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Abstract 6 

 7 

Observers can discriminate between blurry and low-contrast images (Morgan, 2017). Wang and 8 

Simoncelli (2004) demonstrated that a code for blur is inherent to the phase relationships between 9 

localized pattern detectors of different scale. To test whether human observers actually use local 10 

phase coherence when discriminating between image blur and loss of contrast, we compared phase-11 

scrambled chessboards with unscrambled chessboards. Although both stimuli had identical amplitude 12 

spectra, local phase coherence was disrupted by phase-scrambling. Human observers were required to 13 

concurrently detect and identify (as contrast or blur) image manipulations in the 2x2 forced-choice 14 

paradigm (Nachmias & Weber, 1975; Watson & Robson, 1981) traditionally considered to be a litmus 15 

test for "labelled lines" (i.e. detection mechanisms that can be distinguished on the basis of their 16 

preferred stimuli). Phase scrambling reduced some observers’ ability to discriminate between blur and 17 

a reduction in contrast. However, none of our observers produced data consistent with Watson & 18 

Robson’s most stringent test for labelled lines, regardless whether phases were scrambled or not. 19 

Models of performance fit significantly better when either a) the blur detector also responded to 20 

contrast modulations, b) the contrast detector also responded to blur modulations, or c) noise in the 21 

two detectors was anticorrelated. 22 

 23 
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Introduction 26 

 27 

When an image is blurred, its higher spatial frequencies become disproportionately attenuated relative 28 

to lower frequencies. The visual system is less sensitive to high than to medium spatial frequencies, so 29 

it can be relatively difficult to detect blur. However, as the amount of blur increases, lower and lower 30 

spatial frequencies become affected, including those near the peak of the contrast sensitivity function 31 

(CSF; Campbell & Robson, 1968), which describes how just-detectable image contrast varies with 32 

spatial frequency. Ordinary observers without optical training can easily discriminate between blurry 33 

and sharp images. Of course, they can also discriminate between low-contrast images and high-34 

contrast images. Are these two visual tasks really different? Reviewing the literature on blur 35 

discrimination, Watson and Ahumada (2011) found that, to a first approximation, just-detectable 36 

changes in image blur could be predicted from the CSF. Consequently, they suggested that the visual 37 

system might have no mechanism capable of detecting blur per se. What it does have is a mechanism 38 

capable of discriminating between different levels of image contrast, and it uses that mechanism to 39 

discriminate between different levels of image blur. 40 

 41 

To avoid any misunderstanding, please note that this paper is concerned with blurry images in normal 42 

viewing conditions. Although the best-fitting Gaussian blur kernel has become one of the standard 43 

metrics for quantifying all forms of blur (e.g. Levi & Klein, 1990; Watson & Ahumada, 2011), optical 44 

blur, such as that caused by retinal defocus, cannot be described as “Gaussian” with 100% accuracy 45 

(Cholewiak, Love, & Banks, 2018). 46 

 47 

Morgan (2017) found that human observers can not only discriminate between different levels of 48 

contrast and blur, they can also discriminate between these two image manipulations, possibly by 49 

using a computation of edge blur that makes it independent of contrast (Watt & Morgan, 1983).  50 

Wang and Simoncelli (2004) also suggested that blur perception might be influenced by local 51 

computations of spatial phase near image contours (such as the edges between the black squares and 52 

white squares in Morgan’s chessboard-like stimuli). We present a test of this hypothesis below, using 53 

phase-scrambled and unscrambled chessboards. Although both types of stimulus have identical 54 

amplitude spectra, phase-scrambled chessboards do not have well-defined edges (see Fig. 1). 55 

 56 



 

 

 57 
Fig. 1.  Example baseline stimuli (i.e. without modulation). Three levels of blur are fully crossed with 58 

three levels of contrast in each nine-panel array. Left array: unscrambled chessboards; right array: 59 

phase-scrambled chessboards. 60 

 61 

In the experiment we report here, observers were required to concurrently detect and identify (as 62 

contrast or blur) image manipulations in the two-by-two forced-choice (2 × 2FC) paradigm 63 

(Nachmias & Weber, 1975; Watson & Robson, 1981), traditionally considered to be a litmus test for 64 

"labelled lines." (i.e. detection mechanisms that can be distinguished on the basis of their preferred 65 

stimuli).  66 

 67 

According to one review article (Rose, 1999), different philosophers meant different things when they 68 

invoked labelled lines, but the reader might imagine tiny signs attached to each neural fiber, 69 

describing the stimuli that match its receptive field. Of course, no contemporary scientists actually 70 

believe our brains contain homunculi capable of reading tiny signs like that. Instead, information 71 

regarding stimulus identity is thought to be inherent in the cerebral positions of active neurons. That is 72 

why stimulus preferences vary systematically in the cortex, forming multi-dimensional "maps" of 73 

retinal position, spatial orientation, and possibly other stimulus attributes such as spatial frequency, 74 

binocular disparity, and chromaticity.  75 

 76 

This paper is concerned with selectivity and labelling. Our methodology is psychophysical rather than 77 

physiological. Accordingly, we will discuss our findings in terms of channels rather than sensory 78 

neurons, but — other than the latter’s restriction to (or selectivity for) a relatively small region in the 79 

visual field — the two ideas are virtually interchangeable. Like sensory neurons, channels transform 80 

sensory information. That is, they both perform a kind of computation. Input to the computation 81 

varies with the similarity between the preferred stimulus and the actual stimulus, and output increases 82 

monotonically with input. 83 

 84 

For non-zero channel input, some aspect of the stimulus must be modulated. Spatial-frequency 85 

channels (Campbell & Robson, 1968), for example, obtain non-zero input from modulations in 86 

stimulus luminance. Although, by definition, these channels are selective for certain periodicities of 87 



 

 

luminance modulation, spatial-frequency channels do not have infinitely narrow bandwidth. Thus, if 88 

we were to increase the modulation depth (i.e., the contrast) of a sinusoidal luminance grating, we 89 

would excite more and more channels whose preferred stimuli are less and less similar. If it were 90 

possible to isolate a channel with psychophysics, it would require a stimulus with very little contrast. 91 

