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Abstract

Background: Despite advances in laboratory-based supervised fall risk assessment
methods (FRAs), falls still remain a major public health problem. This can be due to the
alteration of behavior in laboratory due to the awareness of being observed (i.e.,, Hawthorne
effect), the multifactorial complex etiology of falls, and our limited understanding of human
behaviour in natural environments, or in the 'wild’. To address these imitations, a growing
body of literature has focused on free-living wearable-sensor-based FRAs. The objective of
this narrative literature review is to discuss papers investigating natural data collected by

wearable sensors for a duration of at least 24 hours to identify fall-prone older adults.

Methods: Databases (Scopus, PubMed and Google Scholar) were systematically searched for

studies based on a rigorous search strategy.

Results: The search yielded twenty-four studies, in which inertial sensors were the only
wearable system employed for FRA in the wild. Gait was the most-investigated activity; but
sitting, standing, lying, transitions and gait events, such as turns and missteps, were also
explored. A multitude of free-living fall predictors (FLFPs), e.g., the quantity of daily steps,
were extracted from activity bouts and events. FLFPs were further categorized into discrete
domains (e.g., pace, complexity) defined by conceptual or data-driven models. Heterogeneity
was found within the reviewed studies, which includes variance in: terminology (e.g.
quantity vs macro), hyperparameters to define/estimate FLFPs, models and domains, and
data processing approaches (e.g., the cut-off thresholds to define an ambulatory bout). These
inconsistencies led to different results for similar FLFPs, limiting the ability to interpret and

compare the evidence.

Conclusion: Free-living FRA is a promising avenue for fall prevention. Achieving a
harmonized model is necessary to systematically address the inconsistencies in the field and
identify FLFPs with the highest predictive values for falls to eventually address intervention

programs and fall prevention.

Keywords: Falls in elderly; inertial measurement unit; wearable sensors; ambulatory fall risk assessment;

free-living fall predictors
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1.0 Introduction

[t is estimated that 1 in 3 people globally over the age of 65 fall at least once each year [1],
[2]. In addition to physical consequences (e.g., hip fracture, traumatic brain injury), falls can
lead to negative mental health outcomes such as fear of falling and depression [3]. Falls
among older adults tend to occur from multiple interacting factors [4], generally categorized
as intrinsic/biological (e.g, a neurological mechanism or chronic condition such as
Parkinson’s disease, PD, muscle weakness), and extrinsic/environmental (e.g., slippery floor,
obstacles, slopes, poor lighting) [5], [6], [7]. By identifying the various risks specific to an
individual, fall risk assessment (FRA) can inform clinical decisions on the most appropriate
preventive interventions to reduce the risk for fall events. To date, commonly used FRA
methods involve easy-to-implement movement-based tasks with minimal equipment
requirements, such as total time to complete a timed-up-and-go (TUG) [8], [9] or Tinetti Test
[10]. Based on a meta-analysis, the diagnostic accuracy of TUG was poor to moderate for fall
prediction in healthy high-functioning older adults and the cut-off thresholds for TUG-based
identification of fallers were highly inconsistent within the included studies [11]. These
limitations have led to a methodological shift towards the use of more detailed assessments.
As the adopted gold standard, electronic-based tools, such as 3-dimensional motion capture
and instrumented walkways, can be used to offer detailed quantitative assessments. Yet,
these tools remain resource-intensive and fixed to specialized clinics/locations, offering
snapshots during scripted functional tasks. Extrinsic risk factors for falls can be also
recorded in (patient) self-reported diaries; however, this often lacks accuracy and adequate
descriptions. To systematically investigate the impact of environmental conditions on older
adults’ tendency to fall, researchers have designed paradigms to mimic challenging natural
conditions in a laboratory setting. For example, minimum foot clearance was measured in
differentlighting conditions in [12] to understand the nature of trips on stairs in older adults,
where, in contrast to young adults, the lack of precautionary increase in older adults’ foot
clearance under reduced lighting contributed to falls on stairs. However, due to the observer
effect during controlled gait and balance tests [13], supervised FRA measures may not
necessarily reflect naturalistic and multitasking behaviour [14]-[16]. For instance, a weak
association (r = 0.333, p < 0.001) between natural gait speed and in-laboratory gait speed

was reported [17]. Similarly, free-living gait speed and step regularity measures were
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significantly lower compared with in-lab usual walking and tended to be more similar to in-
lab dual-task walking [15]. Thus, novel free-living FRAs to identify fallers based on their free-
living behaviour in their natural daily living environments could provide complementary
information to supervised FRAs.

