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Abstract

We derive an asymptotic formula for the amplitude distribution in a fully nonlin-
ear shallow-water solitary wave train which is formed as the long-time outcome of the
initial-value problem for the Su-Gardner (or one-dimensional Green-Naghdi) system.
Our analysis is based on the properties of the characteristics of the associated Whitham
modulation system which describes an intermediate “undular bore” stage of the evolu-
tion. The resulting formula represents a “non-integrable” analogue of the well-known
semi-classical distribution for the Korteweg-de Vries equation, which is usually ob-
tained through the inverse scattering transform. Our analytical results are shown to
agree with the results of direct numerical simulations of the Su-Gardner system. Our
analysis can be generalised to other weakly dispersive, fully nonlinear systems which
are not necessarily completely integrable.

1 Introduction

It is widely appreciated that, although completely integrable systems may successfully cap-
ture many important features of nonlinear dispersive wave propagation, they may fail to
provide an adequate description of large amplitude waves. Consequently, significant efforts
have recently been directed towards the derivation and analysis of relatively simple models,
enabling the quantitative description of the propagation of fully nonlinear waves. Although
such “intermediate” models are typically not integrable using an inverse scattering trans-
form (IST), they often provide the possibility of obtaining important particular solutions, as
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well as having other advantages compared to the full physical system from the viewpoint of
numerical simulations.

One such system, the so-called Green-Naghdi (GN) equations, describes large-amplitude
shallow water waves [1] and also appears in a number of other fluid dynamics contexts, such
as “continua with memory” [2], solar magnetohydrodynamics [3], bubbly fluid flows [4] and
the dynamics of short capillary-gravity waves [5]. The two-layer versions of the GN system
[6, 7, 8] provide a broad field for the modelling of large amplitude interfacial waves. It should
be noted that the one-dimensional version of the GN system, which is the main subject of
this paper, was originally derived by Su and Gardner [9] using a long-wave asymptotic
expansion of the full Euler equations for irrotational flow (see also El, Grimshaw & Smyth
[10]), while the original 2D GN system was derived using the “directed fluid sheets” theory,
which does not require a formal asymptotic expansion, but instead imposes the condition
that the vertical velocity has only a linear dependence on the vertical (z) coordinate, and
simultaneously assumes that the horizontal velocity is independent of (z). In this paper
we shall use the term SG system which appears historically more correct, at least for one-
dimensional dynamics. The SG system has the form

ηt + (ηu)x = 0 , (1)

ut + uux + ηx =
1

η

[
1

3
η3(uxt + uuxx − (ux)

2)

]

x

,

where, in the context of shallow-water waves, η is the total depth and u is the layer-mean
horizontal velocity; all variables are non-dimensionalised by their typical values. The first
equation is the exact equation for conservation of mass and the second equation can be
regarded as an approximation to the equation for conservation of horizontal momentum.
The system (1) has the typical structure of the well-known Boussinesq-type systems for
shallow water waves, but differs from them in retaining full nonlinearity in the leading-order
dispersive term on the right-hand side of (1). We stress that there is no limitation on the
amplitude assumed in the derivation of (1). This, along with the appearance of this system in
different physical contexts, suggests that equations (1) represent an important mathematical
model for understanding general properties of fully nonlinear fluid flows beyond the strict
shallow-water limit. For this reason, it is instructive to study its solutions for the full range of
amplitudes, although in the particular context of shallow-water waves the system (1), as for
any layer-mean model, is unable to reproduce the effects of wave overturning and becomes
nonphysical for amplitudes greater than some critical value.

The system (1) has a solitary wave solution of the form

η = η0 + a sech2

( √
3a

η0

√
η0 + a

(x− ct)

)
, (2)

where the solitary wave speed c is connected to the amplitude a by the relationship

c = u0 +
√

η0 + a . (3)

Here u0 and η0 are the background flow parameters. We note that formula (3) appears in
Rayleigh [11].

The asymptotic reduction of the SG system (1) for weakly nonlinear waves is obtained
by using the standard scaling η = η0 + δζ, u = u0 + δU , x− c0t → δ−1/2x, t → δ−3/2t, where
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δ is a small parameter and c0 = u0 +
√

ζ0 is the linear longwave speed. For uni-directional
propagation, this leads to the KdV equation (see, for instance, Johnson [12])

ζt +
3

2
ζζx +

1

6
ζxxx = 0 . (4)

With the further scaling x′ =
√

6x , t′ =
√

6t , v = 3ζ/2, (4) reduces to the standard KdV
form

vt + vvx + vxxx = 0 , (5)

on omitting the primes. Then if one considers sufficiently rapidly decaying positive initial
data for (5)

v(x, 0) = v0(x) ≥ 0 , v0 → 0 as |x| → ∞ , (6)

where v0(x) is a continuous “one-hump” function, then as t →∞ the solution asymptotically
consists of a finite number of solitons plus dispersive radiation.

The associated linear spectral problem for (5) is given by the Schrödinger equation

6ψxx + (v(x, t)− λ)ψ = 0 . (7)

Note that this is in non-standard form due to the factor 6 in the first term. Then the
parameters of the solitons and the radiation are found from the IST using the initial condition
v0(x) (6) for v in (7). In particular, a soliton with amplitude an corresponds to the eigenvalue
λn = an/2 of the Schrödinger operator.

If one considers a large-scale initial distribution such that ε = 1/(A1/2w) ¿ 1, where
A ∝ max v0, and w is the typical width of v0(x), then the contribution of the radiation
is exponentially small in ε and as t → ∞ the asymptotic outcome consists only of a large
(N ∝ ε−1) number of solitons, whose amplitudes can be found from the Bohr-Sommerfeld
semi-classical quantization rule,

1√
6

∫ x2

x1

√
v0(x)− λ dx = π(n− 1

2
) , n = 1, 2, 3, . . . , N . (8)

Here the integral is taken between the turning points x1,2 defined as the roots of the equation
v0(x) = λ. For every given n formula (8) yields a bound state λn > 0; A ≈ λ1 > λ2 > · · · >
λN ≈ 0 with N the total number of bound states in the potential v0(x). In the KdV context
the distribution (8), through an = 2λn, gives the amplitude of the n-th soliton in the soliton
train as t →∞. For the largest amplitude soliton we have the classical result

amax = 2λ1 = 2A . (9)

On the other hand, for a given λ ∈ [0, A], the formula (8) determines the total number of
bound states n in the spectral interval (λ,A) as

n = i.p. (F (λ) +
1

2
) , F (λ) =

1√
6π

∫ x2

x1

√
v0(x)− λ dx . (10)

Here “i.p. (·)” denotes the integer part.
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For large n the bound states are located close to each other and we can introduce a
continuous amplitude function a = 2λ. Then differentiating (8) with respect to a, one
obtains the distribution function for soliton amplitudes in the train

f(a) =

∣∣∣∣
dn

da

∣∣∣∣ =
1

4π

1√
6

∫ x2

x1

dx√
v0(x)− a/2

, (11)

so that f(a)da yields the number of solitons having amplitudes in the interval (a, a+da). The
total number of solitons in the soliton train is estimated by setting λ = 0 in (8) (alternatively,
one can integrate f(a) from 0 to amax)

N ∼= 1√
6π

∫ +∞

−∞

√
v0(x) dx ∼ A1/2w . (12)

The distribution (11) was originally introduced into soliton theory by Karpman [13] (see
also Whitham [14] and Karpman [15]). More recently, distributions of this type have been
obtained, also from the associated linear spectral problem, for the defocusing nonlinear
Schrödinger equation [16] and for the Kaup-Boussinesq system [17].