In the limit, i.e., if the stimulus were just detectable, it is conceivable that it would excite only one 92 

channel. Consequently, it wouldn’t be unreasonable to describe that channel as a labelled line if the 93 

brain could successfully identify a just-detectable stimulus. 94 

 95 

At least, that’s the logic used by Nachmias and Weber (1975), when they introduced what later 96 

became known as the 2 × 2FC paradigm, a variant on the more popular, two-alternative forced-choice 97 

(2AFC) paradigm. In addition to deciding whether a small patch of grating was presented within the 98 

first or second of two temporal intervals (a "detection" task), Nachmias and Weber's observers had to 99 

decide whether the grating contained relatively high or low spatial frequencies. This latter task can be 100 

considered "discrimination" or "identification" or "classification" or "categorization." We will use all 101 

the latter terms interchangeably. 102 

 103 

Rather than present data from Nachmias and Weber’s original paper, we shall present data from a 104 

follow-up study by Watson and Robson (1981). The task was virtually identical, except Watson and 105 

Robson manipulated temporal frequency rather than spatial frequency. Their chief innovation was to 106 

establish two quantitative criteria for psychophysical channels to qualify as differently labelled lines. 107 

The first criterion is that the identification thresholds must not be significantly higher than the 108 

detection thresholds. The second criterion will be discussed below.  109 

 110 

Among the channels that satisfied the first of Watson and Robson’s criteria were those responsible for 111 

discriminating between 0 Hz (or static) Gabor patterns and otherwise identical Gabors flickering at 8 112 

Hz. Blue points in Fig. 2a show the relationship between the contrast (i.e. the modulation depth) of 113 

the static Gabor and observer ABW’s ability to determine whether it was in the first or second 114 

temporal interval. Blue points in Fig. 2b show the analogous relationship for the flickering Gabor. 115 

Black points in these two panels show how frequently the Gabors were correctly identified as “static” 116 

or “flickering.” We have fit these psychometric data with four smooth (Weibull) functions, all of 117 

which were constrained to have the same basic shape and upper asymptote. (Pattern detection was a 118 

well-studied task, and there was ample empirical support for fixing the Weibull shape parameter at 119 

; Robson & Graham, 1981. Note also that whereas logic dictates the blue curves must share a 120 

lower asymptote of 0.5, the lower asymptotes of the black curves need only sum to 1.) Although the 121 

black curve in Fig. 2a has a slight rightward shift with respect to the blue curve, a likelihood-ratio test 122 

(Mood, Graybill, & Boes, 1973) reveals this shift to be insignificant [𝜒"(1) = 0.05, 𝑝 = 0.825]. 123 

κ= 3.5



 

 

Thus, these data were not inconsistent with Watson and Robson’s (1981) first criterion for detection 124 

by differently labelled lines. 125 

 126 

 127 
Fig. 2.  2 × 2FC results from Watson and Robson (1981). Panels (a) and (b) illustrate results in which 128 

observer ABW had to detect a Gabor pattern and identify its temporal frequency as either 0 Hz or 8 129 

Hz. Panels (c) and (d) illustrate analogous results with Gabor patterns having temporal frequencies of 130 

either 0 Hz or 2 Hz. Blue symbols indicate detection performance and black symbols indicate 131 

identification. Smooth curves are maximum-likelihood Weibull distributions (all having shape 𝜅 = 132 

3.5). All symbols have been shifted laterally by the Weibull scale parameter (λ), which can be 133 

considered the observer's 81%-correct detection threshold. Consequently, all blue curves are identical 134 

and contain the point (0, 0.81). Note that 0.5 is the minimum probability correct in the detection task. 135 

We further assume that the maximum is somewhat less than 1, due to attentional lapses and/or "finger 136 

errors." Thus, the blue curves have been scaled to span the interval (0.5, 0.99). There is no 137 

corresponding minimum for the discrimination task, thus the black curves in (a) and (b) have been 138 

scaled to span the intervals (γ, 0.99) and (1 – γ, 0.99), respectively; where the guess-rate γ was fit 139 

simultaneously with the Weibull scale parameters. Black curves in (c) and (d) were obtained in the 140 

analogous fashion. 141 

 142 

Data illustrated in Figs. 2c and 2d were collected in an analogous experiment, where the flicker was 143 

only 2 Hz. In this case, the black curves have a significant rightward shift with respect to the blue 144 

curves, and thus these data do not satisfy Watson & Robson’s first criterion for detection by 145 

differently labelled lines. One possibility is that both stimuli were (at least sometimes) detected by the 146 

same channel. Other possibilities are discussed below. 147 

 148 



 

 

Whereas Watson & Robson examined selectivity and labelling in channels stimulated by different 149 

frequencies of luminance modulation, our goal was to examine selectivity and labelling in channels 150 

stimulated by modulations of stimulus contrast and stimulus blur. Both types of modulation are 151 

illustrated in Figure 3. Given sufficient time for inspection, all readers should be able to discriminate 152 

between the two dimensions of modulation. 153 

 154 

General Methods 155 

 156 

The methods for this study were reviewed and approved by The School of Health Science (Reference 157 

no. ETH1819-1850), City, University of London. The observer's head was placed on a chinrest with 158 

an adjustable forehead rest. Viewing was binocular, through the observers’ natural pupils. Steady 159 

fixation was neither encouraged nor discouraged. An Apple computer controlled stimulus 160 

presentations and response collection. The experimental protocol was implemented using the 161 

PsychToolbox (Brainard, 1997; Pelli, 1997). (Software will be made available upon request.) 162 

Maximum and minimum luminances were 149.8 and 0.277 cd/m2, respectively. The screen's 163 

background luminance was set to the midpoint of these values, and the rest of the room was dark.  164 

