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Understanding the functional role of proteins expressed by Plasmodium falciparum is an

important step toward unlocking potential targets for the development of therapeutic or

diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated

with varied functions across the eukaryotes. Therefore, it is important to understand the

role of members of this protein family in Plasmodium biology. The Plasmodium falciparum

armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing

proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously

characterized in P. falciparum. Here, we describe the characterization of another ARM

repeat-containing protein in P. falciparum, which we have named the P. falciparum

Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three

different synthetic peptides of PfMAAP show apical staining of free merozoites and those

within themature infected schizont. We also demonstrate that the antibodies raised to the

PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite

isolates. In addition, naturally acquired human antibodies to the N- and C- termini of

PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis.
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INTRODUCTION

Human malaria is caused by several species of the genus Plasmodium, with the majority of deaths
attributed to Plasmodium falciparum. The life cycle of the parasite is multifaceted involving both
the mosquito vector and the human host, with asexual multiplication of the parasite in the blood
responsible for the clinical manifestations of the disease. Asexual replication requires successful
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invasion of the erythrocyte by the merozoite stage. This process
is complex, involving proteins released from the apical organelles
or located on the merozoite surface (1, 2).

Proteins stored in organelles such as the micronemes,
rhoptries, and dense granules have been extensively studied to
define their roles in merozoite invasion (1, 2). Notable invasion-
linked protein families include the P. falciparum reticulocyte
binding like protein homologs (PfRH1, 2a, 2b, 4, and 5) (3–8),
the erythrocyte binding antigens (PfEBAs; EBA 140, 175, 181 &
EBL1) (9–14) and the rhoptry neck proteins (RONs) (15, 16).
Other proteins such as AMA1 (17) have been shown to play
critical roles during the process of merozoite invasion.

Our interest in the PF3D7_1035900 protein arose from a
survey of the antigen-rich chromosome 10 cluster. A region
that contains a number of well-characterized putative vaccine
candidates including, theMSP3/6 protein family (18, 19), GLURP
(20, 21), liver stage antigen 1 (22), to name but a few. In
addition to its location, transcriptional data demonstrated a peak
of expression at the late schizont/early merozoite stage (23, 24), a
profile that hinted at a biological importance for the late schizont
and merozoite stages of the parasite.

To understand the role this gene played in parasite biology
our initial investigations determined that PF3D7_1035900 was
a member of the armadillo protein family, a family with
pleiotropic functions that warranted further investigation as a
potential intervention target. The eukaryotic armadillo repeat
proteins are involved in diverse roles including cell adhesion, cell
motility, cytoskeletal arrangement, molecular chaperones, cell
signaling/sensing, and nuclear import (25, 26). In apicomplexan
parasites, the armadillo repeat containing proteins are being
characterized for their role during parasite development. The
importance of this protein family is highlighted by their
involvement in fundamental processes essential to parasite
biology, including but not restricted to gene regulation and
cytokinesis. Essential processes have been linked with the
previously described P. falciparum ARM Repeats Only (PfARO)
and P. falciparumMerozoite Organizing Proteins (PfMOP) (22),
respectively. The putative function of PfARO has been assigned
through studies using the Toxoplasma gondii paralog, TgARO
(20, 21). In this study, we describe the characterization of another
member of the armadillo repeat family of proteins, encoded by
gene locus PF3D7_1035900, which lies in an antigenic rich region
of chromosome 10 among members of themsp3 gene family and
several other antigen genes.

The gene shows peak expression late in the developmental
cycle in the schizont. Antibodies raised to synthetic peptides
demonstrate staining of the apical tip in free merozoites and
those within the schizont. We propose the name Plasmodium
falciparum merozoite associated armadillo protein (PfMAAP)
due to its association with fully segmented merozoites within
the mature schizont and with free merozoites. Furthermore, we
show that the recombinant proteins based on the N-, central
repeat and C- terminal regions are recognized by antibodies in
plasma of malaria exposed individuals, with antibodies to the N
and C- terminal conserved domains being associated with a lower
prospective risk of contracting malaria.

