

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136154

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136154
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Multi-Objective Temporal Bin Packing Problem:
An Application in Cloud Computing

N. Aydina, I. Muterb,∗, S.I. Birbilc

aWarwick Business School, University of Warwick, Coventry, CV4 7AL, UK
bSchool of Management, University of Bath, Claverton Down, Bath BA2 7AY, UK

cEconometric Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands

Abstract

Improving energy efficiency and lowering operational costs are the main challenges faced in systems

with multiple servers. One prevalent objective in such systems is to minimize the number of servers

required to process a given set of tasks under server capacity constraints. This objective leads to the

well-known bin packing problem. In this study, we consider a generalization of this problem with

a time dimension, where the tasks are to be performed with predefined start and end times. This

new dimension brings about new performance considerations, one of which is the uninterrupted

utilization of servers. This study is motivated by the problem of energy efficient assignment of

virtual machines to physical servers in a cloud computing service. We address the virtual machine

placement problem and present a binary integer programming model to develop different assignment

policies. By analyzing the structural properties of the problem, we propose an efficient heuristic

method based on solving smaller versions of the original problem iteratively. Moreover, we design

a column generation algorithm that yields a lower bound on the objective value, which can be

utilized to evaluate the performance of the heuristic algorithm. Our numerical study indicates

that the proposed heuristic is capable of solving large-scale instances in a short time with small

optimality gaps.

Keywords: Bin packing, cloud computing, heuristics, exact methods, column generation

1. Introduction

The assignment of a set of tasks to a set of servers permeates as an important decision in many

operational problems. The utilization rate of the servers and operational expenses resulting from the

∗Corresponding author
Email addresses: nursen.aydin@wbs.ac.uk (N. Aydin), i.muter@bath.ac.uk (I. Muter), birbil@ese.eur.nl

(S.I. Birbil)

Preprint submitted to Elsevier April 16, 2020

assignment are the main considerations in such problems. One prevalent objective in these systems

is to minimize the number of servers required to process a given set of tasks under some server

capacity constraints. This is also known as the bin packing problem. The servers, which correspond

to bins, have limited capacity on one or more dimensions, and the tasks are characterized by the

capacity that they consume on the servers. The capacity dimension of this problem forges knapsack-

type constraints in the formulation, while the assignment of tasks to the servers is also required to

ensure that all tasks are processed. The bin packing problem is strongly NP-Hard (Martello and

Toth, 1990), and it has many applications in logistics and computer science. There is an extensive

literature on the bin packing problem. For a comprehensive review of this area, we refer the reader

to Delorme et al. (2016).

In this paper, we consider the temporal extension of the bin packing problem, known as the

temporal bin packing (TBP) problem (Cauwer et al. (2016); Furini and Shen (2018); Dell’Amico

et al. (2019)), where the tasks are to be performed in fixed start and end times during a planning

period. The TBP problem is an extension of the temporal knapsack problem for which Caprara et al.

(2013, 2016) proposed exact approaches based on recursive Dantzig-Wolfe decomposition (Dantzig

and Wolfe (1960)). Dell’Amico et al. (2019) developed an exact algorithm for the TBP along with a

number of lower and upper bounding methods. Below, we explain some of the problems that have

similar characteristics to the TBP problem. In particular, we focus on cloud computing, in which

the most important operational cost is the energy consumption, and propose a new extension which

gives rise to an extension of TBP with multiple objectives.

Cloud computing is an internet-based computing technology which allows users to customize

their on-demand computer requirements. Cloud companies provide infrastructure, platform and

storage to users as accessible services in a virtual environment. A user of a cloud computing service

requests a virtual machine (VM) with certain specifications (e.g. memory size, processing power

and hard-disk space) for a particular time period. These virtual machines act like real computers

with different operating systems and they are allocated to the physical servers in data centers.

In cloud computing literature, the assignment of VM requests to physical servers is known as the

virtual machine placement (VMP) problem. The scale of this problem is relatively large. In 2011,

Google released its one-month cloud data which includes approximately 650k tasks assigned to 12k

servers in a data center (Di et al., 2013). One of the main concerns in VMP operation is reducing

the energy consumption and maximizing the effectiveness of the shared physical servers. Each data

center consumes large amounts of electrical energy resulting in high operational cost and increased

2

carbon footprint (Beloglazov, 2013). Therefore, most of the studies focus on the minimization of

the number of active servers or the minimization of the operational cost of servers for the given set

of VM requests (Jiang et al., 2012; Dong et al., 2013). There are several variations of this problem

and, in general, the VM assignment decision does not take into consideration the temporal aspect of

the customer requests. Wu et al. (2012) and Liu et al. (2018) study the energy consumption in VMP

problem by assuming that all VM requests have the same arrival and departure times. The authors

propose metaheuristic algorithms to tackle this problem. In a similar setting, Gao et al. (2013)

investigate both energy consumption and resource wastage problems in cloud computing. They

propose a multi-objective heuristic algorithm to find non-dominated solutions. Wang et al. (2019)

extend the previous studies by focusing on both resource and traffic management constraints. The

authors present mathematical programming based algorithms to obtain upper and lower bounds

for the problem. Different than the aforementioned studies, Chaisiri et al. (2009) and Cohen et al.

(2016) focus on the uncertainty in VM capacity requests. Chaisiri et al. (2009) formulate a two-

stage stochastic integer programming model. While provisional capacity requests arrive in stage

one, actual VM requests are allocated to servers in stage two. Cohen et al. (2016) propose a chance

constrained bin packing formulation to handle uncertain demand and present several heuristics

based on the proposed model.

In the literature, few studies reflect the time dimensions in their models, and tailor heuristics for

the solution of this problem. Speitkamp and Bichler (2010) formulate a bin packing problem with

time dimension and propose an LP relaxation-based heuristic to solve the model. The fractional

assignments obtained from LP-relaxation are processed in an integer program to obtain integral

assignments. The authors discuss the difficulties for solving large-size problems. Calcavecchia

et al. (2012) extend the work of Speitkamp and Bichler (2010) and consider several aspects in the

objective function such as demand satisfaction and load balancing among servers. They also allow

to reallocate VM requests after the initial assignment. As a solution method, they propose a two-

phase heuristic. While each arriving VM request is assigned to a server in the first phase, the system

is periodically reviewed and reoptimized in the second phase. Cauwer et al. (2016) generalize the

bin packing problem by minimizing the unused resources over time. Although the authors consider

the time dimension, they assume that all VM requests arrive at the same time but can depart at

different times. They provide a constraint programming implementation and discuss the difficulty

of solving this problem. We refer the reader to Pires and Barn (2015) for a comprehensive review

of VMP and its variations.

3

Time dimension in assignment of tasks to servers also arises in other areas. Vehicle scheduling

problem concerns the assignment of vehicles to a set of trips that have predetermined departure

and arrival locations as well as fixed start and end times. The most common cost component is

associated with the travel of the vehicles between the arrival location of a trip to the departure

location of the following trip without serving passengers (also known as deadheading). Analogous

to the bin packing problem, the minimization of the number of active vehicles can be defined as

one of the objectives (Ferland and Michelon, 1988; Dell’Amico et al., 1993). Another assignment

problem involving a temporal dimension is the gate assignment problem (Mangoubi and Mathaisel,

1985). Here, the objective is to assign each aircraft departing or arriving at an airport to an available

gate while maximizing both the convenience to the passengers and the operational efficiency of the

airport. Essentially, these two problems are similar to the VMP when the capacity of the servers and

the sizes of the tasks are equal to one. However, building a feasible assignment for these problems

is fundamentally easier than that for VMP due to the capacity restriction that a single task can be

assigned to a server at any time.