There have been a wide range of methods investigated to measure free-living mobility
behaviour. Ambient sensors, such as radar [18], passive infrared [19], third-person video,
and depth cameras [20]-[23] have been investigated as a means to extract gait parameters,
detect falls, and track longitudinal changes in a person's mobility patterns. However, ambient
sensors have limitations due to visual occlusions (e.g., furniture), inability to extract
spatiotemporal data when full-body view is unavailable, and tracking the same person in
spaces with multiple residents with similar body characteristics [24]. Moreover, they are
restricted to the environments the sensors are installed in. In contrast, wearable sensors and
their data have greater utility beyond the living space where ambient sensor data is recorded
at the expense of additional burden in donning and maintaining devices. These technologies
include wearables inertial sensors (e.g., accelerometers, gyroscopes, magnetometers), in-
shoe plantar pressure sensors [25]-[27] and wearable cameras [28], [29].

Recent attention has focused on the identification of free-living fall predictors (FLFPs)
from wearable-based data, such as total time walking/lying, frequency-based (e.g., the
amplitude of dominant frequency) and temporal (e.g., step time) measures extracted from
detected activity bouts (e.g., gait) and events (e.g., turns), towards profiling an individual’s
risk for falls. Several studies have shown that wearable-based FLFPs can either outperform
or complement clinical (supervised) FRA tests [30]-[32]. For instance, a machine learning-
based model developed on transition-based FLFPs outperformed its counterpart developed
on clinical test scores (e.g., TUG) in discriminating between older fallers and non-fallers [30].
While this body of evidence has demonstrated promise, there is a high degree of
inconsistency in the literature regarding the relationship between the extracted FLFPs and
falls. Inconsistencies were also observed in data-driven and conceptual models proposed by
the research groups to categorize FLFPs into domains (e.g., pace, asymmetry). At this time,
due to the ongoing novel developments within the field, there are no clear solutions for
transparent deployment of wearables for free-living FRA. Furthermore, the utility of existing

free-living FRA methods to inform interventions remains limited, largely due to challenges
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interpreting unconventional metrics of free-living behaviour (e.g, entropy). After
summarizing the key aspects of the experimental protocols used to collect free-living data
(e.g., sensor placement, duration of free-living data collection, demographics), the current
paper reviews sources of inconsistencies between the proposed free-living FRA approaches.
At the end, recommendations were provided to inform future work towards achieving a

harmonized free-living FRA model.

2.0 Search criteria

Three databases, Scopus, PubMed, and Google Scholar, were searched up to and including
September 2019 (2010 to 2019). Search terms were [“home” or “unsupervised” or “real-
world” or “community” or "ambulatory"] and [“fall” or “fall risk assessment”] and [“elderly”
or “senior” or “aged”] and [“wearable sensor” or "accelerometers" or "inertial" or "wearable
camera"]. Journal articles were included if they: 1) assessed the relationships between falls
and features extracted from free-living data, and 2) collected data from wearables used by
older adults (> 65 years) for a duration of at least 24 hours per participant. After the initial
title screen, abstracts were reviewed. Twenty six (n=26) papers from databases met the
inclusion criteria (Figure 1). Multiple papers from two research groups investigated the
same/overlapping datasets or very similar sets of FLFPs: (a) Hausdorff and colleagues
examined datasets from healthy older adults [32]-[35] and PD older adults [36], [37], and
(b) Pijnappels and colleagues investigated: b-1. fall risk assessment in older adults (FARAO)
dataset that was collected from >300 older adults [38]-[40], and b-2. overlapping (but
different) subsets of FARAO dataset to address different research questions [16], [31], [41],
[42]. Considering the high degree of overlap in b-2, the most relevant, largest sample, and/or
highly cited paper examining fall risk was included for the purposes of this review [31] and
[42] (see Figure 1). Therefore, the key methodological/demographic information from n=24
papers was extracted and provided in Tables 1-3 (the key aspects of [16] and [41] were
highlighted in section 4).
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[“home” OR “unsupervised” OR “real-world” OR “community” OR "ambulatory"] AND [“fall” OR
“fall risk assessment”] AND [“elderly” OR “senior” OR “aged”] AND [“wearable sensor” OR
"accelerometers" OR "inertial" OR "wearable camera"]

Databases Scopus PubMed
Al results Additional filters:
= 5 T 235 1091 subjects +65, human
2010<=Year<=2019-09-30 species, Conf Papers
were excluded
Screened by title 79 63
Google
Scholar
Screened by abstract 16 T

and content

Duplicates removed 16

[_2—6—| More qualified papers

A cluster of papers re-analyzed a part
of a larger dataset and investigated a

very similar set of FLFPs. Thus, 2 :
papers were excluded. 24 |

were identified from
google scholar.

Figure 1: PRISMA flow chart of study design, illustrating search strategy results and filters at each stage of the
study selection process.

3.0 Results

3.1 Study characteristics

Tables 1-3 show the study designs for capturing free-living data, demographic information,
key methodological aspects, types of wearables, sensor anatomical location, general
description of outcome measures, and the length of free-living recording for all included
papers. The general procedure for wearable-based ambulatory FRA is shown in Figure 2.

