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Sensory judgments improve with practice. Such perceptual learning is often thought to reflect an increase
in perceptual sensitivity. However, it may also represent a decrease in response bias, with unpracticed
observers acting in part on a priori hunches rather than sensory evidence. To examine whether this is the
case, 55 observers practiced making a basic auditory judgment (yes/no amplitude-modulation detection
or forced-choice frequency/amplitude discrimination) over multiple days. With all tasks, bias was present
initially, but decreased with practice. Notably, this was the case even on supposedly “bias-free,”
2-alternative forced-choice, tasks. In those tasks, observers did not favor the same response throughout
(stationary bias), but did favor whichever response had been correct on previous trials (nonstationary
bias). Means of correcting for bias are described. When applied, these showed that at least 13% of
perceptual learning on a forced-choice task was due to reduction in bias. In other situations, changes in
bias were shown to obscure the true extent of learning, with changes in estimated sensitivity increasing
once bias was corrected for. The possible causes of bias and the implications for our understanding of
perceptual learning are discussed.
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Observers’ sensory judgments often improve with practice
(Wright & Fitzgerald, 2001; Fine & Jacobs, 2002). It is generally
assumed that such perceptual learning reflects increased sensitiv-

ity to the task-relevant information, either through more efficient
decision strategies (Gold, Sekuler, & Bennett, 2004; Jones, Moore,
Shub, & Amitay, 2014) or decreased internal noise (Lu & Dosher,
2008; Jones, Shub, Moore, & Amitay, 2013). However, informa-
tion extraction is only one step in the decision process—the
observer must then compare the sensory evidence to a criterion in
order to determine an appropriate response (see Figure 1). Ideally,
this criterion should be placed so as to maximize some payoff
metric, such as percent correct. In practice though, an observer’s
criterion may deviate from the ideal, making one response more
likely even when the sensory evidence supports another (see
Figure 2). Thus, a biased observer may exhibit a systematic pref-
erence toward pressing a particular button, or giving a particular
answer. Any such bias will affect performance, and changes in bias
could in principle explain some or all perceptual learning. The
present study evaluated this possibility by quantifying the extent to
which bias is present in naïve observers (Experiments I and II), is
reduced by practice (Experiments I and III), and can explain
improvements in performance (Simulations).

The role of bias has received little previous attention within the
perceptual learning literature. This is for two main reasons. The
first is practical. Learning studies often employ adaptive tracks,
and/or use three or more response options. Such methods can make
estimates of performance faster or more reliable (see Amitay,
Irwin, Hawkey, Cowan, & Moore, 2006), but make computing bias
metrics problematic. Multiple response options complicate mat-

This article was published Online First April 13, 2015.
Pete R. Jones, Medical Research Council (MRC) Institute of Hearing

Research, Nottingham, United Kingdom and University College London
Institute of Ophthalmology; David R. Moore, Medical Research Council
(MRC) Institute of Hearing Research and Cincinnati Children’s Hospital
Medical Center, Cincinnati, Ohio; Daniel E. Shub, School of Psychology,
University of Nottingham; Sygal Amitay, Medical Research Council
(MRC) Institute of Hearing Research.

This work was supported by the Medical Research Council, U.K. (Grant
U135097130), and by a Deafness Research U.K. vacation scholarship to
Natasha Ratcliffe. We thank Natasha Ratcliffe for assistance with data
collection in Experiment I, and to Yu-Xuan Zhang, Robert Mill and
Christian Sumner for helpful comments.

This article has been published under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any me-
dium, provided the original author and source are credited. Copyright for
this article is retained by the author(s). Author(s) grant(s) the American
Psychological Association the exclusive right to publish the article and
identify itself as the original publisher.

Correspondence concerning this article should be addressed to Pete R.
Jones, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V
9EL, United Kingdom. E-mail: p.r.jones@ucl.ac.uk

Journal of Experimental Psychology:
Learning, Memory, and Cognition

© 2015 The Author(s)

2015, Vol. 41, No. 5, 1456–1470
0278-7393/15/$12.00 http://dx.doi.org/10.1037/xlm0000111

1456

http://dx.doi.org/10.1037/xlm0000111.supp
http://creativecommons.org/licenses/by/3.0/
mailto:p.r.jones@ucl.ac.uk
http://dx.doi.org/10.1037/xlm0000111


ters, since every pair of responses may have its own corresponding
bias, each of which must be estimated independently. Furthermore,
in some multi-interval designs (e.g., odd-one-out) no models have
yet been formulated for characterizing response bias (Macmillan &
Creelman, 2005, pp. 235–251). Adaptive staircases also make bias
more difficult to compute, because the ideal criterion depends on
the expected magnitude of the signal (see Figure 2). Bias may
therefore vary across trials, as the stimulus is adapted up or down.
This would again require bias to be estimated multiple times,
potentially resulting in a multitude of bias parameters too numer-
ous to estimate reliably. In Experiment I, we therefore studied
learning using a simple yes/no detection task in which there was
only a single ideal criterion (Method of Constant Stimuli). Nota-
bly, this same approach has already been used recently to study the
effects of yes/no bias on perceptual learning (Wenger & Rasche,
2006; Wenger, Copeland, Bittner, & Thomas, 2008). In those
studies, it appeared that response bias actually increased with
practice. Conversely, in the present study we use a novel method
of analysis to show how the same behavior actually represents an
overall reduction in bias.

The second reason why bias is often overlooked is theoretical.
Learning effects are prevalent on m-alternative forced-choice
[mAFC] tasks, and mAFC tasks are widely believed to preclude

bias. If this assumption is correct, then it follows that learning must
be independent of bias. However, the evidence that mAFC tasks
preclude bias is incomplete. What is clear is that both the constant
error term used in psychophysics (Gescheider, 1997), and metrics
c and log� used in signal detection theory (SDT; Macmillan &
Creelman, 1990; Dusoir, 1975; Wickens, 2002), tend to be small
on mAFC tasks and the values tend to vary little with practice (e.g.,
Schoups, Vogels, & Orban, 1995; Ben-David, Campeanu, Trem-
blay, & Alain, 2011; Campbell & Small, 1963). However, these
measures only index a constant tendency to favor one response
(stationary bias). In contrast, bias may also be nonstationary. It
may fluctuate randomly; for example, if the observer is unable to
maintain a stable criterion (e.g., as shown by Kubovy & Healy,
1977). Or it may vary systematically; for example, if the observer
is influenced by the events of previous trials. Crucially, nonsta-
tionary biases are not obviously discouraged by mAFC de-
signs—an “alternating” observer may be just as inclined to re-
spond “Interval 1” after “Interval 2” as they are to respond “Yes”
after “No”. Moreover, nonstationary biases cannot be detected
using traditional bias measures, since these average over all trials
(i.e., whereupon equal-and-opposite preferences for A after B and
B after A will cancel out). Experiment II therefore analyzed
trial-by-trial response dependencies to examine the extent to which

