
metabolites

H

OH

OH

Article

Intracellular Metabolites in Marine Microorganisms
during an Experiment Evaluating Microbial Mortality

Krista Longnecker * and Elizabeth B. Kujawinski

Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole,
MA 02543, USA; ekujawinski@whoi.edu
* Correspondence: klongnecker@whoi.edu

Received: 28 January 2020; Accepted: 9 March 2020; Published: 12 March 2020
����������
�������

Abstract: Metabolomics is a tool with immense potential for providing insight into the impact of
biological processes on the environment. Here, we used metabolomics methods to characterize
intracellular metabolites within marine microorganisms during a manipulation experiment that was
designed to test the impact of two sources of microbial mortality, protozoan grazing and viral lysis.
Intracellular metabolites were analyzed with targeted and untargeted mass spectrometry methods.
The treatment with reduced viral mortality showed the largest changes in metabolite concentrations,
although there were organic compounds that shifted when the impact of protozoan grazers was
reduced. Intracellular concentrations of guanine, phenylalanine, glutamic acid, and ectoine presented
significant responses to changes in the source of mortality. Unexpectedly, variability in metabolite
concentrations were not accompanied by increases in microbial abundance which indicates that marine
microorganisms altered their internal organic carbon stores without changes in biomass or microbial
growth. We used Weighted Correlation Network Analysis (WGCNA) to identify correlations between
the targeted and untargeted mass spectrometry data. This analysis revealed multiple unknown
organic compounds were correlated with compatible solutes, also called osmolytes or chemical
chaperones, which emphasizes the dominant role of compatible solutes in marine microorganisms.

Keywords: marine microorganisms; intracellular metabolites; dilution experiment; compatible
solutes; Weighted Correlation Network Analysis

1. Introduction

The actions of microbial-sized cells impact the composition of organic carbon found in marine
ecosystems. In the oceans, small autotrophic organisms are generally a source of new organic
compounds as they convert inorganic carbon dioxide into organic matter, and existing metabolomics
research has provided insight into the molecular-level composition of the dissolved and particulate
components of this organic matter e.g., [1,2]. At the same time, heterotrophic microorganisms use
organic matter as energy and carbon sources, and this process consumes and alters organic matter
e.g., [3,4]. These heterotrophic microorganisms are subsequently consumed by predators which
transfers organic carbon to larger members of a marine food web. The vast size of the worlds’ oceans
and the amount of carbon they hold makes these processes important components of the global
carbon cycle.

Marine scientists regularly use manipulation experiments to quantify microbial processes within
the marine carbon cycle and to characterize the organic carbon transferred within marine food webs.
For example, manipulation experiments can be used to quantify rates for a specific biogeochemical
process (e.g., carbon or nitrogen fixation) or to assess the diversity of microorganisms involved in
a given biogeochemical process e.g., [5–7]. Metabolomics has the potential to inform manipulation
experiments by providing the tools needed to characterize the organic compounds that are produced
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and consumed by marine microorganisms under different conditions. In this project, we take advantage
of analytical developments that allow the use of mass spectrometry with marine samples [8]. We
use these methods to assess the outcome of a manipulation experiment using seawater from the
surface ocean.

Mortality in marine microorganisms can be attributed to two processes: consumption by protozoan
grazers or lysis of cells by viruses. One means to consider the impact of how a cell dies is to manipulate
the microbial community in order to reduce the encounter rates between predators or viruses and
their microbial prey. This experimental manipulation relies on the differences in size between
microorganisms and their potential predators. Protozoan grazers are larger than most microorganisms,
while viruses are smaller than microorganisms. Through careful selection of different filtration
membranes, microorganisms in seawater can be separated from their predators. In this project we
used seawater diluted with 0.2-µm filtered water to reduce levels of protozoan grazing and compared
this to samples with reduced levels of viral lysis and protozoan grazing that were established by
diluting seawater with 30-kDa filtered seawater. This method, broadly termed a dilution experiment,
was originally proposed by Landry and Hassett [9] to examine protozoan grazing and was later
modified to include viral lysis [10]. While these experiments are widely used, there are recognized
biases regarding shifts in the diversity and activity of a microbial community during these experiments
e.g., [11–13]. Furthermore, while we know a diverse set of organic compounds, or metabolites, exists
within marine microbial cells [1,14], we have no information about the variability in these compounds
during a dilution experiment. This information is critical to address how mortality may change the
composition of organic carbon released by a microbial cell into the marine environment.

Here, we used targeted and untargeted metabolomics methods to assess short-term changes in
intracellular organic compounds, or metabolites, in an incubation experiment established with seawater
from the western Atlantic Ocean. Targeted metabolomics is quantification of known organic compounds
while untargeted metabolomics is a more open-ended exploration of the organic compounds in a
sample. Analytical and computational advances in metabolomics allow us to assess how organic
compounds within microbial cells shift when the community is exposed to varying sources of mortality.
We present our results in the context of marine science, while simultaneously considering the benefits
and challenges facing marine metabolomics research.