One can see that integrability of the KdV equation plays a crucial role in the derivation of
the formulae (8)–(12) through the eigenvalue problem for the associated linear Schrödinger
equation (7). At the same time one can observe that the formulae obtained correspond to
the semi-classical approximation and that this very approximation can be applied directly to
the KdV equation, by-passing the IST formalism. It is well-known (see Lax and Levermore
[18]) that the semi-classical limit of the KdV equation with decaying initial data leads to the
Whitham modulation system, which can be derived by a direct averaging of the KdV con-
servation laws over nonlinear wavepackets [19] or from a multiple-scale perturbation analysis
[20, 21]. Therefore one could expect that the results (9)–(12) could be obtained within the
framework of the modulation theory alone. Indeed, it was shown in Gurevich et al [22] and
El & Grimshaw [23] that the long-time asymptotics of exact solutions to the KdV-Whitham
equations with decaying initial data agrees, to first order in t−1, with Karpman’s formula
(11). Still, modulation solutions in the cited papers rely on the integrability of the KdV
equation as they employ the presence of Riemann invariants for the associated Whitham
system [19], and this latter property is due to the unique finite-gap spectral structure of
periodic (or, more-generally, quasi-periodic) solutions of the KdV equation [24].

An important theme in the original work of Whitham [19] is that, unlike the IST, the
nonlinear modulation approach can be applied to nonintegrable dispersive systems provided
a minimal structure is present, that is the existence of periodic solutions characterised by
a certain number of parameters, and the availability of a limited number of conservation
laws. The resulting modulation system consists of hydrodynamic-type equations and is
hyperbolic in many cases, which implies that it can be treated using classical methods of
characteristics theory (see, for instance, Courant & Hilbert [25]). This opens the possibility of
obtaining some analytical results for non-integrable dispersive wave systems in the framework
of modulation theory.

Indeed, it was recently shown in El [26] that the availability of a number of important
exact results for the single-phase modulation theory is, in fact, due to certain very general
properties of modulation systems and is not connected with the presence of the Riemann
invariant structure. These properties have been used in El, Grimshaw & Smyth [10] to derive
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the main parameters of large-amplitude shallow-water undular bores evolving from an initial
step for the SG system (1). In the present paper, we extend the modulation analysis of El
[26] and El, Grimshaw & Smyth [10] to obtain an analogue of Karpman’s formula (11) and
its consequences (9) and (12) for the SG system for an initial disturbance in depth and
velocity that decays at infinity. Our approach is based on an assumption, confirmed by
numerical solutions, that the main qualitative features of the KdV evolution of large-scale
disturbances, such as the formation of a single-phase undular bore and its further evolution
into a solitary wave train with a negligibly small contribution of the linear radiation, remain
present in the SG model. Our analytical results will be supported by comparison with full
numerical solutions of the SG system.

2 Asymptotic formula for the KdV equation derived

from modulation theory

2.1 Characteristic integrals of the modulation system

It is instructive to start with a demonstration of our general approach to an asymptotic
description of solitary wave trains by using the KdV equation as a “test” example. Our
ultimate goal here is to derive Karpman’s formula (11) without invoking the integrability
properties of the KdV equation and its modulation system. This derivation will then serve
as a prototype for calculations for the SG system, which is genuinely non-integrable.

We consider the initial-value problem (5) and (6). Without being too restrictive, we also
assume that v0(x) = 0 for x ≥ 0, which will simplify the following analysis. As before, we
consider a large-scale initial disturbance, so that (A1/2w)−1 ¿ 1, where A = max (v0) and w
is the characteristic width of the initial hump.

The wave evolution from (5) and (6) leads to wave breaking at some t = tb, which can
be taken to be tb = 0 without loss of generality, which is then resolved by an undular
bore (which is also often called a dispersive shock wave), which is an expanding nonlinear
modulated wave train with a distinctive spatial structure. Near the leading edge of the
undular bore the oscillations appear to be close to successive solitary waves, while in the
vicinity of the trailing edge they are nearly linear. An asymptotic similarity modulation
solution for the undular bore evolving from an initial distribution in the form of a sharp
step was first obtained by Gurevich and Pitaevskii (GP) [27] using the Whitham method
of averaging over periodic nonlinear wavetrains [14, 19] and then rigorously recovered in
the framework of the semiclassical IST formalism by Lax, Levermore and Venakides (see
their review [18] and references therein). In contrast to the Lax-Levermore-Venakides global
construction, the direct modulation approach of GP does not rely on the IST and thus
has the advantage of potential applicability to non-integrable systems. This advantage was
realised in El [26] for the simplest class of problems with step-like initial conditions where
the modulation solution for the undular bore represents an expansion fan, similar to the GP
solution.

For the case of positive initial data, which decay at infinity, the whole initial disturbance
decomposes, at very large times t À ε−1, into a chain of solitons with a certain amplitude
distribution. As was mentioned in the Introduction, the semi-classical IST approach leads
to Karpman’s formula (11) for this distribution. However, it transpired that the same result
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can be obtained using the derivation of the intermediate modulation solution for the undular
bore and then considering its long-time asymptotic behaviour [22, 23]. In this connection it
should be mentioned that the modulation dynamics in these problems with decaying initial
data is not self-similar, so the original Gurevich-Pitaevskii [27] theory required significant
development in order to be applied to such problems. It transpires that further development
is required to extend modulation analysis to non-integrable systems with decaying initial
data. Below we present the GP formulation for the KdV equation in a form convenient for
further generalistion to non-integrable systems.

The local waveform of the undular bore is described by the single-phase periodic solution
of the KdV equation travelling with constant velocity c, that is v(x, t) = v(θ), θ = x − ct.
This solution is specified by the ordinary differential equation

(vθ)
2 = Q(v) , Q(v) =

1

3
(v − v1)(v − v2)(v3 − v) , v(θ + 2π/k) = v(θ) , (13)

v3 ≥ v2 ≥ v1 being constants of integration. The phase velocity c, the amplitude a, the
wavenumber k and the mean v are expressed in terms of the polynomial roots vj as

c =
1

3
(v1 + v2 + v3), a = v3 − v2, k = π




v3∫

v2

dv√
Q(v)



−1

, v =
π

k

v3∫

v2

vdv√
Q(v)

, (14)

while the wave frequency is ω(v, k, a) = kc. When a → 0 the solution of (13) turns into
small amplitude harmonic waves with the dispersion relation

ω0(v, k) = ω(v, k, 0) = kv − k3 . (15)

In an opposite extreme, when k → 0, the travelling wave u(θ) transforms into a soliton with
its velocity depending on the amplitude as

csol = v +
a

3
(16)

If one allows slow dependence of v1, v2 and v3 or, equivalently, v, k, and a on x and t,
one arrives at the modulation system which can be derived by averaging two of the KdV
conservation laws over the periodic wave family (13)

∂v

∂t
+

∂

∂x

(
v2

2

)
= 0 ,

∂

∂t

(
v2

2

)
+

∂

∂x

(
v3

3
− v2

θ

2
+ vvθθ

)
= 0 (17)

and then closing (17) with the equation for “conservation of waves” (see Whitham [14])

∂k

∂t
+

∂ω(v, k, a)

∂x
= 0 . (18)

We note that the detailed expressions for the averages in (17) will not be needed. To describe
the evolution of modulations in an undular bore the system (17) and (18) must be equipped
with matching conditions ensuring continuity of the mean u at the undular bore edges x±(t)
[27]

x = x−(t) : a = 0 , v = β−(t) ,
x = x+(t) : k = 0 , v = β+(t) .