Figure 2. Bias is the distance between the observer’s criterion location, �obs

(red [dark gray] dashed), and the ideal criterion location, �ideal (black solid).
When noise (N) and signal (S) distributions have equal variance (and are
sampled from with equal frequency), �ideal is located halfway between their
means, as shown here. Here, the observer is overly liberal (biased toward
indicating that a signal was present). Performance is also limited by the
observer’s sensitivity (or signal-to-noise ratio), which is inversely proportional
to the common area under the two distributions (highlighted in red [dark
gray]). (N.B. the decision dimension is unspecified, but is typically propor-
tional to some physical aspect of the stimulus, such as its intensity.) See the
online article for the color version of this figure.
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Figure 1. A simple signal detection theory model of decision making
(Green & Swets, 1974), adapted from Amitay, Zhang, Jones, and Moore,
2014. (A) The incoming physical stimulus is transformed into an internal
representation by summing over n information channels, each subject to
additive internal noise (the final decision variable may then be further
corrupted by late sources of internal noise, not shown here for simplicity).
(B) A decision is made by comparing the resultant decision variable to a
criterion, �, which may or may not be optimally placed. Sensitivity is
limited by the amount of internal noise, and the observer’s ability to attend
selectivity to the task-relevant information channels. Bias is limited by the
placement of �, which may be affected by a range of factors, such as the
perceived likelihood of a certain response, or the perceived utility of a
certain outcome (see General Discussion). This model is similar to those
used in a wide range of papers, both within the perceptual learning
literature (e.g., Liu, Dosher, & Lu, 2014; Jones, Moore, Shub, & Amitay,
2014), and more generally (Richards & Zhu, 1994; Tyler & Chen, 2000).
Mathematically, this model could be formulated as: respond “yes” if
��i�1

n �i�Si � Ni�� � �, otherwise respond “no” (where Si is the output of
the ith information channel, and Ni is a corresponding noise sample).
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nonstationary bias is present in naïve observers. Notably, previous
studies using such techniques have tended to indicate that sequen-
tial dependencies are small in magnitude, and extend over only one
or two trials (e.g., Jesteadt, Luce, & Green, 1977; see Experiment
II for details). Here we replicate previous results, but also show
that for a particular subset of trials, bias effects can be long lasting
and substantial. Furthermore, in Experiment III we extend this
result to perceptual learning, and examine the extent to which
nonstationary biases decrease with practice.

Finally, significant changes in bias are not sufficient to judge
effect size. Therefore, to assess the importance of bias in percep-
tual learning, observer responses were simulated with and without
various forms of bias. On the basis of these data, bias-correction
factors were derived by which true sensitivity can be recovered
given estimates of performance and bias. By applying these cor-
rections to the multisession learning data of Experiments I and III,
the relationship between observed changes in bias and perfor-
mance were quantified. Practice-induced changes in perceptual
sensitivity were shown to be at times smaller, and at times greater,
than would otherwise be apparent.

To summarize, reductions in bias can potentially explain the
improvements in performance observed during perceptual learn-
ing. These response preferences can be constant (stationary bias)
or vary depending on previous trials (nonstationary bias). Exper-
iment I investigated whether stationary bias is present in naïve
observers performing a yes/no task, and, if so, whether it decreases
with practice. Experiments II and III extended this work to the
more typical 2AFC paradigm. Here stationary bias was expected to
be minimal, but nonstationary bias was expected to be present in
naïve observers (Experiment II), and was expected to decrease
with practice (Experiment III). Finally, we used simulations to
relate the observed changes in bias to changes in threshold per-
formance, and derived correction factors.

General Method

Here we describe those methods that were common across all
three experiments.

Participants

Participants were normal hearing adults with no prior experience of
auditory psychophysics. Normal hearing was assessed by audiometric
screening, administered in accordance with the British Society of
Audiology recommended procedure (�20 dB HL bilaterally, at 0.5
kHz to 4 kHz octaves; British Society of Audiology, 2004). Partici-
pants were recruited through advertisements placed around Notting-
ham University campus, and received £7.5/h compensation. Experi-
ments were conducted in accordance with Nottingham University
Hospitals Research Ethics Committee approval and informed written
consent was obtained from all participants.

Stimuli Generation and Apparatus

Stimuli were digitally synthesized in Matlab v7.4 (2007, The Math-
Works, Natick, MA) using a sampling rate of 22.05 kHz and 24-bit
quantization, were converted to analog signals by a PCI sound card
(Darla Echo; Echo Digital Audio Corporation, Carpinteria, CA),
interfaced via the Psychophysics Toolbox v3 (Brainard, 1997) ASIO

wrapper (Steinberg Media Technologies, Hamburg), and were pre-
sented diotically via Sennheiser headphones (Experiment I: HD25-II;
Experiment II: HE60; Experiment III: HD480II). Observers were
tested individually in a double-walled sound-attenuating booth; they
had an unlimited time to respond using a button box, and received
visual feedback via an LCD monitor.

Experiment I: Stationary Bias on a Yes/No Task

The purpose of this experiment was to assess how much sta-
tionary bias (i.e., a constant preference toward one response) is
present in naïve observers, and the degree to which stationary bias
is reduced by practice.

The task was yes/no amplitude modulation detection. A yes/no
decision paradigm was of particular interest for two reasons. First,
because the use of yes/no tasks is widespread—particularly with
animals, clinical groups, and other populations where test duration
and memory limitations are concerns (see Green, 1993). Second,
because it is the only paradigm in which the role of bias in
perceptual learning has been previously examined (Wenger &
Rasche, 2006; Wenger et al., 2008).

In the study by Wenger and Rasche (2006), observers practiced
a yes/no visual contrast detection task, using sets of randomly
interleaved stimulus levels (Method of Constant Stimuli). Those
observers who improved with practice were found to become
increasingly liberal (predisposed to say “yes”) when bias was
evaluated at an arbitrary, fixed stimulus level. This would seem to
suggest that perceptual learning actually leads to an increase in
bias. Alternatively though, it may be that observers maintained a
single response criterion, which they learned to optimize across all
stimulus levels. In this case, overall global bias may have de-
creased with practice, at the cost of local bias increasing at some
particular stimulus level(s). These two hypotheses were examined
in the present experiment, using a measure of global bias in which
the observers’ sensitivity at all stimulus levels was taken into
account. The task was an auditory analog of the visual detection
task used in Wenger and Rasche (2006).

Method

Thirteen normal hearing observers (4 female; mean age 21.9)
performed a one-interval, yes/no, sinusoidal amplitude modulation
[SAM] detection task, in which the observer was asked “did the
loudness of the sound fluctuate?”. Of these 13, one observer was
excluded from all analyses due to an apparent loss of concentra-
tion—despite having the lowest detection threshold of all listeners
in Session 1; by Session 7 there was no correlation between target
and response [r598 � 0.06, p � .175], and no threshold could be
estimated.

The stimuli were amplitude-modulated bandpass noises, similar
to those used in Fitzgerald and Wright (2011). The carrier was a
3–4 kHz bandpassed Gaussian noise. The amplitude modulator
was an 80 Hz sinusoid. As shown in Figure 3A, the modulation
depth (or index) varied between 0 (no modulation) and 1 (full
modulation), with the trial-by-trial value determined by the stim-
ulus condition (see below). The stimuli were 400 ms in duration,
including 10 ms cos2 on/off ramps, and were presented at an
average level of 70 dB SPL in all conditions (adjusting for mod-
ulation depth).
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Each trial commenced with a 300-ms warning interval, during
which a visual fixation cross was displayed. This was followed by
a single 400-ms stimulus observation. Participants were then given
an unlimited time to respond, after which visual feedback was
presented for 300 ms prior to the next trial onset.

Each session consisted of 600 randomly ordered trials (Method of
Constant Stimuli), with short breaks after the 200th and 400th trial.
Half (300) of the trials were noise trials (modulation depth � 0) and
half were signal trials (0 � depth �1). The 300 signal trials consis-
ted of 30 trials at each of 10 modulation depths, uniformly spaced
between � and � on a logarithmic scale. In session one: � � .1 and
� � 1. In subsequent sessions, � and � were set to the modulation
depths required to attain 5% and 95% correct detection performance
in the previous session, as estimated from cumulative Gaussian fits.
This session-by-session adaptive procedure followed Wenger and
Rasche (2006), and was designed to minimize floor/ceiling effects.