 165 

All stimuli were based on simple, 4 × 4 chessboards, like those in Fig. 1. Each chessboard had 166 

random polarity; the lower right square could be white or black, with equal probability. The amplitude 167 

spectrum of each phase-scrambled chessboard was equal to that of an unscrambled chessboard. In all 168 

other respects, the methods for phase-scrambled chessboards were identical to those for unscrambled 169 

chessboards.   170 

 171 

In an attempt to foil "context-coding" (Durlach & Braida, 1969) detection strategies based on a 172 

chessboard's (or one of its arbitrarily chosen square's) average or total blur -- or average or total 173 

contrast -- we randomly interleaved baseline levels along these stimulus dimensions. On each trial, we 174 

exposed one modulated chessboard and one unmodulated chessboard for 1.43 s, with a 1.43-s gap 175 

between the two successive exposures. Each chessboard had a one of three randomly and 176 

independently selected levels of "baseline" Gaussian blur, and each had one of three randomly and 177 

independently selected levels of baseline Michelson contrast. Gaussian blur kernels had spatial 178 

extents (σ) equal to 1/16th, 1/8th, or 1/4th the length of one of the chessboard's 16 squares; these 179 

spatial extents correspond to 5.6, 11.2, and 22.4 arcmin of visual angle. Baseline contrasts (before 180 

blurring and phase-scrambling) were 1, 0.5, and 0.25. Intermediate levels of baseline blur and contrast 181 

were comparable to those in Morgan's (2017) "standard" stimuli. 182 

 183 



 

 

The modulated chessboard was a composite of two chessboards: alternate one-square-wide columns 184 

(starting at either the left-hand side or the right-hand side) came from the baseline chessboard, the 185 

other columns came from an otherwise-identical chessboard with either more blur or less contrast (see 186 

Fig. 3). 187 

 188 

 189 
Fig. 3.  Unscrambled (top) and scrambled (bottom) chessboards with heavily modulated blur (left) and 190 

contrast (right). All panels have intermediate levels of baseline blur and contrast. 191 

 192 

Observers indicated which of the two chessboards was modulated by pressing the o key (for "one") or 193 

the t key (for "two") on the Apple's keypad. They then indicated whether the modulation was in the 194 

dimension of blur (by pressing the b key) or contrast (by pressing the c key). Immediately after this 195 

classification, two tones were played in quick succession. The frequency of each tone indicated 196 

whether the corresponding response had been correct (low tone) or incorrect (high tone). Feedback of 197 

this nature may facilitate perceptual learning and/or help to stabilize response criteria (Tanner, Rauk, 198 

& Atkinson, 1970). 199 

 200 

For each combination of modulation identity (blur or contrast) and baseline level (low, intermediate, 201 

or high) we used two randomly interleaved Quest+ (Watson, 2017) staircases to obtain estimates of 202 

the thresholds and psychometric slopes for detection and identification, as well as the guess rate and 203 

lapse rate for identification. (Guess rate -- i.e. accuracy in the limit, as the modulation amplitude 204 

approaches zero -- is necessarily 0.5 for the detection task. Lapse rates aren't necessarily 0.01, 205 

nonetheless, we feel secure in adopting an estimate of 99% correct for the upper asymptote of our 206 

very experienced observers' psychometric functions for detection.) 207 

 208 



 

 

Each of our four observers completed 1728 trials with unscrambled chessboards (JAS completed an 209 

extra 22 trials in a session that had to be discontinued, due to a fire alarm) divided into (eighteen) 96-210 

trial sessions. In separate sessions, each observer completed another 1728 trials with scrambled 211 

chessboards.  "U" sessions with unscrambled chessboards and "S" sessions with scrambled 212 

chessboards were run in the following sequence: USSUUSSUUSUUSSUUSS. Quest+ staircases were 213 

initialized at the beginning of session 1, and again at the beginning of session 10. 214 

 215 

Methods Specific to Experiment 1 216 

Both authors served as observers. Visual stimuli were presented on a gamma-linearized LCD display 217 

screen, placed at 0.845 m of viewing distance. There were 21.4 screen pixels per degree of visual 218 

angle. 219 

 220 

Each chessboard occupied the screen's central 128 × 128 pixels. The phase spectrum of each phase-221 

scrambled chessboard set equal to that of a 64-pixel × 64-pixel "noise image," each pixel of which 222 

had a Weber contrast that was selected independently from a zero-mean Gaussian distribution.  223 

 224 

Methods Specific to Experiment 2 225 

At a referee’s request, retinal resolution was increased for observers ST and AC, who were naïve to 226 

the purposes of this experiment. These 20-year-old university students had no previous experience 227 

with psychophysics. They practiced the 2x2 FC task with both scrambled and unscrambled 228 

chessboards for one hour before any data were collected. (A third naïve observer practiced for 2 hours 229 

but proved incapable of attaining 81% correct performance in the detection task. Her data are not 230 

reported here.) For these observers, the display screen was placed at 2.112 m of viewing distance.  231 

There were 53.5 screen pixels per degree of visual angle. 232 

 233 

Each chessboard occupied the screen's central 320 × 320 pixels. The phase spectrum of each phase-234 

scrambled chessboard set equal to that of a 160-pixel × 160-pixel "noise image," each pixel of which 235 

had a Weber contrast that was selected independently from a zero-mean Gaussian distribution.  236 

 237 

 238 

Results 239 

 240 

Detection 241 

As with Watson and Robson's (1981) data (see Fig. 2), we obtained separate, maximum-likelihood fits 242 

of the Weibull distribution to each observer's probability of correctly detecting a blur modulation in 243 



 

 

scrambled and unscrambled chessboards with each level of baseline blur. Similarly, we obtained fits 244 

to each observer's probability of correctly detecting a contrast modulation with each level of baseline 245 

contrast. Unlike Watson and Robson, who could appeal to a relatively large literature on the detection 246 

of luminance modulations, we have decided to make no assumptions regarding the shape parameters 247 

of the best-fitting Weibull distributions. Consequently, it was free to vary in all our fits. 248 