In the reviewed studies, a range of inertial-based wearables were employed as
described in Table 3. Most studies used a single tri-axial accelerometer-based wearable, with
a minority using a uniaxial [43][44] or combined tri-axial accelerometer and tri-axial
gyroscope (e.g., [30] [45]). Typically, one inertial-based wearable was worn on the lower
back, including the pelvis, sacrum, and L3 to L5 vertebrae [30], [32], [42], [46], [47], [33]-
[40], and midsagittal plane of the lower back [45]. Other wearable locations included
chest/sternum [48]-[51], middle of the thigh [44], upper-thigh [43] dominant and
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nondominant hand/wrist [52]. In one study, multiple wearables were attached, two on shoes
and one at L5 [53]. Free-living data were recorded from 24 hours [51] to 58 days (average

over participants) in [48]. Most studies monitored community-dwelling older adults without
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Figure 2: General process flow to acquire, process, and extract predictors for free-living fall risk assessment.
Free-living data are collected using wearable sensors, segmented into bouts of activity types (e.g., gait, sitting),
then predictors are extracted from activity bouts. There is a high degree of inconsistency in the literature in the
categorization of extracted predictors into free-living FRA domains (dashed boxes).

Studies performed analysis to understand the relationships between wearable-based
FLFPs and prospective falls [38], [39], [43], [50]-[52], [54], retrospective falls [30], [32]-
[34], [36], [37], [44], [46], [47], [49], and both [42], [45], [53]. Falls were also categorized
with respect to the associated pre-fall events and allocated to one of three categories: 1)
transitions during changes of posture (e.g., turning, rising from chair); 2) ambulation (e.g.,
everyday walking activities, including stair climbing) and 3) advanced activities including
complex high-risk motor tasks (e.g., skiing, hill walking) in one study [43]. Multivariate
analysis or deep learning techniques were also applied to discriminate between fallers and
non-fallers [39], [40], [54] without corresponding univariate analysis to investigate the

individual FLFPs with respect to their predictive ability for falls.
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<Table 1>
<Table 2>
<Table 3>

3.2 Free-living activity /event detection

Detecting bouts of activity were critical step in extracting FLFPs. The detection of ambulatory
bouts were most common [30], [32], [44]-[51], [53], [33]-[35], [38]-[40], [42], [43] followed
by, sitting [38], [42], [50], [51], lying [38], [42], [50], [51], sedentary (sitting and lying
together) [44], [45], and standing [38], [42], [44], [50], [51]. Bout of activity detection was
the initial methodological step required for the extraction of FLFPs from inertial sensor data
(Figure 2). Transitions between consecutive ambulatory and sedentary bouts (i.e., walk-to-
sit and sit-to-walk) were also quantified for insights to FRA [30], [38], [42], [50], [52].
Ambulatory bouts were further examined for detection of discrete gait events (Figure
2) such as initial and final contact within the gait cycle (e.g., in [32], [38], [42], [47], turns
[45], [53], and missteps [37]. Missteps were broadly defined to include compensatory

balance reactions (i.e., near-falls) to regain stability following a loss of balance.

3.2.1. Cut-off thresholds for identification of ambulatory bouts and turns

To identify an ambulatory bout, different minimum/maximum cut-off thresholds were
defined according to steps, time or a combination of both [46], [48], [49] (Table 3). For
example, Del Din et al. [46] referred to an ambulatory bout between 3 steps to 60s, 60-120s,
and longer than 120s as 'short’, 'medium’, and 'long' walks, respectively. Alternatively,
Brodie et al. considered short walks as those <7s and <8s and longer than three steps in two
different studies [48], [49]. The minimum cut-off thresholds ranged from 1 step [43] to 120s
[46] and a minimum of three steps was the most frequent cut-off threshold used within the
reviewed studies from distinct datasets [46], [48]-[51]. Discrete angular thresholds were
also used to identify turns. For instance, one study [53] examined those greater than 45° but
elsewhere different turn resolutions, e.g. small (50 — 100°), medium (100 — 150°), and

large (150 — 200°) were taken into account [45], Table 3. The detected activity bouts and
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events were later used independently for the extraction of FLFPs, which were statistically

analyzed with respect to falls (Figure 2).

3.3. Conceptual models

As ambulatory bouts were the most investigated free-living activity for FRA, research groups
defined different conceptual FRA models to classify and interpret a range of gait-based
FLFPs. Each model consists of several domains, including a homogeneous group of FLFPs
usually in terms of their mathematical description (Figure 3, models a [46], b [48], c [49], d
[42], and e). Model e represents the merged domains from a set of research papers [32]-
[34], [36] as discussed in section 2. In Figure 3-model e, complexity and local dynamic
stability measures reported in [33], [34] were categorized into the same class because of
their mathematical similarities (e.g., Lyapunov components [55]).