Participants completed seven sessions within 2 weeks, with no
more than one session per day. Before the first session participants
were given three examples of an unmodulated noise (depth � 0),
and three examples of a fully modulated noise (depth � 1).

Measures and Analysis

Performance was indexed by the 79% correct detection li-
men, DL79, which was derived from a cumulative Gaussian,
fitted to hit rate as a function of log-modulation index. Psycho-
metric fits were made using the psignifit toolbox (v2.5.6),
which implements the maximum-likelihood procedure of Wich-
mann and Hill (2001).

Bias was measured in two ways. First, as per Wenger and
Rasche (2006), local bias at a single signal level was assessed
using the traditional SDT metric, c (or: �center):

c � �obs � �ideal � �Z(f) �
d�

2
� �

1

2
[Z(f) � Z(h)], (1)

where �ideal is the ideal criterion, �obs is the observer’s criterion,
Z is the inverse of the cumulative Gaussian distribution (i.e., �	1),
and f and h denote false alarm and hit rates respectively. The
metric c is calculated at a constant stimulus level—in this case the
modulation depth requisite for a 79% hit rate in session one. This
modulation depth was determined independently for each observer
in session one. In each subsequent session sensitivity, d=, was
estimated at that same modulation depth (interpolating between
presented depths if required), and bias was assessed relative to an
ideal criterion, �ideal, equal to 1

2 d=.
Global bias was estimated in the same manner, but after ac-

counting for sensitivity across all 10 signal levels, thus:

cglobal � �obs � �ideal � �Z(f) � arg max
�

��
i�1

m

(P(Si)����; di� , 1���
� P(N)[�(�; 0, 1)]),

(2)

where di= is the observer’s sensitivity to the ith stimulus level, P(Si)
is the probability of the ith signal condition occurring � 1

20�, and
P(N) is the probability of a noise trial occurring � 1

20�. Note that
Equation 2 is a direct generalization of Equation 1, and the two

Figure 3. Experiment I: (A) Example stimuli. Showing a range of modulation depths, from zero (top) to full
(bottom) modulation. (B) Learning. Group-mean 
 1 SE (bottom) detection limens as a function of session, and
individual values (top) for first/last session. Individual improvements/decrements in threshold are shown by
solid-green [light gray] and dashed-red [dark gray] lines, respectively. (C) Changes in global bias. Group-mean 
 1 SE
(bottom) global bias (cf. Equation 2) as a function of session, and individual values (top) for first/last session.
Individual improvements/decrements in bias magnitude are shown by solid-green [light gray] and dashed-red
[dark gray] lines, respectively. See the online article for the color version of this figure.
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equations differ only in how the ideal criterion, �ideal, is computed.
Specifically, while Equation 1 only considers performance at a
single signal level, in Equation 2 the ideal criterion is that which
maximizes performance over all stimulus conditions (i.e., taking
into account the observer’s sensitivity to each signal, and the
probability of each signal/noise occurring). If there was only one
signal level then Equation 2 would be equivalent to Equation 1.
For details on how Equation 2 was derived, see Section S1 (online
Supplemental Material).

Results

Learning. As shown in Figure 3B, performance improved
across sessions, with more practiced observers able to detect
significantly smaller amplitude modulations [F(6,66) � 5.80, p �
.001, �p

2 � 0.35]. Ten individuals (83%) exhibited improvements,
and the majority of learning occurred during the first session.
These findings are consistent with those reported previously for
this task (e.g., Fitzgerald & Wright, 2011). There was no consistent
relationship between starting performance and amount of improve-
ment [Spearman’s rho; r10 � 	0.04, p � .921, n.s.].

Bias. As in Wenger and Rasche (2006), local bias, c, increased
across sessions. Measured at a single signal level, observers
appeared to be unbiased initially [CI95% � 	0.04, 0.20], but
became progressively more liberal (prone to say “yes”) with prac-
tice [F(6, 66) � 3.42, p � .005, �p

2 � 0.24].
However, once all stimulus conditions were taken into account

this pattern was reversed (Figure 3C). Group-mean global bias,
cglobal, was initially liberal [t11 � 	6.16, p � .001], but decreased
across sessions [F(6,66) � 5.11, p � .001, �p

2 � 0.32]. By Session
3 (after 1,200 preceding trials) no significant global bias was
present [t11 � 	0.14, p � .888, n.s.]. At the individual level, 10
observers (83%) exhibited this pattern of bias magnitude reduction
(though one of these individuals was initially conservative). The
session-by-session changes in mean global-bias-magnitude corre-
lated strongly with improvements in performance [r5 � 	0.85,
p � .017], suggesting that reductions in bias are related to im-
provements in detection thresholds.

Discussion

Observers are often assumed to be unbiased agents, basing their
responses only on the available sensory evidence. In a yes/no
detection task, this assumption was shown to be acceptable only
after 1,200 practice trials. In contrast, naïve observers exhibited
significant (global) bias, generally in favor of responding “yes”
(liberal). Reductions in bias correlated robustly with improvements
in performance, suggesting that bias reduction is a substantive
component of perceptual learning on a yes/no task.

This work is consistent with previous reports that observers can
learn to adjust their criterion based on feedback (Herzog & Fahle,
1999; Herzog, Ewald, Hermens, & Fahle, 2006; Aberg & Herzog,
2012). Moreover, the results are consistent with data derived using
an analogous visual task (Wenger & Rasche, 2006), though our
ultimate conclusion is different. Thus, as in Wenger and Rasche
(2006), local bias (i.e., bias measured at a single stimulus level)
increased with practice. However, when all signal levels were
considered, observers were shown to be becoming less biased
overall, as per the ideal observer.

The fact that naïve observers tended to respond liberally may
reflect a belief that incorrect misses (No | Signal) are more costly
that incorrect hits (Yes | Noise). Alternatively, it may be that the
initial tendency to say “yes” is driven by sensory factors. Thus, as
detailed in the General Discussion, a liberal bias can also arise if
the observer underestimates the amount of noise inherent in their
sensory system. In either case, a similar bias toward responding
“yes” would also be expected on other yes/no detection tasks.
Accordingly, Wenger and Rasche (2006) also observed the same
pattern of behavior on a visual contrast detection task, though we
know of no systematic review of yes/no bias under Method of
Constant Stimuli. Finally, it is important to note that the present
findings would not necessarily be replicated using other methods.
For example, when using an adaptive tracking procedure the
observer can anticipate the next signal level, and so can vary their
criterion from trial-to-trial. In those circumstances it remains to be
seen whether yes/no bias is present in naïve observers, the direc-
tion of such biases, or whether it decreases with practice, although
as discussed in the general introduction, measuring bias in more
complex designs is often challenging.

Experiment II: Nonstationary Bias on a 2AFC Task
(Naïve Observers)

Experiment I demonstrated that bias decreases with practice on
a yes/no task. However, many perceptual learning studies use
forced-choice paradigms that are intended to preclude bias occur-
ring in the first place. The purpose of Experiment II was to assess
whether forced-choice tasks do preclude bias, by quantifying bias
in naïve observers performing a 2AFC task. Effects of practice are
detailed separately, in Experiment III.

As discussed in the Introduction, stationary bias is likely to be
low in forced-choice tasks, but nonstationary bias—specifically,
the tendency to favor one response depending on the events of the
previous trials—may be more substantial. Indeed, that observers’
responses on forced-choice tasks are liable to be influenced by
preceding trials has long been noted.1 For example, Green (1964)
reported “a tendency among all observers to choose the interval
opposite the one on which they had just been correct.”

