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Spatial dispersive shock waves generated in supersonic flow of Bose-Einstein
condensate past slender body

G.A. El1∗ and A.M. Kamchatnov2†
1 Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3T, UK

2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia
(Dated: April 20, 2005)

Supersonic flow of Bose-Einstein condensate past macroscopic obstacles is studied theoretically. It
is shown that in the case of large obstacles the Cherenkov cone transforms into a stationary spatial
shock wave which consists of a number of spatial dark solitons. Analytical theory is developed
for the case of obstacles having a form of a slender body. This theory explains qualitatively the
properties of such shocks observed in recent experiments on nonlinear dynamics of condensates of
dilute alkali gases.

PACS numbers: 03.75.Lm, 32.80.Pj, 43.35.+d, 67.40.Vs 67.90.+z

In usual compressible fluid dynamics, there are two
typical situations when shock waves can be generated.
The first one is connected with breaking of a nonlinear
wave and the second with a supersonic flow past a body
(see, e.g., [1, 2]). In a viscous fluid, the shock wave can
be represented as a narrow region within which strong
dissipation processes take place and the thermodynamic
and hydrodynamic parameters of the flow undergo sharp
change. If viscosity is negligibly small compared with
dispersion effects, the shock discontinuity is resolved into
an expanding region filled with nonlinear oscillations. A
remarkable feature of such a “dispersive shock” is genera-
tion of solitons at one of its boundaries so that the whole
structure can often be asymptotically represented as a
“soliton train”. The theory of dispersive shocks based on
the Whitham nonlinear modulation theory was developed
for media described by the Korteweg-de Vries equation
as for the wave breaking case [3], so for the flow past a
slender body [4]. In the latter case the “soliton train”
represents a “fan” of oblique spatial solitons spreading
downstream from the pointed part of the body.

After experimental discovery of the Bose-Einstein con-
densate (BEC) [5–7], it was found that its dynamics is
described very well by the Gross-Pitaevskii (GP) equa-
tion (see, e.g., [8])

i~
∂ψ

∂t
= − ~

2

2m
∆ψ + U(r)ψ + g|ψ|2ψ, (1)

where ψ(r) is the order parameter (“condensate wave
function”), U(r) is the potential which confines atoms
of Bose gas in a trap, and g is an effective coupling con-
stant arising due to inter-atomic collisions with the s-
wave scattering length as, g = 4π~2as/m, m being the
atomic mass. Obviously, the GP equation (1) combines
the dispersive and nonlinear effects, and the correspond-
ing properties of BEC dynamics have been investigated
in a number of papers (see for review, e.g., [8]). In partic-
ular, if g > 0, then existence of dispersive shocks can be
expected, their theory was developed in [9, 10] and they
were observed in a recent experiment [11]. Although in

the experiment [11] the shock flow was strongly disturbed
by vortices arising due to rotation of the condensate, we
were informed [12] about unpublished results of experi-
ments on shocks in non-rotating BEC, and these results
agree qualitatively with the theory [9].

Besides the experiments on generation of shocks after
wave breaking of BEC’s flow, in [12] the experiments were
performed on BEC’s flow past an obstacle after release of
BEC from the confining potential. The problem of super-
flow past a body has been studied intensely in connection
with a problem of critical velocity vc above which super-
fluidity disappears (see, e.g. [13]). It was found that su-
perfluidity is lost due to generation of vortex rings behind
an obstacle which gives the estimate of critical velocity
vc ∼ (~/dm) ln(d/ξ), where ξ = ~/

√
2mn0g is the healing

length (i.e. “vortex core size”), d is the size of obstacle in
transverse direction, and n0 is the density of atoms in the
condensate far from the obstacle. For large obstacles with
d À ξ this estimate gives the critical velocity much less
than the sound velocity cs = ~/

√
2mξ. This transition to

dissipation in quantum fluids described by the GP equa-
tion (1) was confirmed by numerical study [14] where it
was found that indeed vortices are generated at velocities
above the critical one about ∼ 0.45cs for d = 10ξ. Since
the radius of vortex rings (or distance between vortices in
pairs in two dimensions) is about the obstacle size d, this
mechanism of vortices emission becomes ineffective for
d ∼ ξ, and for such small bodies (“impurities”) the crit-
ical velocity arises due to Cherenkov emission of sound
waves and coincided, hence, with the sound velocity cs

