂t
+

∂Qj

∂x
= 0 , j = 1, 2, 3. (92)

For convenience of explanation we associate two conserving densities P1,2 with the “gas”
density ρ and the momentum ρu and assume that the dispersionless limit of (91) has the
form of the gas-dynamic Euler equations for the isentropic ideal gas

ρt + (ρu)x = 0 , (ρu)t + (ρu2 + p(ρ))x = 0, (93)

where p(ρ) is the pressure in the corresponding gas dynamics. It should be emphasized that
generally speaking the assumption about the gas dynamic ‘core’ of the system (91) is just
a convenient (and in many cases physically relevant) way to convey our ideas – actually
there is no need to restrict oneself with this particular form of the dispersionless limit. The
only property of the dispersionless limit system which will be used below is that it can be
represented in the Riemann form (which is always the case for quasilinear 2 × 2 systems).
So actually one should put quotation marks for the “density”, “velocity” and “pressure” in
this section.

As earlier, we assume that system (91) supports the single-phase periodic travelling wave
solutions for φ = (ρ, u):

φ(x, t) = φ(x− ct) , φ(θ + 2π/k) = φ(θ) , (94)

which are parametrised by four constants, say ρ̄, ū, k, a, where ρ̄ and ū are the mean density
and mean velocity respectively, and k and a are, as usual, the wavenumber and the amplitude.
We assume that the potential curve G(λ) in the travelling wave equation λ2

θ = −G(λ) has
generic properties outlined in Section 4 (see (78), (79)) such that the solution (94) admits
the limiting transitions to a linear wave as a → 0 and to a solitary wave as k → 0.

The described class of systems (91) is quite broad and includes some known integrable
models such as defocusing nonlinear Schrödinger equation and Kaup-Boussinesq system [42],
[43]. As physically important examples of bi-directional non-integrable systems that pos-
sess the above general properties (including the gas dynamics form of the dispersionless
limit) one can indicate the Green-Naghdi system for fully nonlinear shallow water gravity
waves [44] and its multi-layer generalisations [24], the systems for nonlinear ion-acoustic and
magnetoacoustic waves in collisionless plasma [45], [16], and many others.

We consider initial data for the system (91) in the form of a step for the variables ρ and
u:

t = 0 : ρ = ρ−, u = u− for x < 0; ρ = ρ+, u = u+ for x > 0 , (95)

where ρ± and u± are constants.
Analytical studies of the decay of an initial discontinuity problem in integrable dispersive

wave equations (see for instance [46], [9], [43]) as well as direct numerical simulations for non-
integrable systems ( see [26] [25], [13] and references therein) suggest that the asymptotic
solution for the decay of an arbitrary initial discontinuity problem generally consists of
three constant states separated by two expanding waves: centred rarefaction wave(s) and/or
dispersive shock(s), which is quite natural taking into account the “two-wave” nature of the

25



system (91). The structure and the qualitative properties of the dispersive shock are the
same as in the case of simple-wave lead dispersive equations (see Section 4) so we will model
such a dispersive shock by the expansion fan solution of the corresponding Whitham system,
which can be represented in the form

∂

∂t
P j(ρ̄, ū, k, a) +

∂

∂x
Qj(ρ̄, ū, k, a) = 0 , j = 1, 2, 3 , (96)

∂

∂t
k +

∂

∂x
ω(ρ̄, ū, k, a) = 0 , (97)

where ρ̄ and ū are the density and velocity averaged over the family (94), k is the wavenumber
and a is the wave amplitude; also as follows from the formulation P1 = ρ̄, P2 = ρu. Using
the arguments presented in Section 3.1, we postulate the following fundamental property of
the Whitham equations (96) for weakly dispersive nonlinear wave equations (91):

The averaged “dispersive-hydrodynamic” conservation laws (96) admit exact
reductions to the dispersionless limit system (93) for a = 0 or k = 0:

ρ̄t + (ρ̄ū)x = 0 , (ρ̄ū)t + (ρ̄ū2 + p(ρ̄))x = 0, (98)

so that the “energy” equation for P̄3 becomes a consequence of (98). Of course, in concrete
instances this physically transparent property can be easily verified by direct calculation
using the asymptotic behaviour of the potential curve G(λ) for the nearly linear and nearly
soliton configurations (see (78), (79)).