(19)
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Here β±(t) = β(x±(t), t), where β(x, t) is the solution of the Hopf equation

βt + ββx = 0 , β(x, 0) = v0(x) , (20)

which represents the dispersionless limit of the KdV equation (4) and is valid outside the
oscillatory region. As we have assumed that v0(x) = 0 for x ≥ 0, we have β+ = 0.

The trailing x−(t) and the leading x+(t) edges of the undular bore represent free bound-
aries defined by the kinematic conditions

dx−

dt
= cg(β

−, k−) ,
dx+

dt
= csol(β

+, a+) , (21)

where cg = ∂ω0/∂k is the group velocity of linear waves and k− = k−(t) = k(x−(t), t),
a+ = a+(t) = a(x+(t), t). It is important to note that, according to general properties
of quasi-linear hyperbolic systems (see, for instance, Courant & Hilbert [25]), the curves
x±(t), being the lines which match two analytically different solutions, must coincide with
characteristics of the modulation system (17) and (18). Indeed, as we shall see, the kinematic
conditions (21) and the requirement that the undular bore boundaries must be characteristics
of the modulation system are equivalent.

We now consider the modulation equations in two distinguished limits: as a → 0 and
as k → 0— corresponding to the wave regimes at the trailing and the leading edges of the
undular bore respectively. When a → 0 the oscillations do not contribute to the averaging,
so F (v) = F (v), where F (v) is an arbitrary function, and the modulation system must
reduce to (see El [26] for details)

a = 0 , vt + v · vx = 0 , kt + (ω0(v, k))x = 0 . (22)

The system (22) has two families of characteristics, dx/dt = v and dx/dt = ∂ω0/∂k. The
first family is consistent with the characteristics of the “external” Hopf equation (20) which
transfers initial data from the x axis into the undular bore region in the (x, t)-plane, while
one of the characteristics of the second family specifies the trailing edge of the undular
bore (see the first kinematic condition (21)). Then, according to the general properties for
the prescription of Cauchy data on characteristics (see, for instance, Whitham [14]), one
cannot specify the values of v and k at the trailing edge independently. Of course, a similar
statement is true for the leading edge as well, and this is why the matching conditions (19)
are sufficient to determine the evolution of an undular bore regardless of the fact that they
involve less variables than the modulation system (17). The admissible combinations of the
values of v and k on a characteristic with a = 0 are found by a substitution of k = k(v) into
(22), which leads to the ordinary differential equation

dk

dv
=

∂ω0/∂v

v − ∂ω0/∂k
. (23)

Substituting the linear dispersion relation (15) into (23) one readily obtains the characteristic
integral

k(v) =

√
2

3
(v − λ1) , (24)

where λ1 is an arbitrary constant.
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We now consider the soliton limit k → 0. Here the wavelength 2π/k tends to infinity, so
that the contribution of oscillations to the mean value v vanishes, and, similarly to the case
of vanishing amplitude, we have F (v) = F (v). Hence, we arrive, again, at the Hopf equation
for v,

k = 0 : vt + v · vx = 0 . (25)

We finally pass to the limit as k → 0 in the wave conservation law (18). This limiting
transition, unlike that as a → 0, is a singular one, so that it requires a more careful treatment.
Firstly we note that the wave conservation law is satisfied identically for k = 0, so we need
to take into account higher order terms in the expansion of (18) for small k. It is then
convenient to introduce a “conjugate wave number” (cf. (14))

k̃ = π

(∫ v2

v1

dv√
Q(v)

)−1

(26)

instead of the amplitude a and the ratio Λ = k/k̃ instead of the original wave number k, so

that the parameters (v, Λ, k̃) form a new set of modulation variables which is more convenient
for the consideration of the vicinity of the soliton edge of an undular bore than our original
set (v, k, a). The variable k̃ can be considered as the wavenumber of a “conjugate travelling
wave” specified by the equation

(
dv

dθ̃

)2

= −Q(v) , v(θ̃ + 2π/k̃) = v(θ̃), u ∈ [v1, v3] , (27)

where Q(v) is the same as in Eq. (13) and θ̃ = x̃− ct̃ is a new phase variable characterised
by the same phase velocity c. Equation (27) specifies periodic solutions of the “conjugate”
KdV equation

vt̃ + vvx̃ − vx̃x̃x̃ = 0 , (28)

which can be obtained from (5) by the change of variables x 7→ ix̃ and t 7→ it̃. It is not

difficult to infer from (26) and (27) that in the limit v1 → v2 (i.e. k → 0) k̃ has the meaning
of an inverse soliton width (or “soliton wavenumber”) defined by the asymptotic behaviour

in the soliton tails v − v ∼ exp(−k̃|θ|) as |θ| À 1. Moreover, it follows from (27) that
the dependence of the soliton speed, which coincides with the value of the phase velocity
c evaluated in the limit as v1 → v2 on its inverse width (and, therefore, from (16), on the

amplitude a), follows from the conjugate linear dispersion relation ω̃ = ω̃0(k̃). The latter

is obtained from the linear dispersion relation (15) by the change of variables k 7→ ik̃ and

ω0 7→ −iω̃0, i.e. iω̃0(k̃) = ω0(ik̃). We thus have

ω̃0(k̃) = k̃v + k̃3 (29)

and, comparing with (16), we obtain the well known relationship between the KdV soliton
amplitude and its inverse width

k = 0 :
a

3
= k̃2 . (30)

We are now ready to study the asymptotic expansion of the wave conservation law for k ¿ 1.
First we substitute k = Λk̃ into Eq. (18) to obtain the equivalent representation

k̃Λz + ω̃Λx + Λ(k̃z + ω̃x) = 0 , (31)
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where ω̃ = ck̃. Next we consider Eq. (31) for small Λ ¿ 1 and assume that Λ ¿ Λt, Λx

for the solutions of interest. We note that this is known to be the case for modulation
solutions describing undular bores in weakly dispersive systems, where at the soliton edge
one has k → 0, but |kx|, |kz| → ∞ (see El [26] for a general discussion of this behaviour and
Gurevich and Pitaevskii [27] for the detailed calculations in the KdV case). Then to leading
order we obtain the characteristic equation

∂Λ

∂t
+

ω̃0

k̃

∂Λ

∂x
= 0 , (32)

or

Λ = Λ0 on
dx

dt
=

ω̃0(v, k̃)

k̃
, (33)

where Λ0 ¿ 1 is a constant. In particular, when Λ0 = 0 (that is k = 0), the characteristic
(33) specifies the leading edge of the undular bore (cf. (21)). Now, considering a restriction

of equation (31) to the characteristic family dx/dz = ω̃0/k̃ and using that ω̃ = ω̃0 to leading
order, we obtain

k = 0 : k̃t + (ω̃0)x = 0 on
dx

dt
=

ω̃0(v, k̃)

k̃
. (34)

We note that the equation k̃t + (ω̃0)x = 0 arises as a “soliton wavenumber” conservation law
in the traditional perturbation theory for a single soliton (see, for instance, Grimshaw [29]),
but to be consistent with full modulation theory it should be considered along the soliton
path dx/dt = csol = ω̃0/k̃.

