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We consider shallow-water flow past a broad bottom ridge, localized in the flow direction,
using the framework of the forced Su-Gardner system of equations, with a primary focus
on the transcritical regime when the Froude number of the oncoming flow is close to
unity. These equations are an asymptotic long-wave approximation of the full Euler sys-
tem, without any inherent amplitude restrictions, and hence are expected to be superior
to the usual weakly nonlinear Boussinesg-type models in reproducing the quantitative
features of fully nonlinear shallow-water flows. A combination of the local transcritical
hydraulic solution over the localized topography, which produces upstream and down-
stream hydraulic jumps, and unsteady undular bore solutions describing the resolution
of these hydraulic jumps, is used to describe various flow regimes depending on the com-
bination of the topography height and the Froude number. We take advantage of the
recently developed modulation theory of Su-Gardner undular bores to derive the main
parameters of transcritical fully nonlinear shallow-water flow, such as the leading soli-
tary wave amplitudes for the upstream and downstream undular bores, the speeds of the
undular bores edges and the drag force. Our analytic solutions are shown to be in a very
good agreement with numerical simulations of the forced Su-Gardner equations within
the range of applicability of these equations.

1. Introduction

Shallow-water flow over an obstacle is a classical and fundamental problem in fluid
mechanics, with implications for flow interaction with topography in many other phys-
ical contexts. Our concern here is with the upstream and downstream waves that may
be generated for flow over a one-dimensional localized obstacle, that is the obstacle is
uniform in the direction transverse to the oncoming flow, and is localized in the flow
direction. When the flow is not critical, that is when the Froude number F' = V/c is not
close to unity, where V is the oncoming flow speed and ¢ = (gh)'/? is the linear long wave
speed in water of undisturbed depth h, linear theory may be used to describe the wave
field. For subcritical flow(F < 1) stationary lee waves are found downstream, together
with transients propagating both upstream and downstream, while only downstream-
propagating transients are found in supercritical flow (F > 1). However, these linear
solutions fail near criticality (F' = 1), as then the wave energy cannot propagate away
from the obstacle. In this case it is necessary to invoke nonlinearity to obtain a suitable
theory, and it is now well established that the forced Korteweg-de Vries (fKdV) equation
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is an appropriate model for the weakly nonlinear regime (see, for instance, Grimshaw
et al. (2007) and the references therein).

The structure of the transcritical (or resonant) flows over localized topography mod-
elled by the fKdV equation, is now well understood. Combinations of the locally steady
hydraulic solution, with its associated upstream and downstream hydraulic jumps, and
the modulation solutions describing upstream and downstream undular bores which re-
solve these jumps, obtained by Grimshaw & Smyth (1986) and Smyth (1987), showed
excellent agreement with direct numerical simulations of the fKdV equation. On the other
hand, a recent comparison in Grimshaw et al. (2007) of fKdV dynamics with the corre-
sponding numerical solution of the full Euler equations for transcritical flow showed that,
while the fKdV model successfully reproduces essential qualitative features of the flow,
quantitative differences could be quite significant for large obstacles. In this paper, we
address this issue by seeking analytical and numerical solutions of the Su-Gardner (SG)
equations, derived by Su & Gardner (1969) to describe fully nonlinear water waves in the
long-wave regime. The SG equations are of the Boussinesq-type, but are distinguished
from other such models as these are weakly nonlinear. Detailed numerical comparisons
by Ertekin et al. (1986) and Nadiga et al. (1996) showed that the SG equations repro-
duce the finite-amplitude Euler equation dynamics of flow past topography (of course
excluding any possible effects of the wave-breaking).

The description of an undular bore generated by an initial step was first constructed by
Gurevich & Pitaevskii (1974) in the framework of the Korteweg-de Vries (KdV) equation,
using the Whitham modulation theory (see Whitham (1974)). This solution was used by
Grimshaw & Smyth (1986) and Smyth (1987) to describe the generation of upstream
and downstream undular bores generated by transcritical flow over topography in the
framework of the fKdV equation. In that case, explicit analytic solutions could be found,
as for the KdV equation Riemann invariants are available for the associated modulation
system, which in turn is a consequence of the integrability of the KdV equation. The
SG system is not integrable and the Riemann invariants for its modulation system are
not available. A method for the analysis of the undular bores which does not require the
existence of the Riemann invariant form of the modulation system was developed by El
(2005) (see also El et al. (2005)). This method was applied to the SG system by El et al.
(2006) where the main parameters of the so-called simple undular bores were derived.
In this present paper we use this theory to study the generation of finite-amplitude
undular bores generated by transcritical shallow-water flow past a localised obstacle in
the framework of the forced SG equations. Our main aim is to obtain the dependence of
the parameters defining the undular bores, such as the leading soliton amplitude and the
speeds of the undular bore edges, on the the magnitude of the topographic forcing and
the Froude number of the oncoming flow.

Thus we consider one-dimensional shallow-water flow past topography. The flow can
be described by the total local depth H and the depth-averaged horizontal velocity U.
The basic equations are derived in Appendix A, and are just the usual SG equations, but
modified by the forcing term due to localized topographic obstacle f(x) defined so that
the bottom is located at z = —h + f(x) where h is the undisturbed depth at infinity.
Here we shall use non-dimensional coordinates, based on a length scale h, a velocity scale
vgh and a time-scale of y/h/g. Then the forced SG equations are

G+ (HU), =0, H=1+(C—F, (1.1)

(H?D?H),  (HD*f)a  faD?(C+f)

Uy +UUg + G = — 3H 3 5 ;

(1.2)
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0 0
where D = 8t+U8x'
This agrees with the original SG system when f = 0. When f # 0 the only difference
lies in the nonlinear dispersive terms in (1.2).

We shall suppose that the upstream flow is the constant horizontal velocity V' > 0, in
dimensional coordinates, which becomes F' = V/4/gh, the Froude number, in the non-
dimensional coordinate system. Since we are considering a localized obstacle, we require
that f = 0 for |z| > L say, and f > 0 when |z| < L with a maximum of f,,, at z = 0. Then
our asymptotic solution procedure assumes that that L > 1, and so in |z| < L we can use
a hydraulic approximation to obtain subcritical, supercritical and transcritical solutions,
analogous to those described by Grimshaw & Smyth (1986) for the fKdV equation, and by
Baines (1995) for fully nonlinear and nondispersive flow. In the transcritical regime these
solutions form upstream and downstream discontinuities relative to the undisturbed flow
at infinity, that is hydraulic jumps. These discontinuities are resolved by the insertion of
undular bores and since in |z| > L we have the homogeneous SG equations, the Whitham
modulation theory can be applied there. In the remainder of this paper, we present the
hydraulic solutions in section 2, and the required undular bore solutions in section 3. We
conclude with a discussion in section 4.