The wave number conservation law (97) in the linear limit assumes the form (cf. (46)):

a = 0, kt + (ω0(ρ̄, ū, k))x = 0 (99)

where ω = ω0(ρ̄, ū, k) is the linear dispersion relation for the system (91) obtained by consid-
ering an infinitesimally small perturbation of the ground state ρ = ρ̄, u = ū. Owing to the
two-wave nature of the system (91) there are two branches of the linear dispersion relation.
To avoid unnecessary complication, it will be assumed that, unless otherwise specified, we
consider the branch corresponding to the right-propagating waves.

Now we can formulate the natural boundary conditions of the Gurevich-Pitaevskii type
for a bi-directional Whitham system (96), (97). Again, for simplicity of presentation we
assume the negative dispersion wave pattern and later will remove this restriction in the
formulation of the transition conditions. In the decay of an initial discontinuity problem
we are interested in the similarity solutions of the modulation equations so we present the
natural matching problem for modulation variables at once in the form analogous to (36)

x = s−t : a = 0 , ρ̄ = ρ− , ū = u− ,
x = s+t : k = 0 , ρ̄ = ρ+ , ū = u+ ,

(100)

where the dependencies of the edge speeds s± on the initial jump parameters ρ+, ρ−, u+, u−

are to be found.
It is clear that the similarity solution of the fourth order Whitham system is parametrised

by only three constants. Therefore, one must impose an additional restriction on the values
of the parameters ρ±, u± to select the family of admissible jumps across the dispersive shock.
Of course, the necessity of an additional jump condition for the dispersive shock generated
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in the decay of an initial discontinuity is inherently implied by the two-wave nature of the
system under consideration. Finding this restriction is equivalent to the extracting the family
of the initial discontinuities resolving into a single dispersive shock propagating in a given
direction (we associate the direction of the dispersive shock propagation with the direction
of the corresponding linear characteristic). In dissipative gas dynamics, such admissible
discontinuities are selected by the Rankine-Hugoniot conditions following from the balance
of mass, momentum and total energy across the shock. So, before we proceed with the
determination of the dispersive shock edges as we did in the simple-wave led equations, our
task is to obtain a replacement for the classical shock curve in the bi-directional dispersive
hydrodynamics which would have a form of a relationship

Φ(ρ+, ρ−, u+, u−) = 0 (101)

We note that in the conservative dispersive shock transition, the pressure p is the function of
the density only (the thermodynamic entropy does not change in the course of the dispersive
shock propagation) so, in contrast to the classical shock theory [48], the pressure should not
appear in the transition relation (101).

5.2 Dispersive shock curve and “entropy” conditions

We proceed with the dispersive shock curve using a simple method recently proposed in [47].
The idea is, using the conservative nature of the dissipationless dispersive shocks to “reverse”
the dispersive shock solution in time. It is then “natural” to expect that the dispersive shock
would convert into a rarefaction wave of the dispersionless Euler system (93). One can then
“extract” the required transition relation from simple analytic solution for this rarefaction
wave which is easily constructed using Riemann invariants (see for instance [48], [34]). Of
course, such an intuitive argument requires mathematical justification since it is not obvious
why the “inverse” resolution should happen through a single rarefaction wave.

Our construction is based on the following geometric consideration in the characteristic
(x, t)-plane. First we represent the Euler system (93) in the Riemann invariant form

rt + Vr(r, l)rx = 0 , lt + Vl(r, l)lx = 0 , (102)

where

r = u +

∫ ρ

ρ0

σ(ρ′)
ρ′

dρ′ , l = u−
∫ ρ

ρ0

σ(ρ′)
ρ′

dρ′ ; Vr,l = u± σ(ρ) . (103)

Here ρ0 = const and σ(ρ) = (dp/dρ)1/2 is the “sound speed”. The initial conditions (95) are
rewritten in terms of the Riemann invariants as

r = r− , l = l− for x < 0 ; r = r+ , l = l+ for x > 0 , (104)

where r± = r(ρ±, u±), l± = l(ρ±, u±). The corresponding four characteristic directions at
t = 0 are V ±

r ≡ Vr(r
±, l±) and V ±

l ≡ Vl(r
±, l±).