RESULTS

PfMAAP Is an Armadillo (ARM)-Repeat
Containing Protein
To determine the putative function of the PfMAAP protein
(PF3D7_1035900) we interrogated the amino acid sequence to
gain insight into the protein product. Aside from a signal peptide
(amino acid 1 to 21; Figure 1A), we identified an armadillo
(ARM)-repeat domain comprised of 5 repeats (aa 144-504;
Figures 1A,B) and an overlapping Pumilio homolog domain (aa
202–566; Figure 1A). We analyzed the amino acid sequences for
16 isolates using the REPeats and their PERiodicities (REPPER)
server (https://toolkit.tuebingen.mpg.de/#/tools/repper), which
identifies short gapless repeats in both protein and nucleotide
sequences (27). Both the laboratory and field isolates showed
that the central repeat region always started at amino acid
position 144 but varied in length from 166 (7G8 isolate) to
467 (GB4 isolate) amino acids (Figure S1 and Table S1). Amino
acid sequence alignments also showed high levels of sequence
conservation within the P. falciparum isolates (Figure S1) and
between P. falciparum (3D7) and available sequences for non-
human primate malarias at both the N- and C-terminal regions
(Figure S2). The position of the repeat regions in all isolates
was validated using the REPPER server (27, 28) (Figure S3 and
Tables S1, S2). Further investigation of the PfMAAP protein
was performed by in silico structural modeling using the I-
Tasser structural prediction server (29–31). This was done to
determine the putative structure of the proteins and to identify
structural, and potentially functional, homologs of the PfMAAP
protein. Using the I-Tasser structural prediction algorithm, the
resolved crystal structures for three armadillo-repeat containing
proteins, showing close structural homology with the PfMAAP
protein were identified (Figure 1B). These include, β-catenin,
a molecule shown to be involved in cadherin-based adhesion
and implicated in cerebral malaria (27, 29, 30); the symmetrical
sisters (SYS)-1 protein, functionally similar to β-catenin (32); and
Plakophilin 1, also functionally similar to β-catenin Figure 1B).
All of these which provides additional evidence of as to the
potential biological significance of the PfMAAP protein.

The PfMAAP region was also identified in the available
Plasmodium sequences from 6 Laverania species infections of
primates (Figure S2), suggesting an ancient origin for the protein
family. Using the 3D7 isolate as the reference sequence, we
show that the signal peptide and an additional 100 amino acids
(position 22–121) have high levels of sequence identity between
the human (3D7) and Laverania primate species at the N- and C-
terminal regions (Figure S2). However, the repeat regions varied
extensively in the composition of the repeats, ranging from 190
to 402 aa in length (Figure S2 and Table S2).

PfMAAP Is Expressed Late in Erythrocytic
Stage Development
Transcript expression analysis of three P. falciparum laboratory-
adapted strains (3D7, W2mef, Dd2) were performed across the
asexual blood stage cycle at 8-h intervals. The expression levels
were evaluated in triplicate and were the results of two separate
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FIGURE 1 | Summary of PfMAAP protein characteristics, including location of

peptides and recombinants and transcript expression levels. (A) Cartoon of

the PfMAAP protein highlighting the location of the PfMAAP peptides, shown

with black lines above the scheme and labeled 1, 2, and 3. The position of the

Escherichia coli expressed conserved N- and C-termini and central repeat

region are shown below the scheme, with black lines and corresponding

amino acid positions. The Armadillo repeat region (orange, amino acid position

corresponds to central repeat region) and the Pumilio homolog domain (red

line, with amino acid positions shown). (B) The predicted structural model for

PfMAAP is shown as a ribbon diagram preceded by other known armadillo

repeat containing proteins, Sys-1 (symmetrical sisters-1, 3C2H in Protein Data

Bank), Plakophilin-1 (1XM9) and B-catenin (1JDH), highlighting the structural

similarity between PfMAAP and other armadillo repeat containing proteins.

(C) Boxplots showing differential expression of PfMAAP across the asexual

stage of development for four laboratory isolates and one clinical isolate.

Transcript fold change is plotted against time (hours post invasion), with peak

expression at 40 or 48 h post merozoites invasion. Transcript experiments

were conducted in triplicate and conducted on two independent occasions.

experiments. The transcript expression profile demonstrated that
expression of PfMAAP peaked in the later stages of parasite
development at around 40–48 h post invasion (Figure 1C).
This finding was supported by transcript data previously
reported on Plasmodb (https://plasmodb.org/plasmo/) and in
(24, 32).