2. Hydraulic approximation

We shall follow the approach of Grimshaw & Smyth (1986) the key point of which
is the existence, in the transcritical regime, of a localized steady hydraulic solution in
the forcing region. This is characterized by a subcritical constant elevation ¢~ > 0 and
velocity U < F upstream and a supercritical constant depression ¢(* < 0 and velocity
U > F downstream. These states are resolved back to the equilibrium state ¢ = 0,
U = F by two undular bores, propagating upstream and downstream respectively. Apart
from the account of the large-amplitude effects, the qualitative difference between the
KdV case studied in Grimshaw & Smyth (1986) and the present case of the SG system
is that now we deal with the equations describing bidirectional wave propagation so
the mentioned combination of just two undular bores may generally be not sufficient to
resolve the upstream and downstream discontinuities in depth and velocity.

First we need to determine the upstream elevation and velocity at * = —L and the
downstream depression and elevation at = L. As in Grimshaw & Smyth (1986) this can
be done by using the hydraulic approximation, in which the dispersive term in (1.2) is
omitted, and we then seek steady solutions of the remaining equations which, relative to
the oncoming flow F', have a subcritical elevation upstream and a supercritical depression
downstream. These steady hydraulic equations are

U2
2
Here ), B are positive integration constants, representing mass and energy respectively
(strictly B is the Bernoulli constant, and B(Q is energy). Eliminating ¢ gives
U2 Q
— 4+ ==B+1- 2.2
st =B+ri-/, (2.2)
which determines U as a function of the obstacle height f.
For non-critical flow, this solution must connect smoothly to F,0 at infinity, and so
Q = F,B = F?/2. In terms of the upstream Froude number it is then required that (see

HU=(1+(-flU=Q, (+— =B, (2.1)
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for instance Baines (1995))

F?  3F%3
0< fn <14 —4 - :
< fm <1+ 3 5

This expression defines the subcritical regime F' < F_ < 1 and the supercritical regime
1 < F4 < F where a smooth steady hydraulic solution exists. For small f,, << 1, we

find that
3 1/2
Fi:u,/% . (2.4)

In the transcritical regime F_ < F < F} where (2.3) does not hold, we seek instead
a solution which has upstream and downstream jumps, and which satisfies the critical
flow condition at the top of the obstacle. That is we require that when f, =0 at x =0,
U, # 0. This condition leads to

(2.3)

Uz =0)=U,, = Q3. (2.5)
Note that we can define a local Froude number Fr by

Uz U3 U3
(Fr)Qzﬁzaszgl, andso Fr=1latx=0. (2.6)
Later it will emerge that there is subcritical flow upstream (Fr < 1,U < Uy, z < 0) and

supercritical flow downstream (Fr > 1,U > U,,, z > 0). Evaluating (2.2) at x = 0 we get
3U2  3Q%*3
2 2

For a given obstacle height, this relation defines B in terms of Q). Also we note that the
elevation ((z = 0) = (,, at the top of the obstacle is given by

—B+1—fn. (2.7)

2
(m =B — % . (2.8)
It follows that ¢ > (,,, U < U,, upstream, and ¢ < (,, U > U,,, downstream.

Next outside the obstacle in U = Uy, = (4 are constant, downstream (x > L) and
upstream (x < —L) respectively. We must now determine how these constants are related
to the undisturbed values U =V, = 0 far downstream and upstream. This will depend
on whether the adjustment is through a classical (frictional) shock, or through an undular
bore. Before proceeding we note the relationships

Ur(1+G) =@, (2.9)
2
%4—@:3, (2.10)
2
and so g—l—Q @ s +tCx+1=B+1. (2.11)

2 Ur 201+¢y)
For given @, B, these relations fix Uy, (4 completely, provided we can establish that
the required solution must have Uy > U_,{; < (_. But we have one relationship (2.7)
connecting B, @, and so there is just a single constant to determine. Also note that the
respective criteria that (1 = 0 recover the boundaries of the transcritical regime defined
by equality in (2.19)
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FIGURE 1. Schematic for closure using classical shocks.

2.1. Classical shock closure

We follow first the classical approach and consider downstream and upstream jump res-
olution by classical shocks. Apart from being methodologically instructive this consider-
ation is relevant to the case of large-amplitude topography that would generate classical
turbulent bores.

If S is the shock speed, and [ - -] denotes a jump, the classical shocks conserve mass
and momentum, and so we get, in |z| > L,

—S[¢]+[HU) =0, —S[HU]+[HU?*+ ¢+ %CQ] =0. (2.12)

Note the steady flow over the obstacle conserves mass, but energy, rather than momen-
tum, so these are nontrivial conditions to apply. However, we cannot simultaneously
impose upstream and downstream jumps which connect directly to the uniform flow.
Instead, we follow Baines (1995), and first impose an upstream jump. There is then a
downstream jump which connects to a rarefraction wave (see Fig 1 ).

First we consider the upstream jump, which connects (_,U_ to 0, F' with S_ < 0. The
first relation in (2.12) gives

C(S-—-F)=1Q+¢)U-—-F), or ¢ (S-—-U_)=U_—-F. (2.13)
But then, using the relations (2.9) we also get
S (. =Q-F. (2.14)
Next, the second relation in (2.12) gives
(1+C_)(U_fF)(S_fU_):C_(lJr%). (2.15)
Eliminating S_ gives
(1+C7)(U,—F)2=c3(1+%), (2.16)
while eliminating U_ — F gives
(- —FP=(1+C)0+ %), (2.17)
so that S :F—[(1+g:)(1+%‘)]1/2. (2.18)

Here the choice of sign is dictated by the requirement that this solution is to hold in the
transcritical regime. Further, since we need S_ < 0 it follows that we must have (_ > 0.
Then the relations (2.9, 2.14) show that also U_ < Q < F.

The system of equations is now closed, as substitution of (2.18) into (2.14) determines
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¢— in terms of @), and then we can use (2.11) to determine @ in terms of B, so that finally
all unknowns are obtained in terms of f,,, from (2.7). Further, the conditions (_ > 0 serve
to define the transcritical regime in terms of the Froude number F' and f,,.
F?  3F?/3
14— —
fm> 145 = 2,

This of course is precisely the opposite of the condition (2.3) for non-critical flow. In the
weakly nonlinear limit, this procedure yields

2 12fm
C+ = g(F* )F 3 (2.20)

which holds in the transcritical regime |F — 1| < (3f,,/2)'/2.

This procedure also determines (4 < 0,U; > U,,, but in general, these cannot be
resolved by a jump directly to the state 0, F'. Instead we must insert a right-propagating
rarefraction wave, as in Baines (1995), see Figure 1. The rarefraction wave propagates
downstream into the undisturbed state 0, F'; and so is defined by the values (., U, where

U —2(14¢)/?* =F-2. (2.21)

(2.19)

The rarefraction wave is then connected to the ”hydraulic” downstream state near to-
pography (4, Uy by a shock, using the jump conditions (2.12) to connect the two states
through a shock with speed S; > 0. There are then three equations for the three un-
knowns (., U,, S; and the system is closed.

Note that in the weakly nonlinear regime, when the forcing is sufficiently small (the
appropriate small parameter is € ~ +/f,,), the rarefraction wave contribution can be
neglected as it has the amplitude of order €3 while the shock intensity is O(e), see the
next section.