Broadly speaking, the reviewed literature examined the following features:

(1) the ‘quantity’ of gait events or ambulatory bouts and their duration over days/weeks
[32], [36], [48], [49] also termed ‘macro’ (as discussed in 3.3.1) [43], [44], [46] and
‘amount of gait’ [38], [42],

(2) FLFPs that are obtained by performing a higher resolution analysis of the inertial
signals or gait events, which include spatial (e.g. step length), temporal (step time),
and frequency-based (e.g. harmonic ratio) features. These features termed as ‘micro’
(referring to more detailed micro-structural characteristics of gait as discussed in
3.3.2) [46] [44] [43] (Figure 3 model a) or ‘quality’ of gait (e.g.in [32], [36], [38], [42],
[48], [49] (Figure 3),

(3) models of quantity/quality also extended to categorize turns [45], [53] and transition
features [30], [52].
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Figure 3: Conceptual models proposed by researchers to categorize gait-related features for fall risk assessment

As depicted in Figure 3-model d [42], gait quality was represented by six domains,

each with its own set of FLFPs, such as: intensity (e.g., standard deviation, range); variability

(e.g., autocorrelation, slope, magnitude); smoothness (e.g. index of harmonicity) and

complexity (sample entropy). Alternatively, quality was presented within quantity-

intensity-exposure-quality models (Figure 3, model b) and quantity-intensity-quality
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(Figure 3-model c) comprising of different predictors within three domains (e.g., between-
walk adaptability). Due to these inconsistencies associated with the use of ‘quality’, here the
general categorization of FLFPs into macro and micro is used to describe quantity and

quality of activities, respectively.

3.3.1 Macro/quantity FLFPs

Macro outcomes were generally described by duration or volume of an activity or the
quantity of daily occurrences. Commonly used macro FLFPs include the number of
ambulatory bouts [38], [42]-[44], [48], total steps within each bout [32], [36], [38], [42],
[48], number of daily turns [45], [53], number of daily compensatory balance reactions [37],
and number of transfers/transitions [30], [38], [42], [50], [52]. In addition to the
aforementioned linear features, macro outcomes were utilized for non-linear analyses [43],
[44], [46] (Figure 3-model a), including: 1. alpha (o), which is a unit-less FLFP derived from
the power distribution of ambulatory bouts with respect to the cut-off thresholds and 2.
within subject variability of bout length (S2) obtained from a maximum likelihood technique
as the distribution of bout length.

For sedentary (lying and sitting) and standing bouts, only macro features were
investigated within studies [38], [42]-[45], [50], [51], which includes: total standing time
[38], [42], [50], [51], total sedentary time [38], [42], [45], [50], [51], lying, sitting, and
standing bout duration (mean, maximum, and 90th percentile) [50], [51], standing and
sedentary bout duration variability [43], [44], number of sedentary and standing bouts [44],

and alpha measures for sedentary and standing bouts [44].

3.3.2 Micro/quality FLFPs

Considering micro FLFPs that were investigated in studies, we categorized micro features
into three main classes to aid consistency:

1. Micro gait event-based (MGE) FLFPs represent features requiring detection of gait

events from ambulatory bouts in order to be quantified. For example, turn duration

[45], [53] and step/stride length (e.g., examined in [38], [42], [46]) require detection

of a gait event, such as turn and foot contacts, respectively. Consequently, established

spatiotemporal gait parameters are generally considered as the MGE features,

10
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including stance time, double support, step length. Turn-based MGEs were
investigated in [45], [53], and they included mean turn velocity, peak turn velocity,
turn duration, variability of turn duration, mean turn angle, turn angle variability and

the logarithm of normalized jerk.

. Micro ambulatory bout-based (MBB) outcomes include high-level temporal (e.g., root

mean square) and frequency-based (e.g., mean logarithmic rate of divergence) FLFPs
[32], [38], [42], [47] extracted from either the detected ambulatory bouts (based on
the cut-off thresholds discussed in 3.2.1) or the subsequent epochs (discussed later),
regardless of the enclosed gait events. MBB predictors were either direction-
dependent features or based on signal vector magnitude. Directionally-dependent
FLFPs were extracted from antero-posterior (AP), mediolateral (ML), vertical (VT)
accelerations (e.g. regularity measures in [32], [36]). A number of FLFPs were
extracted from the signal vector magnitude associated with the bout or epoch,
including regularity measure [47], phase-dependent generalized multiscale entropy
[40], and phase-dependent local dynamic stability [33]). To avoid possible sample
size-related bias, each axial/signal vector segment attributed to a macro bout was
split into fixed-size epochs for some studies. For example, bouts longer than 10sec
and 60sec were split into the fixed 10 sec [47] and 50 s [34] epochs, respectively, and
each epoch was used separately for the extraction of MBB outcomes.

MBB features are less intuitive compared to spatiotemporal gait FLFPs; and
are assumed to be indicative of different aspects of gait based on their mathematical
description. For instance, slope, width, and amplitude of the dominant frequency in
acceleration epochs were linked to variability of gait domain [32], [36], [38], [42], [47]
and entropy measures (e.g., sample entropy [42], multiscale and phase-dependant
entropy [34], [40]), were commonly extracted as potential markers of complexity
domain (in [34] a lower entropy extracted from acceleration signals was linked to

loss of complexity and an increased regularity).