An extension of the vehicle scheduling problem that has both time and capacity aspects is the

pick-up and delivery vehicle routing problem with time windows (Dumas et al., 1991). In this

problem, each customer request is associated with an origin location, where a certain demand must

be picked up, and with a destination where this demand must be delivered. The service time of

these requests at the pick-up or delivery locations must start within a time-window, and the number

of possible routes predominantly hinges upon the width of these windows. The case, in which the

length of the time windows is zero and the routing cost is replaced by the number of vehicles in

the objective, corresponds to the VMP problem. We employ this analogy later in forging our lower

bounding method.

The time dimension in the assignment brings about performance considerations, one of which is

the uninterrupted utilization of servers. This consideration is materialized in the vehicle scheduling

problem through incorporating in the objective function the minimization of the idle time of vehicles,

which is the time a vehicle is waiting at a location other than the depot. Even though these idle

periods do not affect the fuel cost, this non-value added time has repercussions in terms of crew

costs and inconvenience such as parking of the vehicle. The uninterrupted utilization of servers is

of paramount importance in VMP problems. As for the vehicle scheduling, no direct operational

cost is incurred when these servers are left idle since idle servers can be switched off to save energy.

Although switching idle servers off brings energy savings, it may affect the quality of service due

4

to the latency in reactivation (Beloglazov, 2013; Gu et al., 2018). Moreover, switch on, or fire-up,

of an idle server upon arrival of a VM request consumes considerable energy (Xie et al., 2013; Fan

et al., 2017). Hence, switching servers on frequently is not preferred by cloud service providers

due to both energy consumption and service quality degradation. Therefore, contiguity of server

utilization is desired in cloud computing, which can be achieved by minimizing the number of fire-

ups alongside the number of servers utilized. In more general terms, this objective is tantamount

to the minimization of the number of idle periods. Note that the durations of these idle periods,

which are considered in vehicle scheduling, are not taken into account in this type of objective.

In this paper, we model and tackle the VMP problem, which is intrinsically similar to the

temporal bin packing problem. We make the following contributions: To capture both aspects of

utilization discussed above, we define two objectives, namely minimizing the number of utilized

servers and minimizing the number of fire-ups. These objectives are inherently correlated as the

minimization of the number of active servers may result in enhanced utilization of the center (less

idle periods). However, we show that minimizing the number of active servers does not necessarily

minimize the number of fire-ups or vice versa. We employ a prominent technique in multi-objective

optimization, namely the weighted sum method, that leads to a mixed-integer programming model

with a single objective. By analyzing the structural properties of the problem, we propose an

efficient heuristic method for large-scale problems. This heuristic is based on eliminating fire-ups

by solving smaller optimization models. In order to evaluate the performance of this heuristic, we

develop an exact lower bounding method based on column generation, which is also used to obtain

an upper bound. The novelty of this method lies in the way the temporal aspect is incorporated

into the pricing subproblem. With our numerical study, we demonstrate that the proposed methods

achieve strong bounds for medium- to large-scale VMP instances.

2. Problem Formulation

In this section, we present a mathematical model for the VMP problem. We focus on two

objectives that have been considered to optimize the efficiency of the hosting systems, namely the

minimization of the number of servers and the minimization of the number of fire-ups. We analyze

the characteristics of these objectives and discuss the relationship between them. Let I = {1, 2, .., n}

be the set of VM requests to be hosted on a set of m identical physical servers indexed by K. The

planning horizon is of length T , and each VM request i ∈ I requires a certain amount of capacity,

ci ∈ Z+. Moreover, each VM i ∈ I resides in the system for the duration within the requested time

5

interval [si, ei], where si ∈ Z+ ∪ {0} and ei ∈ Z+ are the start and the end times of request i ∈ I,

respectively, and ei > si ≥ 0 holds. An arriving request is assigned to one of the servers k ∈ K,

which has an available capacity to host this request. Although, in cloud computing, VM requests

have various capacity requirements, such as CPU and memory, one resource is generally binding

with respect to others (Cohen et al., 2016). Hence, we assume the servers are limited by a single

resource, and the capacity of each server is denoted by C, which is also assumed to be at least one,

i.e. C ≥ 1. An idle server is switched on when an arriving VM request is assigned to it. Otherwise,

the server stays in stand-by mode. We make server allocation decisions by considering the requested

time intervals for the VM requests. We define binary variables xik to denote the VM assignment

decisions, where xik is equal to one only if VM i ∈ I is assigned to physical server k ∈ K. The

assignment of a VM to a server consumes the capacity of the server from the start to the end times

of this request. Thus, the capacity consumption of a server is affected only when a new VM enters

the system or an existing one departs from it. We define the index set τ to mark the VM start and

end times. That is, l ∈ τ assists to denote the start or the end time of a VM request such that we

obtain an ordered set of times, tl > tl−1 for l > 1. To designate the existence of a VM, we use a

binary parameter ail that is set to one only if VM request i exists at time tl ∈ {0, · · · , T}, l ∈ τ .

We assume that each VM request arrives and leaves at the beginning of a time period. Therefore,

we have ail = 0 for l = ei. To determine whether a physical server is used at all during the planning

horizon, we define the binary decision variable zk, which takes value one only if physical server

k ∈ K is used. The mathematical programming model then becomes

minimize
∑
k∈K

zk (1)

subject to
∑
i∈I

ailcixik ≤ zkC, k ∈ K; l ∈ τA, (2)

∑
k∈K

xik = 1, i ∈ I, (3)

xik, zk ∈ {0, 1}, i ∈ I; k ∈ K, (4)

where τA ⊆ τ denotes the index set of VM start times. Constraint set (2) ensures that the total

load on a physical server does not exceed its capacity. Constraints (3) guarantee that each VM

request is assigned to a physical server. This model is tantamount to the temporal bin packing

problem where the capacity restriction is imposed for a set of time periods corresponding to the

arrival times of VM requests.

Another important determinant of energy consumption is the number of times the machines

6

are switched on from the stand-by mode, in which the servers are at the maximum energy savings

mode. It has been pointed out by Fan et al. (2017) that the larger the number of fire-ups, the

higher the energy consumption is. To find out which servers are in use at time tl, we first define

a binary decision variable ykl taking value one if and only if the physical server k is on at time tl.

Then, we identify the fire-up of a server by checking its condition at two consecutive time periods.

We define wkl to denote the number of fire-ups on server k at time tl for l ∈ τA. We note that a

server can be switched on when a new request arrives so that wkl is defined only for arrival times.

If the difference ykl − ykl−1 for l > 1 is equal to one, then this means that we start server k at time

tl and wkl = 1. Consequently, the mathematical model that minimizes the number of fire-ups of the

physical servers is given by

minimize
∑
l∈τA

∑
k∈K

wkl (5)

subject to ykl ≤
∑
i∈I

ailcixik ≤ ykl C, k ∈ K; l ∈ τ, (6)

∑
k∈K

xik = 1, i ∈ I, (7)

ykl − ykl−1 ≤ wkl , k ∈ K; l ∈ τA : tl = si, i ∈ I, (8)

xik, y
k
l ∈ {0, 1}, i ∈ I; k ∈ K; l ∈ τ, (9)

wkl ≥ 0 k ∈ K; l ∈ τA. (10)

Unlike (1) - (4), this model features w−variables and the set of constraints (8), and the capacity

constraints (6) are imposed for both the arrival and departure times of the VM requests. Constraint

set (6) also ensures that the physical server is marked as idle (switched-off) if it is not in use at

time tl, l ∈ τ . In order to formulate constraints (8), we define a dummy variable yk0 and set it to

zero. Note that there is only non-negativity constraints on wkl since it can only be zero or one so

long as y variables are binary. This helps us reduce the number of binary variables.

Although two objectives, namely the minimization of the number of active servers and the

minimization of the number of fire-ups, are intrinsically similar, considering only one of them does

not necessarily yield the optimum for the other. The counterexamples below attest to the need for

an objective function incorporating both criteria.