Since v and k̃ cannot be specified independently on a characteristic, there should exist
a local relationship k̃(v) consistent with the system (20) and (34). Substituting k̃ = k̃(v)

into (34) and using (20) we obtain an equation for k̃ similar to equation (23) for k obtained
earlier in the opposite limit as a → 0

dk̃

dv
=

∂ω̃0/∂v

v − ∂ω̃0/∂k̃
. (35)

Substituting ω̃0 (29) into (35) one readily integrates to obtain

k̃(v) =

√
2

3
(λ2 − v) , (36)

where λ2 is an arbitrary constant.
Now we use the fact that the linear wave packet at the trailing edge and the lead solitary

wave are not independent, but rather are constrained by the condition of being parts of
the same undular bore. So, if one considers a pair of integrals (24) and (36) with certain
constants λ1 and λ2 in the context of the same modulation solution, then λ1 and λ2 cannot
be set independently. One can see from (24) that if v = λ1, then k = 0, which then must be
consistent with equation (36) derived for the soliton configuration. But, at the same time,

equation (24) corresponds to a = 0, which, together with k = 0, implies k̃ = 0 (see (30)). So
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setting v = λ1 in (36) immediately yields λ1 = λ2 ≡ λ and we therefore arrive at the set of
two consistent characteristic integrals of the modulation system

I1 =

{
a = 0, k =

√
2

3
(v − λ)

}
on

dx

dt
=

∂ω0

∂k
, (37)

I2 =

{
k = 0, k̃ =

√
2

3
(λ− v)

}
on

dx

dt
=

ω̃0(v, k̃)

k̃
. (38)

One should add that both k and k̃ are required to be real, so the integrals I1,2 involve different
parts of the domain of the function v(x, t).

2.2 Total number of solitons

We start with the determination of the total number of solitons generated by the decay of
the given initial disturbance (5) and then proceed by obtaining a more detailed description
of a soliton train by finding the distribution function for the soliton amplitudes in terms of
the initial data.

We consider the wave conservation law (18). For the case of the decaying initial profile (5)
one obviously has ω → 0 as |x| → ∞ for all t, and hence equation (18) implies conservation
of the total number of oscillations (wave crests)

N ∼= 1

2π

∫ +∞

−∞
kdx = constant . (39)

We use an approximate equality sign here due to the inherent asymptotic character of mod-
ulation theory. Next we note that, qualitatively, the process of soliton generation during
the evolution of the large-scale, decaying initial profile (6) can be described as follows (see
Gurevich, Krylov & Mazur [30] for a quantitative justification): each wave crest is generated
at the trailing edge as a vanishingly small amplitude linear wave and asymptotically, as
t → ∞, transforms into a soliton. Formula (39) then can be used for the evaluation of the
total number of solitons in the eventual soliton train.

To evaluate the integral in (39) one needs to know the function k(x, t) for all x at any
particular t, say at t = 0. The difficulty with the traditional Gurevich-Pitaevskii approach to
the undular bore description is that the wave number k in this approach is defined only within
the undular bore region [x−, x+]. However, one can extend the notion of the wavenumber
to the entire x-axis by defining the function k(x, t) in such a way that its behaviour outside
the undular bore region is consistent with the prescribed values of k along the leading and
trailing edges x±(t) for all t.

At the leading edge x+(t) we have k = 0 for all t. Therefore we define k = 0 for x ≥ x+(t).
Hence here we have

k(x, 0) = 0 for x ≥ 0. (40)

At the trailing edge x−(t) the amplitude of the wave a = 0, and since the trailing edge
represents a characteristic of the modulation system, the value of the wavenumber k− =
k(x−, t) is determined by the boundary value of v(x−, t) = β− from the characteristic integral
I1 in (37) for a certain λ (see (19) and (20) for the definitions of β±(t)). To be consistent
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with the matching conditions (19), we need to set λ = 0. Indeed since at the leading edge
v(x+, t) = β+ = 0, then the dependence k−(β−) must correctly reproduce the value k = 0
for the case when β− = β+ = 0, implying a = 0 and k = 0 simultaneously, which by (30)

also implies k̃ = 0. So we obtain
k− =

√
(2/3)β−. (41)

Now upstream of the undular bore, that is x ≤ x−, the function β(x, t) satisfies the Hopf
equation (20) with the initial condition β(x, 0) = v0(x), i.e. implicitly β(x, t) = v0(x − βt).
Therefore for x ≤ x−(t) we need to define the wavenumber as k(x, t) = k−(β(x, t)), where
β(x, t) is the aforementioned simple-wave solution. This extension basically implies that
we assume that upstream of the undular bore, where a = 0, the relationship (37) holds
everywhere (not only for a special family of characteristics dx/dt = ∂ω0∂k). Indeed it can be
readily seen that k =

√
(2/3)v is a solution of the reduced modulation system (22) regardless

of the particular characteristic family. Thus at t = 0 we obtain

k(x, 0) = k−(β(x, 0)) =

√
2

3
v0(x) for x ≤ 0 . (42)

We note that since v0(x ≥ 0) = 0 this formula is also consistent with our definition (40)
for k(x, 0) for x ≥ 0, so that (42) gives the function k(x, 0) ≡ k0(x) =

√
2/3(v0(x)) on the

entire real line. Now substituting (42) into (39) we obtain

N ∼= 1

2π

∫ +∞

−∞
k0(x)dx =

1√
6π

∫ +∞

−∞
v

1/2
0 (x)dx , (43)

which agrees with the IST result (12).

2.3 Soliton-amplitude distribution function

We note that the formula (43) in fact represents a particular case of a more general expression,
which is obtained by retaining the parameter λ in the modulation integral I1 (37) so that
instead of k0(x) in (43) one introduces

k0(x, λ) =
√

(2/3)(v0(x)− λ) for x ∈ [x1, x2] ,

and k0(x, λ) = 0 for x /∈ [x1, x2] , (44)

where x1 < x2 are the roots of the equation v0(x) = λ. Thus we arrive at the continuous
family of quantities characterised by the parameter λ ∈ [0, A]

F (λ) ∼= 1

2π

∫ +∞

−∞
k0(x, λ)dx =

1√
6π

∫ x2

x1

√
v0(x)− λ dx , (45)

To clarify the meaning of the quantity F (λ) in the framework of modulation theory we
introduce the notion of a λ-section of the initial profile, which is simply a segment of the
function v0(x) for which v0(x) ≥ λ (see Fig. 1), and consider the integral

F (λ, t) =
1

2π

∫ x2+λt

x1+λt

√
(2/3)(v(x, t)− λ)dx (46)
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Figure 1: λ-section of the initial profile (below) and the behaviour of the corresponding
confining characteristics for part of the KdV modulation solution (above). Γ(λ) is the domain
of influence of the interval [x1, x2]

for t < t2, where t2 is the time at which the characteristic x = x2 + λt intersects the trailing
edge x−(t) of the undular bore x−(t2) = x2 + λt2 (see Fig. 1). Note that this t2 plays for the
λ-section of the (evolving) profile v(x, t) a role similar to the breaking time, as the nonlinear
oscillations emerge in the vicinity of the point (x−(t2), t2) and the system (22) ceases to be
valid. However, unlike at the breaking point, there is no gradient catastrophe at (x−(t2), t2).