PfMAAP Is Expressed in Both Merozoites
and Schizonts
Three peptides spanning 14 amino acids, located at the
C- (PfMAAP1) and N-terminal (PfMAAP2 and 3) regions
(Figure 1A) were used to immunize three rabbits per group.
The polyclonal sera obtained was then used to identify the
location of the expressed gene product by immunofluorescence
assay and thereby validate the presence of native epitopes
within the peptides by recognition of the native parasite protein.
Antibodies raised to all three peptides showed localization of
the native protein by immunofluorescence assay (IFA) on free
merozoites and those located within fixed preparations of mature
schizonts (Figures 2A–C). All three antibody preparations
showed similar staining patterns within mature schizonts and
free merozoites (Figures 2A–C and Figure S4). As a result, all
subsequent IFA experiments will simply be referred to as α-
PfMAAP antibody. The staining patterns observed showed a
clear merozoite surface staining pattern in developing schizonts
and a predominantly apical staining in free merozoites and
on those within mature rupturing schizonts (Figure 2A). The
staining pattern was compared by co-localization with relative
to PfAMA1 (micronemes), PfRAP2 (rhoptry bulb), and PfRON4
(rhoptry neck) (Figures 2A–C). Co-localization with α-AMA1
antibodies (a micronemal marker), showed apical staining of
merozoites within the mature schizont (Figure 2A) and on
free merozoites (Figure 2B), with a small proportion showing
diffuse surface staining of the merozoite by the α-PfMAAP
antibody (Figure 2A, top panel). Punctate apical staining was
also observed with co-localization of the α-PfMAAP with the
α-PfRAP2 (a marker for the rhoptry bulb) and α-PfRON4 (a
rhoptry neck marker) (Figures 2A,B); although in the latter
two cases, no additional peri-merozoite staining was observed.
To clarify the merozoite surface-like staining observed with
the α-AMA1 antibody, an additional co-localization assay was
performed with an α-MSP1 antibody, as a marker for the
merozoite surface. The results confirmed the merozoites surface-
like staining of merozoites within the mature intact schizonts. To
further evaluate the distribution of the different staining patterns,
a total of 200 intact schizonts were assessed for the staining
pattern; 99% (n = 198) showed the MSP1-like staining with
1% showing a diffuse staining pattern. The apically concentrated
staining pattern observed in released merozoites was observed
in 99.5% of the evaluated merozoites (n = 995) with the
remaining 0.5% (n = 5) showing a diffused staining pattern
(summarized in Figure 2D). In addition, we examined purified
schizont extracts from three laboratory isolates (3D7, W2mef,
and Dd2) by Western blot analysis to determine the relative
expression of PfMAAP protein in each isolate. Screening of the
blots with the α-PfMAAP antibody demonstrated that the protein
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FIGURE 2 | Localization of PfMAAP in schizonts and merozoites. (A) Co-localization of anti-PfMAAP peptide antibody reactivities (green) with the apical markers

PfAMA1 (microneme, red), PfRAP2 (rhoptry bulb, red) PfRON4 (rhoptry neck, red). Staining shows clear punctate apical staining for all three apical markers; (B)

anti-PfMAAP (red) co-localization with inner membrane complex (IMC) protein GAP45 and the merozoite surface markers PfMSP1 (green). (C) The localization of

anti-PfMAAP antibody reactivities (green) in free merozoites relative to PfAMA1, PfRAP2, and PfRON4. (D) Percentage (%) representation of the different staining

patterns observed in the schizont stage (n = 500) as either MSP-like or any other pattern and in merozoites (n = 500) as either punctate apical localization or diffuse

was performed using FIJI Image J. DAPI staining of the nuclei is shown in blue and the images are shown in the final column (merge). Fifty images were taken per

antibody tested using an Olympus model BX41 fluorescent microscope with a x100 oil-immersion objective.

was expressed in each of the three isolates tested (Figure 3),
which was in keeping with transcriptomic analysis reported in
(23, 24) and on Plasmodb (https://plasmodb.org/plasmo/).

Anti-PfMAAP Antibodies Inhibit Merozoite
Invasion of Erythrocytes
To assess the potential functional importance of antibodies raised
to the N- (PfMAAP2 and 3) and C-terminal (PfMAAP1) domain
peptides (Figure 1A), each antibody was assessed in a growth
inhibition assay (GIA). Purified schizonts from three laboratory
isolates (3D7, Dd2, and W2mef) were cultured with fresh red
blood cells in the presence of the antigen-specific antibodies or
the equivalent amounts of purified antibodies from pre-immune
sera, in a dose dependent manner (0, 100, 250, and 500µg/ml).
Both α-PfMAAP1 (C-terminal) and α-PfMAAP2 (N-terminal)

inhibited parasite invasion of the Dd2 parasite strain by 15
and 25%, respectively at 0.5 mg/ml antibody concentration,
whereas α-PfMAAP3 (N-terminal) inhibited parasite invasion
of red blood cells by >60% at 0.5 mg/ml (Figure 4A). Similar
levels of invasion inhibition were achieved for 3D7 (Figure 4B)
and W2mef (Figure 4C), with the antibodies showing a dose
dependent merozoites invasion inhibition.