2. Results

2.1. Environmental Data

The seawater used to establish the experiments was from the deep chlorophyll maximum located
at 70 m below the surface. The water temperature was 27.6 ◦C, salinity was 36.3, and the total
organic carbon (TOC) concentration of seawater sampled directly from the Niskin bottle was 73 µM.
The total organic carbon concentrations within the incubation bottles ranged from 69–86 µM, with
slight variability at the onset of the experiment and across the different experimental treatments
(Table 1). Heterotrophic bacterial cells were the majority of the microbial-sized cells in this experiment
(Figure 1A), with smaller contributions from small autotrophic cells that were primarily Prochlorococcus
and Synechococcus (Figure 1B). The autotrophic cells counted by flow cytometry showed slight decreases
in abundance over the 24-hour incubation, while the heterotrophic cells had a variable response in
the 30-kDa filtered bottles with 45% whole seawater but otherwise showed no change in abundance.
Picoeukaryote abundances based on epifluorescence microscopy showed increases in the 0.2-µm
diluted treatments but a variable response across replicates from the controls and the 30-kDa diluted
treatments (Figure 1C).
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Table 1. Experimental design and concentrations of total organic carbon (TOC) in each treatment at
the initial and final time points. The control is 100% whole seawater, while the 0.2-µm and 30-kDa
treatments were diluted with water passed through 0.2-µm and 30-kDa filters, respectively. The table
provides the amount each treatment was diluted. * The initial TOC sample for the 0.2-µm treatment
with 20% whole seawater was lost.

Treatment % Whole Seawater Time Point (# of Samples) TOC (µM)

control 100% initial (n = 1)
final (n = 2)

76.9
80.3, 81.0

0.2-µm diluted 45% initial (n = 1)
final (n = 2)

82.0
77.5, 81.8

0.2-µm diluted 20% initial (n = 1)
final (n = 2)

*
84.7, 80.0

30-kDa diluted 45% initial (n = 1)
final (n = 2)

75.6
69.0, 80.8

30-kDa diluted 20% initial (n = 1)
final (n = 2)

81.7
77.7, 86.0
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Figure 1. Abundance of microbial-sized cells at the initial and final points in the experiment. (A) SYBR 
Green-stained cells are heterotrophic cells counted with flow cytometry, (B) small autotrophic cells 
are the autofluorescing cells within the flow cytometry data, and (C) picoeukaryotes were counted 
with epifluorescence microscopy. The abundances have been jittered on the x-axis to improve clarity 
of the data presentation. The total abundance of microbial-sized cells was defined as the sum of all 
three datasets and was used to normalize the metabolite concentrations to cell-specific values for each 
organic compound. Data are plotted on a log scale to allow comparisons across the different groups. 
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Figure 1. Abundance of microbial-sized cells at the initial and final points in the experiment. (A) SYBR
Green-stained cells are heterotrophic cells counted with flow cytometry, (B) small autotrophic cells
are the autofluorescing cells within the flow cytometry data, and (C) picoeukaryotes were counted
with epifluorescence microscopy. The abundances have been jittered on the x-axis to improve clarity
of the data presentation. The total abundance of microbial-sized cells was defined as the sum of all
three datasets and was used to normalize the metabolite concentrations to cell-specific values for each
organic compound. Data are plotted on a log scale to allow comparisons across the different groups.
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2.2. Targeted Metabolomics Data Results

We only considered organic compounds in the targeted metabolomics method that were present
above the detection limit in at least three samples. This reduced the set of quantifiable organic
compounds from 70 to 24 compounds. Dividing the concentrations by the total abundance of
microbial-sized cells captured by each filter allowed us to consider differences in cell-specific
concentrations and removed the impact of different microbial abundances in each of the experimental
manipulations (Supplemental Figure S1). There were no significant differences in the cell-specific
concentrations of organic compounds between the bottles with 20% and 45% whole seawater; therefore,
these two treatments are combined for all subsequent data analysis. In future experiments, we suggest
triplicate bottles for each treatment in order to better utilize the statistical tools needed to assess
differences across treatments. Four metabolites showed significant differences in the treatments
(0.2-µm diluted, 30-kDa diluted) compared to the control at the final time point of the experiment
(one-way ANOVA followed by Dunnett’s post hoc multiple comparisons test, Table 2). All four of
these metabolites (guanine, glutamic acid, phenylalanine, and ectoine) showed significant differences
between the control and the 30-kDa diluted treatments, but only ectoine and guanine were significantly
different between the control and the 0.2-µm diluted treatments. The remaining 20 compounds did not
show significant differences between the controls and the treatments with 0.2-µm diluted or 30-kDa
diluted seawater.

Table 2. Organic compounds that showed statistically significant differences from the control at the
final time point of the incubation. The p-values are from the one-way ANOVA; the rows marked with
an ‘x’ indicate metabolites with differences between each treatment and the control using the Dunnett’s
post hoc multiple comparisons test. The sign (+ or -) indicates increase or decrease, respectively.