We now see that for t < t2 one has ∂F/∂t = 0 and thus F (λ, t) = F (λ, 0) = F (λ). Indeed
the integrand in (46) is nothing but the exact solution (24) of the modulation system (22).
But this system conserves the integral

∫ +∞
−∞ k(v(x, t))dx, so that we have

1

2π

∫ +∞

−∞
k(v(x, t))dx =

1

2π

∫ x2+λt

x1+λt

k(v(x, t))dx =
1

2π

∫ x2

x1

k(v0(x))dx = F (λ) . (47)

It follows from (47) that F (λ) is the number of linear modulated waves (i.e. the number of
wave crests) “contained” in the λ-section of the initial profile. All these waves are “released”
into the undular bore during the time interval (t2, t1) (see Fig. 1) and eventually transform
into solitons as t →∞.

Now we establish a correspondence between the λ-section of the initial profile and a
certain part of the solitary wavetrain as t → ∞. This correspondence follows from the
detailed consideration of the behaviour of the characteristics for the modulation solution
made in Gurevich, Krylov & Mazur [30] where it was shown that all the characteristics of
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the modulation system issuing from the points of the interval [x1, x2] are confined to the
area Γ(λ) of (x, t)-plane enclosed by the leading edge x+(t) and the characteristic emerging
from x1 (see Fig. 1). On the other hand, it was shown that for sufficiently large t the
characteristics emerging from the points x /∈ [x1, x2] lie entirely outside Γ(λ). Therefore all
wave crests generated at the trailing edge between the points x−2 = x2+λt2 and x−1 = x1+λt1
remain within the described region Γ(λ) for all t and eventually transform into the portion of
solitons having their amplitudes in the interval [a(λ); a(A)]. In other words, Γ(λ) represents
the domain of influence of the interval [x1, x2] and thus, formula (45) defines the number of
solitons in this region as t → ∞. Indeed when λ = 0 it coincides with formula (43) for the
total number of solitons.

We still need to find the dependence a(λ) to obtain the distribution of solitons as a
function of amplitude. In this regard we take advantage of the fact that due to the condition
v(x, 0) = 0 for x > 0, all solitons propagate on a zero background, so substituting v = 0 into

I2 we obtain λ = 3k̃2/2. Now using the connection (30) between the inverse width of a KdV
soliton and its amplitude we obtain the relationship a = 2λ. In particular we immediately
recover the IST formula amax = a(A) = 2A (see (9)). Then differentiating F (λ) with respect
to a we obtain Karpman’s formula (11) for the soliton amplitude distribution function

f(a) =

∣∣∣∣
dF (a/2)

da

∣∣∣∣ =
1

4π

1√
6

∫ x2

x1

dx√
v0(x)− a/2

. (48)

Summarising, we have managed to reproduce the semi-classical IST results pertaining to
soliton dynamics using, technically, only the linear dispersion relation and the characteristic
velocity of the KdV equation in the dispersionless limit. Of course, we took advantage of our
knowledge of the qualitative behaviour of the characteristics of the modulation equations for
the solutions considered here. Next assuming the same qualitative behaviour of modulations
as a plausible assumption, we extend the above reasoning to the non-integrable SG model (1)
with the aim of obtaining the counterparts of the formulae (43) and (48) for fully nonlinear
shallow water dynamics. Our analytic results will then be compared with full numerical
solutions of the SG system.

3 Asymptotic description of a solitary wavetrain in the

Su-Gardner system

3.1 Conserved quantities in the SG solitary wavetrain

We consider the SG system (1) with the initial depth profile

η(x, 0) = η0(x) > 1 : η0(x) → 1 as |x| → ∞ (49)

and the velocity profile connected with (50) by the simple wave relationship

u(x, 0) = u0(x) = 2(
√

η0(x)− 1) , (50)

so that u0(x) → 0 as |x| → ∞. Let max[η0(x)] = 1 + A and let w be the typical width of
η0(x). Similarly to the KdV case we shall assume that A1/2w À 1. Also, for convenience,
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Figure 2: Solitary wavetrain developing in the SG system from the initial disturbance (55)
with A = 1 and w = 10. The plot is η(x, t) at t = 400.

we assume that η0(x) = 1 for x > 0, which will guarantee that solitary waves propagate on
the undisturbed background η = 1.

The system (1) conserves the four physical quantities

J1 =

∫
[η − 1]dx; mass (51)

J2 =

∫
[u +

1

6
η2uxx]dx; irrotationality (52)

J3 =

∫
[ηu]dx; momentum (53)

J4 =

∫
[
1

2
(η − 1)2 +

1

2
ηu2 +

1

6
η3u2

x]dx energy. (54)

We now consider the SG system with the specific initial conditions

η0(x) = 1 + A sech2[x/w], u0(x) = 2(
√

η0(x)− 1) (55)

with the aim of verifying numerically some of our main assumptions about the qualitative
features of the asymptotic behaviour as t → ∞. A typical long-time outcome is shown in
Fig. 2. Comparison of the values of the four conserved quantities (51)–(54) computed for
two initial profiles having the form (55) with A = 0.4, w = 13 and A = 2, w = 10 with
their values calculated for the solitary wavetrain at large t shows that the relative change,
due to radiation, is O(10−2), which is within the accuracy of modulation theory, valid for
ε = (A1/2w)−1 = 0.12 and 0.07 respectively. Therefore we can assume that with good
accuracy a positive large-scale initial disturbance is completely transformed as t → ∞ into
a solitary wavetrain and we can neglect the contribution of the radiation component in the
modulation analysis.
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3.2 Modulation characteristic integrals

We now apply the procedure for the derivation of the amplitude distribution function, de-
veloped in Section 2 in the context of the KdV equation, to the SG system. The key objects
are the modulation characteristic integrals, having in the KdV case the form (37) and (38).
The ordinary differential equations for these integrals for the SG case (the counterparts of
the KdV case equations (23) and (35)) were derived in El, Grimshaw & Smyth [10], so here
we present only the resulting formulae. It is important to mention that the derivation in
El, Grimshaw & Smyth [10] was performed in the context of simple undular bores, so that
it incorporated the simple wave relationships between the depth and velocity jumps across
the bore. In the present study this condition is automatically satisfied by choosing initial
conditions in the form (49) and (50).

The key ingredient of the modulation characteristic integrals is the linear dispersion
relation for modulations, which in the SG case has the form

a = 0 : ω = ω0(η̄, ū, k) = k

(
ū +

η̄1/2

(1 + η̄2k2/3)1/2

)
. (56)

Here, as for v in (15), η and u denote the values averaged over the period of the travelling
wave. Next we incorporate the simple wave relation u(η) = 2(

√
η − 1) into (56) to obtain

the dispersion relation for a linear dispersive wave propagating on a slowly varying simple
wave background

Ω0(η, k) = ω0(η, u(η), k) = 2k(η1/2 − 1) +
kη1/2

(1 + η2k2/3)1/2
. (57)

Next, using reasoning identical to that described in Section 2 (see [10, 26, 28] for additional
details pertaining to bidirectional systems), we obtain the characteristic integrals of the
modulation system defined by the ordinary differential equations

I1 : a = 0,
dk

dη
=

∂Ω0/∂η

V (η)− ∂Ω0/∂k
on

dx

dt
=

∂Ω0

∂k
, (58)

I2 : k = 0 ,
dk̃

dη
=

∂Ω̃0/∂η

V (η)− ∂Ω̃0/∂k̃
on

dx

dt
=

Ω̃0

k̃
. (59)