We consider the “right-propagating” dispersive shock, which occurs when the characteris-
tics of the r-family intersect i.e. when V −

r > V +
r . Then, assuming the modulation description

of the dispersive shock with the aid of the expansion fan solution of the Whitham equations,
one can observe that, due to (assumed) hyperbolicity the solution of the GP problem (96),
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(97), (100) can be, in principle, constructed geometrically using characteristics. The continu-
ity matching (100) for the mean values in such a construction is replaced with the equivalent
continuity matching for the Whitham and Euler characteristics (see [33]). One can also
observe that although such a construction can be very complicated for t > 0, it can be
readily realised for negative t. Indeed, since the Whitham expansion fan has zero width at
t = 0 (hyperbolicity) the initial conditions (104) are specified entirely in the external, “dis-
persionless” domain of the space-time of the GP problem. Thus the global solution of the
GP problem can be continued backwards along the characteristics of the 2× 2 dispersionless
limit equations (102). By construction, this solution must (i) be three-parametric (see (101))
and (ii) satisfy the inequality V −

r > V +
r at t = 0.

There is a unique three-parametric solution to the hyperbolic system (102) in the lower
(xt) half-plane satisfying the described restrictions. This solution is a centred expansion fan
(in (−x,−t) - coordinates) given by the expressions

l = l0 = constant (105)

r = r−; x > a2t;

Vr(r, l0) = x/t; a1t ≤ x ≤ a2t; (106)

r = r+; x < a1t.

Here
a1 = V +

r , a2 = V −
r , a2 > a1 . (107)

The solution (105) – (107) is characterised by three parameters (r+, r−, l0) and it exists for
all t < 0. Since this solution represents a continuation, along the characteristics of the full
solution to the GP problem, one can regard this solution evaluated at a fixed moment t0 < 0
as new initial conditions for the same GP problem. Therefore, one can extract from it the
global restriction (101) imposed on possible values of the hydrodynamic variables at the
opposite sides of the dispersive shock. This restriction follows from (105) and has the form

l− = l+ , (108)

which in view of the relationships (103) can be represented in an explicit gas-dynamic form,

u− − u+ =

∫ ρ−

ρ+

σ(ρ)

ρ
dρ . (109)

Given the state in front of the dispersive shock (ρ+, u+) this relation yields all admissible
states (ρ−, u−) behind it i.e. it represents the equation of the ρ-u diagram of the dispersive
shock.

One can see that the whole above construction is subject to the additional inequalities

V −
l < s− < V −

r , V +
r < s+ , s+ > s− . (110)

These inequalities ensure fulfillment of our original requirement about the single-wave res-
olution of a step (i.e. three-parametric solution). Indeed, the number of parameters char-
acterising the solution of the hyperbolic system in some domain is equal to the number of
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families of characteristics transferring given initial or boundary data into this domain (see
for instance [48]). The inequalities (110) require that only three of the four families of clas-
sical characteristics x/t = V ±

l,r (namely, x/t = V −
r , x/t = V +

r , and x/t = V +
l ) transfer

initial data (104) from the x-axis into the dispersive shock domain (see Fig.4). One can see
that the inequalities (110) represent an extension of the “entropy” conditions (73) to the
bi-directional case.

a)
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Figure 4: Qualitative behaviour of characteristics in the “simple-wave” decay in dispersive
hydrodynamics. Broken lines: the dispersive shock boundaries. Dotted lines: the “mirror”
expansion fan boundaries. (a) Families dx/dt = V ±

r transfers values of r, (b) Families
dx/dt = V ±

r transfers values of l.

Now we discuss briefly the meaning of the obtained transition relation (109). One can
see that it coincides with the relationship between any two pairs ρ, u in the simple wave
solution of the isentropic gas dynamics (see for instance [48]). A nontrivial fact is that the
corresponding wave is the simple wave of compression which breaks after a certain time
interval. Contrastingly, the similarity solution of the Whitham equations satisfying the rela-
tionship (105) and describing the expanding dispersive shock does not break. This solution
essentially represents a compression fan, which does not exist in classical gas dynamics. It
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is natural to call the dispersive shock satisfying the relationship (105) a simple dispersive
shock. We emphasize that, according to the matching conditions (100) the relationship (109)
is only valid for the boundary values of the modulation parameters ρ̄ and ū and, of course,
does not hold within the dispersive shock region.

In the solutions of the GP problem for integrable systems, the simple dispersive shock
condition is a mere consequence of the constancy of one of the Riemann invariants of the
Whitham system (see [46], [43] for instance). In non-integrable case, when the Riemann
invariants are not available for the Whitham system, the condition (109) is not obvious at
all. Also, one should keep in mind that inequalities (110) represent a necessary part of the
transition conditions.