2.2. Undular bore closure

Now suppose that instead we use undular bores to resolve the shocks. Then upstream
we must impose the condition for a simple undular bore (see El et al. (2006)), while
downstream we should in principle allow for a rarefraction wave in addition to another
simple undular bore (see Figure 2). The simple undular bore transition condition requires
that one of the Riemann invariants of the ideal shallow-water equations (the dispersionless
limit of the system (1.1), (1.2) with a zero right-hand side) should have a zero jump across
the bore. The choice of the Riemann invariant is suggested by the comparison with the
well-understood small-amplitude theory (Grimshaw & Smyth (1986) and Smyth (1987)).
Indeed, in the small-amplitude approximation for transcritical flow past topography both
the upstream and the downstream undular bores are modeled within the framework of the
same left-propagating forced KdV equation. This implies that for the forced SG system
the appropriate left-propagating simple undular bore conditions should be applied to
both the upstream and downstream flow.
Thus for the upstream undular bore we have

U_+2(1+¢ )2 =F+2, (2.22)
or, equivalently, using (2.9),
Q 1/2 2Q1/?
204+ ¢ )2 =U_+=_=F+2. 2.2
1+C_+(+<) U+U1/2 + (2.23)

This expression then replaces (2.13, 2.18), and in conjunction with (2.11) determines
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FIGURE 2. Schematic for closure using undular bores
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0.8 1

F1GURE 3. Plot of (_ as a function of f,, for F' = 1; the solid red line is the classical shock
closure and the dotted blue line is the undular bore closure

(_,U_,Q in terms of F, f,,. As for the classical shock closure, the condition {_ > 0
again defines the transcritical regime by (2.19). Note that the expression (2.23) can be
expanded in powers of (_ to yield
2 3

Q:F+(F—1)C_f%+%+~- (2.24)
This agrees with the corresponding expression obtained from the classical shock closure
using (2.13) up to the second order term, while the third order term is then ¢3 /16. Since
the final determination of (_ in terms of F, f,, is then given by (2.11) in both cases,
it follows that these results will also agree up to the second order terms in (_, where
we note that ' — 1 ~ (_ for transcritical flow. A plot of f,, in terms of (_ for F =1
is shown in Figure 3, where we also show the corresponding result using the classical
shock closure. We see that (_ is slightly smaller when using the undular bore closure
than for the classical shock closure, but is indeed quite close over the whole range of f,,.
However, while the closure conditions for classical and undular bores are very close, their
structure and speeds of propagation are drastically different. Indeed, in contrast to the
classical shock, the undular bore expands with time and is characterised by two speeds,
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the leading edge propagating with the soliton speed and the trailing with the linear group
velocity. Both speeds are different from the classical shock speed. For instance, for the
KdV equation u; + uty + gy, = 0 the corresponding classical shock speed (found from
the dispersionless “mass” balance u; + (u?/2), = 0) is s = A/2, where A = u_ — u is
the jump across the shock, while for the undular bore with the same jump A the leading
edge propagates with the velocity sy = 2A/3 and the trailing edge with the velocity
s— = —A (see Gurevich & Pitaevskii (1974) and Fornberg & Whitham (1978)). The
speeds of the upstream and downstream undular bore edges for the forced SG system
will be determined in terms of f,,, F' in the subsequent sections. Also, we note that from
the analytical point of view it is essential that we use the undular bore closure condition
(2.22) rather than classical shock closure (2.16) as condition (2.22) is consistent with
the Whitham modulation equations describing slow variations of the travelling wave
parameters in the undular bore (see El et al. (2005) and El (2005)).

As for the classical shock closure, the downstream undular bore can now be found
independently of the upstream state, where we would generally use

Up +2(1+ )2 =Up + 201+ )2, (2.25)

where U,., (, are the parameters of an additional intermediate constant state which is
connected to the unperturbed flow U = F, ( = 0 through a right-propagating rarefraction
wave satisfying the transition condition (2.21). This analysis can be simplified by noticing
that for sufficiently small values of topographic forcing one can neglect the contribution
of the rarefraction wave into the solution and connect the downstream undular bore
directly to the undisturbed flow U = F', ( = 0. To show this, we consider the jump of the
Riemann invariant of the unforced ideal shallow-water equations, U +2(1+¢)'/2, defining
the simple undular bore transition, across the transcritical hydraulic solution. For that,
using (2.5), (2.9), we introduce dimensionless quantities vy = Uy /U, to transform (2.11)
into
9 2
vi+—-—-3=a, (2.26)
U4
where a = 2f,, /U2, For small values of the topographic forcing, when a < 1, we expect
v4 ~ 1. Then from (2.26) we get the expansion
e

1/2
m,:1i(§) -+%%w&awz+.”, (2.27)

The coefficients ¢y in (2.27) will not contribute to the result so we do not present them
explicitly. Next we consider the quantities.

1 2Q1/2 2
Ap=— U+ =~ | = —, 2.28
+ Um< ++ Ui/Q ’Uj:+v:1t/2 ( )

which are just the normalized Riemann invariants (2.25) and (2.22) defining the down-
stream and upstream undular bore transitions respectively. Expanding (2.28) for small
«a we get that
a  a’?
AL =3+—-—F——... 2.29
+ 1 + 24/3 ( )

Now, taking into account that for weak topography U,, = 1 to leading order, we get that

f 3/2
A—A+—2(gv + - (2.30)

Thus for small topographic forcing the Riemann invariant controlling the undular bore
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FIGURE 4. Upstream elevation (_ (solid line) and downstream depression (4 (broken line) as
functions of the topography strength f,, for fixed Froude number F' = 1 (left) and the Froude

number F for fixed fn, = 0.2 (right) in the local hydraulic transcritical solution.

transition condition has a jump of only the third order in the small parameter /f,,
across the forcing region. It is not difficult to show now that the magnitude A of the
downstream rarefraction wave forming due to this small jump of the Riemann invariant
across the forcing region to leading order is A =~ (A_ —A4)/2 ~ (f,,/6)>/2. This implies
that one can neglect the downstream rarefraction wave and use the same transition
condition (2.22) for the downstream undular bore. That is, henceforth we can assume
that

U +20+C¢ )V =U, +2(1+¢) V> =F +2. (2.31)

Of course, it is well known that in the case of weak topography the resonant flow prob-
lem is modeled by the uni-directional forced KdV equation (see, for instance, Grimshaw
& Smyth (1986)) so that the simple-wave relationship (2.31) is already taken into account
in this model. In this respect, the result (2.31) for weak topography is to be expected
and can be regarded as a formal justification of the validity of the uni-directional KdV
approximation in the modelling of the resonant flow past topography. On the other hand,
relationship (2.30) shows that within the range of applicability of the SG model one can
consistently neglect the downstream rarefraction wave and at the same time capture
effects O(v/fin) which could be well beyond the KdV approximation.