 249 

With the exception of contrast modulations in phase-scrambled chessboards, 81%-correct detection 250 

thresholds (i.e. the scale parameters of the best fitting Weibull distributions) increased 251 

disproportionately (i.e. more slowly than would be predicted on the basis of Weber's Law) with 252 

baseline levels of blur and contrast.  In this paper, we will not offer any firm conclusions regarding 253 

why Weber's Law fails for these stimuli. Nonetheless, a variety of potential explanations are offered 254 

here.  255 

 256 

For one thing, our task requires the detection of modulation away from a baseline, rather than 257 

discrimination between increments of different magnitude. And whereas the latter task can reliably 258 

produce thresholds consistent with Weber's Law (e.g. when the dimension is luminance), the former 259 

task does not (Cornsweet & Pinsker, 1965). Furthermore, not even the discrimination between 260 

different contrast increments will reliably produce thresholds consistent with Weber's Law (Nachmias 261 

& Sansbury, 1974). Finally, it must be noted that, whereas detection with the intermediate baselines 262 

almost certainly requires a visual mechanism that responds to the modulation, context-coding 263 

strategies may be used with the other baselines. For example, an observer who selected the 264 

chessboard with the greatest average blur would be relatively successful when the baseline blur was 265 

high. Consequently, with high baseline blur, the observer's 81%-correct threshold for blur modulation 266 

would be relatively low, even though the observer never really detected that modulation per se.  267 

 268 

As we were particularly keen to determine whether the visual system contained labelled lines for 269 

modulations of contrast and modulations of blur, we focused the remainder of our analyses on 270 

performance with modulations away from the intermediate baselines (a Gaussian blur kernel with   271 

𝜎 = 11.2 arcmin and a contrast of 0.5), where context-coding strategies were unlikely to facilitate 272 

performance.  273 

 274 

Just-noticeable Weber fractions (JNWFs; Solomon, 2010) are shown in Fig. 4. Each JNWF is the ratio 275 

between the 81%-correct detection threshold and the baseline (a.k.a. “pedestal”) level of blur or 276 

contrast. The younger, naïve observers were significantlty more sensitive (they had smaller JNWFs) 277 

to blur modulations on scrambled chessboards than the authors. This may be related to their use of 278 

relatively high-resolution stimuli (see Methods Specific to Experiment 2, above). 279 



 

 

 280 

 281 
Fig. 4.  Just-noticeable Weber fractions for detecting contrast and blur modulations away from the 282 

intermediate baselines illustrated in Fig. 3. Error bars contain 95% credible intervals.  283 

 284 

For the purposes of illustration, we have provided detailed results from one observer in Fig. 5. Results 285 

for the other observers appear in Appendix A. The format of Fig. 5 is analogous to that of Fig. 2. 286 

Specifically, the blue points in Fig. 5a show the relationship between the modulation depth of blur in 287 

an unscrambled chessboard and MJM's ability to detect whether it was in the first or second temporal 288 

interval. Blue points in Fig. 5b show the relationship between detection and the modulation depth of 289 

contrast. Smooth curves show the maximum-likelihood Weibull fits. Figs. 5c and 5d illustrate 290 

corresponding results that were collected using phase-scrambled chessboards. 291 

 292 

 293 
Fig. 5.  2 × 2FC detection (blue) and identification (black) of modulations away from the intermediate 294 

baseline levels. Panels (a) and (b) illustrate results in which observer MJM had to detect the 295 
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modulation in an unscrambled chessboard and identify its dimension either blur or contrast. Panels (c) 296 

and (d) illustrate analogous results with phase-scrambled chessboards. Symbol diameter is 297 

proportional to the number of trials. Smooth curves are maximum-likelihood Weibull distributions 298 

with unconstrained shape parameters. All other formatting conventions identical to those in Fig. 2. 299 

  300 

Identification 301 

In some cases (MJM scrambled contrast, ST unscrambled blur) it proved impossible to measure a 302 

threshold modulation depth for identification: the psychometric functions were flat (see Figs. 5d and 303 

A1e). In 12 of the remaining 14 cases, threshold for identification was greater than threshold for 304 

detection (exceptions were JAS unscrambled contrast and AC unscrambled contrast). Likelihood-ratio 305 

tests indicate a significant [𝜒"(1) > 3.84, 𝑝 < 0.05] difference between thresholds in 9 of the 306 

aforementioned 12 cases. It is noteworthy that all three exceptions occurred with unscrambled 307 

chessboards (MJM contrast, MJM blur, JAS blur). Consequently, it seems safe to conclude that the 308 

removal of edge information (via phase scrambling) decreased our observers’ ability to identify the 309 

dimension of modulation as “blur” or “contrast.” In other words, this rather superficial summary of 310 

our results is broadly consistent with the hypothesis that edges are important for the visual 311 

discrimination between blur and loss of contrast. Observers were capable of detecting a modulation in 312 

stimulus contrast or blur, but their ability to identify that modulation as such seems to have been 313 

compromised, even when that modulation was several decibelsi above the threshold for detection. 314 

 315 

Models  316 

(1) High Threshold Theory 317 

 318 

The model 319 

Figs. 5a and 5b reveal that, when edges were present, MJM wasn't significantly worse at identifying 320 

the dimension of modulation (i.e. blur or contrast) than he was at determining whether that 321 

modulation occurred in the first or second temporal interval. What Figs. 5a and 5b do not reveal is 322 

whether or not MJM got the dimension and the interval correct on the same trials. Of course, there is 323 

no reason that an error in one task must accompany an error in the other task, but to quantify the 324 

conditional probabilities we need a model. One such model was offered by Watson and Robson 325 

(1981). Its basis is High Threshold Theory, which can be stated quite succinctly: a stimulus 326 

modulation might or might not excite any channel, but channels are never excited in the absence of 327 

stimulus modulation. 328 

 329 



 

 