Antibodies Against PfMAAP Are
Associated With Reduced Risk of Clinical
Malaria
To investigate if PfMAAP might be a target of naturally acquired
immunity, we expressed three recombinant proteins, based on
the N- and C-terminal regions and the central polymorphic
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FIGURE 3 | PfMAAP is expressed in multiple P. falciparum strains.

(A) PfMAAP1 detection of the protein in Western blot from 3D7, W2mef, and

Dd2 schizont extracts. Molecular weight (kDa) indicated by the side. Molecular

weight (kDa) indicated by the side.

repeat region of PfMAAP (Figure 1A). Each protein was
expressed in E. coli as soluble GST-tagged fusion proteins and
resolved on SDS-PAGE (Figure 5A). ELISA was performed on
plasma samples collected in Chonyi village (33) to measure IgG
reactivity against each antigen fragment. The antibody responses
to each antigen fragment increased with age (Figure 5B).
Interestingly, the highest responses were seen to the central
repeat region (Figure 5B), which corresponds to the armadillo
repeat region within PfMAAP. There was a reduction in the
prospective risk of clinical malaria in the subsequent 6 months
after plasma collection in Chonyi associated with antibodies
to both the N- and C-terminal antigens (Table 1). Although
this association was not seen to the central repeat armadillo
region (Table 1).

DISCUSSION

A critical step toward understanding the processes underlying
parasite development, evasion of the immune system and the
mechanisms involved in the selection and invasion of host cells,
is understanding the role each protein plays in parasite biology.
It is only through this that novel drug targets, diagnostics, or
putative vaccine targets can be identified, and their role and
relative importance be understood.

The armadillo super-repeat protein family appears to be
involved in a variety of fundamental processes including
cytoskeletal organization, cell-cell adhesion, organelle biogenesis,

FIGURE 4 | PfMAAP antibodies inhibit merozoites invasion. Evaluation of the

PfMAAP polyclonal antibodies in a dose-dependent manner for (A) Dd2 (B)

3D7 and (C) W2mef parasite isolates. The antibody reactivity for each is

shown, PfMAAP1 (red line), 2 (green line) and 3 (purple line), with the

pre-immune negative control shown in blue. Percentage (%) invasion inhibition

is plotted on the y-axis with the antibody concentrations (µg/ml) plotted on the

x-axis. Pre-immunization antibodies were used as the negative control. All the

assays were conducted in triplicate as two separate experiments with the

plots displayed as n ± sem.

and signaling. Despite the variety of functions associated with
this protein family across a number of diverse species, the key
aspect they share is the presence of the tandemly arranged
armadillo repeats. Investigations into the role(s) of the armadillo
repeat family of proteins play in the apicomplexa is still in its
infancy but there is evidence about some of the essential roles
this family of proteins play during parasite development (34).
With their previously derived function in eukaryotic cells (26),
identifying any additional family members in Plasmodium spp.
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FIGURE 5 | PfMAAP antibodies are associated with naturally acquired

immunity. (A) SDS PAGE showing the purified expressed and purified

GST-tagged PfMAAP protein regions; N-term-GST, Central Repeat-GST, and

C-term-GST. Antibody responses (OD) across all ages (October 2000) to the

truncated PfMAAP recombinant antigens in (B) Chonyi (n = 518). Age

categories are as follows: 1 = 1–2 year, n = 54; 2 = 3–4 year, n = 55; 3 = 5–6

year, n = 55; 4 = 7–8 year, n = 59; 5 = 9–10 year, n = 59; 6 = 11–15, n =

96; 7 = 16–30 n = 57; 8 = 31–50, n = 56; and 9 = 51–82, n = 27.

may illuminate different aspect of parasite biology with regards
to interventions, potentially in the form of drugs, or vaccines.

To date, two armadillo repeat proteins have been described
in Plasmodium falciparum. The P. falciparum armadillo-
repeat only (PfARO), which bears similarity to β-catenin,
an important cell-to-cell signaling molecule found in animals
including humans (35). In P. falciparum β-catenin appears
to be involved in both nuclear and rhoptry biogenesis (36).
The homologous protein in Toxoplasma gondii (TgARO) is

a multifunctional protein with similar functions to PfARO,
such as rhoptry positioning and biogenesis. Importantly,
TgARO can be functionally complimented by the orthologous

TABLE 1 | Association between the presence of serum IgG to the panel of 3

antigens in children aged <11 years and parasite slide positive in October 2000 in

the Chonyi village, and the occurrence of malaria over the following 6 months.

aProportion of

children acquiring

malaria who were:

Antigen IgG

positive

IgG

negative

Univariate bMultivariate P

IRR

(95% CI)