We recall that the above consideration was concerned with the dispersive shocks propagat-
ing to the right. For the left-propagating dispersive shocks an analogous system of relations
would include the zero jump condition for the classical Riemann invariant r instead of l in
(105) and the “entropy” inequalities analogous to (110) would have the form

V +
l < s+ < V +

r , s− < V −
l , s+ > s− . (111)

The simple dispersive shock curve in the form (109) has been proposed for the first time,
using intuitive physical arguments, by Gurevich and Meshcherkin [26] in the context of
collisionless shocks in plasma. Later, this condition has been interpreted in [33] in terms of
the “local Riemann invariant” transport through the Whitham zone.

We note in conclusion that, in a more general case, when the dispersionless limit has the
form other than isentropic gas dynamics, one should use the simple dispersive shock curve
in the invariant form (108).

5.3 Speeds of the dispersive shock edges

We now proceed with the dispersive shock edges similarly to Sections 3.2, 3.3. We consider
a characteristic equation for the Whitham system (96), (97)

b
(i)
1 diρ̄ + b

(i)
2 diū + b

(i)
3 dik + b

(i)
4 dia = 0 , (112)

where b(i)(ρ̄, ū, k, a) is the left eigenvector of the coefficient matrix A(ρ̄, ū, k, a) of the modula-
tion system (96), (97) and i is a number of the characteristic. Let a = 0 on this characteristic.
Then for the remaining three variables we have the ordinary differential equation

b
(i)
1 (ρ̄, ū, k, 0)diρ̄ + b

(i)
2 (ρ̄, ū, k, 0)diū + b

(i)
3 (ρ̄, ū, k, 0)dik = 0 (113)

which necessarily is a characteristic equation for the reduced as a = 0 modulation system
(96), (97):

a = 0, ρ̄t + (ρ̄ū)x = 0 , (ρ̄ū)t + (ρ̄ū2 + p(ρ̄))x = 0, kt + (ω0(ρ̄, ū, k))x = 0 . (114)

Now we impose an additional constraint

F (ρ̄, ū) = C0 , (115)

where C0 is a constant. It will be shown later that this constraint leads to a self-consistent
set of the transition conditions. One can see that Eq. (115) is consistent with the reduction
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(114) and, therefore, is compatible with (113) iff the function F (ρ̄, ū) is one of the Riemann
invariants l, r defined by (103). Setting Eq. (115) into Eq. (113) we obtain a 2-form which
can be integrated to give the local relationship between admissible values of ρ̄ and k on the
characteristic,

Φi(ū, k; C0) = C1 , (116)

C1 being a constant of integration.
Alternatively, the relationship (116) can be obtained by a direct substitution of Eq. (115)

into the system (114) and then, by looking for the solution in the form k(ū). Substitution
of Eq. (115) into (114) yields (cf. (46)):

a = 0, ūt + V (ū)ūx = 0 , kt + (ω0(ū, k))x = 0 , (117)

where (see Eq. (103))

V (ū) ≡ Vr(ρ(ū), ū) , ω0(ū, k) ≡ ω0(ρ̄(ū), ū, k) . (118)

Thus, the problem essentially reduces to the simple-wave led case considered in Sections 3, 4
and, therefore, yields the ordinary differential equation (82) for k(ū). In our case, however,
this equation is additionally parametrised by the unidentified (yet) function F (ρ̄, ū) and a
constant C0 in (115) defining the dependence ρ̄(ū) in (118). These can be found by applying
the matching conditions (100) considered in the four-dimensional space of the field variables
ρ̄, ū, k, a. Since the integral (115) does not contain a and k it must apply to both boundaries
a = 0 and k = 0, which requires F (ρ−, u−) = F (ρ+, u+). Then, to be consistent with the
dispersive shock curve (108) one must identify F (ρ̄, ū) ≡ l(ρ̄, ū), which immediately yields
C0 = l− = l+. Now, the trailing edge speed s− is found with the aid of Eq. (84a).

The leading edge edge is handled in exactly the same way, by reducing the “hydrody-
namic” part of the modulation system for k = 0 to the simple wave equation with the aid
of the constraint (115). Then one proceeds with the conjugate variables as in Section 3.3
to get a general simple-wave analog of the ordinary differential equation (59) i.e. Eq. (83)
for k̃(ū). At last, using the dispersive shock curve (108) the function F (ρ̄, ū) in (118) is
identified with the same classical Riemann invariant l, which justifies self-consistency of the
whole construction. Then the leading edge speed is found via the conjugate wavenumber k̃
by Eqs. (84b), (83) where all the necessary ingredients are given by Eq. (118).