Trial-by-trial response dependencies can be quantified using a
variety of techniques. For example, Verplanck, Collier, and Cotton
(1952) used a serial-correlation procedure (Wald & Wolfowitz,
1943) to assess the statistical independence of sequential
luminance-detection responses, made when performance was near
chance. Runs of identical responses were observed to be greater in
length (and thus fewer in number) than would be expected if each
response had been made independently. This implies that observ-
ers were biased toward repeating their previous response (hereafter
presponse). Similar results have also been found using an infor-
mation analytic approach Garner (1953) as well as through mul-
tiple regression (Jesteadt et al., 1977) and related auto-correlation
techniques (Gold, Law, Connolly, & Bennur, 2008).

In the present experiment, nonstationary bias was measured in
two ways. First, by using a multiple regression method, described
previously by Jesteadt et al. (1977). Therein, presponses are used

1 Moreover, many studies have demonstrated that observers are capable
of integrating over sequential observations when such behavior is benefi-
cial (e.g., Swets, 1959; Berg, 1990).

1460 JONES, MOORE, SHUB, AND AMITAY



to predict which response occurred subsequently. If a significant
proportion of response variability is explained by the presponses,
then this indicates that trial-by-trial judgments were not made
independently. Notably, this technique tends to indicate that re-
sponse dependencies are small in magnitude and limited in range.
For example, Jesteadt et al. (1977) found that 2.9% of variance on
a loudness estimation task was explained by the immediate pre-
sponse, and that including longer runs of presponses did not
significantly improve the power of the model. This suggests that
response dependencies only extend over a single trial. Accord-
ingly, recent behavioral works in ferrets (Alves-Pinto, Sollini, &
Sumner, 2012), mice (Busse et al., 2011) and rhesus monkeys
(Gold et al., 2008) have also found evidence of sequential shifts in
response criterion, but these effects have again been limited pri-
marily to the last preceding trial. Notably though, in the present
work we predicted that for a subset of trials, levels of bias may be
larger, more long lasting, and cumulative across trials. In particular, it
was thought that runs of consistently identical responses (same an-
swer, same result) would lead to strong biases to either perseverate if
correct, or alternate if incorrect. This was assessed using a second,
novel method of analysis in which the traditional SDT bias measure,
c, was applied to independent subsets of data, depending on what the
presponses had been and whether they were correct.

The task was 2AFC tone discrimination, in which observers had to
judge which of two tones was greater in either frequency or intensity.
Notably though, and unbeknown to the observer, both tones were
identical, making the task impossible and the feedback arbitrary.
Impossible tasks have been previously shown to induce learning
(Amitay, Irwin, & Moore, 2006), and are well suited for exam-
ining bias, since expected sensitivity is guaranteed to be zero
(and bias is liable to be underestimated as sensitivity increases;
see Section S2 in the online Supplemental Material). Possible
drawbacks to this approach are addressed in the Discussion,
below.

Method

Thirty observers (20 female; mean age 22.6) completed 500 trials
of a two-interval, two-alternative, forced choice [2I2AFC], pure tone
discrimination task, in which both tones were identical on every trial
(impossible discrimination). Half (15) of the observers were in-
structed to “identify the higher tone,” while the other 15 were in-
structed to “identify the louder tone.” Regardless of the task instruc-
tions, both tones were 1 kHz sinusoids, 100 ms in duration, including
10 ms cos2 on/off ramps. The two tones were separated by a 500 ms
interstimulus interval, and were presented diotically at 80 dB SPL.

Trial-by-trial feedback was presented visually for 500 ms after
each response. Since the two tones were identical, the “correct”
tone (for the purposes of scoring and feedback) was selected
randomly. The ideal observer would thus be expected to perform
at chance. For the present purposes correctness therefore relates
primarily to whether observers believed that their presponse was
correct. (N.B. observers were unaware when questioned subse-
quently that the feedback was arbitrary.)

Measures and Analysis

Stationary bias was assessed using the forced-choice equivalent
of Equation 1, thus:

c �
	2

2
[Z(PC
NS�) � Z(PC
SN�)], (3)

where PC�NS is the proportion of correct Interval 2 (noise-signal)
responses, PC�SN is the corresponding proportion of correct Inter-

val 1 (signal-noise) response. The 	2 adjustment was simply to
scale this 2AFC measure of c so as to make it comparable with c
in the yes/no task in Experiment I.

As discussed in the Introduction, nonstationary bias was as-
sessed in two ways. First, via multiple regression. Here, the iden-
tity, I (Interval 1 or 2), and correctness, C (true or false), of the
previous N responses were used to predict the response identity on
trial t, thus:

It � ��
i�1

N

	iIt�i � 
iCt�i�� � � �, (4)

where �, �, and � are the estimated regression coefficients, and �
is a Gaussian error term. This approach is identical to that reported
previously by Jesteadt et al. (1977), with the following two ex-
ceptions. First, signal magnitude was not entered into the model,
since all stimuli were identical (impossible discrimination). Sec-
ond, we additionally entered the correctness of the preceding
responses into the model, since observers were observed to re-
spond differently if their presponse had been deemed “correct”/
“incorrect” (e.g., see Table 2). Note, however, that since the
stimuli were identical throughout, “correctness” was arbitrary and
determined at random.

Nonstationary bias was also measured in a second, novel man-
ner, by deriving a separate measure of bias, c, that depended on the
events of the preceding trials. To do this, trials were classified by
the pattern of previous responses (‘presponses’), and Equation 3
was applied independently to each of the resultant subsets. The
principle difficulty with this approach is data sparseness. Even
with only two variables (identity and the correctness), many pat-
terns of presponses will be observed only once during the course
of the experiment. This sparseness was mitigated in two ways.
First, we made the Markov assumption that observers’ criterion, �,
was conditional only upon the last N presponses. When N � 0, bias
was calculated with no regard for the preceding trials, as per the
traditional SDT approach. When N � 1, bias was calculated using
only those trials where the single preceding response was of a
particular identity and correctness (e.g., where the presponse was
Interval 2 and correct). As N increased, progressively more pre-
sponses were taken into account. Second, sparseness was further
reduced by examining only runs of identical presponses (all same
interval and correctness). It was speculated that such runs would
affect observers most consistently, though other patterns of presponses
may also induce biases. Thus, at each level of N, four measures of bias
were derived: c | �‘Interval 1’�Correct�, c | �‘Interval 1’�Incorrect�,
c | �‘Interval 2’�Correct�, c | �‘Interval 2’�Incorrect�.

Notably, trials preceded by N identical responses may also be
preceded by N � 1 identical responses. This may lead to estimates
of bias being artificially inflated at lower levels of N. Accordingly,
when computing bias each trial was only evaluated once, at the
highest possible value of N (where Nmax � 3). This is illustrated in
Table 1, which shows how a typical sequence of responses was
subdivided to calculate c | (“Interval2” � Correct) at various levels
of N.
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Results

Group-mean stationary bias did not differ significantly from
zero [t29 � 0.45, p � .656, n.s.]. This indicates that, unlike in the
yes/no task of Experiment I, naïve observers did not have a
consistent preference for one response alternative (Table 2; row 1).

To test for nonstationary bias, the regression model of Equation
4 was applied to each individual. The identity and correctness of
the preceding response significantly predicted the subsequent re-
sponses in 19 of 30 observers [p � .05], and explained on average
3.3% of response variability. This indicated that most observers
were influenced by their presponses, but that the effect was small.
To examine whether sequential dependencies extended to longer
runs, the number of presponses considered by the model was
progressively increased. Including a second presponse explained,
on average, an additional 1.2% of response variance, and a third
presponse explained a further 0.7%. However, these improvements
were not significant [both p  .8, n.s.], suggesting that only the
immediate presponse substantively affects observers’ decisions.
There was substantial individual variability, however, and in one
observer a second presponse improved R2 by 10%.