IRR

(95% CI)

Cchonyi village (<11 years and parasite slide positive n = 119)

N-term 18%

(7/39)

41%

(33/80)

0.44

(0.21–0.90)

0.47

(0.25–0.89)

0.021*

Repeat 20%

(10/49)

43%

(30/70)

0.48

(0.26–0.88)

0.58

(0.31–1.04)

0.068

C-term 20%

(8/40)

41%

(32/79)

0.49

(0.25–0.97)

0.52

(0.28–0.93)

0.028*

CI, Confidence Interval; IRR, Incidence Risk Ratio.
aNumber of individuals developing malaria/the total number of individuals that were IgG

positive or negative.
bThe incidence Risk Ratio was estimated from multivariate analysis after adjusting for age

and reactivity to Plasmodium falciparum schizont extract in a generalized linear models.
cAnalysis focused on individuals who were parasitaemic at the time of serum sampling in

October 2000.

*P <0.05.

PfARO (37–39). The P. falciparummerozoite organizing protein
(PfMOP), shown to localize to the inner membrane complex
(IMC) and apical tip of the invasive merozoite stage of P.
falciparum, appears to have a role in the biogenesis of the IMC
as well as in rhoptry positioning (34, 36).

In this study we show the characterization of the PfMAAP
protein, initially classified as the hypothetical protein, M566.
The protein was also briefly assigned to the MSP3 family, but
lacked the C-terminal domain that is a defining characteristic
of the family (40). We demonstrate that the protein product
is expressed around 40 h post invasion, which is supported by
previously published microarray proteomic and transcriptomic
data (24). In keeping with the T. gondii TgARO and the
P. falciparum PfARO and PfMOP our results also show a clear
association of PfMAAP with the mature schizont and free
merozoites, particularly with the apical tip.

We also demonstrate a dual localization pattern, of a punctate
apical staining profile and some merozoite surface staining. The
dual localization pattern observed may be associated with the
myriad of functions associated with this protein family and
may also be due to the early release of the PfMAAP protein
from the apical organelles. PfMAAP has a signal peptide but
lacks a transmembrane domain or a GPI-anchor and based on
existing literature and sequence interrogation of the proteins
there appears to be no obvious PEXEL/HT motif (41, 42) or
any features indicative of a PEXEL/HT negative exported protein
(PNEP) (43). Gene deletion studies of the PfMAAP gene results
in a reduction in growth (44) suggesting either a non-essential
role in parasite development, functional redundancy or one that
has a more pronounced effect elsewhere in the lifecycle.

Amino acid alignments of P. falciparum with available
sequences for 6 non-human primate species (Laverania subgenus
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of Plasmodium), including P. praefalciparum G01 and P.
reichenowi CDC and G01, show high levels of sequence identity
at both the N- and C-termini, including the signal peptide. This
level of conservation suggests a possible evolutionarily conserved
function for the PfMAAP protein that has yet to be defined.

Unlike the other Armadillo repeat containing genes described
in P. falciparum, PfMAAP showed significant invasion inhibitory
activity. Most importantly there was a statistically supported
association between having antibody responses to the N- and
C-terminal regions of PfMAAP and protection from malaria
in Chonyi (22–53 infectious bites per year), although this
association was not reflected in responses to the central repeat
region. This difference in antibody responses to different parts
of the same protein reflects what has been described for vaccine
candidates and well-characterized markers of seroincidence in
the same study sites, including MSP1 block 2, MSP1-19 and
MSP2 (45, 46). The association between the conserved N- and
C-terminal regions of PfMAAP with in vitro invasion inhibition,
together with the cohort study analysis strongly suggests that
this protein warrants further investigation as a potential target of
naturally acquired immunity. Thus, understanding the role the
PfMAAP protein plays in parasite biology may yield important
targets for intervention strategies.

MATERIALS AND METHODS

Ethics Statement
Ethical approval for the use of the serum samples for use
in this study had previously been obtained from the Kenyan
National Ethics Committee, the University of Oxford, and
the London School of Hygiene and Tropical Medicine as
detailed in (47). Ethical approval for the Kenyan study on
samples from human subjects was obtained from the Kenya
National Research Ethics Committee, the University of Oxford,
and the London School of Hygiene and Tropical Medicine.
Written informed consent was obtained from a parent or
guardian of each child contributing a blood sample and also
from participating adults (47). Rabbit antibodies were obtained
commercially by immunization under a commercial subcontract
(Genscript). All animal work protocols were performed under
the Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC) International accreditation, following
guidance written by the National Research Council of the
U.S. National Academy of Sciences; and the Office for Animal
Welfare (OLAW) certification, demonstrating an international
commitment to responsible animal care and use.