Now, having the full hydraulic solution for the transcritical region (2.3), we use (2.7,
2.9, 2.10, 2.11, 2.31) to plot the values of the upstream and downstream elevation (de-
pression) jumps, (_ and (; as functions of the topography amplitude f,, for a fixed value
of the Froude number say F = 1 and as functions of the Froude number F' for a fixed
value of f,, (we take f,, = 0.2). The corresponding plots are presented in Figure 4. One
can see that at the lower boundary F_ = 0.47 of the transcritical regime one has a down-
stream bifurcation (¢t “switches” from 0 to about —0.6) while at the upper boundary
F, ~ 1.55 there is an upstream bifurcation from (_ = 0 to about 0.9. Therefore, near
the transcritical region boundaries an additional (non-stationary) analysis is required to
clarify validity of the local hydraulic solution in the global description of the transcritical
flow. Such an analysis is beyond the scope of the present paper, instead, we shall simply
compare our analytic results with direct numerical solutions of the forced SG system.
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FIGURE 5. The regions of the f,,, F' - plane corresponding to different configurations of the flow
past topography. Solid line: the transcritical region boundaries Fy > F_ defined by the equality
in (2.3). For F < F_ (region I) and F' > F, (region V) one has the hydraulic flow smoothly
connecting to ¢ = 0,U = F at infinity; In the regions II — IV undular bores are generated. Region
II corresponds to the attached downstream undular bore and detached upstream undular bore;
in the region III both undular bores are detached; In the region IV there is an attached upstream
bore (soliton train) and a detached downstream bore.

3. Downstream and upstream undular bore resolution
3.1. Numerical solution

In the subsequent subsections, we shall derive analytically the main parameters of the
undular bores generated in transcritical shallow-water flow past a localized obstacle mod-
eled by the forced SG equations (1.1), (1.2). These will be compared with the results of
direct numerical simulations of the system (1.1), (1.2). The numerical scheme was de-
veloped using centred differences in space and time, so that the error was O(Az?, At?),
where Az and At are the space and time steps respectively. This scheme was found to
be stable. For the numerical simulations we used the expression f(x) = f,, exp (—22/w?)
with w = 8 for the forcing term.

It will be shown that for weak topographies our theory reproduces the analytical results
obtained (and verified numerically) earlier in the framework of the forced KdV equation.
Therefore, in the numerical comparisons we shall concentrate on the finite-amplitude
waves and will test the obtained analytical solutions for a broad range of amplitudes
performing the simulations even outside the range of formal applicability of the SG
model to actual shallow-water flows.

In the forced KdV dynamics with broad localised forcing one of the undular bores is
always attached to the topography while another one is fully realised. Which bore (up-
stream or downstream one) is attached is determined by the actual combination of the
forcing amplitude f,,, and the Froude number F' of the oncoming flow. The “switchover”
between two attached bores occurs on a certain line in the (fy,, F)-plane. As we shall
show, in the fully nonlinear SG theory this “switchover” line splits into a domain cor-
responding to the configuration with both undular bores fully realised and completely
detached from the topography. The diagram showing different regions of the (f,, F)
- plane is presented in Figure 5. The equations of the transcritical region boundaries
Fy > F_ are given by the equality in (2.3). The equations for the internal boundaries
separating regions II, ITI and IV will be derived later.

In Figure 6 two numerical solutions for the surface displacement ¢ in the forced SG
system (1.1), (1.2) are shown for the input parameters corresponding to the regions
IV and II of Figure 5. Further, in Figure 7 the numerical solution corresponding to
the region IIT with two completely detached bores is presented. One can see that the
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FIGURE 6. Undular bore resolution in the transcritical flow past broad topography. Left: attached
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FIGURE 7. Undular bore resolution in the transcritical flow past broad topography (fm» = 0.1,
F =0.8, t = 250): both bores are detached (region III).

numerical solutions confirm our main assumption about the existence, in the topography
forcing region, of the steady hydraulic transcritical solution forming downstream and
upstream jumps which are further resolved back into the undisturbed flow via undular
bores. Another important feature of the numerical solution confirming our theory so far
is the fact that the downstream large-amplitude undular bore resolves (almost) directly
back into the undisturbed flow without the need of a further rarefraction wave which
could be there from general reasoning described in Section 2. A very small departure
of the equilibrium state downstream of the bore from the undisturbed flow with { = 0,
which can be seen in both figures, agrees with our prediction in section 2.2, which gives
AC = (fm/6)%? ~ 1072 (i.e. about 1-2% of the depth jump across the downstream
undular bore for the forcing amplitudes used in our simulations). Thus the contribution
of the corresponding rarefraction wave can indeed be neglected for any practical purpose.

3.2. General analytic construction

It is essential that the downstream and upstream undular bores are generated outside
the region of the topographic forcing, and therefore we can take advantage of the the
modulation theory of undular bores in the standard, unforced SG equations developed in
El et al. (2006, 2008). To be consistent with the notations of the aforementioned papers
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we introduce n = 1+ (, u = U and represent the unforced SG system in the form
ne+ (nu)e =0, (3.1)

1
7773(u:1:t + Ulgy — (um)Q)

1
Ut + Uy + g = —
n 3

x
Now we explicitly present the upstream and downstream hydraulic states for the trans-
critical regime, F_ < F < Fy

at x=-L: n=n,>1, u=u, <F, (3.2)
at x=1L: n=ng<1l, u=uq>F,
where g =1+, ug=Uy, nu=1+¢, u,=U_. (3.4)

Using (3.4) and relationships (2.7, 2.9, 2.10, 2.11) we obtain the system for 1, 4, Uy 4,

Nuty = Naua,  5(wa)® + 10 = 3(ua)® + 10, 3w + 00 — 3(ua)*’® = frn, (3.5)
which is closed by any of two (asymptotically equivalent) conditions:
Uy + 24/ = F +2 (3.6)
or

ug+2y/fa =F +2. (3.7)

Both the hydraulic elevation (3.2) upstream and the depression (3.3) downstream are
resolved into the undisturbed flow n = 1,u = F by expanding undular bores. These
undular bores represent nonlinear modulated periodic wavetrains and can be described
using the Whitham modulation theory (Whitham (1974)).

Before we proceed with the undular bore analysis it is instructive to obtain simple ap-
proximate explicit expressions for 7,4, y,q in terms of F' and f,,, for weak topographies.
We use the asymptotic closure conditions (3.6) , (3.7) to eliminate 7, 4 from (3.5) and
obtain a single equation for w = w4,

F—w 1 2
o)

w? n F—w L1 > 3

2 2 2
This equation has two roots, the larger one corresponds to ug and the smaller one to wu,,.
It is easy to see that for f,, = 0 (3.8) is identically satisfied if w = (F' + 2)/3. Expanding
(3.8) for small f,, we obtain to first order

=l S(Fo1) =2 =14+ 2(F -1 Zm .
U —1—3( ) 3 Uy +3( )+ 3 (3.9)

where we have also used that F' takes its values in the transcritical region (see (2.4))

1—\/3fm<F<1+\/3fm (3.10)

Respectively, with the same accuracy we get from (3.6), (

nu:1+§(F—1)+\/%, nd:1+§(Ffl)f\/%, (3.11)

One can see that at the lower boundary, F' = F_, of the transcritical region one has
e = 1, g = 1 — 2(2fn/3)'/2, i.e. there is only the downstream jump. Similarly, if
F=F_, onehasng=1,1,=1+2(2f,/3)"/? i.e. there is only the upstream jump. As

2/3
= fm- (3.8)
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a matter of fact, this qualitative behaviour at the boundaries of the transcritical region
is also characteristic for the resonant flows satisfying fully nonlinear conditions (3.5) —
(3.7) (see Figure 4).