Nonstationary bias was then analyzed for a specific subset of
trials by measuring bias, c, conditional on previous trials. Table 2
(rows 2–5) shows that observers tended to alternate after incorrect
presponses, and perseverate after correct presponses.

This result is extended to longer presponse runs in Figure 4. As
the number of identical and correct presponses increased, observ-
ers became progressively more biased toward repeating the same
response (top-left panel). Thus, repeated Interval 1 responses were
likely to be followed by a further Interval 1 response, while
repeated Interval 2 responses were likely to be followed by a
further Interval 2 response. To compare Interval 1 (bottom curve)
and Interval 2 (top curve) presponses, the values of one were
compared to the additive inverse of the other. A repeated-measures
analysis of variance [rmANOVA] yielded no significant difference
between these curves [F(1,24) � 0.01, p � .966, n.s.], indicating
that the strength of the perseverance effect was similar, regardless
of whether the presponses had been Interval 1 or Interval 2.

Group-mean bias magnitudes, averaged across both presponse
identities (bottom-left panel), consistently increased as N increased
[rmANOVA: F(3,87) � 14.33, p � .001, �p

2 � 0.33]. However,
there was significant variability between observers [F(29,58) �

2.28, p � .004], with some observers exhibiting greater persever-
ance than others. This result is consistent with the individual data
reported in Section S3 (online Supplemental Material).

For responses following incorrect presponses, the relationship
between N and bias was nonmonotonic (top-right panel). After
only one incorrect presponse (N � 1), responses were biased in
favor of the alternate interval. However, after three identical,
incorrect responses (N � 3), observers were inclined to persever-
ate. Again, mean bias magnitude (bottom-right) was found to
increase as a function of N [rmANOVA: F(3,87) � 14.30, p � .001,
�p

2 � 0.33]. Note that in this format, unlike with the signed values
(top-right), substantial bias was observed in the N � 2 condition.
This is because of cancellation between observers (i.e., at N � 2,
some continued to alternate, while some began to perseverate).

Half (15) of the observers were instructed to perform a
frequency discrimination, and half were instructed to perform
an intensity discrimination. Since the task was impossible, the
stimuli were the same in both cases (two identical tones).
However, to investigate whether levels of bias were affected by
the initial task instructions, mean bias magnitude was analyzed
in a mixed-effects ANOVA, with N presponses as a within-
subjects factor, and Instruction Type as a between-subjects
factor (two levels: frequency discrimination; intensity discrim-
ination). No significant difference was observed between the
two groups [F(1,28) � 2.10, p � .160, n.s.], indicating that the
task instructions did not affect bias.

Discussion

These data demonstrate that naïve observers are biased even
on a 2AFC sensory judgment task. Although stationary bias was
minimal, levels of nonstationary bias were substantial, with
observers favoring whichever response had been correct on
previous trials. Thus, responses were liable to repeat following
positive feedback, and alternate following negative feedback.

That observers can be affected by sequential trial dependencies
has been reported previously (e.g., Jesteadt et al., 1977; Gold et al.,
2008). Notably though, the effects have tended to be small in both
magnitude and duration. When a previous analysis technique was
used in the present study, this pattern was replicated. The imme-
diate presponse explained 3.3% of response variability (a value in
good agreement with the 2.9% reported by Jesteadt et al., 1977),

Table 1
Schema for Selecting Trials Conditional on Repeated, Correct
“Interval 2” Presponses, for N � 0 . . . 3

Response 2 2 1 1 2 2 1 2 2 2 1 1 2 1 1 1 2 1

Correct 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1
N � 0 † † † † † † † † † † † †
N � 1 † † † †
N � 2 †
N � 3 †

Note. The first two rows show the target and response intervals for 18
hypothetical trials. For each subset of data, the trials that would be used to
calculate bias are marked with an obelisk (†). Analogous subsets of trials
(not shown here) were also constructed for those trials preceded by incor-
rect and/or Interval 1 responses.

Table 2
Percent Correct Responses to Each Interval, and the Resultant
Bias Index, c, for N � 0 and N � 1

N

Presponse Target interval

Bias, cInterval Correct 1 2

0 all all 48.8 50.9 0.03
1 no 45.0 56.2 0.14

yes 58.6 43.5 	0.19
1 2 no 54.1 45.8 	0.11

yes 37.9 58.0 0.25

Note. In the first row all the data is aggregated together (N � 0). The
near-zero value of c indicates minimal bias. In Rows 2–5, the same data is
partitioned contingent upon the immediately preceding pesponse (N � 1).
Positive and negative c values indicate Interval 2 and Interval 1 preferences,
respectively. The data is a subset of that given graphically in Figure 4.
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and only the single preceding trial affected most observers’ re-
sponses substantively. However, using a novel analysis method,
sequential dependencies on a subset of responses were shown
be long-lived and cumulative. Furthermore, these nonstationary
biases were symmetric across response intervals (i.e., correct
Interval 1 responses encouraged further Interval 1 responses,
and correct Interval 2 responses encouraged further Interval 2
responses). Since traditional (“molar”) performance measures
such as d= and percent correct average across all trials, these
biases would not be apparent, and would instead manifest as
lower sensitivity.

One concern with Experiment II is that the impossible nature
of the task (identical tones) may have caused observers to
behave unusually. Against this are the facts that (a) the observ-
ers were unaware when questioned that the task was impossible;
and (b) the data are consistent with Jesteadt et al., 1977, where
the task was not impossible. However, to address this possibil-
ity more directly, Experiment III applied the same techniques to
judgments of suprathreshold (nonidentical) stimuli. This also
allowed learning effects to be evaluated.

Experiment III: Nonstationary Bias on a
2AFC Task (Learning)

Experiment II showed that nonstationary bias is present in
unpracticed observers. Experiment III examined to what extent this
bias decreases with practice on a 2AFC task. Unlike in Experiment
II, the stimuli were not identical, allowing learning to be evaluated.

There is good evidence that sequential dependencies can be
reduced with practice. This evidence is provided principally by
studies of the gambler’s fallacy (Ayton & Fischer, 2004; Jarvik,
1951), and other related recency effects. For example, Lindman
and Edwards (1961) constructed shuffled decks, equally composed
of Red and Green cards. Observers were asked to predict the color
of each card in turn. Alternation (or “negative recency”) was
observed initially, with observers tending to avoid guessing the
most recently occurring outcome (e.g., preferring to predict
“Green” after a run of “Red” cards). Such alternation was reduced
in the second half of the experiment, with observers tending
toward chance in their responses (see also Edwards, 1961). This
suggests that response dependencies can be modified through

Figure 4. Experiment II: Group mean (
1 SE) bias as a function of N identical presponses. The left column
shows data for identical, correct presponses. The right column shows data for identical, incorrect presponses. The
upper row shows signed c values (Equation 3) for Interval 1 (solid, circles) and Interval 2 (dashed, triangles)
presponses. The lower row shows absolute bias magnitude, |c|, averaged across presponse identities. The
numbers in parentheses give the mean number of observations (averaged over intervals and observers). The gray
marker (far left) shows bias as estimated using all trials, as per classic SDT. Curves represent least-square
2nd-degree polynomial fits. See the online article for the color version of this figure.

1463BIAS AND PERCEPTUAL LEARNING



practice. However, it remains unclear whether these results—
obtained using tasks where outcomes are predicted a priori—
generalize to psychophysical tasks containing an actual signal,
where judgments are made a posteriori, and where the use of
information from previous trials is discouraged (often through
explicit instruction). Furthermore, it remains unclear to what ex-
tent any such changes in response-dependencies can explain the
improvements in performance commonly observed during percep-
tual learning. Accordingly, in Experiment III we examined to what
extent nonstationary bias is reduced by practice on a quintessential
perceptual learning task: pure tone frequency discrimination.