Parasite Cultures
Plasmodium falciparum laboratory isolates Dd2, W2mef,
and 3D7 were cultured in complete RPMI-1640 (Sigma)
(supplemented with 0.5% Albumax II (Gibco), 20mg
hypoxanthine, 2 g sodium bicarbonate (Sigma) and 0.05
mg/ml gentamicin sulfate (Sigma) using human group O+

erythrocytes at 4% hematocrit in a mixed gas environment (93%
nitrogen, 5% CO2, and 2% oxygen; Air Liquide, Birmingham,
United Kingdom) at 37 ◦C. Merozoites were purified after
allowing schizonts to burst in the absence of fresh erythrocytes

and pelleted at 4,000 rpm for 10min. Parasite synchronizations
were performed by treating mixed stages cultures with 5%
D-Sorbitol (Sigma). Ring stages were then allowed to grow
to schizonts. For tighter synchronizations, Percoll purified
schizonts were allowed to invade over a 2-h period followed
by Sorbitol treatment as describe above. For the time points,
samples were collected every 8 h over a single cycle and stored in
Trizol at −80◦C freezer. RNA was extracted from each sample
for subsequent gene expression analysis.

Homology Modeling
A 3D predicted structural model of the full-length PfMAAP was
obtained following submission to the I-TASSER server (https://
zhanglab.ccmb.med.umich.edu/I-TASSER/) (29–31). The most
robust model was further analyzed and edited using the PyMOL
2.2 software. Comparative analysis with known armadillo repeats
proteins was performed using models submitted to the Protein
Data Bank (PBD at https://www.rcsb.org/).

Peptide Synthesis, Recombinant Proteins,
and Polyclonal Antibody Generation
Three peptides (1-CQGEKVNKNDLNDAS, 2-
FTENKEQKNEEVPMC, 3-VVNDGEEVKTEYVSC) were
synthesized from the 3D7 amino acid template (Figure 1A)
based on antigenicity, surface exposure and hydrophilicity
scores (Genscript, US). Two of the peptides were located
within the N-terminal region and the third within the C-
terminal region, located in the Pumilio protein domain. Further
validation of the synthesized peptide was performed by mass
spectrometric analysis of the peptide sequences and HPLC
analysis. Each peptide was injected at 200 µg/animal via the
subcutaneous route (2 New Zealand Rabbits each) in Freunds’
complete/incomplete adjuvant using a customized 48 day
immunization protocol (Genscript). A pre-bleed sample was
taken at day−4, with the primary immunization delivered on
day 0. Booster immunisations were given on days 14 and 35,
test bleeds were taken on days 21 and 42, with the protocol
completed on day 48. Polyclonal antibodies were purified from
the pooled sera for each of the peptides, and confirmed by
ELISA titrations to a dilution limit of 1:512,000 (1.95 ng/ml).
Antibodies were purified over a bed of protein A/G coupled beats
and concentrated (Using Amicon 30 kDa, Merck) or diluted to
the required concentration for use in the different assays they
were intended.

In addition, three recombinant proteins were designed and
expressed in E. coli as GST-tagged fusion proteins, targeting
the N-, central polymorphic repeat and C-terminal regions
(Figure 1A). The N- (nt 67-429) and C-terminal (nt 1513-
1698) regions, both showing minimal polymorphism, and the
polymorphic central repeat region (nt 430-1512) were PCR
amplified from 3D7 genomic DNA. The sequence validated
amplified inserts were cloned into the pGEX-2T expression
vector (GE Healthcare) followed by additional sequence
verification prior to transformation and expression in BL21
(DE3) E. coli. Expression and affinity purification were performed
as described previously for other GST-fusion proteins (47).
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Purified proteins were assessed for purity and integrity by SDS
PAGE (Figure 5A).