Next we make a brief account of the properties of the travelling wave solutions to
the SG system (1.1, 1.2) necessary for the asymptotic modulation description of the SG
undular bores. The periodic travelling wave solution of the SG system is expressed in
terms of the Jacobian elliptic function en(6; m) and depends on four constant parameters:
¢, M3 =n2 = m >0 (see El et al. (2006))

1 [3(n3 —m) (mnans)t/?
z,t) =m+acn® | 2/ 2L (x—ct);m |, u=cF-—""""—  (3.12
(1) = (2 =) et g (312)
where a=n3—1n2, m = Zi : Z? (3.13)

are the wave amplitude and the modulus respectively and c is the phase speed. Signs
“~” and “ 47 in the expression (3.12) for the velocity u correspond to the right- and
left-propagating waves respectively The wavenumber is given by

3z —m) 7

k= :
mnens  2K(m)

(3.14)

where K(m) is the complete elliptic integral of the first kind. When m — 0 (i.e. 72 — n3)
the cnoidal wave (3.12) transforms into the harmonic small-amplitude wave characterised
by the dispersion relation

1/2
. o "o
wO(k7u07n0) =ck=k <U0 + (1 T n8k2/3)1/2> ’ (315)

where 79, up are the background flow parameters and the signs “+” and “~" correspond
to the right- and left-propagating waves respectively. When m = 1 (i.e. o = 71) the
wavenumber k = 0 and the cnoidal wave (3.12) becomes a solitary wave,

- V3a
= sh™? | ——— (2 — 1
1 = 1o + acos <770 s (x — cst) (3.16)

characterised by the speed-amplitude relationship

cs =ugtmt+a. (3.17)

7

Here “+” corresponds to the right-propagating and “—” — to the left-propagating soli-
tary wave. In the undular bore solution, the local travelling wave parameters 11,72, 73, ¢
are allowed to slowly depend on x,t. As a result, their evolution is governed by the
Whitham modulation equations, which can be obtained by averaging the conservation
laws of the SG system over the period 27 /k of (3.12) or, alternatively, by the standard
multiple-scale analysis (see Gavrilyuk (1994)). As a matter of fact, one can use any four
independent combinations of 1;,72,73, ¢ as modulation variables. The most convenient
choice appears to be 7,u, k, k, where 77, w are the mean flow parameters defined as aver-
ages of n and u over the period of the travelling wave (3.12), k is the wavenumber (3.14),
and
7 3(n3 —m) ™

_ 3.18
mnenz 2K (1 —m) (8.18)
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is the “conjugate wavenumber” associated with the adjoint (imaginary) period of the
elliptic solution (3.12) in the complex z-plane. When m = 1, k becomes proportional to
the inverse solitary wave half-width (sometimes called the soliton wavenumber). In the
opposite limit, when m = 0, one also has k=0.

The modulations in the undular bore generated by the decay of an initial step in 7
and u are described by an appropriate similarity solution of the Whitham equations. To
clarify how this applies to the present problem of the transcritical flow past topography
we note that, since both downstream and upstream undular bores expand with time, for
sufficiently large ¢ one can neglect the topography width 2L compared with the width
of the undular bore. Hence, on the typical scale of the modulation variations the hy-
draulic transition from (7, u,,) upstream to (14, uq) downstream can be considered to be
localised at « = 0, which allows one to use similarity modulation solution for the descrip-
tion of the large-time behaviour of the flow. The required solution is chosen in such a way
that it would provide continuous matching of the mean flow in the undular bore region
with given external constant flow at free boundaries x~ = s7¢ and 27 = st defined by
the conditions that k = 0 at one (linear) edge and k = 0 at the opposite (soliton) edge.
In the left-propagating shallow-water undular bore the solitary wave forms at the leading
edge 27 (t) and the linear wave train degeneration occurs at the trailing edge =+ (¢). The
crucial fact that enables one to determine the speeds s* of the undular bore edges in
terms of the initial step parameters is that the boundaries of the undular bore, where
the matching of the modulation solution with the external constant flow occurs, must
necessarily be characteristics of the modulation Whitham system. Then the constraints
imposed by the corresponding characteristic relationships along the linear group velocity
dx/dt = Owy/Ok and the soliton dx/dt = (w/k)g—o characteristics lead to two systems
of ordinary differential equations for the undular bore edge parameters (see El 2005 for
details). For the SG system these equations were derived and solved in El et al. (2006).
However, the results of the latter paper cannot be directly applied to the present reso-
nant flow problem as they should be first modified to the case of left-propagating waves
and nonzero background velocity. The modification is quite straightforward and involves
incorporation of the simple-wave relationship @+ 27'/? = F 4 2 for the background flow
into the linear dispersion relation (3.15), namely we replace 79, ug with 77,7 so that one
arrives at the dispersion relation for the left-propagating linear modulated waves riding
on a slowly varying simple-wave hydrodynamic background

k‘ﬁl/Q
(1+72k2/3)1/2°
Then one constructs two families of characteristic integrals I, I of the modulation sys-
tem specified by the ordinary differential equations (see El et al. (2006, 2008) for details)

Qo(, k) = wo(k; T(7),7) = k[F +2(1 —7"/?)] — (3.19)

-~ dk 890/% dx 890
I =0, Lo O &2 2
! F=0 TV ook " @ T ok (8:20)
I k=0, dk __ 0%/0n - odr S (3.21)
dn V(7)) — 00/0k at k
Here
V() =u(m) -7'"? = F+2-37"/? (3.22)

is the characteristic velocity of the left-propagating simple wave of the ideal shallow water
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equations (i.e. the dispersionless limit of the SG system) and
7@1 /2
(1= 7°k2/3)1/2
is the SG “solitary wave dispersion relation”. Ordinary differential equations (3.20)

and (3.21) for k(7) and k(7) are readily integrated using the substitutions a = (1 +
E272/3)~Y/2 and @ = (1 — k%*7%/3)~/? respectively,

! 4\ 2110 14a 2/5 -
_a1/2 3 2 ) ( )

ﬂ_ 1 4—a 21/10 1+a 2/5 (325)
Ao al/2 3 2 ’ ’

Here A 2 are constants of integration, their values are to be found from the free-boundary
matching conditions for downstream and upstream undular bores separately.

Qo(, k) = —iQ0(7, ik) = k(F + 2(1 —7/%)) + (3.23)

X

3.3. Downstream undular bore

We first assume that the downstream undular bore is fully realized (as in Figure 6 left)
so that it connects the undisturbed flow n = 1,u = F at the trailing edge xj with the
hydraulic transition downstream state n = 14, u = uq at the leading edge z; (we use
the terms ‘trailing’ and ‘leading’ here keeping in mind that we deal with the waves based
on the left-propagating family of characteristics, so that the leading edge is, as usual,
associated with the solitary wave) and satisfies the transition condition (3.7). Then the
matching conditions at the edges x;lt = sit are

At z=s,1: k=0, n=n4, w=1uq, (3.26)
At z=sit: k=0, j=1, u=F. (3.27)

So the downstream undular bore transition is located in the interval s; t < z < s}t
and is characterised by two independent parameters: g and F'. Our task is to determine
the dependence of the edge speeds sélt and the amplitude of the leading solitary wave a
on these two parameters. First we apply the matching conditions (3.26) and (3.27) to the
solutions (3.24), (3.25) respectively to obtain Ay = 14, Ay = 1. Thus, the characteristic
integrals k(7)) and k(7)) for the downstream flow are now completely determined by (3.24)
and (3.25).