Here
V (η) = u(η) + η1/2 = 3η1/2 − 2 (60)

is the characteristic velocity of the right-propagating simple wave of the ideal shallow water
equations (i.e. the dispersionless limit of the SG system) and

Ω̃0(η, k̃) = −iΩ0(η, ik̃) = 2k̃(η1/2 − 1)− k̃η1/2

(1− η2k̃2/3)1/2
(61)

is the SG “solitary wave dispersion relation”, an analogue of the KdV formula (29), k̃ being
the soliton wavenumber.
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Substituting (57) into (58) and introducing α = (1+k2η2/3)−1/2 as a new variable instead
of k we obtain an ordinary differential equation in separated form

dη

η
=

2(1 + α + α2)

α(1 + α)(α− 4)
dα . (62)

Integrating (62) we obtain

η

λ1

=
1

α1/2

(
4− α

3

)21/10 (
1 + α

2

)2/5

, (63)

where λ1 is an arbitrary constant of integration. Similarly, substituting (61) into (59) and

then using α̃ = (1 − k̃2η2/3)−1/2 instead of k̃ we arrive at the same separated ordinary
differential equation (62), but now for for α̃(η)

dη

η
=

2(1 + α̃ + α̃2)

α̃(1 + α̃)(α̃− 4)
dα̃ (64)

with the integral

η

λ2

=
1

α̃1/2

(
4− α̃

3

)21/10 (
1 + α̃

2

)2/5

, (65)

λ2 being another constant of integration.
Now we recall that the constants λ1 and λ2 cannot be set independently if the character-

istic integrals (63) and (65) are considered in the context of the same modulation solution.
One can see from the zero amplitude integral I2 (63) that η = λ1 implies α = 1 and, there-
fore, k = 0. But k = 0, in its turn, corresponds to the solitary wave limit, so the equality
η = λ1 must be consistent with the zero amplitude reduction of the “soliton” integral I2

(65). To obtain this reduction we calculate the solitary wave velocity using the conjugate
dispersion relation (61)

c =
Ω̃0(η, k̃)

k̃
= 2(η1/2 − 1)− η1/2α̃ . (66)

On the other hand, we have from (3), after replacing η0 with η and u0 with u = 2(η1/2 − 1),

c = 2(η1/2 − 1) +
√

η + a . (67)

Comparing (66) and (67) we obtain the expression for the solitary wave amplitude in terms
of the variable α̃, an analogue of the KdV formula (30),

k = 0 : a = η(α̃2 − 1) . (68)

Now one can see that the reduction as k = 0, a = 0 implies α̃ = 1 which, by (65), immediately
yields η = λ2. Therefore, similar to the KdV case, we have λ1 = λ2 ≡ λ and the relationships
(63) and (65) become a set of two consistent modulation characteristic integrals parametrised
by the same value λ (cf. (37) and (38) for the KdV case).
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3.3 Total number of solitary waves

As we described in Section 2.2 the total number of solitary waves in the soliton train evolving
out of the initial large-scale disturbance (49) and (50) can be found from the modulation
formula

N ∼= 1

2π

∫ +∞

−∞
k0(x)dx , (69)

where k0(x) is the initial distribution of the wavenumber corresponding to the initial condi-
tions (49) and (50) for the depth η and velocity u. This distribution is found from the group
velocity characteristic integral of the zero amplitude reduction of the modulation equations.
In the case of the SG system this is the integral I1 given by formula (63), in which one
assumes λ1 = λ = 1. The latter equality follows from the requirement that the integral I1

must correctly reproduce the mean value η = 1 for the solitary wave background when one
sets k = 0 (i.e. α = 1) in (63). Next one replaces η in I1 with its distribution η0(x) at t = 0
to obtain an implicit expression for k0(x) in terms of η0(x)

η0(x) =
1√
α0

(
4− α0

3

)21/10 (
1 + α0

2

)2/5

, (70)

where α0(x) is connected with k0(x) via the relationship

α0 = (1 + (k0η0(x))2/3)−1/2 . (71)

Thus expressing k0 from (71) and substituting it into (69) we obtain

N ∼= 1

2π

∫ +∞

−∞

√
3(1− α2

0(x))

η0(x)α0(x)
dx , (72)

which, together with (70), completely defines the total number of solitary waves forming in
the initial value problem (1), (49) and (50).

The first term of the expansion of (72) and (70) in η0(x) − 1 ¿ 1 (i.e. 1 − α0 ¿ 1 by
(70)) yields

N ∼
√

3

2

1

π

∫ +∞

−∞

√
η0(x)− 1dx , (73)

corresponding to the KdV result (43), taking into account that the weakly nonlinear reduc-
tion of the SG system yields the KdV equation in the form (5), so to obtain (43) one needs
firstly to set η0(x)−1 = ζ0(x) in (73) and then apply the rescaling as described in Section 1.

To compare our analytical results with full numerical solutions of the SG system we
consider the dependence of N on A1/2w, which is the parameter suggested by dimensional
analysis (see also (12)), for initial data of the form (55). The results are shown in Fig. 3.
The comparison shown in the left panel is for the solitary wavetrain developing from the
initial profile (55), with the width set to w = 10 and the amplitude A varying so that A1/2w
varies in the interval [6, 13], while in the right panel we fix the amplitude to A = 0.4 and
vary the width w so that the quantity A1/2w has the same range [6, 13]. One can see that
in both cases the modulation formula predicts the total number of solitary waves very well.
The over-prediction by just one in the second comparison is clearly within the accuracy of
the modulation approach, which is O(A1/2w)−1).
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Figure 3: Total number of solitary waves forming due to the decay of the initial disturbance
(55). The initial parameters are w = 10 and A varying (left); A = 0.4 and w varying (right).
Solid line is the modulation formula (72); symbols are the numerical solution; the dashed
line is the formula (73) corresponding to the KdV approximation (4).

3.4 Amplitude distribution function

Next, following the procedure of Section 2.3, we can “upgrade” formula (72) by using in (69)
the full expression k0(x, λ), which is obtained from the modulation characteristic integral I1

(63) by retaining the parameter λ and replacing the mean depth η with its initial distribution
η0(x). The expected result is the SG analogue of the integrated KdV soliton amplitude
distribution function (45).

We thus assume that in (71) α0 = α0(x, λ) and then obtain from (63) an implicit expres-
sion

η0(x)

λ
=

1√
α0

(
4− α0

3

)21/10 (
1 + α0

2

)2/5

. (74)

Then the integrated distribution function has the form

F (λ) ∼= 1

2π

∫ x2

x1

k0(x, λ)dx , (75)

where the function k0(x, λ) is expressed in terms of α0(x, λ) as

k0(x, λ) =

√
3(1− α2(x, λ))

η0(x)α(x, λ)
(76)

(see(71)) and x1,2(λ) are the roots of the equation k0(x, λ) = 0. It immediately follows from
(76) and (74) that these roots coincide with the roots of η0(x) = λ. So the range of λ is
[1, 1 + A], where A = max[η0(x)]− 1.