. Micro-transitions: similar to MBB predictors, these FLFPs consist of high-level

temporal (e.g., peak velocity, range) or frequency-based (e.g. entropy) outcomes,

which were either direction dependent (i.e., roll, pitch, yaw [30], [52]), or extracted
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from the signal vector magnitude (e.g. jerk [52]) attributed to sit-to-walk (or stand)

and walk (or stand)-to-sit transitions.

3.4 Data-driven models

One study presented a data-driven model by performing factor analysis to systematically

categorize FLFPs into independent domains. In [38] principal component analysis (PCA) was

performed on 75 outcomes including: macro (e.g., median number of strides in one

ambulatory bout); MGE (e.g., stride time, stride length variability); MBB (e.g., mean

logarithmic rate of divergence), and several questionnaire-based and test outcomes (e.g.,

inability to use public transportation, ability to ascend/descend stairs). Although PCA

revealed 18 domains, wearable-based FLFPs were only loaded into 8 classes (considering

their 3 highest weights that exceeded 0.3) as shown in Figure 4-model f.

f. Data-driven model by van Schooten et al. 2016

[ Gait quality ]

Autocorrelation at dominant period VT

Autocorrelation at dominant period ML 2 (-0.34)

Autocorrelation at dominant period AP
Mean logarithmic rate of divergence VT
Mean logarithmic rate of divergence AP

Mean logarithmic rate of divergence per stride VT

Mean logarithmic rate of divergence per stride AP

Mean logarithmic rate of divergence per stride ML 2 (0.33)
Magnitude of dominant period in frequency domain VT
Magnitude of dominant period in frequency domain ML 3

(0.36)

Magnitude of dominant period in frequency domain AP 2

(-0.56)

Width of dominant period in frequency domain AP

1

Width of d
(0.49)

period in freq Y

Percentage of power under 0.7 Hz AP 1 (0.61)
Percentage of power under 0.7 Hz VT 2 (0.47)
Percentage of power under 0.7 Hz ML 2 (0.49)

Harmonic Ratio AP

Harmonic Ratio VT

Index of harmonicity ML 1 (0.62)
Index of harmonicity VT 1 (-0.60)
Stride time variability 1 (0.71)
Walking speed 1 (-0.65)

Stride length variability

Stride length 1 (-0.52)

Walking speed variability 1 (0.49)
RMS VT2 (-0.42)

RMS AP 2 (-0.39)

Sample entropy AP 2 (0.43)

[ ML balance ]

Autocorrelation at dominant period ML 1 (-0.84)

Mean logarithmic rate of divergence ML

Mean logarithmic rate of divergence per stride ML

1(0.74)

Magnitude of d period in freq
domain ML 1 (-0.70)

Width of domi period in freq d

in ML

Percentage of power under 0.7 Hz ML 3 (-0.35)

Harmonic ratio ML 1 (-0.79)

[ Complexity ]
Sample entropy AP 1 (0.80)
Sample entropy ML
Sample entropy VT 1 (0.74)

A4

Width of d period in freq y
(0.79)

Index of harmonicity VT 2 (-0.33)
Index of harmonicity AP 2 (-0.39)
Range ML 2 (-0.31)

in VT |

[ Vigour J
Walking speed 2 (0.50)
Range AP
Range VT
Range ML 1 (0.78)
RMS ML

RMS AP | (0.78)

RMS VT 1(0.74)

Index of harmonicity AP 1 (-0.71)
Stride frequency

[ Max gait duration ]

Maximum duration of locomotion
bouts

Maximum number of strides in one
locomotion bout

Number of strides 2 (0.56)
Duration of locomotion 2 (0.49)

Magnitude of dc
domain AP | (-0.57)

Magnitude of dominant period in frequency

domain ML 2 (-0.42)
Stride length 2 (0.46)

period in freq;

(" Physical activity |

Number of locomotion bouts
Duration of unclassified activities
Duration of standing

Percentage of power under 0.7 Hz ML 3 (-0.35) Duration of locomotion 1 (0.71)

Standard deviation ( Y)
Index of harmonicity ML 2 (-0.51)

[ Slow movement ]

Percentage of power under 0.7 Hz VT 1 (0.72)
Percentage of power under 0.7 Hz ML 1 (0.62)

Stride time variability 2 (0.52)

Percentage of power under 0.7 Hz AP 2 (0.51)

Sample entropy VT 2 (0.36)

Number of strides 1 (0.63)
Duration of unclassified activities
Duration of standing

Walking speed variability 2 (0.32)
Number of transfers 2 (0.63)

[ Transfers ]
Median duration of locomotion bouts
Median number of strides in one
locomotion bout
Number of transfers 1 (-0.57)

Figure 4: Data-driven model proposed by van Schooten et al, 2016 to categorize FLFPs. Only 8 relevant factors

were taken into account (e.g., none of the FLFPs were loaded into domains such as history of falls, so those

domains were not taken into account). If the FLFP is loaded into more than one domain (i.e., loading>0.3 in the

paper), top three domains to which they indicate highest associations are indicated with integers (1 to 3). The

numbers in parenthesis indicate the loading of the variable on varimax-rotated principal components.