The speeds of the undular bore edges are defined by the kinematic conditions which
state that the speeds of the edges should be equal to the respective characteristic (group)
velocities of the nonlinear wave train at its endpoints where m = 0 and m = 1 (EI (2005)).
The trailing (harmonic, m = 0) edge a::lr rides on the background n = 1 with the linear
group velocity

0
L. (328)
where k* = k(7 = 1) is found from (3.24). Now using (3.19) we get an implicit expression
for the trailing edge speed sj in terms of 1y and the Froude number F' of the undisturbed
flow

NG 1-8 21/10 148
L) (5

One should note that the notion of the trailing edge of an undular bore is rather theoret-
ical since the trailing edge, as it is defined by the modulation theory, is associated with

2/5
) =0, where 3= (F—s})"/3. (3.29)
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F1GURE 8. Dependence of the downstream undular bore edge speeds sf on the forcing amplitude
fm for the fixed Froude number F' =1 (left) and on the Froude number F for the fixed forcing
amplitude f,, = 0.2 (right). Lines: modulation solutions for s, (solid) and s} (broken); symbols:

F

the values of sdi extracted from the numerical solutions.

the group of small-amplitude waves rather than with a particular wave crest so, unlike
the leading edge specified by a soliton, the trailing edge is often not clearly pronounced in
numerical simulations (and in physical observations). However, this notion is very useful
as it enables one to define the undular bore width and, in particular, to quantify the
differences between different models with respect to the rate of the “wave production”
(see, for instance, Lamb & Yan (1996) for the relevant numerical comparisons for undu-
lar bores modeled by different KdV type models and full Euler equations; and El et al.
(2006) for the comparison between the KdV and SG undular bores).

The leading (soliton, m = 1) edge x,; propagates on the background 7 = ng with the
soliton velocity
_ Qo(na, k)
5, = —=——>

i

where k= = k(7] = 14) is found from (3.25) (see El (2005) for the derivation of (3.30)).
Now, using expression (3.23) for the conjugate frequency we obtain from (3.30) an implicit
equation for the leading edge speed s; = s; (4, F'),

(5

Next, having the dependence 74 on f,,, and F' from (3.5), (3.7) we finally get the down-
stream undular bore edge speeds szlt as functions of the input parameters f,,, F'. The
dependencies of sf on fp, (for the fixed value F' = 1) on F' (for the fixed value f,, = 0.2)
are shown in Figure 8. The symbols in the same Figure show the values of s;lt extracted
from the numerical solutions of the forced SG system (in numerics the point of the trail-
ing edge was determined using simple linear approximation in z of the undular bore
envelope, which agrees with the asymptotic behaviour of the SG modulation solution
near the trailing edge — see El et al. (2006)). One can see that the modulation theory
predicts the location of the undular bores very well. The growing discrepancy between
numerical and modulation solutions as one gets closer the lower transcritical boundary,
which is F' = F_ ~ 0.55 for f,, = 0.2, seen in the dependence on the Froude number, is
explained by the fact that F' = F_ is the point of the downstream bifurcation and the
local hydraulic approximation does not work very well downstream for the flows with the
Froude numbers close to this value (see the discussion in the end of Section 2.2).

(3.30)

)

4—7

3

1+7
2

2/5
) =0, where 7:(2+F—s;)n;1/2—2. (3.31)
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FIGURE 9. Dependence of the downstream undular bore leading soliton amplitude a; on the
forcing amplitude f,, for the fixed Froude number F' = 1 (left) and on the Froude number F
for the fixed forcing amplitude f, = 0.2 (right).

Since the leading edge is defined by a solitary wave, we have s; = (14, uq, a, ) where
¢s(n,u,a) is the SG soliton speed-amplitude relation (3.17) and 74 and u, are related
through the transition condition (3.7), we have for the lead soliton amplitude a;

ay = (F — sy +2(1— i)’ — (3.32)

Dependencies of the soliton amplitude a; on f,, and F given by (3.32), (3.31), (3.5),
(3.7) is presented in Fig. 9. Again, one cam see a very good agreement between analytical
and numerical dependencies on f,, and certain discrepancy between the dependencies on
the Froude number near the lower transcritical boundary (we have discussed he reason
for this discrepancy before). Still, within the range of applicability of the SG system
to the description of finite-amplitude laminar shallow-water flow, which, for the chosen
value f,, = 0.2, involves the Froude numbers from about F = 1.0 to F = F; ~ 1.55 (and
soliton amplitudes from a = 0 to a ~ 0.6) the agreement is very good.

For weak topographies we use expansion (3.11) for n; to obtain approximate explicit
expressions for sj and a; in terms of f,, and F. Clearly if f,, = 0 we have ngy = 1,
F =1, st = 0. Then from (3.29), (3.31), (3.32) we obtain to first order in (F — 1) and

(fm)'/?
Yy
a; _—3(F 1)_;'_2\/? (3.34)

provided F_ < F < F, (see (3.10)). Expansions (3.33) and (3.34) correspond to the
forced KAV approximation (Grimshaw & Smyth (1986) and Smyth (1987)) (note that
the coefficients in (3.33) correspond to the KdV equation in the form “naturally” following
from the small-amplitude long-wave expansions of the SG equations — see Johnson (2002)
or El et al. (2006)— without its further reduction to the standard form as in Grimshaw
& Smyth (1986) and Smyth (1987)). Equation (3.34) reproduces the classical result of
Gurevich & Pitaevskii (1974) amax = 20 where amax is the amplitude of the greatest
soliton in the undular bore and § is the initial step value (in our case the downstream
step is 6 = 1 — ng), — this result does not depend on the normalisation of the KdV
equation.

One can see from (3.33) that for the transcritical interval of F' (3.10) the value s
can change its sign, which implies that for certain domain of values of F' and f,, the
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downstream undular bore would propagate upstream. Since this is not allowed, the bore
should be terminated at x = 0 so that it gets realised only partially for 0 < x < sjt,
with the modulus m ranging within the interval 0 < m < m*, where m* < 1 is certain
cut-off value. The line in the f,,, F' - plane defining the parameter values at which the
downstream bore gets attached to to the topography at its leading edge is specified by
the equation s = 0, s; being defined by (3.31). This line is shown in Figure 5 where it
separates regions II and III. A more detailed discussion of partial undular bores will be
given in the next subsection.