Method

This dataset was a subset of that detailed previously in Amitay,
Hawkey, and Moore (2005). Twelve observers (mean age 29.3; 7
female) performed seven blocks of frequency discrimination
across four sessions (3,850 trials total). Each block consisted of
550 trials, with five interleaved tracks of 100 adaptive trials, and
50 randomly occurring catch trials in which the target interval was
trivially apparent (50 Hz stimulus difference).

On each trial, observers were presented with two pure tones
separated by a 500-ms interstimulus interval. Each tone was 100 ms in
duration, including 20 ms cos2 on/off ramps, and was presented diotically
at 70 dB SL. The test frequency was always greater-than or equal-to
the standard tone frequency, which was fixed at 1 kHz. On adap-
tive trials, the frequency difference was determined by a two-down
one-up transformed staircase (Levitt, 1971). The initial frequency
difference, �F, was 20% of the 1 kHz standard (200 Hz). The test
frequency then varied in steps of 40 Hz until the seventh reversal,
in steps of 10 Hz for a further four reversals, and in steps of 2 Hz
thereafter. Step sizes were attenuated where necessary to prevent
�F � 0. Trial-by-trial feedback was presented visually for 500 ms
after each response. The 70.7% frequency discrimination limen
[FDL] was computed by averaging over the last eight reversals.

For analysis, the first and last three blocks of data were com-
bined, and the central forth block omitted. This aggregation was
necessary in order to provide sufficient data for the nonstationary
bias analyses, though it may have caused changes in performance
and bias to be underestimated. Performance was measured as mean

FDL, averaged across runs. Nonstationary bias was calculated
using the presponse-conditional analysis detailed in Experiment II,
with two modifications to account for the nonidentical stimuli.
First, since relatively few incorrect responses occurred (i.e., as
observers were no longer performing at chance), bias was mea-
sured following runs of correct presponses only. Second, trials
were subdivided by signal magnitude, in order to examine how
bias varied as a function of task difficulty.

Two participants were excluded from all analyses because they
exhibited significantly poorer thresholds than the average [p �
.001; FDLs �10 Hz throughout], and so could not provide any
estimates of bias at several signal magnitudes. They did, however,
exhibit the same basic pattern of reduced FDL (	63.4, 	20.2) and
reduced bias (–�0.14N, –�0.09N).

Results

Learning. Significant learning was observed (Figure 5A),
with mean FDL improving from 6.4 to 3.5 Hz [t9 � 3.14, p �
.012].

Bias. A 3-way repeated measures ANOVA was used to assess
how bias varied as a function of N presponses, session, and signal
level (Figure 5B). As in Experiment II, bias magnitude, c, in-
creased with the numbers of identical presponses [F(3,27) � 11.13,
p � .001]. However, both bias magnitude [F(1,9) � 9.56, p � .013]
and the rate at which it increased with N [F(3,27) � 3.29, p � .036]
decreased across sessions. This indicates that observers’ nonsta-
tionary bias decreased with practice. Post hoc tests indicated that
bias no longer increased significantly with N presponses in the
second half of the experiment [F(3,27) � 1.59, p � .193, n.s.],
though from inspection of Figure 5B it is clear that some nonsta-
tionary bias was present even after practice, even at N � 1.

Bias magnitude differed across signal level [F(3,27) � 15.22,
p � .001]. However, there was no straightforward relationship
between bias and difficulty, and bias was present even when the
stimuli were suprathreshold and ought to have been easily discrim-
inable [6–8 Hz: F(3,27) � 6.99, p � .001].

There was a strong correlation between changes in threshold,
and changes in the rate at which bias increased as a function of N

Figure 5. Experiment III: Group mean 
 1 SE (A) Sensitivity and (B) Bias magnitude, before (blue [black],
squares) and after (red [dark gray], circles) practice. Sensitivity was indexed by the 70.7% frequency discrim-
ination limen. Bias magnitude was measured in the same way as in Figure 4, and was measured independently
depending on the N presponses (abscissa) and the frequency difference between standard and comparison
(panels). See the online article for the color version of this figure.
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[r9 � 0.87, p � .001]. This suggests that a reduction in bias may
have contributed to the observed learning effect.

Discussion

The reported data demonstrated that nonstationary bias de-
creases with practice. The pattern of response dependencies in
Experiment II was replicated in naïve observers, but was atten-
uated in the latter half of testing. In naïve observers, levels of
bias were roughly comparable to those in Experiment II, and
were present even at suprathreshold signal levels. This indicates
that the nonstationary bias observed in Experiment II was not
simply an artifact of the (impossible) task, though we cannot
rule out the possibility that response bias is modulated by the
observer’s perception of task difficulty.

As in Experiment I, improvements in bias were correlated
with improvements in performance, indicating that some per-
ceptual learning may be due to a reduction in nonstationary
bias. The precise relationship between bias and performance is
explored further below.

Simulations: Relating bias to performance. In Experiment
I, group-mean stationary bias decreased from c � 0.31 to c �
0.01. In Experiment III, group-mean nonstationary bias de-
creased from c � 0.60N, to c � 0.19N (where N is the number
of successive, identical presponses). How significant are these
changes in terms of the observed changes in performance? To
answer this question, correction-factors were derived with
which “true” (i.e., unbiased) performance could be recovered.
These corrections were then applied to the session-by-session
performance/bias estimates in Experiments I and III. To the
extent that changes in threshold decrease after correcting for
bias, perceptual learning can be said to reflect a change in bias.
To the extent that changes in threshold increase after correction,
perceptual learning can be said to have involved a greater

increase in sensitivity than would otherwise be apparent. Here
we note evidence of both.

In Experiment I, psychometric functions were fitted to data
collected via Method of Constant Stimuli, and stationary bias
was measured. In these circumstances, the effect of bias is to
shift the psychometric function laterally (Figure 6A), and the
necessary bias-correction can be derived analytically. For a
cumulative Gaussian psychometric function, the requisite cor-
rection is:

DLcorrected � DL � c�, (5)

where DL is the estimated detection limen, c is estimated bias
(in d= units; see Equation 1), and � is the estimated standard
deviation of the psychometric function. When this correction
was applied to the data from Experiment I, the practice-induced
change in threshold increased by 52% (i.e., learning appeared
greater after correcting for bias). This increase was largely due
to hit rates being overestimated in Session 1, because of ob-
servers’ initial bias toward responding “yes”. Thus, the effect of
the stationary bias in Experiment I was to cause the true change
in sensitivity to be underestimated.

In Experiment III, discrimination limens were derived by
averaging reversals on adaptive staircases, and nonstationary
bias was measured. In this situation, the necessary correction
for bias is not obvious, and may depend on the precise param-
eters of the adaptive procedure. The required correction factor
was therefore determined computationally, using Monte Carlo
simulations. In short, performance was simulated given various
combinations of sensitivity (i.e., internal noise) and bias. Esti-
mates of performance, DL, and bias, c, were then derived, and
a bivariate function was fitted that best predicted true DLs
given estimated levels of DL and bias (see Section S4 in the
online Supplemental Material for details). The result is shown

Figure 6. Simulations: Changes in estimated threshold given varying levels of: (A) stationary bias, (B)
nonstationary bias. True threshold is indicated by heatmap color. Markers show estimated thresholds at three
levels of bias, given a low (circle), medium (square) or high (triangles) true threshold. Dashed lines show the
predicted change in estimated threshold, using the correction factors given in Equation 5 (A) or Equation 6 (B).
See the online article for the color version of this figure.
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in Figure 6B, and indicated that the necessary correction for
bias is well approximated (r2 � 0.99) by:

DLcorrected � �c � DL �
�cDL

2
, (6)

where �c is the estimated average rate at which bias, c, increased
after successive, identical presponses (Figure 3; bottom panels).
When this correction was applied to the data from Experiment III,
the apparent change in sensitivity decreased by 13%. That is,
approximately 0.65 Hz of the 4.9 Hz group-mean improvement
was accounted for by changes in bias alone. The remaining learn-
ing may be due to changes in sensitivity, or reductions in other
forms of bias not measured (e.g., more complex response depen-
dencies). Thus, a substantial minority of the learning in Experi-
ment III was due to reductions in bias.