The whole construction is subject to the “entropy conditions” (85) which should be
complemented by an additional inequality s− > V −

l (see (110)) occurring due to the presence
of the fourth characteristic family in the bi-directional problems (see [47] for an example
where this inequality is violated).

It is clear that analogous formulas can be obtained for the left- propagating dispersive
shock: one should just replace in Eq. (118) Vr(ū) with Vl(ū) and l(ρ̄, ū) = C0 with r(ρ̄, ū) =
C∗

0 where C∗
0 = r− = r+ according to the corresponding dispersive shock curve. Also, one

should use the “left” branch of the linear dispersion relation and the “entropy” conditions
(111).

Some additional details of the derivation of the trailing and the leading edge curves for
bi-directional systems can be found in [47].
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5.4 Example: fully nonlinear ion-acoustic collisionless shock in
plasma

As an example of an effective construction of the dispersive shock conditions in a non-
integrable system we consider classical system of equations describing finite-amplitude ion-
acoustic waves in a two-temperature (Te À Ti) collisionless plasma (see for instance [45])

ρt + (ρu)x = 0,

ut + uux + ϕx = 0, (119)

ϕxx = eϕ − ρ .

Here ρ and u are the ion density and velocity and ϕ is the electric potential; all dependent
variables are dimensionless. We note that the system does not contain the time derivative
of ϕ so ϕ is not a “real” dependent variable as concerns the 2 × 2 representation (91). A
direct numerical simulation of the decay of an initial discontinuity in Eqs. (119) has been
performed in [26].

The system (119) supports periodic travelling waves allowing for linear and solitary wave
limits and also possesses (at least) four conservation laws [38]. Thus we can apply the
methods developed in this paper for obtaining the dispersive shock conditions. We consider
the right-propagating simple dispersive shock.

In the dispersionless limit ϕ = ln ρ, which yields the Euler isentropic gas-dynamic equa-
tions (93) with the equation of state p(ρ) = ρ. The corresponding Riemann invariants and
characteristic velocities are (see (102), (103)):

l = u− ln ρ , r = u + ln ρ , Vl = u− 1 , Vr = u + 1 , (120)

while the linear dispersion relation for the right-propagating modulated waves has the form

ω0(k, ρ̄, ū) = k[ū + (1 + k2/ρ̄)−1/2] . (121)

The dispersive shock transition curve (109) then assumes the form u− − u+ = ln(ρ−/ρ+).
Without loss of generality we put u+ = 0, ρ+ = 1. Then the relationship between ρ̄ and ū
in Eq. (118) becomes ū = ln ρ̄. As a result, we get all the necessary ingredients for the basic
ordinary differential equations (82), (83):

V (ū) = ū + 1 , ω0(ū, k) = k[ū + (1 + k2/eū)−1/2] . (122)

Then the equation (82) after elementary transformations, assumes the form with sepa-
rated variables

dα

dū
= − (1 + α)2α

2(1 + α + α2)
, α(1) = 1 , (123)

where α = (1 + k2/eū)−1/2. Integrating (123) we get

ū + 2 ln α +
1− α

1 + α
= 0 . (124)

Now, using the formula (84a) we obtain a simple equation determining velocity of the trailing
edge s− in terms of the density ratio across the dispersive shock d = ρ−/ρ+ = ρ−,

ln d +
2

3
ln(s− − ln d) =

(s− − ln d)1/3 − 1

(s− − ln d)1/3 + 1
. (125)
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The leading edge is handled in a completely analogous way. The solitary wave dispersion
relation is obtained from the linear dispersion relation (122) as ω̃s(ū, k̃) = −iω0(ū, ik̃) which
is to say

ω̃s(ū, k̃) = k̃[ū + (1− k̃2/eū)−1/2] . (126)

Then, integrating (83) we obtain k̃(ū) (it is also convenient to introduce α̃ = (1− k̃2/eū)−1/2

as an intermediate variable instead of k̃). Setting it into (84b) we eventually get the equation
for the leading edge