Next we establish the connection between the parameter λ and the lower bound of the
amplitude range in the portion of solitary waves corresponding to the “λ-section” of the
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initial profile η0(x). This is found from the characteristic integral I2 (65), in which we set
λ2 = λ and η = 1 as here the solitary waves are on a unit background (recall that η0(x) = 1
for x > 0). Then substituting α̃ =

√
1 + a from (68) we obtain the required relationship

λ = (1 + a)1/4

(
3

4−√1 + a

)21/10 (
2

1 +
√

1 + a

)2/5

. (77)

Since max λ = 1 + A, the amplitude of the largest solitary wave am is found from the
equation

1 + A = (1 + am)1/4

(
3

4−√1 + am

)21/10 (
2

1 +
√

1 + am

)2/5

. (78)

Expanding (78) in am we obtain to leading order am = 2A, as expected from weakly nonlinear
KdV theory. The relation (78) is shown in Fig. 4 along with the amplitude curve obtained
from direct numerical solutions of the SG system (1) with the initial conditions (55) with
w = 15. One can see that the agreement is very good for solitary wave amplitudes up to about
a = 1.6. The departure of the analytical curve from the numerical one for larger amplitudes
will be discussed later. One can also observe that the KdV lead soliton amplitude curve
am = 2A gives a very good approximation to the numerical SG curve, in fact even better
than the modulation SG formula (78). One should, however, bear in mind that formula (78)
for the lead solitary wave amplitude should be used in conjunction with expressions (2) and
(3) defining the SG solitary wave profile and velocity and, as such, then provides a consistent
approximation of the SG solution (and therefore of the full Euler equations solution). At
the same time the KdV formula am = 2A should be considered together with the familiar
KdV soliton profile and the speed-amplitude dependence (16) which are known not to give
very good approximations to the SG solitary wave for large amplitudes.
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from the initial conditions (55) with A = 0.4, w = 13 (left) and A = 2, w = 10 (right). Solid
line is the modulation formula (75); symbols are the numerical solution; dashed line is the
integrated Karpman formula (79).

Next putting (75)–(77) together we obtain the formula for the number of solitary waves
with amplitudes in the interval [a, am] as N (a) = F (λ(a)). Indeed N (0) = F (1) = N , where
N is the total number (72) of solitary waves in the train. Expanding (75)–(77) in a for a ¿ 1
we obtain to leading order

N (a) ∼
√

3

2

1

π

∫ x2

x1

√
(η0(x)− 1)− a/2 dx, (79)

where x1,2(a) are the roots of the equation η0(x) = 1 + a/2. Equation (79) is the integrated
Karpman formula for the KdV equation in the form (4) (cf. (45)). Comparisons of the inte-
grated amplitude distribution function N (a) with the numerically found number of solitons
are shown in Fig. 5 for two different initial profiles (one with A = 0.4, w = 13 (left panel)
and another one with A = 2, w = 10 (right panel)). One can see that the agreement in
both cases is quite good (again taking into account the accuracy of the modulation approach
itself). Moreover, one can see from the comparison in the right panel that the modulation
formula appears to work reasonably well far beyond the range of formal applicability of the
GP formulation of the problem used here. Indeed, it was shown in El, Grimshaw and Smyth
[10] that starting from some critical depth jump ∆cr ≈ 1.4 across the SG undular bore,
the oscillatory structure of the bore qualitatively changes due to linear degeneration of the
characteristic field and formation of a rapidly varying, finite amplitude rear wavefront, as
opposed to the usual vanishing amplitude trailing wave packet assumed in the GP formula-
tion. As an estimate we can assume A/2 = ∆− 1, the value of an “effective jump” taken at
the level of half the maximum value of the depth disturbance. Then for solitary waves with
amplitudes greater than acr ≈ 0.8 one can expect some discrepancy between the modulation
predictions and the results of direct numerical simulations, as indeed seen in Fig. 4.
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Figure 6: Amplitude profile of the SG solitary wavetrain at t = 1500. The parameters of
the initial profile are A = 2 and w = 10. Solid line is the formula (81); symbols are the
numerical solution; dotted line is the KdV soliton train amplitude profile (83)

The solitary wave amplitude distribution function f(a) is obtained by differentiating (79)

f(a) =
dN
da

, (80)

so that f(a)da gives the number of solitons with amplitudes in the interval [a, a + da]. If
we let the number of solitary waves per unit length in the solitary wavetrain be κ, then it
follows from the balance relationship κdx = f(a)da that κ = f(a)da/dx. Since the speed of
an SG solitary wave propagating against a background η = 1 and u = 0 is c =

√
1 + a, the

amplitude profile in the solitary wavetrain for x, t À 1 is found from the general formula√
1 + a = x/t +O(t−1) as

a ∼= (x/t)2 − 1 . (81)

A comparison of formula (81) for the solitary wavetrain amplitude profile with the numerical
profile for A = 2 and w = 10 at t = 1500 is shown in Fig. 6

Next, for the number of solitons per unit length we obtain

κ ∼= 2x

t2
f((x/t)2 − 1) . (82)
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Figure 7: Spatial density of solitary waves κ(x, t) in the solitary wavetrain formed out of
the initial profile (55) with A = 0.4, w = 13 (left, t = 1400) and A = 2, w = 10 (right,
t = 1500). Solid line is the SG formula (82); symbols are the numerical solution; dotted line
is the KdV formula(83).

We note that the weakly nonlinear counterparts of formulae (81) and (82) corresponding to
the KdV equation in the form (4) are

a ∼= 2(x/t− 1) , κ ∼= 2

t
fKdV (2(x/t− 1)) , (83)

where fKdV (a) is given by the Karpman formula (11). Comparisons of the curve (82) with
the numerically found spatial density of solitary waves in the SG solitary wavetrain for two
different initial profiles are shown in Fig. 7. As in the previous comparisons, the agreement
is excellent for moderate (A = 0.4) and reasonably good for very large (A = 2) amplitudes
of the initial disturbance (55).

4 Conclusions

We have developed a general method for obtaining an asymptotic description of solitary
wavetrains for initial value problems for weakly dispersive nonlinear systems which may not
be integrable via the IST. The method is based on the properties of the characteristics of the
associated modulation (Whitham) system describing an intermediate undular bore stage of
the evolution. We have demonstrated the effectiveness of the developed approach by firstly
recovering the semi-classical IST results for the soliton amplitude distribution function for
the KdV equation and then by applying it to the Su-Gardner (SG) system (1), the 1D ver-
sion of the Green-Naghdi equations, describing fully nonlinear shallow water waves. The
SG system is not integrable by the IST, but has enough structure (a periodic travelling
wave solution family and four conservation laws) to be amenable to a nonlinear modulation
analysis. It also transpires that the SG system represents an important mathematical model
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for understanding general properties of fully nonlinear fluid flows beyond the strict shallow
water limit. For this reason we have studied its solutions for the full range of amplitudes,
although in the particular context of shallow water waves the system (1) is unable to repro-
duce the effects of wave overturning and becomes nonphysical for amplitudes greater than
some critical value.

The resulting asymptotic formulae for the solitary wave amplitude distribution function,
the total number of solitary waves and the amplitude of the leading solitary wave in the
solitary wavetrain formed as the long time outcome of the decay of an initial large scale,
one hump depth disturbance have been compared with the results of direct numerical sim-
ulations of the Su-Gardner system. Very good agreement between the modulation solution
and numerical results have been demonstrated, even for the range of initial amplitudes sig-
nificantly exceeding that for the applicability of modulation theory due to formation of a
rapidly varying wavefront at the trailing edge of the undular bore at an intermediate stage
of the profile evolution (see El, Grimshaw and Smyth [10]).