General Discussion and Conclusions

This study investigated whether bias is reduced by practice, and
the importance of any such changes for our understanding of
perceptual learning. In untrained observers, bias was shown to be
present in both yes/no and forced-choice tasks. On a yes/no de-
tection task, observers exhibited a stationary bias in favor of
responding “yes” (liberal). On 2AFC discrimination tasks, observ-
ers were biased by the events of previous trials: perseverating after
correct responses and alternating after incorrect responses. Both
forms of bias were reduced through practice. Stationary bias was
negligible after 1,200 trials, while nonstationary bias was attenu-
ated, but was still present after several thousand trials. The changes
in bias meant that practice-induced changes in sensitivity were
liable to be underestimated in Experiment I (	52%), and overes-
timated in Experiment III (�13%). It appears, therefore, that a
substantial minority of perceptual learning represents observers
learning to ignore previous trials, and to predicate their responses
solely on the current sensory information.

Limitations and Further Considerations

Bias magnitudes, and any changes in bias with practice, may
have been underestimated in the present work. This is the case for
two reasons. First, because bias tends to be underestimated when
samples are relatively small, as was the case in Experiments II and
III (see Section S2 in the online Supplemental Material). And
second, because in the present work we measured only a small
subset of potential biases. Thus, in this case of nonstationary bias,
the present work only examined how observers shifted their cri-
terion after repeated correct/incorrect responses. Other trial-
sequences may also encourage observers to favor a particular
response (e.g., “ABAB,” or “AABB”), and such tendencies may
similarly be reduced by practice. Furthermore, observers may
exhibit dependencies that extend over a longer range than those
studied here. For example, their baseline preference for or against
a particular response may undulate throughout the course of the
experiment, and this too may be attenuated through practice. The
values reported in the present work should therefore be considered
only lower bounds, and may increase once other forms of bias are
accounted for.

A separate issue is that the present work only examined learning
when feedback was provided (supervised learning). The effects of

feedback on perceptual learning have been well documented (see
Dosher & Lu, 2009; Liu, Dosher, & Lu, 2014). For example, in the
absence of feedback, learning may be slowed or even, in some
observers, abolished (Herzog & Fahle, 1997; Liu, Lu, & Dosher,
2010). Similarly, there is evidence that both stationary (Petrov,
Dosher, & Lu, 2006) and nonstationary (Mori & Ward, 1995;
Matthews & Stewart, 2009) bias is attenuated when feedback is
presented.2 In light of the present results it remains an interesting
and open question how feedback moderates the relationship be-
tween learning and bias. Thus, bias reduction may be unchanged
when feedback is withheld, in which case it would play a propor-
tionally greater role in learning (relative to changes in sensitivity).
Conversely, it may be that feedback is required to reduce bias, and
that the decreased learning in the absence of feedback in part
reflects bias remaining invariant in such circumstances. Although
we currently have no data with which to test these two hypotheses,
the latter interpretation is consistent with a recent computational
model of learning by Liu et al. (2014). Therein, the rate at which
bias is attenuated was proportional to perceived accuracy, which
was regulated in turn by supervised feedback. It is also interesting
to note that the bias in Liu et al.’s (2014) model arises from
bottom-up, perceptual mechanisms, and top-down shifts in re-
sponse criterion are used to compensate for these biases. By
contrast, in signal detection theory it is traditionally assumed that
the causes of bias arise later in the decision processes [Figure 1],
after the sensory information has already been encoded (see be-
low).

Causes of Bias

The cause(s) of bias in naïve observers remain uncertain. With
stationary bias, one possibility is that the asymmetry in response
preference reflects a corresponding asymmetry in how observers
perceive the statistics of the task. Thus, observers may believe that
one response alternative occurs more frequently or yields greater
reward, in which case they may shift their criterion so as to favor
that response. This could be examined explicitly, by asking ob-
servers to rate the relative frequency and utility of each outcome,
or implicitly, by asking observers to choose between various
lotteries (e.g., by manipulating the relative reward of each response
alternative until the observer responds at chance; see Wu, Delgado,
& Maloney, 2009). Alternatively, stationary bias may stem from
naïve observers misestimating the statistics inherent in their own
decision process. For example, random perturbations in an observ-
er’s internal response to a sensory input mean that a signal may be
perceived even when none is present. If a naïve observer were
unaware of this fact (i.e., if they underestimated their own internal
noise magnitude), then the rational response may also be to addi-
tively shift their response criterion. For example, an otherwise
ideal observer that underestimated their internal noise in Experi-
ment I would have exhibited a liberal bias (as shown graphically in
Figure 2). Notably, small samples sizes typically lead to the
standard deviation of a normally distributed variable being under-

2 Though it is interesting to note that the no-feedback observers in
Herzog and Fahle (1997) actually performed more accurately, initially,
than those who were given feedback (see Figure 1 vs. Figure 2 of Herzog
& Fahle, 1997). This suggests that in some circumstances feedback may
increase bias magnitude.
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estimated. It may therefore be that naïve listeners have insufficient
information to accurately estimate their own internal noise levels,
and only acquire this information with practice.

The causes of nonstationary bias are potentially more compli-
cated, and may include normative, perceptual and statistical fac-
tors. First, in terms of demand characteristics: some observers may
believe, for example, that repeating the same response will give the
impression that they are being inattentive, uncooperative, or are
otherwise malingering. This could explain why observers alter-
nated after incorrect responses, but does not provide an intuitive
account of perseverant behavior following correct responses.

Second, biased behavior may emerge from perceptual mecha-
nisms relating to attention. For example, both physiological
(Degerman, Rinne, Salmi, Salonen, & Alho, 2006; Alho, Teder,
Lavikainen, & Näätänen, 1994; Hesselmann, Sadaghiani, Friston,
& Kleinschmidt, 2010) and psychophysical (Demany, Montandon,
& Semal, 2004; Hawkins et al., 1990) data suggest that signal gain
is heightened in attended regions. If observers paid greater atten-
tion to the target interval from the previous trial, then the corre-
sponding stimulus in the following trial may appear greater in
magnitude. This would manifest as perseveration when the ob-
server was previously correct (enhancement in same interval), and
alternation when previously incorrect (enhancement in alternate
interval). Notably, such an explanation predicts that if the task
instructions were inverted (“select the quieter or lower-pitched
tone”), then the pattern of response-dependencies would be re-
versed (alternations after correct responses, perseveration after
incorrect responses).