Metabolite p-Value 0.2-µm Diluted (+/-) 30-kDa Diluted (+/-)

guanine 0.0002 x (-) x (-)
glutamic acid 0.0263 x (+)
phenylalanine 0.0105 x (+)

ectoine 0.0001 x (+) x (+)

Guanine, a nucleic acid precursor, showed decreases in cell-specific concentrations at the end
of the 24-hour incubation period compared to the beginning of the experiment (Figure 2, one-way
ANOVA, p-value = 0.0002). At the conclusion of the experiment, cell-specific guanine concentrations
averaged a 5-fold decrease compared to the initial time points. The remaining nucleic acid precursors
did not show statistically significant differences between the controls and the 0.2-µm diluted or 30-kDa
diluted treatments (Supplemental Figure S2).

Amino acids (Figure 3) and compatible solutes (Figure 4) accumulated within the intracellular
metabolite pool and these changes were statistically significant for the amino acids phenylalanine
and glutamic acid in the 30-kDa diluted treatment (one-way ANOVA, p-values < 0.05 followed
post hoc by Dunnett’s test, Table 2); there was no significant difference between the 0.2-µm diluted
treatment and the control. Other amino acids including arginine, glutamine, and proline showed
similar, but not statistically significant, trends (Supplemental Figure S3). The accumulation of ectoine,
a compatible solute, was also statistically significant in both the 0.2-µm diluted and 30-kDa diluted
treatments (one-way ANOVA, p-value = 0.0001 followed post hoc by Dunnett’s test, Table 2, Figure 4).
Glycine betaine and dimethylsulfoniopropionate (DMSP) are two additional compatible solutes that
also showed similar, albeit not statistically significant, increases over the course of the incubation
experiment (Figure 4).
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used in this project. Data are biological replicates from different bottles. The remaining nucleic acid 
precursors are plotted in Supplemental Figure S2. 

Amino acids (Figure 3) and compatible solutes (Figure 4) accumulated within the intracellular 
metabolite pool and these changes were statistically significant for the amino acids phenylalanine 
and glutamic acid in the 30-kDa diluted treatment (one-way ANOVA, p-values < 0.05 followed post 
hoc by Dunnett’s test, Table 2); there was no significant difference between the 0.2-µm diluted 
treatment and the control. Other amino acids including arginine, glutamine, and proline showed 
similar, but not statistically significant, trends (Supplemental Figure S3). The accumulation of ectoine, 
a compatible solute, was also statistically significant in both the 0.2-µm diluted and 30-kDa diluted 
treatments (one-way ANOVA, p-value = 0.0001 followed post hoc by Dunnett’s test, Table 2, Figure 
4). Glycine betaine and dimethylsulfoniopropionate (DMSP) are two additional compatible solutes 
that also showed similar, albeit not statistically significant, increases over the course of the incubation 
experiment (Figure 4). 

 

Figure 2. Cell-specific guanine concentrations at the initial and final time points of the experiment.
Guanine is one example of a nucleic acid precursor measured with the targeted metabolomics method
used in this project. Data are biological replicates from different bottles. The remaining nucleic acid
precursors are plotted in Supplemental Figure S2.

Metabolites 2020, 10, 105 5 of 16 

 

 
Figure 2. Cell-specific guanine concentrations at the initial and final time points of the experiment. 
Guanine is one example of a nucleic acid precursor measured with the targeted metabolomics method 
used in this project. Data are biological replicates from different bottles. The remaining nucleic acid 
precursors are plotted in Supplemental Figure S2. 

Amino acids (Figure 3) and compatible solutes (Figure 4) accumulated within the intracellular 
metabolite pool and these changes were statistically significant for the amino acids phenylalanine 
and glutamic acid in the 30-kDa diluted treatment (one-way ANOVA, p-values < 0.05 followed post 
hoc by Dunnett’s test, Table 2); there was no significant difference between the 0.2-µm diluted 
treatment and the control. Other amino acids including arginine, glutamine, and proline showed 
similar, but not statistically significant, trends (Supplemental Figure S3). The accumulation of ectoine, 
a compatible solute, was also statistically significant in both the 0.2-µm diluted and 30-kDa diluted 
treatments (one-way ANOVA, p-value = 0.0001 followed post hoc by Dunnett’s test, Table 2, Figure 
4). Glycine betaine and dimethylsulfoniopropionate (DMSP) are two additional compatible solutes 
that also showed similar, albeit not statistically significant, increases over the course of the incubation 
experiment (Figure 4). 

 
Figure 3. Cell-specific glutamic acid concentrations at the initial and final time points of experiment.
Glutamic acid is one of the amino acids measured with the targeted metabolomics method used in this
project. The remaining amino acids are plotted in Supplemental Figure S3.



Metabolites 2020, 10, 105 6 of 17

Metabolites 2020, 10, 105 6 of 16 

 

Figure 3. Cell-specific glutamic acid concentrations at the initial and final time points of experiment. 
Glutamic acid is one of the amino acids measured with the targeted metabolomics method used in 
this project. The remaining amino acids are plotted in Supplemental Figure S3. 

 
Figure 4. Cell-specific concentrations of three compounds that are known to act as compatible solutes 
within cells: dimethylsulfoniopropionate (DMSP), glycine betaine, and ectoine. Note the different y-
axis scales for each compound. Data are jittered within each group for clarity. 