12



OCoOoO~NOUTAWNPE

4.0 Discussion

To date, inertial sensors using primarily acceleration signals, have been the preferred
approach used to identify fallers based on their natural free-living behaviour over prolonged
periods. These systems have demonstrated adequate capabilities to monitor and detect free-
living activities, e.g., gait [30], [32], [44], [46]-[51], [33]-[35], [38]-[40], [42], [43], lying [38],
[42],[50],[51] and gait events such as turns [45], [53]. However, it was observed that similar
FLFPs that were examined by different studies indicated different levels of fall predictive
ability; which can be due to the different experimental protocols used to collect free-living
data (e.g. sensor placement, duration of free-living data collection, demographics), different
mathematical/statistical methods, and algorithms used to define/detect activities (e.g.,
different cut-off thresholds). Due to these inconsistencies, developing conclusive
interpretations of existing evidence remains limited. In the next subsections, the potential
sources of inconsistency in methodology and categorization of FLFPs into domains are
discussed. Following the sources of inconsistency, we provide recommendations towards

harmonization of free-living FRA methods to advance the field.

4.1. Inconsistencies in free-living FRA models

4.1.1. Similar FLFPs, different predictive power for falls

a. Inconsistency in ambulatory bout and turn cut-off thresholds

Considering the initial step in processing free-living inertial-based signals is detecting bouts,
the observed variability in defining ambulatory bout thresholds is a large source of
inconsistency potentially affecting the fall predictive ability of the extracted bout-based
FLFPs. For instance, walking duration and the number of ambulatory bouts (two FLFPs)
obtained from bouts longer than 3s (i.e., 3s as the minimum cut-off threshold) showed no
associations with falls [46]. However, by changing the minimum cut-off threshold to 120s,
these same FLFPs (i.e.,, walking duration, # of bouts) showed a statistically significant
predictive ability for falls [46]. Another example of inconsistent results arising from bout
definition differences was variability in bout length. Using the definition of bouts >3s yielded
significant association with falls; whereas variability in bouts >120 s was not significantly

associated [46]. Similarly, while exposure to short duration walks <7s [48] and <8s [49])
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was significantly associated with falls, exposure from walks shorter than 60 s was not
discriminative (p = 0.1) [48].

It was also observed that discretizing angular cut-off thresholds can impact fall
predictive power of turn-related FLFPs. For instance, although no relationship between the
total number of daily turns (considering turns with different resolutions) and falls was
reported [45], [53], after dividing them into three separate angular levels, the quantity of
turns in each resolution turned out to be significantly lower for prospective fallers [45]. As
only two studies were concerned with turns [45], [53]), the effects of varying cut-off
threshold to determine bouts and/or events and subsequent impact on fall predictive ability

remains underexamined.

b. Central tendency measures to estimate FLFPs

To extract FLFPs from free-living data, measures of central tendency used to calculate
predictors were inconsistent between studies. The different statistical methods resulted in
inter- and intra-study inconsistencies in terms of fall predictive values for similar FLFPs. For
instance, mode of step time variability in [48] was significantly associated with falls; while
the mean estimation did not indicate any relationship. In addition to medians, in [31]
extremes of FLFPs were estimated (i.e., the 10th and 90th percentiles of gait characteristics)
over 10s epochs/bouts; whereas in [38] only the medians of MBB FLFPs (e.g., entropy,
amplitude of the dominant frequency) were reported. For instance, compared to median
values, a stronger association was reported for some of the extreme estimations and falls
[31]. Similarly, macro gait features such as ambulatory bout duration, mean [46], [50], [51],
maximum [32], [38], [42], [48], [51], 90th percentiles [50], and medians [32], [36], [38], [42],
[48] were reported. Overall, the lack of consistency limits the capacity to compare across

studies and synthesize the evidence.

c. Free-living data collection protocols

Across the reviewed studies, inconsistent data collection protocols may play a key role in fall
predictive ability of FLFPs. Specifically, length of data collection, sampling frequency, and
wearable location were inconsistent across studies. Although eight days of free-living data

was reported to be sufficient for the identification of fall-prone individuals [48], only one day
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of free-living data per participant was investigated in [50], [51]. In [41] up to five days was
reported to be required for the estimation of median duration of locomotion bouts; while a
minimum of two days of free-living data resulted an inter class correlation greater than 0.7
for most activities (sitting, standing and shuffling, except for lying). Sampling frequency was
inconsistently used within the studies, ranging from 10 Hz in [43] to 100 Hz in [52] (see
Table 3). Considering the impact of sampling frequency on the wearable unit battery life [56],
the identification of the optimal sampling frequency requires further investigation.
Moreover, estimates of gait characteristics may suffer from errors due to discrepancies in
accelerometer location [57]. Although lab-based data suggest that inertial-based wearables
mounted on shins can outperform other anatomical locations [58] for detection of fallers, no
study has considered this location for the collection of free-living data with lower back as the
most frequently used location for sensor placement. To date there is no consensus about the

most robust location for free-living FRA, which requires further exploration.