3.4. Upstream undular bore

The upstream undular bore connects the undisturbed flow n = 1,u = F at the leading
edge with the hydraulic transition upstream state 7 = 7,, v = u, at the trailing edge
and satisfies the transition condition (3.6). Again, we first assume that the upstream
undular bore is fully realised. Then the matching conditions at the leading =, = s, t and
trailing o} = st edges are

At x=s,t: k=0, =1, au=F, (3.35)

At z=st: E:O, T="Nu, U=uUy. (3.36)

The upstream undular bore occupies an expanding zone s, t < x < s}t and is char-
acterised by two independent parameters: 7, and F. Similar to the downstream case,
our task is to determine dependence of the edge speeds si on these two parameters. As
before, we apply the matching conditions (3.35) and (3.36) to the solutions (3.24), (3.25)
respectively to obtain now A; = 1, Ay = n,. The characteristic integrals k(7)) and E(ﬁ)
for the upstream flow are now completely determined by (3.24) and (3.25).

The kinematic conditions defining the speeds of the edges of the upstream undular
bore have the form (cf. (3.28), (3.30))

BlY) Qo(1, k~
aiko|n:nu, k=kt S; = M . (337)

+ ~
u k7

S

The parameters kt and k~ in (3.37) are calculated as the boundary values kt = k(1,,),
k= = k(1) of the functions k(7j) and k(7).

Next, using (3.37), (3.19) we get an implicit expression for the trailing (harmonic) edge
T in terms of n,:

21/10 2/5 1/3
\/BT]U — <4;ﬂ> (l—gﬂ) =0, where 8= (M\/ﬁr — 2) . (3.38)

Similarly, using the expression for the conjugate frequency (3.23) we obtain from (3.37)
the equation of the leading (soliton) edge s, (7, F') in an implicit form,

4 A\ 210 2/5
A (37) (;7) =0, where y=F—s,. (3.39)
T

S

Now, having the dependence 7, on f,,, F specified by (3.5), (3.6) we get the speeds s
as functions of the input parameters f,,, F. The dependencies of st on F (for the fixed
value f,, = 0.2) and on f,,, (for the fixed value F' = 1) are shown in Fig. 10 .

One can see from the leading edge curve in Fig. that for certain interval of Froude
number values we have s;* > 0 which implies that the upstream undular bore partially
propagates downstream. This can already be seen from the small-amplitude, f,, < 1,
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F1GURE 10. Dependence of the upstream lead soliton speed s, on the forcing amplitude f,, for
the fixed Froude number F' = 1 (left) and on the Froude number F for the fixed forcing amplitude
fm = 0.2 (right). Line: modulation solutions for s, ; symbols: the values of s, extracted from
the numerical solutions.

expansions of (3.38), (3.39) analogous to (3.33)

s;:%(F—l)—\/%, sgzz(F_1)+g,/% (3.40)

Indeed, one can readily see that for F in the transcritical interval (3.10) one has st > 0.
Obviously, this is not allowed as the upstream modulation wavetrain is only defined for
x < 0 so the modulation solution must be terminated at £ = 0 resulting in the partial
undular bore, which can be viewed as a soliton train propagating upstream. The formal
grounds for the possibility of “cutting” the undular bore in two can be inferred from the
detailed modulation analysis available in the case of weak topography forcing described
by the forced KdV equation and studied in El et al. (2006) and Smyth (1987). The idea is
that, since the modulation solution represents a centred characteristic fan of the Whitham
equations, and for the edge characteristics we have dz/dt = s~ < 0 and dz/dt = sT > 0,
there should be a characteristic dxz/dt = 0 for the solution under study. Then the free-
boundary matching condition at the unknown boundary zt > 0 (condition (3.36) in
the present SG case) can be replaced by the appropriate boundary conditions at = 0
leading to the same modulation solution for x < 0. The boundary conditions should be
formulated in terms of the Riemann invariants of the modulation system as the Riemann
invariants are transferred to the boundary x = 0 along the corresponding modulation
characteristics from the given initial step data. As a result, to construct the modulation
solution for the upstream partial undular bore generated by a given hydraulic jump at
x = 0 one just considers the part of the modulation solution in the region x < 0 as if the
undular bore was created by the decay of the initial step located at x = 0 and having the
same magnitude as the boundary jump. This is essentially how the modulation solution
for the upstream partial undular bore was constructed in Grimshaw & Smyth (1986) and
Smyth (1987).

Although the Riemann invariants are not available for the modulation system associ-
ated with the SG equations, one can argue that the values of the “external” hydrodynamic
invariants A+ = u/2=+,/7 are transferred across the modulation zone with the same effect
on the edge speeds s* as if they were present within the undular bore (see Tyurina & El
(1999); El (2005); El et al. (2005)), so one can use the value of s;, (3.39) to characterise
the upstream partial undular bore of the SG system. For the tallest upstream soliton we
have s;, = ¢s(1, F, a;) where ¢4(7,%, a) is the speed-amplitude relation (3.17). Thus for
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FI1GURE 11. Dependence of the upstream lead soliton amplitude a, on the forcing amplitude
fm for the fixed Froude number F' = 1 (left) and on the Froude number F' for the fixed forc-
ing amplitude f», = 0.2 (right). Line: modulation solutions for a, ; symbols: the values of a,,
extracted from the numerical solutions.

the soliton amplitude a, we have
a, =(F—s;)*—1. (3.41)

Using (3.41), (3.39), (3.5), (3.7) one obtains the dependence of the upstream lead soliton
amplitude a,; on f,, and F. The dependencies of s;, and a,; on the topography height
fm and the Froude number of the equilibrium flow are presented in Figures 10, 11. One
can see an excellent agreement between the analytical and numerical dependencies on
fm. Some discrepancy between the theory and numerics seen in the comparisons for
the Froude number dependencies as one gets closer to the upper transcritical boundary
F = F, is connected with the already discussed with the unsteady character of the
flow over the forcing range for the flows with the Froude numbers near the upstream
bifurcation point F = F.
For weakly nonlinear case, f,, < 1, we have
o = 2p 1) po /2 (3.42)
3 3

which again agrees with the classical KAV result ap,.x = 20 where § = n,, — 1 is the value
of the equivalent initial step (see (3.11) for the weak forcing expansion of 7,,)

3.5. Drag force
The drag force on the topography is (see, for instance, Baines (1995))

L
FD = / Pz=d dac dx 5 (343)
L

where p,_g4 is the pressure evaluated at the bottom z = d = 1 — f. Here, in the SG
system, to leading order the pressure field is just p = ¢ (see the Appendix), and so we
can write

L
Fp = —/ Hf,dx, (3.44)
—L

where we recall that H = 14— f. Further, since we are assuming that the flow is locally
steady over the topography, we can use the expressions (2.1) to evaluate Fp giving (see
Baines (1995)),

(nd - nu)g
Fp=—-—"—. 3.45
P 277d77u ( )
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where, we recall, ng = H(—L), n, = H(L). For the case when both undular bores are
completely detached from the topography (the region III in Figure 5) expression (3.45)
together with formulae (3.5) — (3.7) determines the stationary value of the drag force. In
this case for weak topographies we obtain using the expansions (3.11),

3/2
Fp = —32 <fé"> (1— %(F — 1)) +.... (3.46)

However, when one of the undular bores gets attached to the topography, the correspond-
ing value 7, or ng at the attachment point will oscillate resulting in the oscillations of
the drag force with the same frequency. Below we derive an approximate formula for the
drag force frequency for the most typical upstream attachment case assuming that the
partial undular bore can be viewed as a soliton train (see Figure 6 left). For the forced
KdV equation such a soliton train approximation proved to work very well for a (see
Grimshaw & Smyth (1986) and Smyth (1987)).