Example 2.1. Figure 1 illustrates the first counterexample, where the optimal solution of model

(1) - (4) is not optimal for model (5) - (10). The servers in the figure are identical and each has

the capacity of three units. The optimal assignment is computed for three VM requests with the

7

objective of minimizing the number of servers. The problem data are given in the left-hand side of

Figure 1. At the optimal solution, two servers are required to schedule the three VM requests. In

Figure 1: An example demonstrating that the optimal solution of (1) - (4) is not optimal for (5) - (10)

this schedule, the total number of start-ups is three. Although this solution is optimal for model (1)

- (4), it is not optimal for model (5) - (10). We can improve the number of start-ups by assigning

VM request III to server 2. In the resulting schedule, the total number of start-ups becomes two.

Figure 2 illustrates the second counterexample, where the optimal solution of model (5) - (10)

is not optimal for model (1) - (4). Here, two VM requests arriving in separate time intervals are

placed in two servers. In the optimal solution, the total number of start-ups is two. However, this

schedule requires two physical servers. We can improve the number of required physical servers by

moving VM request II to server 1. In the resulting schedule, the total number of servers becomes

one.

Figure 2: An example demonstrating that the optimal solution of (5) - (10) is not optimal for (1) - (4)

Thus, the minimization of the number of fire-ups and the number of active servers should be

considered simultaneously in the objective function to capture the needs of the hosting service.

Mingling these two objectives using weighted sum method, we obtain the following optimisation

8

model:

(M1) minimize γ
∑
l∈τA

∑
k∈K

wkl +
∑
k∈K

zk (11)

subject to ykl ≤
∑
i∈I

ailcixik ≤ ykl C, k ∈ K; l ∈ τ, (12)

∑
k∈K

xik = 1, i ∈ I, (13)

ykl − ykl−1 ≤ wkl , k ∈ K; l ∈ τ : tl = si, i ∈ I, (14)

ykl ≤ zk, k ∈ K; l ∈ τ, (15)

ykl ≥ xik, i ∈ I; k ∈ K, l ∈ τ : tl = si, (16)

xik ∈ {0, 1}, i ∈ I; k ∈ K, (17)

ykl ∈ {0, 1}, wkl ≥ 0, k ∈ K; l ∈ τ, (18)

where γ > 0 is a scaling parameter. Constraints (12)-(14) are similar to constraints (6)-(8). Con-

straints (15) are defined to keep track of the number of physical servers scheduled throughout the

planning horizon. Constraints (16) are redundant due to (12), however, they tighten the LP relax-

ation of the model. Bin packing problems are usually highly symmetric and LP relaxation of the

problem provides a weak lower bound. The optimal server allocations obtained by model M1 can be

used to build equivalent solutions by just permuting the servers. In order to reduce the symmetry

of the solution space and tighten the LP relaxation bound, we introduce additional constraints as

the ones in (16) to the model M1. Given the requested capacities for the virtual machines, we can

compute a lower bound on the number of required physical servers as follows,

h =

⌈
maxl∈τ{

∑
i∈I

ailci/C}
⌉
. (19)

This lower bound can be used to select some of the physical servers for VM assignment. We enforce

the first h servers to be used for the allocation by introducing the constraint z1 + · · · + zh = h.

In addition, we can also fix the order of the servers used for the assignment with the constraints

zk+1 ≤ zk, k ∈ K. These constraints ensure that server k + 1 can be only used if the server k is

allocated before.

Next, we analyze the relationship between two objective functions in model M1. Under certain

conditions, minimizing the number of fire-ups together with the number of scheduled servers does

9

not change the minimum number of servers that can be obtained by solving the single objective

model (1) - (4).

Proposition 2.1. For any γ > 0, the optimal solution of (11) - (18) is also optimal for (1) - (4)

when
∑

k∈K zk ≤ 2.

Proof. Let Z∗ and W ∗ be the optimal number of servers and optimal number of fire-ups obtained

by solving the problem (11) - (18) for γ = 1, respectively. We first show for γ = 1 that there is no

feasible solution with one server, when the optimal number of servers Z∗ is greater than one. This

shall follow from contradiction. Suppose that Z∗ = 2 and there are total W ∗ fire-ups on these two

servers. Assume that there is a feasible solution with one server and Ŵ fire-ups. When we move the

assigned VM requests on server 2 to server 1, some requests may overlap and hence, the resulting

number of fire-ups in the feasible solution would be less than W ∗. Consequently, the objective value

of the feasible solution, 1+Ŵ , is less than the optimal objective value, 2+W ∗, and this contradicts

the optimality of Z∗ = 2 and W ∗.

The number of fire-ups increases, if we schedule the same number of VM requests to two physical

servers instead of one. Therefore, the optimal number of servers obtained by solving (11) - (18) is

the same as that obtained by solving (1) - (4) for any γ > 0 when the optimal number of servers

are less than or equal to two for model (11) - (18).

Unfortunately, this result cannot be generalized. The counterexample below shows that number

of fire-ups can be further decreased when we increase the number of servers.

Example 2.2. Figure 3 illustrates the counterexample, where the minimum number of active servers

obtained by (11) - (18) is not optimal for model (1) - (4). For this example, we set γ = 1. The

servers denoted by S1, S2 and S3 in the figure are identical and each has the capacity of four units.

During the planning horizon six VM requests arrive. While the capacity requirement for VM I is

three units, the remaining VMs require two units. The optimal assignment for model (1) - (4) is

given in Figure 3(a), where the optimal number of servers is two and the resulting number of fire-

ups is five. On the other hand, the optimal assignment for model (11) - (18) shown in Figure 3(b)

has three fire-ups and uses three servers. In order to decrease total number of fire-ups and active

servers, model (11) - (18) allocates six VM requests to three servers instead of two.

Since a virtual machine request may lead to a fire-up, the total number of fire-ups is at most

the number of virtual machine requests which is denoted by n. In order to ensure that the optimal

10

(a) Optimal assignment for model (1) - (4) (b) Optimal assignment for model (11)-(18)

Figure 3: An example demonstrating that the optimal number of servers obtained by (11)-(18) is not optimal for (1)

- (4)

number of active servers obtained by model (M1) is equal to the optimal number of servers obtained

by single objective model (1) - (4), we set γ = 1/n. This is tantamount to the lexicographic approach

in multi-objective optimisation, which minimises objectives in a predefined order. Therefore, the

minimum number of fire-ups is obtained for the minimum number of machines. In Section 5, we

also solve M1 by setting γ = 1 so as to evaluate the impact of this coefficient on the number of

active servers and fire-ups.

3. Bounding Methods

Being an extension of the VMP problem, M1 is also NP-hard, which makes it important to find

efficient solution strategies for large-scale problems. In this section, by analyzing the structural

properties of the problem, we propose methods that provide upper bounds on the VMP problem.

Heuristic algorithms, such as best fit and first fit, are considered to be efficient solution strate-

gies for the VMP problem in the literature (Cohen et al., 2016; Speitkamp and Bichler, 2010).

These methods iteratively allocate the arriving VM requests according to the size of the remaining

server capacities. As an initialization step, we apply a new constructive heuristic based on the

best fit procedure. To improve the initial solution, we propose an heuristic based on the iterated

neighbourhood search.

11

3.1. Constructive Look-ahead Heuristic (CLH)

Assigning VM requests to physical servers can be considered as a sequential decision-making

problem where VM requests are assigned one at a time. To schedule the VM requests, we order

them according to their arrival time such that s1 ≤ s2 ≤ · · · ≤ sm. At each time tl for l ∈ τA,

we assign a VM request to a physical server. Given the state of the system at time tl, look-ahead

placement heuristic allocates the arriving VM request to a server by considering the future VM

requests arriving at the next k time periods such that tl+1, ..., tl+k. This concept is illustrated in

Figure 4 for k = 2 for simple representation. In our numerical experiments, we set k = 3. VM

request I has been already placed in the first server. At time period t2, VM request II arrives to

the system. By considering the remaining capacity of working server(s), we determine all feasible

positions for the arriving request. As depicted in Figure 4(a), there are two feasible positions to

place VM request II. We can assign it to either currently active server 1 or to a new server 2. By

considering the VM requests III and IV arriving at time periods t3 and t4, respectively, we decide the

best position which minimizes the objective function in model M1. Note that in order to compute

the objective function value for each feasible position of VM request II, we temporarily assign VM

requests arriving at time periods t3 and t4 based on best fit heuristic. As illustrated in Figure 4(b),

placement of VM request II to server 1 results in three fire-ups and requires three physical servers.