Within the framework of High Threshold Theory, a channel can be considered a labelled line if its 330 

excitation ensures correct identification. Obviously, this cannot be possible if the same channel can be 331 

excited by different types of modulation. Accordingly, when establishing their second and more 332 

stringent criterion for detection by differently labelled lines, Watson and Robson (1981) assumed “no 333 

overlap” between channel sensitivities. Given this assumption, only two parameters are required to 334 

calculate the likelihoods of all four possible outcomes in any trial: 335 

 O1–Correct interval, correct identity.  336 

 O2–Correct interval, incorrect identity.  337 

 O3–Incorrect interval, correct identity.  338 

 O4–Inorrect interval, incorrect identity.  339 

 340 

If, on the other hand, the joint likelihood of trial outcomes is significantly better fit by a more 341 

saturated model (i.e., with three free parameters per modulation depth), then we must reject the idea 342 

that excitation ensures correct identification. Accordingly, Watson and Robson’s second criterion for 343 

detection by channels with labelled lines is that the saturated model does not provide a significantly 344 

better fit. Note that if we are to maintain the assumption of no overlap between channel sensitivities, 345 

then the saturated model’s third free parameter can be considered a “fudge factor,” allowing observers 346 

to mis-identify an arbitrary proportion of stimuli that nonetheless do succeed in exciting a channel. 347 

Instead, we prefer to relax the assumption of no overlap. 348 

 349 

The full high-threshold model can be described as follows. Let  denote the probability that 350 

stimulus i excites channel k when it has a modulation amplitude of j. Channels are “labelled,” such 351 

that . On each trial there are four mutually exclusive possibilities: Channel k is excited, 352 

Channel  is excited ( ), both are excited, and neither is excited. The corresponding 353 

probabilities are: 354 

 , (1) 355 

 , (2) 356 

 , (3) 357 

and 358 

 . (4) 359 

Let r1 and r2 denote the probabilities of selecting interval 1 and interval 2, respectively, in the absence 360 

of any excitation, such that r2 = 1 – r1. For stimuli in interval m, the outcome probabilities are: 361 

 , (5) 362 

pijk

i,k ∈ 1,2{ }
l l = 3− k

q1 = pijk 1− pijl( )

q2 = pijl 1− pijk( )

q3 = pijk pijl

q4 = 1− pijk( ) 1− pijl( )

P O1( )= q1+ biq3+ nirmq4



 

 

 , (6) 363 

 , (7) 364 

and 365 

 , (8) 366 

where  and  are the probabilites that stimulus i is selected when both channels are excited and 367 

neither channel is excited, respectively. (NB:  and .) An observer can be 368 

considered unbiased when . 369 

 370 

The results were fit assuming that the probability of channel excitation increased as a Weibull 371 

function of the stimulus modulation, i.e. 372 

 . (9) 373 

Note that there are three free parameters in Eq. (9). The Weibull function’s scale parameter  can 374 

be considered channel k’s sensitivity to modulations in stimulus dimension i. The Weibull function’s 375 

shape parameter , on the other hand, is independent of stimulus dimension i. It describes the 376 

relationship between input and output within channel k. Attentional lapses and finger errors can be 377 

accommodated by allowing the remaining parameter to exceed zero (i.e. ). This parameter was 378 

not allowed to vary across the dimension of modulation, as different dimensions were randomly 379 

interleaved in our procedure. 380 

 381 

Model fits 382 

Although it is conceivable that observers used the same computations (i.e., the same channels) for 383 

scrambled and unscrambled chessboards, nothing in our methods encouraged them to do so. 384 

Consequently, we decided that the data collected with scrambled chessboards should be fit separately 385 

from the data collected with unscrambled chessboards.  386 

 387 

Two fits of the high-threshold model to MJM’s data with unscrambled chessboards are shown in Figs. 388 

6a and 6b. (Analogous fits to the other observers’ data appear in Appendix A.) Solid curves illustrate 389 

fits of the most general version of the model, without the restriction on overlapping sensitivities. 390 

Dashed curves illustrate fits of a nested model, in which overlap was prohibited by setting 391 

. Examination of the right-hand sides of the dashed curves reveals that, on trials in 392 

which observers selected the correct temporal interval, the nested model’s predictions for the 393 

probability of a correct identification [i.e., P(Identification|Detection)] tend to be a little too high. 394 

P O2( )= q2 + 1−bi( )q3+ 1−ni( )rmq4
P O3( )= nir3−mq4

P O4( )= 1−ni( )r3−mq4
bi ni

b3−i =1−bi n3−i =1−ni

r1= r2 = b1= b2 = n1= n2 =1 2

pijk = 1−δ( ) 1−exp − j /λik( )κk⎡
⎣⎢

⎤
⎦⎥( )

λik

κk

δ > 0

λ12 =λ21=∞



 

 

Nonetheless, overall, this version of High Threshold Theory seems to fit the data obtained with 395 

unscrambled chessboards fairly well. 396 

 397 

 398 
Fig. 6.  Conditional probabilities fit with High Threshold Theory. As in Fig. 5, here the blue and black 399 

symbols indicate MJM's detection and identification performances, respectively. Red and amber 400 

symbols indicate the conditional probabilities P(Identification|Detection) and 401 

P(Identification|~Detection), respectively. The relative paucity of amber symbols is due to the small 402 

number of trials in which identification was successful, even though detection was not. Solid curves 403 

illustrate maximum-likelihood fits, allowing for overlap in the two channels’ sensitivities (see text). 404 

Dashed curves illustrate maximum-likelihood fits without overlap. 405 

 406 

The nested model cannot achieve anywhere near as good a fit to results obtained with phase-407 

scrambled chessboards. It radically underestimates the difference between (unconditional) 408 

probabilities of detection and identification (note the similarity between dashed blue and black curves 409 

in Fig. 6d, they’re virtually identical and almost flat; compare with the blue and black curves in Fig. 410 

5d). It should be apparent that the model fits significantly better when channels are allowed 411 

overlapping sensitivities. Indeed, a generalized likelihood-ratio test indicated a significant 412 

improvement [𝜒"(2) > 6, 𝑝 < 0.05] for each observer with each type of chessboards (i.e. even the 413 

unscrambled ones). Thus, none of our results satisfy Watson and Robson's (1981) second criterion for 414 

detection of blur and contrast modulations by differently labeled lines. 415 

 416 

(2) Signal Detection Theory 417 

 418 

The model 419 



 

 

Signal Detection Theory (Green & Swets, 1966) was developed as an alternative to High Threshold 420 