[15]. Obviously, emission of waves in a supersonic flow
past an obstacle remains effective also for large obstacles
with d À ξ, but in this case emitted waves are not linear
sound waves and, instead of a Cherenkov cone, we arrive
at above mentioned dispersive shock consisting of oblique
spatial solitons. Actually, these shock waves have been
observed in the experiment [12] where the wave pattern
consists of a series of distinct oblique traces which cannot
be attributed to a linear Cherenkov radiation. An easy
estimate shows that, after long enough time of expansion
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the velocity of the flow past a body is much greater than
the local sound velocity in BEC near this body. Indeed,
the flow velocity u in a free expansion has the order of
magnitude of the sound velocity at the center of BEC
before its release and it is known that the sound speed in
BEC is proportional to the square root of density. Since
for the expansion time t À ω−1

⊥ (ω⊥ is the radial trap
frequency before expansion) the density is proportional
to t−2, we find that the ratio of the expansion flow veloc-
ity to the local sound speed, i.e. the Mach number M , is
about

M ∼ ω⊥t À 1 (2)

for t À ω−1
⊥ . Thus, the flow past a body in the exper-

iment [12] is supersonic and, correspondingly, formation
of a “fan” of spatial solitons is expected. Motivated by
the results of this experiment and above physical argu-
mentation, we shall develop here the theory of spatial
dispersive shocks on the basis of the GP equation (1).

In accordance with the experiment [11, 12], we consider
a two-dimensional flow of the condensate, so that the
condensate wave function ψ depends on only two spatial
coordinates r = (x, y). To simplify the theory, we assume
that the characteristic size of the body is much less than
its distance from the center of the trap, so that incoming
flow can be considered as uniform with constant density
n0 of atoms and constant velocity u0 directed parallel
to x axis. It is convenient to transform Eq. (1) to a
“hydrodynamic” form by means of the substitution

ψ(r, t) =
√

n(r, t) exp
(

i

~

∫ r

u(r′, t)dr′
)

, (3)

where n(r, t) is density of atoms in BEC and u(r, t) de-
notes its velocity field, and to introduce dimensionless
variables x̃ = x/

√
2ξ, ỹ = y/

√
2ξ, t̃ = (cs/2

√
2ξ)t, ñ =

n/n0, ũ = u/cs, where numerical constants are intro-
duced for future convenience. As a result of this trans-
formation we obtain the system (we omit tildes for con-
venience of the notation)

1
2nt +∇(nu) = 0,

1
2ut + (u∇)u +∇n +∇

[
(∇n)2

8n2
− ∆n

4n

]
= 0

(4)

(where ∇ = (∂x, ∂y)) which should be solved with the
boundary conditions

n = 1, u = (M, 0) at x → −∞ (5)

for incoming flow and

u ·N|S = 0 (6)

at the body surface S, where N denotes a unit vector
of outer normal to the surface S. Under our assump-
tion that the size of the body is much less than the dis-
tance from the center of the cylindrically symmetrical

flow, the characteristics of the flow near the body change
with the time very slowly, so that the arising wave pat-
tern can be considered as a quasi-stationary one. Hence,
we can confine ourselves to the stationary solutions of
our problem (4)–(6) and replace Eqs. (4) by their sta-
tionary versions for two-dimensional stationary velocity
field u = (u(x, y), v(x, y)):

(nu)x + (nv)y = 0,

uux + vuy + nx +

(
n2

x + n2
y

8n2
− nxx + nyy

4n

)

x

= 0,

uvx + vvy + ny +

(
n2

x + n2
y

8n2
− nxx + nyy

4n

)

y

= 0.

(7)

If the body is symmetric with respect to x axis and the
form of its boundary is given by y = ±F (x), F (0) =
0, F (l) = 0, l being the longitudinal size of the body,
then we can confine ourselves to consideration of only
the upper half-plane y > 0, so that N ∝ (F ′(x),−1), and
the boundary conditions (5), (6) are transformed to

n = 1, u = M, v = 0 at x → −∞, (8)

v = uF ′(x) at y = F (x). (9)

The system (7)–(9) is still too complicated for analytical
treatment. However, the flow is supposed to be super-
sonic (see (2)) which allows us to asymptotically trans-
form Eqs. (7)–(9) to a much simpler problem of 1D “un-
steady” flow along y axis with the scaled x coordinate
playing the role of “time” [16]. To this end, we substi-
tute into Eqs. (7) new variables

u = M + u1 + O(1/M), T = x/2M, Y = y, (10)

assuming M−1 ¿ 1. Then to leading order we obtain

1
2nT + (nv)Y = 0,

1
2vT + vvY + nY +

(
n2

Y

8n2
− nY Y

4n

)

Y

= 0,
(11)

1
2u1T + vu1Y = 0. (12)

Equations (11) represent the hydrodynamic form of 1D
nonlinear Schrödinger (NLS) equation iΨT + ΨY Y −
2|Ψ|2Ψ = 0 for Ψ =

√
n exp(i

∫ Y
v(Y ′, t)dY ′), and we

can apply well-known methods to their study. If n and v
are found, then the correction u1 to the x component of
velocity can be calculated with the use of Eq. (12).