4.1.2 Inconsistencies in the proposed free-living FRA models

Efforts to develop an FRA model based on predictors generated from wearables is needed to
interpret FLFPs related to fall risk. These interpretations are critical to understanding the
underlying causes or factors indicating risks and informing interventions for clinicians. In
contrast, black-box models (e.g., deep models) that estimate risk without interpretive value
are less useful. The reviewed studies with models demonstrated considerable inconsistency,
likely reflective of the on-going advancement in the field.

As discussed in 3.3, we found quality as the most inconsistently used term with
discrepancies in definition and application. There were many inconsistent terminologies
observed across a range of domains and FLFPs within the examined models. For instance,
harmonic ratio was an indicator of gait smoothness in conceptual model e and but an
indicator of symmetry in model d (instead, index of harmonicity was the measure of
smoothness in model d). In some cases, different terminologies were used to describe the
same FLFP. For example, endurance and exposure were defined by the same calculation in
[48], [49], albeit described in different domains in models b and c, respectively (Figure 3). In
another case, the term ‘vigour’ was used to describe a domain (Figure 4) [38] and defined as

a FLFP (root mean square of vertical angular velocity) in models b and c [48], [49].
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In contrast to conceptual models (e.g., Figure 3, models d and e), where all of the AP,
ML, VT, and vector-based components of the same MBB FLFP where considered under the
same domain (e.g, harmonic ratio in ML, AP, and VT were considered under gait
smoothness), different anatomical directions of some of the MBB FLFPs were loaded onto
independent domains in data-driven model f (Figure 4). Many of the FLFPs extracted from
ML acceleration were loaded into a distinct domain called "ML balance' (e.g., harmonic ratio
in ML direction was loaded into ML balance, while the other two components were
considered under quality). Similarly, index of harmonicity in AP direction was loaded into
vigour; although the other two directions were loaded into quality. It is clear the proposed
models are a work in progress as the field is continually advancing. The existing
inconsistencies highlighted in the current review suggest the need for deeper discussion to

harmonize interpretive models.

4.2. Recommendations for harmonization and clinical implications

4.2.1. Precise activity recognition algorithms

One possible reason for inconsistencies in fall predictive power of FLFPs is the use of black-
box thresholds in activity recognition algorithms [59], [60] in some of the studies, resulting
in a low specificity and clarity to analyze free-living activities. For instance, studies included
here were only concerned with general types of activities, such as ambulation, standing,
sitting, and lying. A subset of studies differentiated between patterns of gait, such as
ascending/descending stairs, or fast walking. For instance, [31] excluded locomotion bouts
suspected to contain running episodes as they caused severe outliers in FLFP estimations for
some of the participants. Additionally, turns and compensatory balance reactions were not
excluded from ambulatory bouts before the extraction of MBB features. For instance, the
misstep detection method in [37] revealed a number of suspected missteps from 5-second
ambulatory bouts. However, in a subsequent study [36], MBB features were extracted from
the same dataset without excluding those suspected missteps, which may have affected the
fall predictive values of the MBB features.

Multimodal approaches, such as a combination of IMUs, surface electromyography

[61], electroencephalogram [62], heart rate variability and ECG [63] and pressure-sensitive
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shoe-insoles [25]-[27] may increase the specificity of activity recognition algorithms, and
therefore, to improve the sensitivity of FLFPs to identify fallers. As an example, using a force
sensing insole equipped with an IMU and a barometric sensor, a framework to discriminate
between level walking and stairs patterns of gait was developed and evaluated [64]. State-
of-the-art algorithms, such as long-short term memory and deep convolutional neural
networks have achieved near-human accuracy levels in detection of a broad range of
activities from multimodal public datasets [65], which can be employed as a replacement to
threshold-based methods to detect a broader range of natural activities. Only one study [39]
investigated the use of deep learning models to identify fallers based on their preprocessed
10-second walking patterns; where deep models slightly outperformed the baseline

approach based on the biomechanical FLFPs as discussed in [38].