On the other hand, by scheduling it to server 2, we can use two physical servers which result in two

fire-ups. For this example, we place VM II to server 2. When we are indifferent between possible

placement options, we use the generic best fit approach and assign the VM request to the server

with the lowest remaining capacity.

3.2. Recovery Algorithm

To improve on the solution from CLH, we design a simple and efficient heuristic which is based

on the combination of iterated neighbourhood search and mathematical programming. The solution

obtained from CLH is used as the initial solution. At each iteration, we define a neighbourhood

and reschedule the VM requests only in this neighbourhood by solving small- to medium-scale M1

problems.

Algorithm 1 gives the steps of the proposed recovery heuristic. The main idea behind this

approach is to eliminate the unnecessary fire-ups by rescheduling the VM requests initiating a fire-up

in the current solution. Thus, at each iteration, we find the eligible VM requests that cause a fire-up

to construct a neighbourhood (lines 3-5 and 10-14). One of the eligible VM requests is selected and

12

(a) Initial System

(b) Assignment Options

Figure 4: An illustration of VM assignment process in CLH

13

other VM requests overlapping with the selected VM (first degree neighbours) or arriving/leaving

within a predefined time interval (second degree neighbours) are identified. By selecting some of

these VM requests randomly, a neighbourhood is constructed (lines 16-18). Note that by including

the second degree neighbours, we increase the variability in the constructed neighbourhood which

decreases the risk of searching the solution in the same area.

The VM requests in the generated neighbourhood are removed from their assigned physical

servers in the current solution and rescheduled by solving a restricted version of model M1, where

VMs outside the neighbourhood are set to their current assignment. The current solution is updated

with the new schedule and the process is repeated until a stopping criterion is met. The proposed

algorithm is terminated if the solution is not improved in a specified number of iterations. The

overall structure of the algorithm is displayed in Algorithm 1.

The key component of this method is to generate a neighbourhood which helps to improve the

solution quickly. To increase the efficiency of the proposed algorithm, unnecessary calls to the

subproblem (model M1) should be eliminated, such as duplicated examination and rescheduling

of the VM requests in an unpromising neighbourhood. Therefore, we use tabu list strategy as in

the tabu search procedure (Glover, 1989). Recall that a neighbourhood is generated based on the

selected VM. In order to avoid rescheduling in the same neighbourhood, the selected VM is kept

in the tabu list for a certain number of iterations (line 13). In addition, to boost the speed of our

algorithm in the first iteration, we select the VM which has the most fire-ups in its adjacency set

(lines 6-7). This step helps us to quickly eliminate some of the unavoidable fire-ups.

4. Column Generation

In this section, we present a column generation algorithm to find a tight lower bound and an

upper bound for the VMP problem. To facilitate the demonstration and pave our way to the

presentation of this algorithm, we provide an alternate formulation for the VMP problem. We note

that the start of a request i on server k triggers a fire-up if i is the only VM on server k at its

start time si. This observation obviates the need for y−variables, which are used along with the set

of constraints (12) to indicate whether a server is used. In order to translate the load on a server

into a constraint without using the time index l ∈ τ , we first put the requests in ascending order

of their start times; that is, i < j if si < sj and ties are broken arbitrarily. We define two sets

δi = {j|j < i : ej > si} and δ+i = {j|j < i : ej ≥ si}. While the former set contains the requests that

are active at the start time of i, the latter is similar except that it includes those requests whose

14

Algorithm 1: Recovery Algorithm

1: Obtain initial solution (x̂, ŷ, ŵ, ẑ) from CLH

2: for i ∈ I do

3: Construct adjacency set Ai = {j ∈ I : si ≤ sj ≤ ei ∨ si ≤ ej ≤ ei}

4: Initialize tabu list

5: Initialize numiter = 1

6: while stopping criterion not met do

7: For each i ∈ I, define wki = ŵkl such that l = si

8: Define fire-up set S = {i ∈ I : wki = 1, k ∈ K}

9: if numiter = 1 then

10: Select VM j with the highest number of fire-ups in its adjacency set such that

j = arg maxj∈S{
∑

k∈K
∑

i∈Aj w
k
i }

11: else

12: Randomly select a VM j which is not tabu from set S

13: Add j to tabu list; update tabu list

14: Randomly select a subset of first degree neighbours R1 ⊂ Aj

15: Find the time interval (s, e) for set R1

16: Randomly select a subset of second degree neighbours

R2 ⊂ {i ∈ I \ Aj : s ≤ si ≤ e ∨ s ≤ ei ≤ e)

17: Set xik = x̂ik for i ∈ I \ (R1 ∪R2) in M1

18: Solve model M1 and obtain new solution (x̂, ŷ, ŵ, ẑ)

19: numiter = numiter + 1

20: return solution (x̂, ŷ, ŵ, ẑ)

15

end times are equal to the start time of i. This nuance is necessary due to the aforementioned

assumption, which stipulates that request i does not trigger a fire-up on server k, if there is request

j on k with ej = si even though j does not consume capacity at its end time. Therefore, j ∈ δ+i
but j /∈ δi, when ej = si.

Thus, the resulting model is written as

(M2) minimize 1/n
∑
l∈τA

∑
k∈K

wkl +
∑
k∈K

zk (20)

subject to
∑
j∈δi

cjxjk + cixik ≤ Czk, k ∈ K, i ∈ I, (21)

xik ≤ zk, k ∈ K; i ∈ I, (22)∑
k∈K

xik = 1, i ∈ I, (23)

∑
j∈δ+i

xjk − xik + wkl ≥ 0, k ∈ K; i ∈ I; l ∈ τA : tl = si, (24)

xik, zk ∈ {0, 1}, i ∈ I; k ∈ K, (25)

wkl ≥ 0, l ∈ τA; k ∈ K, (26)

where (23) stays intact, and the other constraints and variables undergo some changes in this new

formulation. First, by stripping the model of y−variables and time indices, the server utilization

is represented solely by z−variables. Constraint set (21) limits the total load on server k at the

start time si of each request i, which is the total size of the requests in δi plus ci, to the server

capacity. Though implied by (21), constraints (22) are added to improve the LP relaxation of MP2.

Constraint set (24) imposes that variable wkl takes value one if at tl = si for a request i, which is

assigned to server k, no request in δ+i is assigned to this server. As alluded to previously, a request

j, for which si = ej holds, does not consume capacity at si, and also, does not cause a fire-up at si,

if i is the only active request at that time.

Note that in M2, instead of the time index set with cardinality |τ | = 2n, the capacity and fire-

up controls are both handled at the start time of the requests whose cardinality is n. Comparing

these two models M1 and M2, we conclude that in the latter, both the number of variables and the

number of constraints shrink by 3nm. Although M2 is considerably more economical than M1 in

terms of both constraints and variables, we observe that its performance is inferior due to its poor

LP relaxation. In the next proposition, we show the strength of M1 over M2.

Proposition 4.1. The LP relaxation bound of M1 is at least as large as that of M2.