Third, response-dependencies may reflect a genuine belief
that trials are autocorrelated, such that the target interval in trial
t is related to the target interval in t – 1 (The Gambler’s fallacy:
�(t, t – 1)� 0). This misapprehension of the task statistics may
occur if, for example, observers assume (in some cases correctly;
e.g., Lindman & Edwards, 1961) that stimuli are being drawn
without replacement from a balanced set, such that the occurrence
of A makes the subsequent occurrence of B more likely. Alterna-
tively, an assumption of autocorrelation may result from peoples’
tendency to underestimate expected run lengths in a Bernoulli
sequence. Thus, even runs of moderate length may appear remark-
able, and may be taken as positive evidence that the target interval
is correlated across trials. However, perhaps the most parsimoni-
ous explanation for why observers may assume a degree of auto-
correlation is because in many real-world scenarios this assump-
tion is correct. A given course of action often will yield the same
outcome when repeated, and once an action ceases to yield positive
results the ideal strategy often is to switch. It is only in context
where events are independently distributed (e.g., psychophysical
experiments or casinos) that this strategy ceases to be ideal and
begins to be considered bias. In this light, the tendency for inex-
perienced observers to repeat actions that yielded positive out-
comes, and avoid responses that yielded negative outcomes, ap-
pears quite rational, and it is unsurprising that observers require
training to recalibrate their expectations.

We know of no conclusive reasons to favor any of these poten-
tial explanations, and it is possible that several factors may operate
concurrently. Notably though, all of these considerations—norma-
tive, perceptual and statistical—are largely unrelated to the spe-
cific tasks of the present study. We therefore predict that the
present bias effects should generalize across tasks and modalities.

It is also worth noting that the causes of bias reduction also
remain unclear. If bias arises primarily from statistical consider-
ations then it may be that observers are gradually learning the
statistics of the task. If this were the case then observers should
become more biased if trial-by-trial contingencies are present
during training. Alternatively, it may be that bias decreased be-
cause observers became fatigued, disengaged, or otherwise ceased
trying to draw associations between successive trials (i.e., which in
the present tasks happened to be the optimal strategy, but would
not be so if a priori trial dependencies existed). If this were the case
then bias should decrease even if trial-by-trial contingencies exist
during training. Furthermore, one might therefore expect bias to
decrease during a session, but peak at the start of each session or
following appropriate motivation (e.g., the sudden introduction of
a monetary incentive).

Implications for Perceptual Learning

That perceptual learning involves a reduction in bias suggests
that it is, at least in part, a high-order, “cognitive” process. This
stands in apparent contrast to the traditional view that perceptual
learning is entirely “sensory” and/or peripheral. Historically, this
view has been supported principally by the specificity of percep-
tual learning. For example, practice-induced improvements in per-
formance have been found not to generalize across a particular
temporal interval (Karmarkar & Buonomano, 2003; Wright,
Buonomano, Mahncke, & Merzenich, 1997) or visual orientation
(Fahle & Edelman, 1993; Fiorentini & Berardi, 1980; Karni &
Sagi, 1991). That changes in bias would be specific to the stimulus
parameters is unintuitive, and constitutes a potential counterexam-
ple to the present work. Notably, however, there exists a growing
body of evidence that not all learning is stimulus specific, and that
some of what is learned does generalize across stimulus parame-
ters (e.g., see Wright & Zhang, 2009). For example, frequency
discrimination training at one frequency induces similar, though
smaller, improvements in other spectral regions (Irvine, Martin,
Klimkeit, & Smith, 2000; Demany, 1985; Amitay, Irwin, &
Moore, 2006), while Jeter, Dosher, Liu, and Lu (2010) reported
analogous results for a visual orientation discrimination task. It is
interesting that in the study by Jeter et al. (2010), the proportion of
transfer was greatest in observers who had trained least (1,248
trials). This timescale is consistent with the timescale for bias-
reduction reported both here and in the gambler’s fallacy literature
(e.g., Ayton & Fischer, 2004; Anderson, 1960; Jarvik, 1951).
Furthermore, this timescale is also—as Jeter et al. (2010) note—
consistent with the early, rapid stage of perceptual learning
(Hawkey, Amitay, & Moore, 2004; Poggio, Fahle, & Edelman,
1992). Thus, it may be that perceptual learning is constituted by
multiple mechanisms of differing temporal dynamics. Early learn-
ing may be fast, generalizable, and primarily involve observers
learning to predicate their decisions solely on sensory information.
Later learning may be more gradual, protracted, stimulus-specific,
and may primarily concern the efficiency with which sensory
information is extracted and processed (potentially via physiolog-
ical changes in primary-sensory networks).

That learning involves higher-order processes may also help to
elucidate some otherwise puzzling phenomena, such as why ob-
servers with greater working memory often exhibited enhanced
sensory thresholds (e.g., Ahissar & Hochstein, 1997). Thus, if bias

1467BIAS AND PERCEPTUAL LEARNING



relates to observers’ ability to model the task statistics, then
observers with greater memory spans may be able to accurately
integrate information over more trials. Such observers would be
less prone to be misled by local vagaries in the task statistics, such
as short runs of identical trials, and so would tend to be less biased.
Consistent with this, Barron and Leider (2010) found that observ-
ers were biased when attempting to predict the outcome of a virtual
roulette wheel, but that this bias was attenuated when the previous
10 outcomes were displayed for review prior to every decision.

General Implications

The present findings also have a number of implications for
psychophysical research more generally. For researchers seeking
to avoid the confounding effects of bias, the present results are
encouraging. Although observers exhibited substantial bias, even
when using supposedly “bias-free” forced-choice methods, these
effects were greatly attenuated by practice. Stationary, yes/no bias
was eradicated after 1,200 trials, and nonstationary bias was sub-
stantially reduced over a similar timeframe. This suggests that one
or two practice sessions can largely remove the confounding
effects of bias. Moreover, if there are sufficient data with which to
estimate bias, corrections were presented here with which true
estimates of sensitivity can be recovered.

In some cohorts, however, neither of these approaches may be
feasible. For example, when dealing with clinical or developmen-
tal populations there is often not time for extensive practice ses-
sions, and small datasets preclude the quantification of bias. In
such populations, bias may be causing perceptual sensitivity to be
incorrectly estimated, and it may be necessary to develop test
protocols that encourage observers to treat each trial indepen-
dently.

Finally, it may be interesting to consider whether bias varies
between populations. For example, children appear, anecdotally, to
be highly influenced by the events of preceding trials, and even
static interval biases are often inflated in younger observers (e.g.,
Werner, Marean, Halpin, Spetner, & Gillenwater, 1992; Trehub,
Schneider, Thorpe, & Judge, 1991, though see Werner & Marean,
1991). It may therefore be that some group differences (e.g.,
developmental differences between younger and older listeners)
may be in part due to systematic differences in response bias,
rather than, as is often assumed, differences in perceptual sensi-
tivity. To answer this question it would be necessary to quantify
how response dependencies decrease as a function of age, as well
as of experience.

Conclusions

The principal, novel findings of this work are that:

(1) Bias is present in unpracticed observers, even on forced-choice
tasks. On a yes/no task, observers exhibited a stationary bias in favor
of responding “yes” (liberal). On a 2AFC task, observers were biased
by the events of previous trials (e.g., favoring the previous correct
interval), and for a subset of trial sequences these response-
dependencies were shown to be cumulative over many (4�) trials.
The presence of such bias may lead to perceptual sensitivity being
incorrectly estimated in observers naïve to psychophysical testing.

(2) Both stationary and nonstationary bias were reduced through
practice. Stationary bias was negligible after 1,200 trials. Nonstation-

ary bias was attenuated by practice, though was not completely
eradicated even after several thousand trials.

(3) Simulations indicated that reductions in nonstationary bias ac-
counted for 13% of learning on an 2AFC task. It may be that
additional learning is explained by changes in other response depen-
dencies, not measured. Correcting for stationary bias on a yes/no task
revealed that sensitivity improved by around 50% more than be would
otherwise apparent.
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