It is remarkable that in the case of a slender body, for
which Mα . 1 where α = max|F ′(x)|, the boundary
condition (9) reduces (to leading order in M−1) to

v = vp = 1
2df/dT at Y = f(T ), (13)
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where f(T ) = F (2
√

2ξMT )/
√

2ξ, and it does not contain
the u-variable in this approximation.

Thus, we have reduced the problem of flow past a slen-
der body to the classical “piston” problem for 1D flow
along a tube with a piston moving according to the law
(13). In contrast to the classical gas dynamics, the piston
problem is now posed for a dispersive equations(11) and
its full analytic treatment is technically quite involved
(see the analogous theory for the KdV equation case in
[4]). However, in the region far enough from the body
where the shock develops into a “fan” of spatial solitons
well separated from each other one can take advantage
of a more simple asymptotic method of Ref. [17]. The

λ

)(Y+λ

Y

  I 
II

T
)(1 TY

)(Tf
)(2 TY

III

FIG. 1: (Y, T )-plane of the piston problem (Y > 0) and the
equivalent initial data λ+(Y ) (Y < 0). Dashed line: the
“piston” trajectory Y = f(T ).

(Y, T )-plane of the auxiliary piston problem can be sub-
divided into three distinct regions, see Fig. 1. Generally,
for Y > f(T ), the “gas” is put into motion by the “pis-
ton” moving according to Eq. (13) and in the region I
near the “piston” the gas motion can be described by the
dispersionless limit

1
2nT + (nv)Y = 0, 1

2vT + vvT + nY = 0 (14)

of Eqs. (11). But formal solution of the dispersionless
equations cannot be extended to the whole (Y, T )-plane
because the Y -derivatives blow up along some line in this
plane. Hence, here we have to take into account the
dispersion effects which lead to formation of the region
II filled with nonlinear oscillations—a dispersive shock.
Close to its boundary Y = Y1(T ) facing the “piston”
the oscillations tend to a train of dark solitons of the
NLS equation equivalent to the system (11), and at the
opposite boundary Y = Y2(T ) the amplitude of oscilla-
tions tends to zero which corresponds to a linear “sound”
wave propagating into the undisturbed region III with
Y > Y2(T ). For T À l(2

√
2ξM)−1 the whole structure

can be asymptotically represented as a soliton train [4].
Thus, in the case of a macroscopic obstacle with charac-
teristic size much greater than the healing length ξ the
Cherenkov cone “unfolds” into a “fan” of solitons.

Motion of the gas can be described most conveniently
in terms of Riemann invariants (see, e.g., [17]). In the re-

gions I and III of the smooth flow they are the Riemann
invariants of the dispersionless system (14)

λ± = 1
2v ±√n , (15)

and in the dispersive shock region II they are four Rie-
mann invariants λi, i = 1, 2, 3, 4, which parameterize the
modulated periodic solution of the full system (11), and
obey the corresponding Whitham modulation equations
(see, e.g., [17]). The Riemann invariants (15) are con-
stant along the corresponding families of characteristics
of the system (14) and they must satisfy the matching
conditions along the lines Y = Y1,2(T ). In the undis-
turbed region III, where v = 0, n = 1, both Riemann
invariants are constant: λ± = ±1. According to well-
known argumentation (see [1], Section 104), one of the
Riemann invariants λi, i = 1, 2, 3, 4, which matches with,
say, λ− must be also constant in the whole region II:
λ4 = λ− = −1 in II. On the other hand, the gas motion
in the region I produced by the “piston” is described by
a simple wave solution of Eqs. (14) (see [1], Section 101)
again with one Riemann invariant constant everywhere
in I. It must match with λ4 along the characteristic line
Y = Y1(T ) so that λ− = λ4 = −1 in the whole (Y, T )-
plane including the trajectory of the “piston”. Hence,
we have at the “piston” vp/2 − √np = −1 which yields
the gas density, np = (vp + 2)2/4, and, consequently, the
values of both Riemann invariants:

λp
− = −1, λp

+ = 1
2df/dT + 1 at Y = f(T ). (16)

To use the method of Ref. [17], we have to transform these
boundary conditions at the “piston” to the equivalent ini-
tial conditions at T = 0, Y < 0 (see Fig. 1). This prob-
lem for the system (14) can be easily solved using charac-
teristics. Indeed, we have λ− = −1, hence λ+ obeys the
equation (see, e.g., [17]) ∂λ+/∂T+(3λ+ − 1)∂λ+/∂Y = 0
whose solution is well known Y = (3λ+ − 1)T + Y (λ+)
where a function Y (λ+) must be chosen so that the con-
dition (16) is satisfied. This gives at once Y (λ+) =
−(3λ+ − 1)τ, where τ is determined implicitly by the
equation λ+ = 1

2f ′(τ) + 1. Thus, we arrive at a para-
metric form of the initial distribution of the Riemann
invariant λ+:

λ+ = 1
2f ′(τ) + 1, Y = f(τ)− (3

2f ′(τ) + 2)τ. (17)

Now we can use the asymptotic method of Ref. [17]
according to which the “initial pulse” evolves eventually
into the soliton train where each soliton is parameterized
by the eigenvalue λk of the generalized Bohr-Sommerfeld
quantization rule

∮ √
(λk − λ+)(λk − λ−) dY = 2π(k + 1

2 ),

k = 0, 1, . . . ,K,

(18)

where in our case λ+(Y ) is given by Eq. (17), λ− = −1,
and the integration is taken over the cycle around two
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turning points where the integrand functions vanishes.
Returning to the spatial coordinates (10), we find the
profile of the λk-soliton in the train as (see [17])

nk(x, y) = 1− 1− λ2
k

cosh2[
√

1− λ2
k(y − (λk/M)x)]

, (19)

that is the “fan” of spatial dark solitons in the shock is
made of soliton “feathers” lying along the lines

y = (λk/M)x, k = 0, 1, . . . , K, (20)

in the upper half-plane and symmetric “fan” of solitons
is generated in the lower half-plane.

Let us illustrate this theory by an example of a body
with a parabolic profile

y = F (x) = αx(L− x)/M2, 0 ≤ x ≤ L, (21)

so that the initial condition (17) takes the form

λ+ = α(T0 − 2τ) + 1, Y = τ(2ατ − αT0/2− 2), (22)

for 0 ≤ τ ≤ T0 = L/2M , that is in the interval −T0(2−
3αT0/2) ≤ Y ≤ 0, and λ+ = 1 outside this interval. Its
part with λ+ > 1 evolves into non-solitonic wave which
does not give any contribution into the shock. However,
its “well” part λ+ < 1 leads to the bound states in the
spectral problem (18) and, hence, to the train of spatial
solitons (19) generated in the shock. Integral in (18) is
calculated in closed form which gives the equation

2
√

2
5πα

(1 + 2
3λk − 27

12αT0)(αT0 − 1 + λk)3/2 = k + 1
2 ,

(23)

and its roots λk must lie in the interval 1−αT0 < λk < 1.
The greatest root λK has a value close to unity so that the
number of solitons in the shock is given approximately by
(23) with λk = 1, k = K. To transform this estimate to
dimensional variables, we take l =

√
2ξL = 1

√
2ξMT0

as a longitudinal size of the obstacle, d =
√

2ξf(T0/2) =
ξαT 2

0 /
√

2 as its transverse size and obtain

K ∼= 2
5π

(
1− 27

5
Md

l

) √
ld

Mξ2
. (24)

Although this formula is derived for a slender body, we
can use it as a rough estimate of a number of solitons
in the shock generated in the supersonic flow past an
obstacle: K ∼= const · (ld/Mξ2)1/2, where K must be
much greater than unity. The most shallow dark soliton
lies near the Cherenkov cone with angle θ ∼= 1/M = cs/u0

with respect to the direction of the flow. The resulting
pattern is shown in Fig. 2.

In conclusion, we have developed the theory of spa-
tial dispersive shock waves generated by a flow of Bose-
Einstein condensate past a slender body. The theory
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FIG. 2: The pattern of dispersive shocks generated by a su-
personic flow past a slender body (black cigar-shaped figure).
The oblique lines represent the traces of dark solitons in the
(x, y)-plane.

predicts formation of a series of oblique spatial solitons
in the flow and explains qualitatively the shock patterns
observed in the experiment [12].
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