16

Proof. We show that any feasible LP solution of M1 is also feasible for M2, but not vice versa. To

prove the former, suppose that (x̂, ŵ, ŷ, ẑ) is a feasible solution of the LP relaxation of M1. x̂ and

ẑ satisfy (21) due to (12) where {j ∈ I : ajl = 1} = δi ∪ {i} for tl = si and (15). Moreover, (22) is

implied by (15) and (16). Feasibility of (23) is trivial as it is equivalent to (13). To show feasibility

of (24), we first lay out two equalities resulting from the LP relaxation solution of M1, which are

as follows for a given k ∈ K and l ∈ τ :

ŷkl = max

{
max
i:ail=1

{x̂ik},
∑
i∈I ailcix̂ik

C

}
, (27)

ŵkl = max{0, ŷkl − ŷkl−1}, (28)

where the former is due to (12) and (16) and the latter follows from (14). Substituting the terms,

we can rewrite (24) for i ∈ I, k ∈ K and tl = si as

wkl ≥ ŷkl − ŷkl−1 ≥ x̂ik −
∑
j∈δ+i

x̂jk. (29)

We arrange (29) as

ŷkl − x̂ik ≥ ŷkl−1 −
∑
j∈δ+i

x̂jk, (30)

where
∑
j∈δ+i

x̂jk =
∑
j∈I

ajl−1x̂jk for tl = si, because all the requests active at tl−1 also reside in δ+i ,

i.e. there is no start or end event between tl−1 and tl. Plugging this equality in (27), one of the

following holds: ŷkl−1 = maxj:ajl−1=1(x̂jk) or ŷkl−1 =
∑
j∈I ail−1cj x̂jk

C =

∑
j∈δ+

i
cj x̂jk

C . Therefore, we can

show that (30) is satisfied using the following two inequalities:

ŷkl − x̂ik ≥ max
j:ajl−1=1

{x̂jk} −
∑
j∈δ+i

x̂jk, (31)

ŷkl − x̂ik ≥

∑
j∈δ+i

cj x̂jk

C
−
∑
j∈δ+i

x̂jk. (32)

In both inequalities, the left-hand-side is non-negative due to (16). In (31), the right-hand-side

is non-positive since arg maxj:ajl−1=1{x̂jk} ∈ δ+i , while that in (32) is non-positive as cj/C ≤ 1,

j ∈ δ+i .

Now, we show that there exists a feasible LP solution for M2 that is not feasible for M1. To

that end, we give a simple counterexample with m = 2, n = 3, C = 1, k ∈ K and ci = 1, i ∈ I, for

which x̂ik = 1/2 for all i ∈ I and k ∈ K. The solution is demonstrated in Figure 5. These x−values

17

induce ẑ1 = 1 and ẑ2 = 1 due to constraints (21)-(22), which render ẑk = maxi

{
x̂ik,

∑
j∈δi

cj x̂jk

C

}
.

From (24), for i ∈ I\{1} and k ∈ K, the value of wkl , tl = si can then be found by ŵkl =

max
{

0, x̂ik −
∑

j∈δ+i
x̂jk

}
, which yields ŵ1

0 = ŵ2
0 = 1/2 and ŵki = 0, otherwise. The corresponding

objective function value is 7/3. This solution can be translated into the solution of M1 for x, w

and z variables directly, and we have to check whether they are feasible for M1 by deducing the

values of y through its constraints. Due to (16), ŷkl ≥ 1/2 for tl = 0, 1, 2 and k = 1, 2. Along with

these constraints, (14) stipulates that y10 = y11 = 1/2. However, these values violate (12) for k = 1

and tl = 1 because c1x11 + c2x21 = 1 > Cy11 = 1/2. In fact, the given values of x−variables in

the solution of M1, namely x̂ik = 1/2 for all i ∈ I and k ∈ K, induce y10 = y20 = y13 = y23 = 1/2,

y11 = y21 = y12 = y22 = 1, z1 = z2 = 1 and ŵ1
0 = ŵ1

1 = ŵ2
0 = ŵ2

1 = 1/2, and all the other variables

assume value zero. The corresponding objective function value of M1 is 8/3, which is larger than

that of M2.

Figure 5: An example demonstrating that a feasible solution of M2 is not feasible for M1

Constraint sets (21) and (24) exhibit a block-angular structure, which is decomposable for each

server k. Each solution satisfying (21) and (24) for a server k is a feasible schedule, which satisfies

the capacity constraints and those constraints facilitating the calculation of fire-ups. Applying

the steps of Dantzig-Wolfe decomposition (De Carvalho, 2002), which is similar to those for the

bin packing problem, and hence omitted here, we can reformulate this problem, referred to as the

18

master problem (MP), as follows:

(MP) minimize
∑
s∈S

rsλs (33)

subject to
∑
s∈S

αisλs = 1, i ∈ I, (34)

∑
s∈S

λs ≤ m, (35)

λs ∈ {0, 1}, s ∈ S, (36)

where S is the set of all feasible server schedules, and binary variable λs is equal to one, only if

schedule s is selected. For a given server schedule s, the parameter rs is its cost, which is one plus the

fire-up cost, and αis is a binary parameter taking value one, only if request i is covered in schedule

s. While constraint set (34), which is the counterpart of (23) after decomposition, ensures that

each request exists in exactly one of the selected schedules, constraint set (35) limits the number of

selected schedules to the number of available servers.

MP is a set partitioning problem with an extra constraint (35), which contains an exponential

number of variables due to the size of S. Enumerating S completely would be prohibitive even for

small instances. The prominent method to go about solving the LP relaxation of such problems

is column generation, which initializes a restricted MP (RMP) by replacing S with its subset S̄

and by dispensing the integrality constraint (36). The solution of RMP offers the dual information

associated with the constraint sets (34) and (35), which can then be utilized in a pricing subproblem

(PSP) to check dual constraints corresponding to the schedules. If the PSP discovers a violated

dual constraint, in other words a schedule with a negative reduced cost, it is added to the RMP,

and the same steps ensue. Otherwise, the column generation algorithm stops at the optimal LP

relaxation solution of the MP. We remark that the LP relaxation of MP is stronger than that of M2

since the former results from applying Dantzig-Wolfe decomposition to the latter. In Section 5, we

report the LP relaxation bound of MP obtained by column generation and that of M1, and show

that, on the average, MP also leads to stronger LP bounds than M1. To reach the optimal integral

solution of the MP, this column generation method must be embedded in a branch-and-bound tree,

which is known as branch-and-price (Barnhart et al., 1998). In this paper, we apply the column

generation algorithm without embedding it in a branch-and-bound tree. We initialize S̄ with the

schedules produced by the recovery heuristic. The output of the column generation algorithm is

a lower bound, which is used to evaluate the performance of our proposed heuristic, and a set of

columns along with their fractional values. We incorporate these columns to form a reduced form

19

of MP with integrality constraints and solve it using a mixed integer programming (MIP) solver

to obtain an upper bound for the VMP problem. Therefore, it attains an upper bound at least as

good as the recovery heuristic.

In the rest of the section, we explain the PSP and propose an algorithm to solve it exactly. The

objective of this problem is to find the schedule with the smallest reduced cost, which can be posed

as

min
s∈S
{rs −

∑
i∈I

uiαis − v}, (37)

where ui, i ∈ I are the dual variables associated with the constraints (34), v is the dual variable

associated with the constraint (35) and rs is a function of the selected requests, which are indicated

henceforth by binary variable xi. A selected request i, which is assigned when a server is idle,

induces a fire-up, rendering binary variable wl = 1, tl = si. We can write the PSP as

(PSP) minimize
∑

i∈I,l∈τA:tl=si

(wl/n− uixi) + 1− v (38)

subject to
∑
j∈δi

cjxj + cixi ≤ C, i ∈ I, (39)

∑
j∈δ+i

xj − xi + wl ≥ 0, i ∈ I, l ∈ τA : tl = si, (40)

xi ∈ {0, 1}, i ∈ I, (41)

wl ∈ {0, 1}, l ∈ τA, (42)

which produces a server schedule with the smallest reduced cost. This optimization problem can be

modeled on a graph G = (V,A). The set of nodes V = I∪{os, od} comprises the VM requests, which

are sorted in ascending order of their start times, and os = 0 and od = n + 1 are the source and

sink nodes, respectively. Therefore, in this topologically sorted node set, each node i ∈ V \{os, od}

coincides with the start time si of the corresponding request, which is also associated with the end

time ei. The arc set A is composed of (os, j) for j ∈ V \{os, od}, (j, od) for j ∈ V \os and pairs of

nodes (i, j) for i, j ∈ V \{os, od} and i < j. Each arc (i, j) is associated with a parameter dij = −uj

for i, j ∈ V \{od}, and diod = 0 for i ∈ V \{os, od}.