The results obtained for fully nonlinear shallow water theory have also been compared
with their weakly nonlinear counterparts which are well known from the semi-classical IST
approach to the KdV equation, where they were obtained as consequences of the famous
Bohr-Sommerfeld quantisation rule (see Whitham [14] and Karpman [15]). Overall, one can
conclude that KdV theory gives a very good prediction for the lead solitary wave amplitude
and the spatial density of solitary waves in the fully nonlinear solitary wavetrain, but con-
sistently over-predicts the number of solitary waves in a given amplitude interval. Indeed
this discrepancy grows with the initial amplitude. One can also note that this comparison is
consistent with the modulation results for SG undular bores in the step resolution problem
studied in El, Grimshaw and Smyth [10], where it was shown that the SG undular bore
is noticeably narrower and contains less wavecrests than its KdV counterpart for moderate
to large values of the depth jump across the bore. Also, due to the essentially different
amplitude-speed relationships for SG and KdV solitary waves (cf. (3) and (16), the former
being actually equivalent to that for the full Euler theory [11]), the spatial amplitude profile
of the SG solitary wavetrain is parabolic, in contrast to the KdV classical triangle profile
(see Whitham [14] and Fig. 6).

Acknowledgements
The authors thank A. Kamchatnov for useful discussions.

References

[1] A.E. Green and P.M. Naghdi, “A derivation of equations for wave propagation in water
of variable depth,” J. Fluid Mech., 78, 237 (1976).

[2] S.L. Gavrilyuk, “Large amplitude oscillations and their “thermodynamics” for continua
with “memory”,” Eur. J. Mech., B/Fluids, 13, 753 (1994).

[3] P.J. Dellar, “Dispersive shallow water magnetohydrodynamics,” Physics of Plasmas,
10, 581 (2003).

23



[4] S.L. Gavrilyuk and V.M. Teshukov, “Generalized vorticity for bubbly liquid and dis-
persive shallow water equations,” Continuum Mech. Thermodyn., 13, 365 (2001).

[5] C.H. Borzi, R.A. Kraenkel, M.A. Manna and A. Pereira, “Nonlinear dynamics of short
travelling capillary-gravity waves,” Phys. Rev. E, 71, 026307 (2005).

[6] W. Choi and R. Camassa, “Fully nonlinear internal waves in a two-fluid system,” J.
Fluid Mech., 396, 1 (1999).

[7] L.A. Ostrovsky and J. Grue, “Evolution equations for strongly nonlinear internal
waves,” Phys. Fluids, 15, 2934 (2003).

[8] R. Barros, S. L. Gavrilyuk and V. M. Teshukov, “Dispersive Nonlinear Waves in Two-
Layer Flows with Free Surface. I. Model Derivation and General Properties,” Stud.
Appl. Math., 119, 191–211 (2007).

[9] C.H. Su and C.S. Gardner, “Korteweg-de Vries equation and generalisations III. Deriva-
tion of the Kortwewg-de Vries equation and Burgers equation,” J. Math. Phys., 10, 536
(1969).

[10] G. El, R.H.J. Grimshaw and N.F. Smyth, “Unsteady undular bores in fully nonlinear
shallow-water theory,” Physics of Fluids, 18, 027104 (2006).

[11] Lord Rayleigh, “On Waves,” Phil. Mag., 1, 257 (1876).

[12] R.S. Johnson, “Camassa-Holm, Korteweg-de Vries and related models for water waves,”
J. Fluid Mech., 455, 63 (2002).

[13] V.I. Karpman, “An asymptotic solution of the Korteweg-de Vries equation,” Phys. Lett.
A, 25, 708–709 (1967).

[14] G.B. Whitham, Linear and Nonlinear Waves, (Wiley, New York, 1974).

[15] V.I. Karpman, Nonlinear Waves in Dispersive Media, (Pergamon, Oxford, 1975).

[16] A.M. Kamchatnov, R.A. Kraenkel and B.A. Umarov, Phys. Rev. E, 66, 036609 (2002).

[17] A.M. Kamchatnov, R.A. Kraenkel and B.A. Umarov, “Asymptotic soliton train solu-
tions of Kaup-Boussinesq equations,” Wave Motion, 38, 355–365 (2003).

[18] P.D. Lax, C.D. Levermore and S. Venakides, “The generation and propagation of os-
cillations in dispersive initial value problems and their limiting behavior,” in Important
developments in soliton theory, ed. by A.S. Fokas and V.E. Zakharov, (Springer Ser.
Nonlinear Dynam., Springer, Berlin 1994) p. 205 (1994).

[19] G.B. Whitham, “Non-linear dispersive waves,” Proc. Roy. Soc. London, 283A, 238
(1965).

[20] J.C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. Roy.
Soc. Lond., A292 (1966).

24



[21] S. Yu. Dobrokhotov and V.P. Maslov, “Multiphase asymptotics of nonlinear partial
differential equations with a small parameter,” Sov. Sci. Rev.: Math. Phys., 3, 221–280
(1982).

[22] A.V. Gurevich, A.L. Krylov, N.G. Mazur N.G. and G.A. El, “Evolution of a localized
perturbation in Korteweg-de Vries hydrodynamics,” Sov. Phys. Doklady, 37, 198–201
(1992).

[23] G. El and R.H.J Grimshaw, “Generation of undular bores in the shelves of slowly-
varying solitary waves,” Chaos, 12, 1015–1026 (2002).

[24] H. Flaschka, G. Forest & D.W. McLaughlin, “Multiphase averaging and the inverse
spectral solutions of the Korteweg-de Vries equation,” Comm. Pure Appl. Math., 33,
739–784 (1979).

[25] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol II, Wiley-Interscience,
New York, (1962).

[26] G.A. El, “Resolution of a shock in hyperbolic systems modified by weak dispersion,”
Chaos, 15, 037103 (2005).

[27] A.V. Gurevich and L.P. Pitaevskii, “Nonstationary structure of a collisionless shock
wave,” Sov. Phys. JETP, 38, 291 (1974).

[28] G.A. El, V.V. Khodorovskii, and A.V. Tyurina, “Undular bore transition in bi-
directional conservative wave dynamics,” Physica D, 206, 232 (2005).

[29] R.H.J. Grimshaw, “Slowly varying solitary waves. I Korteweg-de Vries equation,” Proc.
Roy. Soc. Lond., 368A, 359–375 (1979).

[30] A.V. Gurevich, A.L. Krylov and N.G. Mazur, “Quasismple waves in Korteweg-de Vries
hydrodynamics,” Sov. Phys. JETP, 68, 966–974 (1989).

[31] G.A. El, V.V. Khodorovskii, and A.V. Tyurina, “Determination of boundaries of un-
steady oscillatory zone in asymptotic solutions of non-integrable dispersive wave equa-
tions,” Phys. Lett. A, 318, 526 (2003).

[32] G.A. El, R.H.J. Grimshaw and M.V. Pavlov, “Integrable shallow-water equations and
undular bores,” Stud. Appl. Math., 106, 157 (2001).

[33] R.H.J. Grimshaw and N.F. Smyth, “Resonant flow of a stratified fluid over topography,”
J. Fluid Mech., 169, 429–464 (1986).

[34] A.M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations—An Introductory
Course, (World Scientific, Singapore, 2000)

[35] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, (Pergamon, Oxford, 1987).

[36] N.F. Smyth, “Modulation theory for resonant flow over topography,” Proc. Roy. Soc.
Lond., A409, 79–97 (1987).

25