2.3. Untargeted Metabolomics Data from LC FT-ICR MS Analysis  

The set of mzRT features (chemical features with unique combinations of m/z values and 
retention times) from the untargeted metabolomics methods provide a perspective on the complexity 
of organic matter found within microbial-sized cells living in seawater. The analysis of seawater using 
the untargeted metabolomics method requires an additional de-salting step, therefore some 
compounds that are measured with the targeted method may not show up in this analysis. The 
untargeted metabolomics analysis resulted in 2858 mzRT features in negative ion mode, and 65% of 
these mzRT features (1862 features) were observed in all fifteen of our samples. The average number 
of mzRT features at the beginning of the experiment was 2491 mzRT features, which is not statistically 
different from the average of 2400 mzRT features observed at the conclusion of the experiment 
(Wilcoxon rank sum test, p-value > 0.05). Within the mzRT features, compounds can be present as 
different adducts and with different numbers of 13C atoms. Using CAMERA [15], approximately 10% 
of the mzRT features were labeled as isotopologues or compounds present with different adducts. 
We did not remove the isotopologues or adducts from our analysis in order to allow us to analyze 

Figure 4. Cell-specific concentrations of three compounds that are known to act as compatible solutes
within cells: dimethylsulfoniopropionate (DMSP), glycine betaine, and ectoine. Note the different
y-axis scales for each compound. Data are jittered within each group for clarity.

2.3. Untargeted Metabolomics Data from LC FT-ICR MS Analysis

The set of mzRT features (chemical features with unique combinations of m/z values and retention
times) from the untargeted metabolomics methods provide a perspective on the complexity of organic
matter found within microbial-sized cells living in seawater. The analysis of seawater using the
untargeted metabolomics method requires an additional de-salting step, therefore some compounds
that are measured with the targeted method may not show up in this analysis. The untargeted
metabolomics analysis resulted in 2858 mzRT features in negative ion mode, and 65% of these mzRT
features (1862 features) were observed in all fifteen of our samples. The average number of mzRT
features at the beginning of the experiment was 2491 mzRT features, which is not statistically different
from the average of 2400 mzRT features observed at the conclusion of the experiment (Wilcoxon rank
sum test, p-value > 0.05). Within the mzRT features, compounds can be present as different adducts
and with different numbers of 13C atoms. Using CAMERA [15], approximately 10% of the mzRT
features were labeled as isotopologues or compounds present with different adducts. We did not
remove the isotopologues or adducts from our analysis in order to allow us to analyze the complete set
of mzRT features as we consider patterns in organic compounds found within the project.
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We used Weighted Correlation Network Analysis (WGCNA) to reduce the complexity of the
untargeted metabolomics data. WGCNA is commonly used in the processing of genomics and
transcriptomics data to find groups of genes that co-vary and thus may be regulated by similar factors.
In metabolomics, WGCNA has been used to find groups of metabolites involved in the ripening of
tomato plants [16] and to assess urinary metabolites that accumulate after traumatic injury [17].

First, we calculated a signed network that connects mzRT features based on their shared patterns
across the sample set. The result divides the untargeted metabolomics data into 17 modules as shown in
Figure 5, and each module is summarized as an eigengene and assigned a color. The colors are arbitrary
and are only used to simplify our discussion of each module within the WGNCA analysis. Each
module is a set of connected mzRT features. We posit that each set of mzRT features are responding
to the same environmental forcing, either because they represent a single type of organic compound
or because they are handled by the in situ microbial community using a coherent set of biochemical
pathways thereby resulting in similar concentration patterns throughout the experiment. The number
of mzRT features in each color module ranged from 31 to 890, with three modules (brown, lavender,
and mint) representing over 50% of the mzRT features (Figure 5). The remaining 1349 mzRT features
were divided into 14 modules.
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Figure 5. WGCNA analysis was used to group the mzRT features from the untargeted metabolomics
data into modules. The figure shows the results from clustering 2858 mzRT features, and the color bar
on the bottom indicates the arbitrary colors assigned to each module.

We further investigated the color modules to consider changes in the mzRT features during the
experiment. We used violin plots to plot the average peak areas for each treatment within a given color
group (Supplemental Figure S4). Violin plots allow us to visualize the probability density of the data
at different values, in addition to presenting the mean values for each treatment. There are thousands
of mzRT features in each sample and we use the violin plots to visually summarize the spread of
peak areas within each treatment. Without the violin plots, we would have to present thousands of
individual figures to show how each of the mzRT features present in a color module changed over time.
The peak areas for the mzRT features show different patterns for each color module. For example,
the mzRT features within the blue color module (Figure 6) reveal a slight increase in the mean peak
areas by the final time point of the experiment in the control and the 30-kDa diluted treatments, and a
larger increase in mean peak areas in the 0.2-µm diluted treatments. However, the range of average
peak areas for the 30-kDa diluted treatment was broader at both the initial and the final time point
compared to the range of peak areas in the 0.2-µm diluted samples. Furthermore, the 30-kDa diluted
treatment at the initial time point presented a bimodal pattern in average peak area that was reduced
to a skewed unimodal distribution by the final time point. A comparison across all the color modules
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(Supplemental Figure S4) revealed two general patterns. First, the maroon and red color modules
showed the largest ranges of average peak areas, while the mint, grey, black, and pink color modules
showed smaller differences in peak areas during the experiment. The peak areas can be used to infer
the relative concentration of a metabolite, and increased variability in peak areas indicates increased
shifts in metabolite concentrations.
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are scaled from 0 to 1. Mean values for each group are shown with the pink cross. Peak areas for all of
the color groups are given in Supplemental Figure S4.