The optimal solution of PSP can be achieved by solving a shortest path problem with resource

constraints on G for which we design a labeling algorithm (Irnich and Desaulniers, 2005). This

algorithm is based on generating paths, or schedules, by processing partial paths on the nodes V ,

imposing constraints (39) along the path. To that end, we define a label Xi
p associated with a

partial path p from od to node i. We define five resources that are attached to this label, namely

20

RpL, RpP , RpA, RpE and RpC . While RpP and RpA keep track of the visited nodes (requests) and the set

of active requests on p (RpA ⊆ δi ∪ {i}), respectively, RpL represents the load of active requests of

partial path p, hence can be defined as RpL =
∑

j∈RpA
cjxj . R

p
E is the end time of active requests,

i.e., the time the server becomes idle. This resource accelerates the algorithm by facilitating the

calculation of the load on the server and of the number of fire-ups. Finally, RpC denotes the reduced

cost of partial path p, as defined in (38).

The labeling algorithm starts with a null label at os whose resources are initialized as zero and

empty sets except that RpC = 1− v. In the rest of the algorithm, the nodes corresponding to I that

are sorted in topological order of V are treated sequentially.

At step i of the algorithm, all the partial paths, and their related labels, on the node in the

ith position are extended to all the nodes in the jth position where j > i. The extension of

a label Xi
p associated with path p on node i to j to form a new label Xj

q related with path q

involves updating the values of the resource with the addition of the new node j, which is trivial

for RqP = RpP ∪ {j}. We first check whether RpE < sj holds, in which case RqE = ej , R
q
A = {j},

RqL = cj and RqC = RpC+dij +1/n due to the fire-up of the idle server with the start of j. Otherwise,

RqC = RpC + dij , R
q
A = RpA ∩ δj ∪ {j}, which induces RqL =

∑
j∈RqA

cjxj , and RqE = ej if ej > RpE , and

RqE = RpE , otherwise. The extension of the label is feasibly effectuated only if RqL ≤ C. The labels

accumulated at the end of the algorithm on od are the feasible server schedules and, depending on

how the column generation algorithm is implemented, one or more labels with RqC < 0 are added to

the RMP.

The efficiency of the labeling algorithm hinges upon the effectiveness of the elimination of the

labels that are not Pareto optimal. This is achieved by the dominance rule, whose validity is proved

below. This rule is similar to that used in pick-up and delivery vehicle routing problem with time

windows (Dumas et al., 1991).

Proposition 4.2. Label Xi
p on node i dominates another label Xi

q on this node, if RpC ≤ RqC,

RpE = RqE and RpA ⊆ R
q
A.

Proof. To prove this proposition, we show that any feasible extension of Xi
q from node i to od is also

feasible for Xi
p, and in all these extensions, Xi

q never attains smaller reduced cost than Xi
p. First,

for an extension of these labels to node j > i, which satisfy sj > RpE = RqE , both Xi
p and Xi

q have

the same load and end time as j becomes the only active request. Hence, all partial paths from j

to od attain the same values of the resources. Secondly, due to RpA ⊆ R
q
A and RpE = RqE as given in

the proposition, RpL ≤ RqL also holds so that any node j > i, which satisfy sj ≤ RpE = RqE , that is

21

visited by Xi
q is also available for Xi

p without incurring a fire-up cost. Therefore, in neither case,

the extension of Xi
q can attain a smaller reduced cost than that of Xi

p since RpC ≤ R
q
C .

Implementation Details

In order to accelerate the solution of the labeling algorithm, we aim to eliminate any unpromising

partial path as early as possible in the iterations. A partial path p on a node, say i, whose best

extension to od does not attain a negative reduced cost, can be eliminated without compromising

on the optimality of the algorithm. This best possible extension of Xi
p can be obtained by finding a

lower bound on its reduced cost at completion. To that end, at the outset of the labeling algorithm,

we find the maximum total dual values of the nodes in a reverse path from od to each node. We

denote the maximum total dual value from od to a node i by θi =
n∑
j=i

max(uj , 0). Note that θi from

od to i does not include those nodes j for which uj < 0. Therefore, if extending a label, say Xi
p,

associated with partial path p on node i to node j renders RpC − θj ≥ 0, then the extension of this

partial path to j is not carried out. This is a loose lower-bound as the load on the reverse path,

which is not monotonically increasing on the reverse path, is not considered for the speed-up of this

subprocedure. However, towards the end of the column generation algorithm, this bound leads to

fast termination of the algorithm.

We also show through the following proposition that some extensions of partial paths can be

eliminated without changing the optimal solution of the labeling algorithm.

Proposition 4.3. Extension of label Xi
p associated with partial path p to a node j ∈ V \{os, od} can

be disregarded, if uj < 0 and RpE ≥ ej.

Proof. Extension of Xi
p to j forms partial path q with RqC = RpC + dij = RpC − uj > RpC , which does

not trigger a fire-up since RpE ≥ ej > sj . All the feasible extensions of Xj
q to od are also feasible for

Xi
p since RqL ≥ R

p
L and RqA = RpA ∪ {j}. In all feasible extensions where Xi

q does not incur a fire-up

cost, Xi
p follows suit due to the given condition that RpE = RqE ≥ ej .

Invoking the labeling algorithm at each iteration leads to prolonged solution times due to its

complexity. In order to reach the optimal LP relaxation solution, solving the labeling algorithm is

imperative, though this can be deferred to the point in the algorithm when a heuristic version of

the labeling algorithm fails to generate a negative reduced cost schedule. This heuristic labeling

algorithm is predicated on a relaxation of the dominance rule, which accelerates the solution of

PSP at the expense of eliminating some of the promising schedules. In particular, we impose the

22

following relaxed dominance rule: Label Xi
p on node i dominates another label Xi

q on this node

if RpC ≤ RqC and RpL ≤ RqL. We have observed in the computational experiments that the solution

time of the PSP has reduced substantially with this relaxation, and the number of times the exact

labeling is invoked to prove optimality has been kept considerably low.

As alluded to previously, the labeling algorithm is capable of producing many schedules as

candidates to be added to RMP. The choice of how many of these schedules shall be added at each

iteration has an impact on the performance of the algorithm. We store the schedules (columns) with

negative reduced cost on od at the end of the labeling algorithm in a column pool so that it can be

searched for a negative reduced cost schedule before the PSP is called. If it does not contain such a

schedule, then the pool is cleared and then refilled again after the solution of the PSP. Otherwise,

we add the schedule with the most negative reduced cost to the RMP.

5. Computational Experiments

This section describes the computational experiments that we have performed to assess the

performance of our upper and lower bounding methods. The bounding methods are implemented

in C++ and run on an Intel Core i9-8950HK CPU (2.9 GHz) with 32 GB RAM. CPLEX 12.9 was

used as a mixed integer linear programming (MILP) solver. In all experiments, a limit of 30 minutes

is used unless otherwise indicated. In addition, the recovery algorithm is terminated if the solution

does not change within 20 iterations.