2 ln s+ − s+ − 1

s+ + 1
= ln d . (127)

s

1.5

1.4

1.2

1.3

1.1

d

1.81.61.41

1
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1.2 2

Figure 5: Speeds of the edges of the ion-acoustic dispersive shock transition versus density
ratio d = ρ−/ρ+ across the shock; upper graph: s+– leading edge, lower graph: s− – trailing
edge

It can be easily verified that the “entropy” conditions (110) are satisfied for all values of
the density ratio across the dispersive shock. The curves s+(d) and s−(d) are presented in
Fig.5 and demonstrate very good agreement with the results of direct numerical simulation
of the decay of an initial discontinuity for the system (119) presented in [26] (see Fig. 6 in
this paper analogous to our Fig.5). From theoretical point of view such an agreement can
be regarded as a strong indication of validity of the modulation theory in a certain class of
non-integrable initial value problems where rigorous derivation of the Whitham asymptotic
as a zero-dispersion limit is not available.

The weakly nonlinear asymptotic decompositions of (125) and (127) for small δ = d−1 ¿
1, have the form

s− ≈ 1− δ , s+ ≈ 1 +
2

3
δ , (128)

an, as a matter of fact, agree with the Gurevich-Pitaevskii solution for the KdV solution (30)
which is another confirmation of validity of the obtained modulation solution. Curiously,
as is clearly seen from Fig. 5 , the fully nonlinear dynamics of the leading (solitary wave)
edge s+ is very well approximated by the weakly nonlinear asymptotic (128) in a broad
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range of the density ratios d while the speed of the trailing (harmonic) edge s− demonstrates
significant qualitative and quantitative deviations from its weakly nonlinear counterpart even
for quite moderate values of d.

A detailed comparison of the modulation transition conditions obtained here with results
of direct numerical simulation for the (non-integrable) Green – Naghdi system describing
fully nonlinear shallow-water waves will be published in [50].

6 Some restrictions

We first address the accuracy of the obtained results in the context of the original (disper-
sive) system and outline some restrictions of our analysis of the dispersive shocks. Our main
assumption was about modelling the a dispersive shock with the aid of the expansion fan
solution of the Whitham equations. The Whitham equations, being obtained by an asymp-
totic procedure, have inherent accuracy restrictions on their applicability to certain wave
regimes. In our (GP) formulation, in contrast to the formal zero-dispersion limit approach,
the small dispersion parameter determining the accuracy of the Whitham approximation is
assumed to occur in the solutions and is defined by the ratio of the typical wavelength to
the characteristic scale of the modulation variations (in our case, the width of the dispersive
shock L ∼ t), i.e.

ε ∼ (kt)−1 ¿ 1 . (129)

which implies that that modulation description of the dispersive shock is valid asymptotically
as t À 1. The Whitham method of averaging conservation laws [16] also requires that the
relative variations of modulation parameters over the characteristic wavelength scale ∼ k−1

be O(ε) which yields the criterion
|kx|k−1 ∼ t−1 . (130)

One can now observe that, in the modulation solution for the dispersive shock, for any t,
however large, there is a certain vicinity of the of the leading edge where both criteria (129),
(130) are violated due to small (and rapidly changing) values of k. This is basically a re-
flection of non-uniformity occurring as k → 0 in the formal perturbation decompositions
(see e.g. [49]) equivalent to leading order to the Whitham method. So a natural question of
applicability of the modulation description to the dynamics of the leading edge of the dis-
persive shock arises. While this question does not appear in the the rigorous zero-dispersion
limit approach [11] in which the Whitham equations are derived as a certain asymptotics
in the initial-value problem and ε does not depend on t, it has to be addressed in our case
when the Whitham description is assumed on heuristic foundations in the absence of rich
integrable structure.

We first determine the behaviour of the function k(x) in the vicinity of the leading edge of
the simple dispersive shock for fixed t. It is instructive to make first an estimate for the KdV
case, which can be made by using the wave number conservation law in the self-similar form
−sk′ + ω′ = 0, s = x/t. Now setting the asymptotic decompositions for k and ω as m′ ¿ 1,
which are readily obtained from (6) we get for the vicinity of the leading edge s+−s ¿ 1 the
following asymptotic behaviour: k ∼ k0/ ln δ−1, ω−ks+ ∼ kδ, δ ∼ (s+−s)(ln 1/(s+−s))−1. It
is clear that this behaviour is automatically generalised to other nonlinear dispersive systems
for which the potential curve G(u) in the travelling waves has the asymptotic behaviour (78),
(79) in the nearly linear and nearly soliton configurations.
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Now, using the obtained asymptotics for k, we estimate the relative widths σ = ∆x/L of
the vicinities of the leading edge x+ = s+t where the criteria (129), (130) are violated. For
(129) we get σ1 ∼ exp(−t) while for (130) we get σ2 ∼ t−1 ln t, i.e σ2 À σ1. Still, σ2(t) → 0
as t →∞ and, therefore, the Whitham description of the dispersive shock is asymptotically
as t À 1 valid for all s−t < x < s+t.