The frequency of the upstream undular bore at the point of attachment (hence the
drag force frequency) is calculated by the formula

wp = —k*c*, (3.47)

where k* and ¢* < 0 are respectively the upstream wavenumber and phase velocity at
x = 0. Assuming that the upstream undular bore can be viewed as a soliton train with
the solitons having almost the same amplitude, we take ¢* = s, .

To estimate k* we make use of the fact that wavenumber function k(z, t) is almost linear
in x through the entire undular bore except for the vicinity of the leading edge, where k
rather rapidly decays to zero (dk/dx — oo as x approaches the leading edge — see, for
instance, the full modulation solution for the KdV undular bore in Gurevich & Pitaevskii
(1974) or Fornberg & Whitham (1978)). The linear approximation for k(z,t) near the
trailing edge for the simple SG undular was obtained in El et al. (2006) (see formula
(65) in the referred paper). For our case of the left-propagating bore this approximation
assumes the form

2 x
~kT——— (st - Z 4
where
. 5/2
() = (3.49)

(1+ k23 /3)5/2

is the second derivative of the SG dispersion relation (3.15) for the linear waves propa-
gating to the left against the background 1 = 1,; k™ being the value of the wavenumber
at the trailing edge of the upstream undular bore and s;” the speed of its trailing edge.
We note that the trailing edge of the upstream undular bore is not physically realised
in the flow, as the upstream bore is terminated at z = 0. However, as was explained
in Section 4.4, all the parameters of the upstream undular bore are consistent with the
definition (3.37) of the trailing edge as if it existed. So we find the “effective” trailing
edge wavenumber kT from (3.37), i.e. from

0 1/2 7711/2

st = e ekt = F+2(1—n/?%) — .
Ok " (1+ (k+)2(1a)2/3)%?

(3.50)

Since s, is given by formula (3.38) the quantity k™ is now completely defined and we
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FIGURE 12. Dependence of the drag force frequency wp on the forcing amplitude f,, for the

fixed Froude number F' =1 (left) and on the Froude number F for the fixed forcing amplitude

fm = 0.2 (right). Line: approximate formula (3.52); symbols: the values of wp extracted from

the numerical solutions.

obtain at the point of attachment
25t
B (k7

Now substituting k*, ¢* into (3.47) we obtain an approximate formula for the frequency
of the drag force oscillations

k= k(z =0) ~ kT (3.51)

wp s (25 g (3.52)
P B e () ' |

Comparison of the approximate behaviour given by (3.52) with the dependencies of the
drag force frequency on f,, (for fixed F = 1) and on F' (for fixed f,, = 2) obtained
from our numerical simulations data is shown in Figure 12. One can see that whilst the
accuracy of the formula (3.52) is not particularly great, it correctly reproduces the main
features of the actual drag frequency behaviour.

4. Discussion

In this paper we have used the forced SG equations (1.1, 1.2) to describe transcritical
flow over a localized obstacle, with the aim of extending the well-known fKdV model to
finite-amplitude water waves. As for the fKdV equation, the asymptotic solution consists
of two parts, a steady hydraulic solution over the obstacle with upstream and downstream
hydraulic jumps, and the resolution of these jumps by undular bores using the Whitham
modulation theory. In contrast to the fKdV model, the local hydraulic solution is fully
nonlinear, but a full asymptotic description of the undular bores is not available , and
instead we evaluate key parameters such as the amplitude of the leading wave, and the
location of the bores. The theoretical results are favourably compared with numerical
simulations of the full forced SG system. Note that in our theoretical analysis we simpli-
fied the hydraulic solution by expanding up to third order in amplitude, with the effect of
eliminating a small rarefraction wave which may be present in the downstream solution.
Some evidence for this refraction wave can be seen in the numerical simulations. We also
note that in practice, and certainly in the context of the fully nonlinear Euler equations,
sufficiently large amplitude waves will break, whereas breaking does not occur in the
present SG system. However, a typical wave breaking criterion might be ¢ > 0.88 (see
Mei (1983) for instance), and we have ensured that in our present simulations we only
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used forcing amplitudes which produced waves below this threshold amplitude. Over-
all, for the moderate forcing amplitudes considered here, our results confirm that the
fKdV description holds up qualitatively for finite-amplitude waves while the quantitative
description can be obtained in the framework of the forced SG system.

We would like to acknowledge the useful discussions with A.M. Kamchatnov.

5. Appendix A: Derivation of Forced SG Equations

This derivation follows Camassa et al. (1997). The full Euler equations for two-dimensional
inviscid flow over topography are

Uy + Uty + wuy +pr =0, (5.1)
wy + uw, +ww, +p, =0, (5.2)
Uy +w, =0, (5.3)

valid in the region —d < z < ((d = 1 — f), where p is the dynamic pressure per unit
density, defined so that the full pressure is p + z. These equations are expressed in non-
dimensional units, based on a length scale h, the undisturbed fluid depth at infinity, a
velocity scale v/gh and a time scale y/h/g. The boundary conditions are that

wHud, =0 at z=-d, (5.4)
w—C —ule=0 at z=¢, (5.5)
p—C=0 at z=¢(. (5.6)
The equation for conservation of mass then follows, namely

¢+ (HU), =0, (5.7)

¢
where H =d+(, HU:/ udz . (5.8)

—d

This is just equation (1.1). The horizontal momentum equation (5.1) can also be inte-
grated over the depth to yield

¢ ¢
(HU); + (/ u?dz), +/ prdz=0, (5.9)
—d —d
This will yield the second equation (1.2) after the integral terms have been approximately
evaluated.
To evaluate the integral terms we make a long wave expansion, in which 9/0z ~ e <<
1, and expand in powers of €. First we note that the the flow is irrotational, that is

Uy =W,, In —d<z<(. (5.10)

Combining this with the incompressibility condition (5.3), we see that u,w each satisfy
Laplace’s equation. Then taking account of the boundary condition (5.4) we find that to
the second order in e,

2

- - - 1 -~
u=U(x,t) — (2Updy + Udyy)(z +d) — ~Upu(z +d)* +-- -, (5.11)
w=—d,U —Up(z+d)+---. (5.12)
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Next we substitute (5.11) into (5.8) to get

U:ﬁ—(2ﬁwdm+ﬁdmx)g—%2ffm+~-, (5.13)
or 17:U+(2Uzd$—|—Udm)g+H?2Um+-~-. (5.14)
The expression (5.11) is then substituted into the second term in (5.9) to yield
/Cd u*dz = HU? 4 --- . (5.15)
Finally the pressure gradient is evaluated from (5.2) to yield
p. =pi(z+d)+p2, where p, = DU,—UZ?, py=D(d,U), D= %—FU% . (5.16)

With the boundary condition (5.6) this can then be integrated to yield the pressure and
hence

¢ H? H? H?pyd
d 3 2 2
Finally using the conservation of mass equation (5.7) this can be rewritten as
¢ H?D?H), (H?D*d), Hd,
/ podz = pi¢, ¢ SO e DDe Mo poe gy )
—d

Setting d = 1 — f we recover the equation (1.2).
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