The next stage of the analysis relates the modules to external information. The WGCNA
analysis calculates Pearson correlations between each eigengene and an external dataset (Supplemental
Figure S5), here the set of organic compounds measured with the targeted metabolomics methods
(Supplemental Table S1). Nine of the color modules were correlated with one or more organic compound
(Table 3). The blue module was positively correlated with ectoine and proline and negatively correlated
with ciliatine and guanine. With 218 mzRT features, this module was the largest module correlated
with any targeted metabolomics data. Other known organic compounds correlated with a module
include nucleic acid precursors (guanine, inosine, IMP; Supplemental Figure S2) and amino acids
(glutamic acid, glutamine, phenylalanine; Supplemental Figure S3). However, the majority of the
unknown mzRT features were not correlated to any known organic compounds, most notably the
890 mzRT features found in the largest module, the brown module (Table 3). Furthermore, nine of
the organic compounds measured in the targeted metabolomics method, and found in at least three
samples, were not correlated with any module.



Metabolites 2020, 10, 105 9 of 17

Table 3. Summary of the 17 modules defined in the untargeted metabolomics data by the WGCNA
analysis. The table provides the arbitrary color names and the number of mzRT features in each module.
The positive and negative correlations were calculated between the eigengene defining each color
module and the targeted metabolomics data.

Color (Arbitrary) # mzRT Features Positive Correlation Negative Correlation

blue 218 ectoine
proline

ciliatine
guanine

magenta 159 glutamic acid
green 153 xanthosine glutamine

navy 65 D-ribose 5-phosphate
syringic acid

maroon 64 inosine
5’-monophosphate

yellow 54 3-mercaptopropionic
acid

beige 49 NAD 1

pantothenic acid
red 38 proline inosine

orange 37 glutamic acid
phenylalanine

ciliatine
guanine

brown 890
lavender 310

mint 309
grey 189
black 118
pink 107
cyan 67
teal 31

3. Discussion

Marine microorganisms play a critical role in biogeochemical cycling because they consume,
alter, and release organic matter. Metabolomics can play a central role in deciphering the chemical
signals generated by microorganisms as they respond to variability in environmental conditions.
However, characterizing the actions of a marine microbial community requires manipulating the
microbial community and measuring resulting changes in the composition of organic matter. We
used a combination of targeted and untargeted metabolomics approaches to consider short-term
microbial responses to differences in mortality. In our study, only a small number of metabolites
showed statistically significant changes in concentration although these changes were not accompanied
by an increase in the number of microbial-sized cells. Lags in increasing microbial cell abundances
have previously been observed as delays in the incorporation of radiolabeled tracers used to assess cell
growth [6,18] and short-term changes in microbial physiology using fluorescent stains [19]. Our data
suggest that delays in microbial growth may be caused by microorganisms expending energy altering
their internal composition of organic matter prior to increasing cellular biomass. This de-coupling
between changes in internal organic matter and microbial growth is important because it means we
cannot assume metabolite levels remain static during different stages of microbial growth.

Our original goal in this project was to assess how mortality may change the composition of
organic matter in microbial cells. To address this question, we filtered water through membranes of
different sizes to separate marine microorganisms from sources of mortality, viruses and/or protozoan
grazers. In this experiment, the treatments with reduced levels of viral lysis and protozoan grazing
(30-kDa diluted samples) revealed a greater change in the intracellular accumulation of metabolites
compared to the response in the treatments with reduced levels of protozoan grazing only (0.2-µm
diluted samples). The microbial community can release organic compounds while dilution experiments
are established [20,21]. We posit that the additional filtration step required to generate the 30-kDa
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filtered seawater released organic compounds that enabled the microbial community to enhance their
accumulation or consumption of select compounds such as amino acids or nucleic acid precursors.
The concentration of these compounds would be on the zeptomolar scale we measured in the targeted
metabolomics data and is, therefore, too small to measure with the high-temperature combustion
method used to obtain the concentration of total organic carbon in these samples. Unlike Pasulka
et al. [22], we did not observe differences in growth rates in the 30-kDa diluted water compared
to the 0.2-µm diluted water. While increasing the duration of the experiment may have ultimately
revealed differences in growth rates, there would also have been shifts in the diversity of the microbial
community [11,23–25] which we opted to avoid by keeping the experiment to less than one day.