The modulation approach used in this paper requires the existence of the single-phase
periodic solutions. For non-integrable systems such solutions often exist only within a certain
domain of parameters. Typically the role of the “critical” parameter is played by the wave
amplitude, so that for a > acr the periodic solution (or a solitary wave) ceases to exist
because of occurrence of breaking or cusp-type singularities. This usually violates the “single-
flow” type assumptions used in the derivation of the original system. For instance, for
ion-acoustic system (119) the critical solitary wave amplitude for the potential ϕ is acr ≈
1.3 [3]. For as > acr the “hydrodynamic” single-flow description of the two-temperature
plasma becomes not applicable and a more general, kinetic plasma theory should be used.
The critical value for the density ratio across the ion-acoustic dispersive shock ∆cr can
be found by setting the critical value of the solitary wave speed cs(acr) ≈ 1.6 [26] into
Eq. (127): s+(∆cr) ≈ 1.6, which yields ∆cr ≈ 2.0. Another possible restriction on the
application of the obtained transition conditions partially addressed in Section 4 is imposed
by the requirement of the modulational stability of the dispersive shock solution. For some
equations the type of the modulation system can change from hyperbolic to elliptic depending
on the initial data. One of the examples is provided by the so-called Kaup-Boussinesq
(integrable) system describing bi-directional shallow water waves where the linear dispersion
relation yields complex frequencies if the wavenumber exceeds a certain value [43]. The
corresponding restrictions on the jump values across the dispersive shock can be found from
the conditions (86).

7 Conclusions

A new method has been proposed to analyse the dispersive shock transition for a broad
class of weakly dispersive nonlinear wave equations. No assumptions of integrability have
been made which, in particular, allows one to apply the developed method to problems of
fully nonlinear dispersive wave dynamics. The transition conditions have been derived by
assuming the description of the dispersive shock with the aid of the expansion fan solutions
of the associated modulation (Whitham) equations. The Whitham system was assumed to
be hyperbolic for the solutions of our interest, which seems a reasonable assumption for the
outlined class dispersive systems (at least for a certain type of initial data). This assumption
can also be viewed as an inference from direct numerical simulations.

The analysis has been performed using the generalisation of the so-called Gurevich-
Pitaevskii problem formulated originally for the averaged KdV equation. It has been shown
that the Gurevich-Pitaevskii type natural boundary conditions for the mean flow in the dis-
persive shock region can be translated into information about degeneration of the families of
characteristics along the dispersive shock boundaries. The latter implies certain restrictions
on admissible values of the hydrodynamic and wave parameters at these boundaries. It has
been shown that, for the problem of an initial step resolution, these restrictions can be found
without presence of the Riemann invariant structure for the Whitham system.
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As a result, we have derived a complete set of transition conditions for dispersive shocks
linking two different constant hydrodynamic flows. The analysis has been performed as for
single-wave equations so for bi-directional systems. The transition conditions have been
derived in a general form and include: i) a “dispersive” analog of the traditional jump
conditions; ii) the equations for the boundary curves of the dispersive shock; iii) a set of
inequalities similar to the entropy conditions of traditional gas dynamics.

Remarkably, the whole set of the transition conditions is constructed in terms of the
linear dispersion relation and the dispersionless nonlinear characteristic velocities of the
system under study. The obtained conditions allow one to “fit” a dispersive shock into
the classical dispersionless solution without complicated analysis of the internal structure
of the dispersive shock similarly to classical shock theory in traditional gas dynamics. The
method can be useful not only for the analysis of non-integrable dispersive systems where full
solution is not available but also for integrable systems when one is interested only in main
physical parameters of the dispersive shock transition. As an additional bonus, the developed
method allows for obtaining the lead solitary wave amplitude, the major parameter observed
in experiments.
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