Theory, which proved to be inconsistent with several empirical results (e.g. better-than-chance second 421 

responses in mAFC detection experiments, when 𝑚 > 2, Swets, Tanner, & Birdsall, 1961; Solomon, 422 

2007). In this section, we use Signal Detection Theory to describe the detection of modulations along 423 

any arbitrary stimulus dimensions A and B. Output from channels in this model can be used for both 424 

detection and identification within the 2 × 2FC paradigm. 425 

 426 

Although the stimulus dimensions A and B are arbitrary, in this paper they can be understood as blur 427 

and contrast, respectively. Consider a sinusoidal modulation along dimension A. Its amplitude and 428 

phase are a and , respectively. A general formula for the expected output of a linear mechanism is 429 

, where  is the mechanism's sensitivity (or "gain") and  is its preferred phase.  430 

 431 

Phase-independence (and square-law transduction) can be achieved using a non-linear transformation 432 

of the output from a quadrature pair of linear mechanisms: 433 

  . (10) 434 

Arbitrary power-law transduction can be achieved without sacrificing phase-independence by raising 435 

this expression to the arbitrary power ii. 436 

 437 

Now consider two sinusoidal modulations having the same frequency, one along dimension A and 438 

one along dimension B. Amplitudes and phases are a and b and  and , respectively. A general 439 

formula for the expected output of a linear mechanism is  where  440 

and  are the mechanism's sensitivities and  is its preferred phase. Again, phase independence 441 

(and square-law transduction) with respect to  can be achieved using a quadrature pair: 442 

  , (11) 443 

where . This too can be raised to the arbitrary power , if necessary.  444 

 445 

Putting it all together, we can write 446 
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   (12) 447 

for the expected output from a quadrature pair, given two sinusoidal inputs with amplitudes a and b 448 

and phase angle .  449 

 450 

Detection in the 2 × 2FC and 2AFC paradigms is determined on the basis of the difference between 451 

outputs to the first and second interval. In this paper, we use the random variable X to represent this 452 

differential output. Without loss of generality, we may assume that the variance is . 453 

 454 

Now consider another mechanism, with expected output , 455 

variance , and covariance . This mechanism is identical to the first, except for 456 

different gains and a possibly different power-function transducer.  457 

 458 

Both mechanisms may be used for the task of detection. The simplest decision rule is linear. Imagine 459 

the plane of all possible outputs  and divide it into two regions with the line . The 460 

observer should select interval 1 if and only if output  lies in the region below the line. 461 

Detection will be unbiased only if  and . 462 

 463 

These same two mechanisms can be used for discrimination. Again, the simplest decision rule is a line 464 

  separating each of the aforementioned two regions into quadrants (see Fig. 7 for an 465 

illustration). For the unbiased observer,  and . 466 

 467 
Fig. 7.  Graphical interpretation of the signal-detection model’s fit to one observer's results with 468 

unscrambled (a) and phase-scrambled (b) chessboards. Each piechart represents one combination of 469 

µX = a2α2 + b2β 2 + 2aαbβ cosΔθ( )
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modulation interval (1 or 2), dimension of modulation (blur or contrast), and modulation depth. 470 

Larger piecharts indicate more trials. Red, green, blue, and yellow sectors illustrate the frequencies 471 

with which observer MJM selected each of the four possible responses, as indicated in panel (a). The 472 

horizontal position of each piechart shows the X channel’s expected output, and the vertical position 473 

shows the Y channel’s expected output. Not shown are Gaussian blobs centred on each one of these 474 

piecharts. Each blob describes the density of the joint likelihood for the two channels’ responses. That 475 

likelihood has unitary standard deviation in each dimension (X and Y) but its covariance was left as a 476 

free parameter. MJM's data were best fit with a negative covariance; perhaps there was some 477 

competition between channels. Covariance is illustrated by the ellipses, which describe four standard 478 

deviations in every direction around the origin in panel (a) and the point (–2.91, –0.93) in panel (b), 479 

whose coordinates correspond to the expected channel outputs for a first-interval contrast modulation 480 

having a depth that is 10 dB greater than MJM's detection threshold. We have assumed that observers 481 

divide the space of all possible channel outputs into the four types of response. The simplest possible 482 

decision rule uses two linear discriminants. These are represented by the lines in each panel. Sample 483 

outputs in the right quadrant are classified as "Blur, interval 1," sample outputs in the top quadrant are 484 

classified as "Contrast, interval 1," and so on (as indicated in panel a).		485 

 486 

As illustrated in Fig. 7, each trial can be considered one sample from a joint density function on the 487 

plane of all possible channel outputs. If there were no attentional lapses or finger errors, the 488 

probability of any specific response (e.g. "blur, interval 1") would correspond to the fraction of that 489 

density function that lies within the quadrant associated with that specific response. However, when 490 

fitting the model, we allowed for the possibility of a non-zero lapse rate, i.e. a proportion of trials 491 

(denoted 𝛿′) on which the observer selects one of the four possible responses at random (regardless of 492 

the modulation depth, with probability	1 4⁄ ).  493 

 494 

Model fits 495 

We used Mathematica's implementation of Brent's (2002) principal-axis method to find maxima (with 496 

2 digits of accuracy) in the function mapping parameter values to log likelihood. The full signal-497 

detection model has 12 free parameters: four ( , , , and ) for the discriminant lines, plus one 498 

(𝛿′) for the lapse rate, plus one ( ) for the channel covariance, plus two (  and ) for the power-499 

function transducers, plus four channel gains ( , , ,	and	 ). In addition to this full model, we 500 

fit a version constrained to exclude overlap between channel sensitivities (called "leakage" by 501 

Raphael & Morgan, 2016; and Morgan, 2017). Specifically, both channels were prohibited from 502 

responding to more than one dimension of modulation, i.e.  and . This constraint 503 

significantly reduced the model's maximum likelihood [𝜒"(2) > 6, 𝑝 < 0.05] only for JAS's data 504 

m
θ
b
θ
m
φ

b
φ
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with the unscrambled chessboards (see Fig. 9).  We also fit a version constrained to exclude any 505 

correlation between channel outputs (by forcing ). This constraint did not significantly reduce 506 

the model’s maximum likelihood for any of the data sets [in all cases, 𝜒"(1) < 2.2, 𝑝 > 0.18; see Fig. 507 