Immunofluorescent Assays and
Microscopy
The Protein A/G-affinity purified antibodies raised to the peptide
fragments were assessed for reactivity to native parasite proteins
by IFA. Synchronized late stage schizonts were smeared, air-dried
and fixed with acetone (Merck) for 5min at RT. The slides were
co-incubated with rabbit anti-PfMAAP antibodies (PfMAAP 1-
3) (1:500) and either anti-mouse PfAMA1 (1:1,000) (MR4), α-
PfRAP2 (1:1,000), α-PfRON4 (1:400), α-PfMSP1 or α-PfGAP45,
respectively, for 1 h in 3% BSA/PBS buffer, followed by three
washes in 1X PBS at 5 min/wash. The slides were then incubated
with Alexa Flour 594 goat anti-mouse IgG (H+L) (red) and Alexa
Flour 488 goat anti-rabbit IgG (H+L) (red) secondary antibodies
(1:1,000 respectively) (Molecular Probes) for 1 h. Slides were
washed in 1X PBS three times for 5min each and air-dried.
Mounting medium containing DAPI (Vector laboratories) was
added to each slide and sealed with a coverslip for microscopy.
The cells were imaged on an Olympus SystemMicroscope Model
BX41 with a Hamamatsu ORCA-spark Digital CMOS camera
C11440-36U. In total 50 images were taken for each antibody
used. All image background subtraction, brightness and contrast
adjustment as well as all analysis were conducted using Fiji
ImageJ software.

Western Blot Analysis of Parasite Extracts
and Culture Supernatants
Ring stage cultures were synchronized with 5% D-sorbitol
(Sigma) and cultured to mature stage schizonts (48, 49), followed
by purification over a Percoll gradient (50). The purified
schizonts were washed twice with 1xPBS and resuspended in
1xPBS. Aliquots were lysed in SDS PAGE sample buffer, resolved
using a 12% SDS-PAGE before transfer onto nitrocellulose
membranes (0.2µm, Bio-Rad). Proteins were detected using
the PfMAAP1 & 2 polyclonal antibodies (pAbs) @ 1:1,000
dilution. Following primary incubation, the blots were washed
and incubated with anti-rabbit HRP-conjugated secondary
antibodies @ 1:3,000 dilution for 1 h followed by two washes
with 1X PBS. The membrane was developed using enhanced
chemiluminescence (GE healthcare) and developed using the
KODAK image analysis system.

Merozoites Invasion Inhibition Assay
Synchronized late-stage schizonts were purified, and assays
were plated as previously described (50). Briefly, target
cells (erythrocyte acceptor cells) were stained with 5-(and-
6)-carboxyfluorescein diacetate succinimidyl ester at 20µM
(5(6)CFDA-SE; Invitrogen), a cytoplasmic fluorescent stain, to
help differentiate erythrocytes invaded in the assay from those
in the parasite inoculum. Late stage parasites at 2% parasitemia
were mixed with the 5(6)CFDA-SE-labeled erythrocyte acceptor
cells in a 1:1 ratio at 2% hematocrit in 100 µl assays in 96-well
titer plates. Increasing concentrations of purified anti-peptide
antibody for PfMAAP peptides 1- 3 (0–500µg/ml) were added

to corresponding wells. Control wells were incubated with pre-
immune sera. Assays plates were incubated overnight at 37◦C in a
mixed gas environment to allow one cycle of invasion. Cells were
stained with Hoechst 33342 (Sigma Aldrich) and washed 3 times
with complete RPMI. Invaded target cells were counted with a
BD LSR Fortessa X20 flow cytometer. The experiment was run
twice independently with each condition conducted in triplicate.
A total of 50,000 RBCs were counted and % invasion into the
5(6)CFDA-SE-labeled target cells were recorded. The percentage
of successfully invaded RBCs in the presence of anti-PfMAAP
antibodies or the pre-immune controls were compared with the
level of invasion in control wells without antibody added.

Expression Levels of PfMAAP
The expression of the PfMAAP were assayed in three laboratory
isolates (3D7, Dd2 and W2mef), following 6, 8-h sample
collection time points. The expression analysis assay protocol
was as described by Baker et al. (51). Briefly, RNA was purified
from tightly synchronized parasites as described previously,
using the AllPrep DNA/RNA Mini kit protocol by Qiagen
(Qiagen, Germany) and treated with DNase to remove all
traces of DNA in the sample. The cDNA synthesis was
then carried out with a control reaction (without a reverse
transcriptase) using the Superscript III first-strand protocol
following manufacturer’s instructions (ThermoFisher Scientific,
USA). The cDNA synthesis reaction conditions were as follows:
25◦C for 10min, 50◦C for 50min and 85◦C for 5min. Following
the cDNA synthesis, 1 µl of RNase H was added to each reaction,
mixed and incubated at 37◦C for 20min followed by 95◦C for
10min to remove unconverted RNAmolecules. The quantitation
of the transcript level of PfMAAP gene was evaluated relative
to the 60S ribosomal protein L18-2 (PF3D7_1341300) (51); a
housekeeping gene used as a control. Each experiment was
conducted in triplicate and conducted at two independent times.
The expression levels were calculated from the Ct values using
the 2−11Ct formula.