In all treatments, the amino acids increased and the nucleic acid precursors decreased by the
conclusion of the incubation experiment. The intracellular accumulation of amino acids is not
surprising given earlier observations that marine microorganisms can remove dissolved amino acids
from seawater and thereby support increases in biomass [26]. At the same time, nucleic acid precursors
decrease as cells are replicating nucleic acids thereby leaving fewer chemical precursors within the cells.
The assimilation of amino acids, such as leucine, or nucleic acid precursors, e.g., thymidine, has long
been used to quantify bacterial production in marine ecosystems (for a review, see [27]). The balance
between the incorporation of leucine and thymidine has been connected to changes in the growth
state of marine microorganisms [28,29] and higher leucine incorporation rates relative to thymidine
incorporation rates are observed in metabolically active high nucleic acid cells [30]. Collectively,
our current results and previous research emphasize that cells can accumulate amino acids relative to
nucleic acid precursors even prior to changes in cellular abundance.

The intracellular accumulation of compatible solutes was an unexpected observation during this
project. Compatible solutes, also called osmolytes or chemical chaperones, are used by microorganisms
to balance intracellular and extracellular osmotic pressures. Yet, filtering seawater through a 0.2-um or
30-kDa filter would not have changed the osmotic pressure because the ions in seawater are smaller than
these filters. Within cells, compatible solutes stabilize nucleic acids [31], and increase the stability [32]
and fluidity [33] of bacterial membranes. Thus, an alternative hypothesis is that the accumulation of
compatible solutes is a maintenance activity of the microbial community. Microbial cells partition
energetic expenditures between growth and maintenance, and the balance of these processes determines
how efficiently a microbial cell converts organic carbon into cellular biomass [34–36]. As a cell’s
maintenance energy costs increase, there is less energy available to make new cells and a cell’s growth
efficiency decreases. The lack of an increase in cell numbers during these 24-hour incubations is further
evidence that the microbial cells are primarily expending energy for maintenance activities.

A diverse collection of known compatible solutes are present within microorganisms [37] and we
observed a surprising number of mzRT features that were correlated to known compatible solutes
within our dataset. The most notable group was the blue color module with mzRT features that were
positively correlated with ectoine and proline. One possibility is that these mzRT features are acting as
compatible solutes within our cells, which would greatly expand the diversity of compounds acting as
compatible solutes in marine systems. However, as we posit above, the accumulation of compatible
solutes could be a maintenance activity in marine microorganisms. Therefore, these unknown mzRT
features could represent organic compounds involved in a diverse array of cellular maintenance
activities. Furthermore, we interpret the increased variability in peak areas in the 30-kDa treatment,
relative to the 0.2-µm diluted treatment, as evidence of an increased range of maintenance activities in
the 30-kDa treatment. This observation is consistent with previous observations of lower growth rates of
microorganisms growing in 30-kDa filtered seawater [22]. Additional research will be needed to identify
these unknown compounds and define their roles in cellular metabolism. Regardless, our observation
of the key role of compatible solutes from both the targeted and untargeted metabolomics datasets
aligns with genetic information indicating that an abundant marine microorganism, SAR11, dedicates
a large component of its resources to the use of compatible solutes [38]. The combination of genomic
data, our previous observations of increasing concentrations of compatible solutes in sinking marine
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particles [39], and the results from the current project collectively indicate that compatible solutes are
critical component of organic matter within marine microorganisms.

Over three-quarters of the unknown mzRT features measured in this project were not correlated
to a known organic compound. Many of these mzRT features showed little change in peak areas in
response to the experimental manipulation or the time elapsed during the experiment. Therefore,
these may be organic compounds that are consistently present within microbial cells, regardless of the
environmental changes experienced by the cell. That these compounds were not correlated to any
of our known compounds emphasizes that we still have much to learn about the metabolites found
within marine microorganisms.

Metabolomics can provide valuable insights into the actions of small microorganisms within
marine ecosystems. Advances in instrumentation and the methods used to extract organic compounds
from marine microorganisms now allow us to quantitatively assess organic compounds originating
from a seawater matrix. However, future research projects should use additional biological replicates
to better assess differences across treatments even though this requires larger volumes of water to
be processed for each experiment. Computational advances, such as the WGCNA tool applied here,
offer new ways to focus the large amounts of data generated by metabolomics experiments. Many
of the challenges facing marine metabolomics have been observed in other fields; the large amount
of time and effort required to identify novel compounds is the most obvious challenge. However,
marine research faces additional challenges because we cannot establish controls that are free of
organic carbon, nor can we separate marine microorganisms from the organic compounds they rely
on for growth and energy. One unexpected outcome from the current project adds an interesting
new observation to marine metabolomics: microorganisms can change their internal pool of organic
matter without changing their abundance. As we move forward in marine metabolomics, we are
excited by the challenge of continuing to investigate how marine microorganisms respond to changes
in environmental conditions.