9]. Finally, we fit a version constrained to exclude both overlap and correlation. This constraint did 508 

significantly reduce the model’s maximum likelihood for each of the data sets [in all cases, 𝜒"(3) >509 

8, 𝑝 < 0.05; see Fig. 9]. 510 

 511 

Psychometric functions illustrating fits of the full model appear in Fig. 8. Perhaps the most salient 512 

feature of this figure is the downward trend of some amber curves, illustrating 513 

P(Identification|~Detection). Whereas High Threshold Theory predicts that this conditional 514 

probability should be independent of modulation depth; in the absence of attentional lapses and finger 515 

errors (i.e. when 𝛿′ = 0), Signal Detection Theory predicts that this conditional probability should 516 

mirror P(Identification|Detection), as modulation depth increases. Some of the amber curves have a 517 

kink on the right side, where the curve suddenly shoots back up toward a probability of 0.5. This is 518 

due to non-zero lapse rates, which are the only explanation for the failure to detect massively 519 

suprathreshold modulations.  520 

 521 

 522 
Fig. 8.  Conditional probabilities fit with Signal Detection Theory. As in Fig. 5, here the blue, black, 523 

red, and amber symbols indicate MJM's P(Detection), P(Identification), P(Identification|Detection), 524 

and P(Identification|~Detection), respectively. Curves illustrate maximum-likelihood fits of the full, 525 

12-parameter model. 526 

 527 

A visual comparison of the amber curves with the amber points suggests little compelling evidence 528 

for P(Identification|~Detection) dropping to zero. With few exceptions, the amber symbols tend to 529 

ρ= 0



 

 

congregate around 0.5, consistent with High Threshold Theory. However, we cannot form any firm 530 

conclusions in this regard. For each of the conditions summarised by one panel in Fig. 8, the adaptive 531 

staircases produced just 16 (out of a total 189) trials above threshold, on which MJM failed to detect 532 

the modulation. One fairly strong conclusion that can be drawn from these results is this: despite their 533 

potential value towards selecting between Signal Detection and High Threshold Theories, 534 

suprathreshold detection errors are too rare pursue with any vigor. 535 

 536 

Perhaps surprisingly, the full signal-detection model has no trouble accounting for MJM's decline in 537 

P(Identification|Detection) with increasingly large modulations of stimulus contrast in scrambled 538 

chessboards (as illustrated by the red curve in Fig. 8d)iii.  Examine Fig. 7b to see how this arises. 539 

Notice that the "X" channel has non-zero gain to both blur modulations and contrast modulations. 540 

(Contrast signals "leak" into the channel that responds to blur modulations.) Consequently, piecharts 541 

aren't confined to the vertical axis. Unlike the ellipse in Fig. 7a, which was centered on the origin, the 542 

ellipse in Fig. 7b is centered on the coordinates (–2.91, –0.93), which correspond to the expected 543 

channel outputs for a first-interval contrast modulation having a depth that is 10 dB greater than 544 

MJM's detection threshold. On trials such as these, P(Identification|Detection) can be visualized as 545 

ratio between two areas: the intersection between the ellipse and the bottom quadrant and the 546 

intersection between the ellipse and the union of bottom and left quadrants. This ratio is 0.47.  547 

P(Identification|~Detection) varies with the ratio between two different areas: the intersection 548 

between the ellipse and the top quadrant and the intersection between the ellipse and the union of top 549 

and right quadrants. This ratio is 0.87. Fig. 9 summarizes how well the various models fit each set of 550 

data. 551 

 552 

 553 

 554 
Fig. 9.  Negative log likelihoods for the fit of six models to four separate data sets; all data collected 555 

with modulations away from the intermediate baseline levels. 556 
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 557 

Discussion 558 

Some observers (e.g. the authors JAS and MJM) appear to be capable of discriminating between a 559 

reduction in contrast that is limited to the high spatial frequencies (i.e. blur) and a reduction in 560 

contrast that is uniform across the spatial frequency spectrum. However, none of our observers were 561 

capable of consistently identifying the dimension of modulation when edges were removed via phase-562 

scrambling. When asked to do so, they adopted idiosyncratic and ineffective strategies. For example, 563 

MJM’s data suggest a slight preference for labelling large modulations as “blur,” but his ability to 564 

report contrast modulations as “contrast” never rose beyond a baseline frequency of about 68%, 565 

regardless of modulation depth (see Figs. 5c and 5d). 566 

 567 

Our methodology, with its interleaved, adaptive staircases, effectively decorrelated modulation depth 568 

from modulation identity (i.e., blur vs contrast). Consequently, decisions based on the output of a 569 

single channel could not attain an identification accuracy better than 50% correct overall (i.e. when 570 

blur and contrast trials are combined).  Some observers may not have attained 81% correct with 571 

modulations in stimulus blur or stimulus contrast, but all observers’ identification accuracies were 572 

well in excess of 50% correct overall. Accordingly, we can reject the idea that there is just one 573 

channel. Better-than-chance identifications imply at least two. 574 

 575 

Given the logical necessity of two channels, we must turn to theory for why identification 576 

performance with scrambled chessboards is so bad. One potential explanation is overlap between the 577 

two channels’ sensitivities: at least one channel responds both to blur modulations and contrast 578 

modulations. Thus, a single modulation can excite both channels. The high-threshold model of 579 

Watson and Robson (1981) does not allow for this possibility. In our elaboration of that model, 580 

observers make an arbitrary (but possibly biased) decision regarding stimulus identity, when both 581 

channels are excited. 582 

 583 

Sensitivity overlap can produce identity confusions within the context of Signal Detection Theory as 584 

well. When the expected response of both channels to a contrast modulation isn’t very different from 585 

their expected response to a blur modulation, observers will often err in their attempt to identify the 586 

modulation. Moreover, since Signal Detection Theory’s channels are never quiescent, identity 587 

confusions can arise when the channels’ noises are negatively correlated. Random activity in the "blur 588 

channel" favoring interval 1 could increase the probability of random activity in the "contrast 589 

channel" favoring interval 2, and vice versa.  590 

 591 



 