4.2.2. Interpreting FLFPs by acquiring contextual information

In [66] it was shown that the mobility measures are affected by the environmental features
(e.g., sidewalk slopes and crossings) and it was hypothesized that subjects would adapt to
challenging environments by decreasing gait speed, increasing cadence, and shortening
stride length. Moreover, a higher variability in ML direction, e.g., a lower amplitude of the
dominant frequency, could indicate a higher adaptability to the environment [32]. However,
the intrinsic meaning of these measures and terminologies (e.g., adaptability) in different
anatomical directions and contexts remains unclear, inertial sensors do not provide
sufficient information on human-environment interaction. Although applying cutting-edge
algorithms (as discussed in 4.2.1) can boost the interpretation of context (e.g. stair climbing,
walking downbhill), the validity of these algorithms in complicated free-living scenarios needs
to be carefully examined (also refer to the last column in Table 3, which shows the algorithms
used in included studies were not mostly validated in free-living conditions).

In [67] time-stamped self-reporting (voice recordings) was along with IMU data to
increase the interpretability of IMU data and to locate compensatory balance reactions (slips,
trips, stumbles) collected in 4 weeks. However, such a tool may also suffer from subjectivity
and under-reporting. On the other hand, egocentric first-person video, acquired via body-
worn cameras have been used as a gold standard [59] for the purpose of validating IMU-

based algorithms or identification of specific events or environmental features [68] [14],
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[69]. First person video captures more contextually relevant information on the properties
of the environment compared to IMU alone. This includes, but is not limited to, varying slope
and surface navigation as well as static and dynamic objects (e.g. obstacles, pedestrians) that
influence mobility behaviour. As an alternative to frame-by-frame investigation (visual
inspection) of first person video data, algorithms are in development to automatically detect
extrinsic risk factors from first person video data. For instance, machine learning (e.g.,
convolutional neural networks) and image processing (e.g.,, Gabor Barcodes) techniques
have shown promising performance in automatic detection of environmental fall-related
hazards, including slope changes (e.g., stairs, curbs, ramps) and different surfaces (e.g.,
gravel, grass, concrete) [70], [71]. By augmenting IMU approaches with egocentric videos,
more insight can be readily gained from specific motoric activity. For example, gait data
pertaining to micro/quality gait (from an IMU) within a new residential environment under
low-level lighting conditions (video) or within crowded open spaces during daylight offer
different challenges for fallers. Combined IMU and video approaches may allow healthcare
professionals to target individualised approaches for rehabilitation strategies, ensuring

safer navigation and reduced falls.

4.2.3. An all-inclusive data-driven model

As discussed in 4.1.1, different hyperparameters, such as ambulatory bout length, central
tendency measures, and data collection protocols, such as the length of free-living data and
sampling frequency, can impact fall predictive power of FLFPs. However, there is not
sufficient evidence indicating the optimal values for these hyperparameters to achieve the
highest predictive values specific to each FLFP. Moreover, many features, such as those
quantifying different aspects of compensatory balance reactions, micro-transition- (e.g. jerk,
entropy) and foot clearance-based measures were not investigated in any of the previous
data-driven models (e.g., Figure 4-model f and controlled models such as [72]). Therefore,
debate continues about their real identity in terms of their allocation to free-living domains.
The aforementioned gaps in the literature indicate a need to obtain a standardized model to
define discrete independent domains by performing factor analysis on a comprehensive
range of wearable-based FLFPs derived from a broad range of video-validated activity bouts.

This comprehensive set may also include similar FLFPs but different in terms of
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hyperparameters (e.g, ambulatory bout lengths, turn cut-off thresholds, and central
tendency measures). It is also feasible to simulate shorter/longer collection periods, and
sampling rates (by up- and down-sampling signals) and examine FLFPs’ sensitivity with
respect to these factors. Performing factor analysis on the aforementioned comprehensive
set of features altered based on different hyperparameters would permit deeper insights on
developing more structured free-living models and provides more information on the
differences between laboratory and free-living features in prediction of falls. While a deeper
discussion on developing better models by including established lab-based models of fall risk
is beyond the scope of the current paper, efforts towards a more comprehensive fall risk
model leveraging both laboratory and free-living sources of evidence are on-going. Such
efforts will better inform pragmatic efforts for which gait and other functional movements
may be useful to identify surrogate markers of incipient pathology, inform diagnostic

algorithms, track disease progression, and measure the efficacy of interventions [73].

5.0 Conclusion

Overall, free-living FRA using wearables is a promising avenue for fall prevention; however,
due to the high level of heterogeneity in the use of wearables; e.g., sensor location, diverse
cohorts, stratified employment (e.g., 1 vs 7 days), definition of free-living domains, and the
selection of free-living bout resolutions, the evidence for the relationships between FLFPs
and falls has remained inconclusive. Moreover, many FLFPs were specific to research groups
and were not systematically investigated in an all-inclusive factor analysis. Therefore,
achieving a data-driven model is necessary to systematically identify the FLFPs, bout
resolutions, and domains with the highest predictive values for falls to eventually address
intervention programs and prevent older adults from falling. Publishing well-annotated
video-validated free-living datasets to support harmonization efforts is strongly

recommended.
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