5.1. Experimental Setup

Our experimental design is based on various factors, such as the number of VM requests (n),

the length of the VM arrival period, the duration of the VM requests and the requested capacities

(ci). In our numerical experiments, we consider various problem sizes with n = {50, 100, 150, 200,

500, 1000}. The length of the arrival period is defined with respect to the arrival times of the

VM requests. Let s̄ denote the length of the arrival period. Then, we have maxi∈I si ≤ s̄. s̄ is

adjusted according to the total number of VM requests. We set s̄ ∈ {n, 1.2n} to represent tight

and relaxed arrival schedule. For each VM i ∈ I, the start and end times are randomly generated.

The start time, si, of VM i is a random integer in interval [0, s̄]. In order to have a uniform VM

load throughout the planning horizon, we divide the planning horizon into intervals of length 50

and generate a similar number of VM requests for each interval.

23

We test the proposed methods with respect to the length of requested time interval which can be

considered as the duration of a VM request. We define two sets for VM duration, denoted by dS and

dL, which are randomly generated in intervals [10, 30] and [20, 60], respectively. In order to generate

the requested capacity for VM request i (ci), we define two parameters, namely cmin and cmax where

cmin is the minimum capacity demand and cmax is the maximum requested capacity. Then, we can

generate integer capacity request for VM i randomly between cmin and cmax. In our experiments, we

set cmin = 25, and test the models for varying capacity requirements by changing cmax ∈ {50, 75}.

These two instances are denoted by cL and cH , respectively. In all of our numerical experiments, we

assume that the servers are identical and the capacity is set to C = 100. We label our test problems

by using all combinations of these parameters. For each combination, five instances were generated,

totaling 240 instances. The following notation is used to denote the solution methods tested in the

numerical experiments: (i) CG-LB/UB: Lower bound (LB) and upper bound (UB) obtained from

column generation algorithm; (ii) M1-OPT: Optimal solution of mixed integer programming model

M1; (iii) M1-LB: Optimal solution of the LP relaxation of model M1 by CPLEX; (iv) RMAT:

Recovery heuristic; (v) CLH: Constructive look-ahead heuristic; (vi) BF: Best Fit heuristic; (vii)

SMM: Server minimization model given by (1)-(4).

5.2. Numerical Results for Moderate Size Problems

In this section, we present and discuss our results from the experiments carried out. Table

1 reports the results of CG, RMAT, CLH, the solution of the exact model M1 (M1-OPT) and

its LP relaxation (M1-LB) by CPLEX for moderate size problems with n = {50, 100, 150, 200}.

The individual results for each test instance are given in Tables 5 - 8 in Appendix. In these

experiments, we set the maximum neighbourhood size to 50 for RMAT. We note that the alternative

formulation M2 was solely proposed to demonstrate the derivation of MP through decomposition.

Furthermore, it attains inferior lower bounds compared to M1, as proved in Proposition 4.1, so

that it is not considered in the computational experiments. The first four columns in Table 1 show

the characteristics of the test instances. The next three columns present the comparative measures

for CG, namely the average CPU time (in seconds) to find the optimal LP relaxation of MP, the

number of instances for which CG solves the LP relaxation of MP within the time limit, the average

lower and upper bound percentage gaps with the optimal solution. Upper bound optimality gaps

are given in parentheses. As pointed out previously, the column generation algorithm is initialized

with the schedules produced by RMAT so that the objective value found by CG-UB is always at

least as good as that of RMAT. Therefore, we only report the average CG-UB gap when its value

24

is better than the one provided by RMAT. The next two columns present the measures for M1-LB

corresponding to the average CPU time and the average percentage gap with the optimal solution.

The next two columns give the statistics for M1-OPT, namely average CPU time and the number

of instances out of five M1-OPT solved to optimality by MILP solver. We note that the solution of

CLH is used as an upper bound to limit the set of physical servers, K, in model M1. The last six

columns present the comparison measures for RMAT such as the average CPU time, the number

of instances out of five for which RMAT finds the optimal solution, the average percentage gaps

with M1-OPT, M1-LB, CLH and CG-LB. A noteworthy observation is that the optimality of RMAT

solution can be identified by comparing it with the M1-OPT, M1-LB and CG-LB solutions reported

in Tables 5 - 8 in Appendix. For instance, both CG-LB and RMAT obtain the objective value of

16.120 in the fifth instance of test (150, dS , cH) with s̄ = 150 in Table 7, while M1-OPT could not

find the optimal solution within 30 minutes and terminates with the objective value of 16.173.

Comparing the percentage gaps under this setup, we observe that RMAT performs well and

solves most of the problems to optimality. Although the percentage gap between RMAT and M1-

OPT increases with the increase in problem size, in the worst-case, it is less than 3.75%. When we

examine all individual test results presented in Tables 5 - 8, we observe that the average gap between

the objective values obtained by RMAT and M1-OPT over the instances solved to optimality by the

latter is less than two percent. On the other hand, the upper bound obtained by CG is generally the

same with the one obtained by RMAT. As can be seen in Table 1, the CG upper bound improves

the average optimality gap of the RMAT in one of the instances. More detailed comparison of the

upper bounds are presented in Tables 5 - 8 in Appendix. When we compare the CLH and RMAT,

we observe that RMAT improves the VM schedule obtained by CLH significantly.

When we look into the optimality gap of lower bounding methods, we observe that CG-LB

performs quite well when the requested VM capacities are high. The optimality gap increases when

the requested capacities are low and the duration of VM requests is short (see the rows corresponding

to dS and cL in Table 1). Although the average optimality gap can be over 4% in some cases, the

optimal objective values of CG-LB and M1-OPT is actually very close. When we examine the

individual test results given by Tables 5 - 8, we observe that the difference between the optimal

objective values of these two methods is less than two. On the other hand, relaxation lower bound

M1-LB is tighter when the requested VM capacities are low (see the rows corresponding to cL in

Table 1). This behaviour can be attributed to the impact of symmetry breaking constraints defined

for model M1. We observe that the optimal number of servers is closer to the lower bound on the

25

number of servers given by equation (19) when the requested VM capacities are low.

As expected, the CPU time of the methods is highly dependent on the instance characteristics.

As the number of VM requests increases, the solution time of CG, M1-OPT and RMAT increases.

Table 1 shows that M1-OPT rarely obtains the optimal solution within the specified time limits when

the number of VM requests is higher than 100. The solution time is also significantly dependent

on the duration of the VM requests. As the durations of the VM requests increase, the number of

active VM requests at each time period increases and the problem becomes more dense.

Table 1: Computational results for the test problems for n = 50, 100, 150, 200

Instances CG M1-LB M1-OPT Recovery Mat (RMAT)

n s̄ di cmax Time Succ Gap(UBGap) Time Gap Time Opt Time Opt M1-OPT Gap M1-LB Gap CLH Gap CG Gap