4. Materials and Methods

4.1. Experimental Setup

Seawater for the incubation experiment was collected using 10 L Niskin bottles attached to a
CTD/rosette system. The system includes a SBE9+ CTD equipped with dual SBE3T/SBE4C sensor
systems for temperature and conductivity, a SBE43 oxygen sensor, and a Wet Labs combination
fluorometer and turbidity sensor. Seawater from 70 m below the sea surface was collected off the
northeastern corner of South America at 9.75◦ North, 55.3◦ West. Silicone tubing was used to collect
water from the Niskins and the tubing was placed in the bottom of polycarbonate carboys in order
to minimize turbulence during sample collection. The seawater was first filtered through a 0.2 µm
Sterivex filter (Millipore) to obtain cell-free seawater. To obtain cell- and virus-free seawater, tangential
flow filtration using a recirculating Prep/Scale tangential flow ultrafilter (Millipore) with a 30-kDa
molecular mass cutoff was used.

Five different experimental treatments were established: (1) unfiltered, whole seawater as a control,
(2) 20% whole seawater diluted with 0.2-µm filtered seawater, (3) 45% whole seawater diluted with
0.2-µm filtered seawater, (4) 20% whole seawater diluted with 30-kDa filtered seawater, (5) 45% whole
seawater diluted with 30-kDa filtered seawater. Table 1 provides an overview of the experimental
design for the project. There were three, 2 L polycarbonate bottles established for each treatment. One
of the bottles was sampled immediately after the experiment was set up. The two remaining bottles
were incubated for 24 h in an on-deck, flow-through incubator that allowed 10% of photosynthetically
active radiation (PAR) to pass through its screening. As detailed below, the seawater in the bottles
at the initial and final time points was sampled and processed to provide cell counts, total organic
carbon concentrations, and compositional information on the intracellular organic compounds within
microbial biomass.
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4.2. Abundances of Microbial-Sized Cells

Two methods were used to quantify the microbial cells within this experiment. Flow cytometry was
used to obtain abundances of heterotrophic microorganisms and small autotrophic cells (phytoplankton).
Seawater samples were fixed with 0.2% w/v paraformaldehyde (final concentration), placed in the dark
for at least 10 min at room temperature to harden cells, and stored at −80 ◦C until sample processing.
A Becton-Dickinson FACSCalibur flow cytometer was used to count small phytoplankton as described
by Sherr et al. [40]; the presence of orange- or red-fluorescent pigments were used to distinguish
Synechococcus and Prochlorococcus, respectively. Heterotrophic cells were counted after staining with a
1x working stock of SYBR Green I (Invitrogen, Carlsbad, CA) for 15 min [41]. To obtain the abundance
of picoeukaryotes, cells were first preserved with 0.05% (final concentration) alkaline Lugol’s solution,
followed by 0.1% (final concentration) sodium thiosulfate, and finally 2% (final concentration) of
borate-buffered formalin. Samples were incubated at 4 ◦C for 24 h, stained with DAPI (25 µg mL−1

final concentration) for 10 min, and then filtered onto black 0.8 µm polycarbonate filters [42]. The filters
were counted with epifluorescence microscopy. The total abundance of microbial-sized cells within
each bottle was calculated as the sum of autotrophic and heterotrophic cells from the flow cytometry
data and larger cells from the epifluorescence microscopy data.

4.3. Concentration of Total Organic Carbon (TOC)

TOC concentrations were measured on unfiltered seawater samples with a Shimadzu TOC-VCSH

total organic carbon analyzer using potassium hydrogen phthalate as a standard solution. TOC
concentration was determined by subtracting the instrument blank area from the average peak area
and dividing by the slope of the standard curve. The coefficient of variability between replicate
injections was <1%. Comparisons to low carbon water and deep-sea reference water provided by Prof.
D. Hansell (University of Miami) were made daily.

4.4. Processing of Seawater Samples for Intracellular Metabolomics

The remaining fluid in each bottle was filtered by gentle vacuum filtration onto 0.2-µm Omnipore
(Millipore) filters. The filters were stored at −80 ◦C until extraction could occur in one batch for
the entire experiment. The intracellular organic compounds, or metabolites, were extracted using
a method modified from a protocol described by Rabinowitz and Kimball [43] and modified for
seawater samples [8]. Briefly, the filter was extracted three times with ice-cold extraction solvent
(acetonitrile:methanol:water with 0.1 M formic acid, 40:40:20). The combined extracts were neutralized
with ammonium hydroxide and dried in a vacufuge.

4.5. Targeted and Untargeted Mass Spectrometry

The organic matter extracts were analyzed using targeted and untargeted mass spectrometry
methods described by Kido Soule et al. [8]. Briefly, the extracts for targeted mass spectrometry analysis
were re-dissolved in 95:5 (v/v) water:acetonitrile with deuterated biotin (final concentration 0.05 µg
mL−1) as an injection standard. These samples were then analyzed with a Synergi 4u Fusion – RP
80A 150 × 2.00 mm column (Phenomenex, Torrance, CA) coupled to a Thermo Scientific TSQ Vantage
Triple Stage Quadrupole Mass Spectrometer. The chromatographic separation used a binary gradient
with solvent A being water with 0.1% formic acid and solvent B being acetonitrile with 0.1% formic
acid. Samples were run at 250 µL min−1 with 5% B for 0 to 2 min, ramp to 65% B from 2 to 20 min,
ramp to 100% B from 20 to 25 min, and hold until 32.5 min. The column was re-equilibrated for 7 min
between samples with 95% A. The samples were analyzed in random order with a pooled sampled run
every six samples. The mass spectrometer was operated in selected reaction monitoring (SRM) mode;
SRM parameters (s-lens, collision energy) for each target compound were optimized individually
using an authentic standard. Two SRM transitions per compound were monitored for quantification
and confirmation. Eight-point external calibration curves based on peak area were generated for
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each compound. The resulting data were converted to mzML files using the msConvert tool [44] and
processed with MAVEN [45]. The detection limits for the targeted mass spectrometry data are provided
in Johnson et al. [46]. Cell-specific concentrations were calculated as the zeptomoles (10−21 moles) of
each organic compound divided by the total number of microbial cells.