Analysis of Naturally Acquired Antibodies
The plasma samples analyzed in the study were previously
collected as part of a community cohort study undertaken in
Chonyi, Kenya. A village in Kilifi district near the eastern coast
of Kenya. The inhabitants were naturally exposed to biannual
peaks of transmission in November to December and May to
July, with moderate rates of transmission at the time of sampling
(22–53 infectious bites/person/year; October 2000) (33). Active
and passive case detection was used to determine the occurrence
of episodes of clinical malaria in the following 6-month period
within the communities. Indirect ELISAs were performed with
each of the three antigens using protocols as previously described
(47). Briefly, antigens coated at 50 ng/well were in duplicate with
sera diluted to 1/500. Due to the fact that the proteins used in
the assay were generated as GST-tagged fusion proteins, purified
GST was included in the assay and results subtracted to correct
for any background reactivity to the tag. Samples were scored
as positive if the ELISA optical density (OD) values were higher
than the mean plus 3 standard deviations of the values from 20
malaria-naive control sera tested in parallel (the same panel of
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negative-control sera was used in all assays). The risk of clinical
malaria and association with antibody status was analyzed for
subjects who were asymptomatic and<11 years of age at the time
of sampling (Chonyi N=119/518), as done previously in analyses
of antibodies to other antigens (47).

Data Analysis
Boxplots were generated in R (R studio, version 3.5.2).
Generalized linear models (GLM) were used to determine
the risk ratio (RR) associated with the presence or absence
of detectable serum antibodies (IgG above the cut-off
OD value) and the occurrence of subsequent clinical
malaria episodes. Age and antibody reactivity to parasite
schizont extract were used in multivariate analyses to
correct for the confounding effects of exposure on antibody
responses. Statistical analyses were performed using Stata/IC
(StataCorp LP, USA).
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Figure S1 | Amino acid sequence alignment of full-length sequences from 16

Plasmodium falciparum isolates for PfMAAP (PF3D7_1035900,

PfSD01_100040400, PfML01_100039900, PfKE01_100041100,

PfIT_100039800, PfGB4_100040700, PfGN01_100041300, PfTG01_100041000,

PfDd2_100041100, PfSN01_100041200, PfKH02_100041200,

Pf7G8_100040200, PfHB3_100040200, PfGA01_100041100,

PfKH01_100040300, PfCD01_100041000). Alignments were generated using

Clustal Omega (Sievers et al., 2011). All sequences were obtained from Plasmodb

(https://plasmodb.org/plasmo/).

Figure S2 | Amino acid alignment of full-length sequences from non-malaria

isolates for PfMAAP (PF3D7_1035900) aligned with the 3D7 isolate as a

reference. Alignments were generated using Clustal Omega (Sievers et al., 2011).

Plasmodium falciparum, PF3D7_1035900; Plasmodium rechenowi,

PRG01_1034400 and PRCDC_1035200; Plasmodium billcolllinsi,

PBILCG01_1034800; Plasmodium gaboni, PGSY75_0012400; Plasmodium

praefalciparum, PPRFG01_1036900; and Plasmodium adleri, PADL01_1034600.

All sequences were obtained from Plasmodb (https://plasmodb.org/plasmo/).

Figure S3 | N- and C-terminal semi-conserved and armadillo repeat sequences

for PfMAAP in (A) sixteen laboratory adapted isolates (PF3D7_1035900,

PfSD01_100040400, PfML01_100039900, PfKE01_100041100,

PfIT_100039800, PfGB4_100040700, PfGN01_100041300, PfTG01_100041000,

PfDd2_100041100, PfSN01_100041200, PfKH02_100041200,

Pf7G8_100040200, PfHB3_100040200, PfGA01_100041100,

PfKH01_100040300, PfCD01_100041000) and (B) in five Laverania subgenus of

Plasmodium (P.rechenowi, PRG01_1034400 and PRCDC_1035200; P.billcolllinsi,

PBILCG01_1034800; P. gaboni, PGSY75_0012400; P.praefalciparum,

PPRFG01_1036900; and P. adleri, PADL01_1034600. All sequences were

obtained from Plasmodb (https://plasmodb.org/plasmo/).

Figure S4 | Co-localization of α-PfMAAP1 and 2 with α-AMA1. (A) PfMAAP1

(green) localization pattern relative to PfAMA1 (red) with DAPI (blue) staining for

nuclei and the merging of all channels (Merge). (B) PfMAAP2 (green)

co-localization with PfAMA1 (red) with DAPI (blue) staining the nuclei and the

merge of all channels (Merge). Fifty images were taken per antibody tested using

an Olympus model BX41 fluorescent microscope with a x100 oil-immersion

objective.
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