 

Our modelling addresses the relationships between modulation amplitude and decision. We have 592 

intentionally remained agnostic regarding how the visual system represents the quantities that serve as 593 

input to the blur and contrast channels. Nonetheless, it seems reasonable to assume those quantities 594 

are computed from the output of visual pattern analyzers (Graham, 1989) conjointly selective for 595 

retinal position and spatial frequency. Analyzer outputs could be weighted (or unweighted), forming 596 

an input to the contrast channel that correlates with spatial modulations in stimulus visibility. This 597 

idea is similar to the Visible Contrast Energy (ViCE) model of Watson and Ahumada (2011). 598 

Alternatively, observers may adopt a bespoke weighting of analyzers (ignoring those with preferred 599 

frequencies that are far from our chessboards’ 2 cycles/image, say). We are even less certain how the 600 

visual system represents image blur. Although blur can be computed from an arithmetic combination 601 

of analyzer outputs (e.g. the difference between outputs from low-frequency and high-frequency 602 

analyzers, perhaps divided by their sum), it can also be computed from the spatial separation between 603 

maximally stimulated analyzers (Watt & Morgan, 1983; Georgeson, May, Freeman, & Hesse, 2007) 604 

or the coherence of spatial phase across different scales of analyzer, as demonstrated by Wang and 605 

Simoncelli (2004). 606 

 607 

Although unequivocally successful identification at the detection threshold can be considered 608 

evidence in favour of labelled lines, identification errors need not imply the absence of labelled lines. 609 

Indeed, these sorts of errors are sometimes taken as evidence for labelled lines (e.g. Ramachandran & 610 

Hubbard, 2001; Periera & Alves, 2011). Consequently, we conclude that it would be best to compare 611 

detection and identification with regards to their implications for interactions between channels. 612 

Specifically, we can assert that channel-based models of detection are unable to satisfactorily fit our 613 

results without sensitivity overlap or anticorrelated noise. Morgan (2017) arrived at a similar 614 

conclusion (i.e., in support of signal leakage between channels) using unscrambled, black-and-white 615 

chessboards.  616 

 617 

Whereas black-and-white chessboards can be considered relatively naturalistic stimuli, our phase-618 

scrambled chessboards cannot; they lack well-defined edges. There is no reason to think that 619 

observers perform the same computations when making decisions about these two classes of stimulus. 620 

Indeed, the larger JNWFs unambiguously indicate lower sensitivity in the channels responsible for 621 

detecting blur in the phase-scrambled stimuli. However, for both phase-scrambled and unscrambled 622 

stimuli, the conditional probabilities indicate that successful detection does not imply successful 623 

identification. Within the context of Signal Detection Theory, these probabilities demand either 624 

sensitivity overlap or anticorrelation between the outputs from the channels responsible for detecting 625 

modulations of blur and those responsible for detecting modulations of contrast. 	626 

 627 



 

 

Appendix A: Illustrating the performances of 628 

observers JAS, ST, and AC 629 

 630 
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Fig. A1.  2 × 2FC detection (blue) and identification (black) of modulations away from the 632 

intermediate baseline levels. Panels (a) – (d): observer JAS; panels (e) – (h): observer ST; panels (i) – 633 

(l): observer AC. All formatting conventions identical to those in Fig. 5.  634 
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Fig. A2.  Conditional probabilities fit with High Threshold Theory. As in Fig. A1, here the blue and 637 

black symbols indicate detection and identification performances, respectively. Panels (a) – (d): 638 

observer JAS; panels (e) – (h): observer ST; panels (i) – (l): observer AC. All formatting conventions 639 

identical to those in Fig. 6. 640 

 641 

 642 

  643 
Fig. A3.  Graphical interpretation of the signal-detection model’s fit to JAS’s results (panels a and b), 644 

ST’s results (panels c and d), and AC’s results (panels e and f) with unscrambled (a, c, e) and phase-645 

scrambled (b, d, f) chessboards. The ellipses describe four standard deviations in every direction 646 

around the origin in panels (a, c, and e), In panels (b), (d), and (f), the ellipses are centred around the 647 

points (–1.99, –4.26), (–0.19, –4.02), and (–1.26, –2.80), respectively. These coordinates correspond 648 

to the expected channel outputs for a first-interval contrast modulation having a depth that is 10 dB 649 

greater than the observer’s detection threshold. All formatting conventions identical to those in Fig. 7.   650 
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Fig. A4.  Conditional probabilities fit with Signal Detection Theory. As in Fig. A3, here the blue, 653 

black, red, and amber symbols indicate P(Detection), P(Identification), P(Identification|Detection), 654 

and P(Identification|~Detection), respectively. All formatting conventions identical to those in Fig. 8.655 

i We have adopted the decibel scale for comparing arbitrary modulation depths with the detection 
threshold. Thus, if λ represents the detection threshold, then the depth of any arbitrary modulation m 
can be described as 20	log=>(𝑚 𝜆⁄ ) dB. 
ii Non-linear transduction is a component common to most psychophysical models within the 
framework of Signal Detection Theory. Power-law transducers are particularly popular, because 
psychometric slope is directly proportional to the exponent. Whereas the shape of sinusoidal signal 
will change following non-linear transduction, the shape of a square-wave signal will not. In our 
experiment, we utilized square-wave modulations (see Fig. 3) to ensure observers could not use the 
apparent shape of the modulation as a cue to its identity (i.e. blur vs. contrast). When fitting the 
signal-detection model to our data, we used the square-wave amplitudes in place of the sinusoidal 
amplitudes a and b. 
iii P(Identification) also declines. This isn't immediately apparent from Fig. 7d because the black curve 
is identical to (and hidden by) the red curve. Regardless of their parameters' values, both Signal 
Detection Theory and High Threshold Theory predict P(Identification|Detection) ≥ P(Identification). 
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