For untargeted analysis, the dried extracts were re-dissolved in 0.01 M hydrochloric acid and
extracted using a 50 mg/1 cc PPL cartridge following the protocol of Dittmar et al. [47]. The additional
extraction with the PPL cartridge will result in the loss of more polar compounds [46]. The resulting
extracts were dried using a vacufuge and re-dissolved in 95:5 water:acetonitrile and deuterated biotin
(final concentration 0.05 µg mL−1) and analyzed in negative ion mode with liquid chromatography
(LC) coupled by electrospray ionization to a 7-Tesla Fourier-transform ion cyclotron resonance mass
spectrometer (FT-ICR MS). LC separation was performed using the same conditions described above
for the targeted analysis. Samples were analyzed in random order with a pooled sampled run every
six samples in order to assess instrument variability. The resulting data were processed using the
centWave algorithm [48] within XCMS [49] as described by Longnecker et al. [50]. The result is a
list of mass-to-charge (m/z) ratios, retention times, and peaks areas in each sample. Here, we use
the term ‘mzRT features’ to refer to chemical features with unique combinations of m/z values and
retention times.

4.6. Statistics and Data Availability

We tested for statistically significant differences in cell-specific concentrations of organic
compounds across the treatments (control, 0.2-µm diluted, 30-kDa diluted) at the final time point
using a one-way ANOVA as implemented in MATLAB (Mathworks, Natick, MA). In each case, 0.2-µm
diluted or 30-kDa diluted, the comparison was made to the whole seawater controls. Post-hoc multiple
comparison tests were performed using Dunnett’s test to compare each treatment to the control. Prior
to this analysis, we compared the bottles with 20% whole seawater (n = 3, including both initial and
final bottles) to the bottles with 45% whole seawater (n = 3, including both initial and final bottles)
and determined that there were no statistically significant differences (t-test, p-value > 0.05). For the
remainder of the project, we grouped the data from the bottles with 20% whole seawater and 45%
whole seawater.

We used the R package Weighted Correlation Network Analysis (WGCNA [51]) to find groups
of mzRT features that co-varied within the untargeted metabolomics data. WGCNA analysis can be
briefly summarized in three steps. First, the analysis clusters mzRT features based on shared patterns
in peak areas. The peak areas were log2 transformed prior to calculating the dissimilarity index using
the Bray-Curtis metric and clustered using the Ward algorithm. The end result can be plotted as a
dendrogram with all mzRT features.

Second, the mzRT features are divided into modules and a composite value is calculated for each
module. The clusters were divided into modules using the blockwiseModules function with a Pearson
correlation. We consider a signed network in order to allow both positive and negative correlations.
We used the pickSoftThreshold function to determine that soft power = 12 with a scale-free threshold
of 0.35 was optimal for our dataset. After dividing the mzRT features into modules, each module was
labeled with an arbitrary color name. For each color module, the module eigengene was calculated.
This eigengene is the first principal component of the eigenvectors used to define a color module,
and can be considered an aggregate of the characteristics for each module.

Finally, WGCNA uses the average values of the eigengenes for each module to calculate correlations
with an external dataset. In this project, the external dataset was the targeted metabolomics data.
Correlations between the eigengenes and the known organic compounds were calculated using a
Pearson correlation. Only correlations with p-values less than 0.05 were considered statistically
significant. The results of this calculation allow us to connect the known organic compounds
(metabolites from the targeted mass spectrometry analysis) with the unknown mzRT features measured
in this project.
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Violin plots were made in MATLAB using the distributionPlot function from Mathworks File
Exchange. To make the plots, the average peak areas for each mzRT feature were first normalized by
the cell abundance and then smoothed histograms were generated using a kernel smoothing function
with a normal kernel. The cross represents the mean value for each subset of the data.

Targeted and untargeted metabolomics data for this project are available from MetaboLights
(http://www.ebi.ac.uk/metabolights/) under accession number MTBLS461. The environmental
data associated with the seawater used to establish this incubation experiment are available at
BCO-DMO (http://www.bco-dmo.org/project/2204). The R Markdown notebooks used for the peak
picking and WGCNA analysis are available at GitHub (http://github.com/KujawinskiLaboratory/

DilutionExperiment).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/105/s1,
Figure S1: Nucleic acid precursors, Figure S2: Changes in amino acid concentrations, Figure S3: Average peak
areas for each color module, and Figure S4: Heatmap with correlations between the targeted and untargeted
metabolomics data.
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