50 50 dS cL 7.0 5 4.21 0.1 4.80 12.8 5 8.3 5 0.0 4.80 9.30 4.21

cH 0.8 5 0.70 0.1 10.26 6.7 5 12.5 5 0.0 10.26 12.64 0.70

dL cL 5.6 5 1.94 (0.0) 0.1 0.07 159.4 2 39.9 1 3.33 5.70 6.19 3.90

cH 0.2 5 0.73 0.1 10.38 622.3 5 82.7 5 0.0 10.38 5.66 0.73

60 dS cL 5.6 5 4.05 0.1 2.67 121.1 5 5.5 5 0.0 2.67 6.79 4.05

cH 1.8 5 2.97 0.1 15.57 16.9 5 15.2 4 0.03 15.60 3.97 3.01

dL cL 3.6 5 2.60 0.1 4.65 767.7 3 37.4 3 0.0 5.77 7.39 3.59

cH 0.4 5 0.67 0.1 12.10 80.0 4 40.4 4 0.0 10.80 7.09 1.04

100 100 dS cL 192.2 5 4.21 0.1 5.33 16.1 4 51.9 4 0.0 6.09 6.97 4.91

cH 22.0 5 0.65 0.1 20.07 253.2 5 57.0 4 0.01 20.08 2.92 0.66

dL cL 204.8 5 - 0.2 - 1800 - 58.9 - - 5.92 4.35 6.32

cH 16.0 5 0.0 0.2 4.35 292.0 1 155.2 1 0.0 9.70 8.25 2.22

120 dS cL 683.2 5 3.59 0.1 0.07 73.4 3 41.1 2 3.71 6.52 4.15 7.89

cH 50.2 5 0.99 0.1 15.08 999.7 4 79.6 4 0.0 13.72 3.07 1.53

dL cL 133.6 5 - 0.1 - 1800 - 19.2 - - 9.67 3.54 7.52

cH 19.7 5 0.0 0.2 13.74 1800 - 190.6 1 - 8.70 5.34 2.57

150 150 dS cL 1236 2 3.72 0.1 0.04 212.7 5 17.6 3 2.01 2.05 7.09 3.72

cH 480.6 5 0.0 0.2 17.23 986.5 1 211.6 2 0.0 13.67 4.99 1.78

dL cL 412.4 5 - 0.2 - 1800 - 46.5 - - 5.29 4.87 4.51

cH 144.5 5 - 0.3 - 1800 - 115.8 - - 10.61 3.13 3.93

180 dS cL 697.0 1 0.0 0.1 4.76 108.8 5 13.7 4 2.22 7.26 4.06 0.0

cH 806.0 5 1.86 0.2 13.52 1233.8 3 69.6 2 0.02 13.14 8.51 1.87

dL cL 1519.0 2 - 0.2 - 1800 - 37.4 - - 9.28 2.40 9.39

cH 218.7 5 0.0 0.3 14.46 1800 - 218.2 - - 16.49 2.71 2.46

200 200 dS cL 1800 0 - 0.1 0.03 747.5 1 45.6 1 0.0 9.20 4.82 -

cH 1800 0 - 0.2 - 1800 - 139.7 - - 12.76 5.14 -

dL cL 1800 0 - 0.3 - 1800 - 23.8 - - 10.90 0.14 -

cH 817.7 3 0.0 0.4 20.84 1800 - 177.4 1 - 13.91 3.05 3.33

240 dS cL 1800 0 - 0.1 6.70 407.3 5 28.0 2 0.04 7.73 7.47 -

cH 1800 0 - 0.2 - 1800 - 124.2 - - 19.11 4.37 -

dL cL 1800 0 - 0.2 - 1800 - 28.4 - - 11.77 2.17 -

cH 1044.0 5 - 0.4 - 1800 - 228.9 - - 13.79 6.86 1.39

26

5.3. Numerical Results for Large Instances

In this section, we report our results for larger instances with two different experiments. In the

first experiment, we generate large-scale instances with n = {500, 1000} synthetically as described

in the experimental setup. On the other hand, our second experiment is performed on a real-world

data set recorded by Google in 2010 (Hellerstein, 2010).

In our first experiment, we compare the performances of RMAT, CLH and BF only since CG

and M1-OPT fail to solve these instances to optimality. Table 2 presents the average CPU times,

average number of physical servers and the average number of fire-ups obtained by these solution

methods with respect to various test instances. As depicted in Table 2, RMAT performs better than

CLH and BF and significantly improves the average number of fire-ups and the average number of

required physical servers. Although CLH and BF aim to minimize the number of fire-ups, they fail

to schedule the VM requests efficiently. The differences between the obtained number of fire-ups

are more striking when the requested capacities are higher and the durations of VM requests are

short. As the requested VM durations decrease, the overlaps between VM requests also decrease

which may increase the number of fire-ups (see the rows corresponding to dS in Table 2). When we

look into the computational times, we observe that the CPU time of RMAT is generally less than

ten minutes.

In the second experiment, we test the performances of the models on a real-world data set. We

extracted VM request data (approximate arrival and departure times and memory requirements)

recorded by Google in 2010 (Hellerstein, 2010). In order to mask the private information, VM

memory requirements were normalized to 0 − 1 scale in the given data set. Therefore, we set the

capacity of physical servers to 1 for this experiment. To generate test instances, we uniformly

sample VM requests arrived during the recorded time period. For each test problem, five instances

are sampled, totaling 25 instances. Since CG cannot be solved to optimality for these instances,

we compare the performances of RMAT, M1-OPT, M1-LB, CLH and BF on the test problems

with n = {1000, 2000, 3000, 4000, 5000}. We set the size of the neighbourhood for RMAT to 70.

Table 3 reports the CPU times, the average number of physical servers and the average number of

fire-ups obtained by these solution methods. We also report some additional statistics for RMAT.

The column “M1-OPT Gap” presents the average percentage gaps between the optimal number

of physical servers and fire-ups obtained by RMAT and M1. If the optimal solution could not be

found within the time limit, the best feasible solution obtained is used to compute the percentage

gaps which are reported in parentheses. Similarly, the column “M1-LB Gap” shows the average

27

Table 2: Computational results for the test problems for n = 500, 1000

Instances RMAT CLH BF

n s̄ di cmax Time z w Time z w Time z w

500 500 dS cL 53.82 12.8 16.0 0.52 13.2 48.0 0.03 13.2 60.8

cH 332.51 18.6 46.0 0.49 18.8 107.2 0.03 19.6 131.6

dL cL 54.82 22.0 23.6 0.45 22.4 43.4 0.03 22.4 50.8

cH 258.19 30.0 44.6 0.45 30.4 92.8 0.04 30.6 111.2

600 dS cL 89.66 11.6 16.0 0.32 12.2 50.2 0.03 11.8 62.0

cH 263.52 15.6 52.8 0.33 15.8 122.4 0.03 16.2 140.2

dL cL 85.28 19.2 20.0 0.43 19.4 45.0 0.03 19.6 51.8

cH 210.87 26.2 46.0 0.42 26.4 97.2 0.03 26.6 112.0

1000 1000 dS cL 63.21 13.0 22.2 1.10 13.4 92.0 0.08 13.6 118.0

cH 477.61 20.6 97.4 1.04 21.0 228.4 0.10 21.2 265.2

dL cL 76.86 22.0 24.4 1.43 22.0 72.4 0.11 22.0 80.4

cH 665.79 32.6 85.0 1.02 33.2 186.8 0.12 33.8 216.6

1200 dS cL 60.50 11.8 25.8 1.06 11.8 100.6 0.09 12.0 121.2

cH 514.73 17.6 105.2 1.07 18.0 240.8 0.09 18.2 284.8

dL cL 82.60 19.4 22.8 1.33 19.4 76.20 0.10 19.6 87.2

cH 598.91 27.2 75.2 1.29 27.6 196.6 0.12 27.6 227.2

percentage gaps between the total number of physical servers and fire-ups obtained by RMAT and

M1-LB. The individual results for each test instance are given by Table 9 in Appendix. Comparing

the results in Table 1 with those in Table 3, we note that the real case instances are easier to solve.

M1-OPT can be solved to optimality within 30 minutes time limit up to the problem size of 4000.

In addition, LP relaxation bound for M1-OPT is very tight for all instances. When we analyse

the data set, we observe that the optimal number of servers is generally equal to the bound given

by the equation (19). Therefore, symmetry breaking constraints defined for model M1 improve

the LP relaxation and help to solve the larger size instances to optimality. When we look into

the performance of RMAT, we see that it gives the optimal solution for almost all cases. We can

identify the optimal solutions for the test instances with size n = {3000, 4000, 5000} by comparing

28

the solutions of RMAT and M1-LB given in Table 9. For instance, both RMAT and M1-LB obtain

the same number of servers in the first test case of n = 5000 in Table 9 and the difference in number

of fire-ups is less than one. This shows that RMAT finds the optimal solution for this test case.

When we analyse the results obtained by CLH and BF, we observe that these heuristics generally

perform well. They find the optimal number of servers for most of the test instances as we can

identify from Table 9.

Table 3: Computational results for the real-world data set

Instance Size M1-LB M1-OPT RMAT CLH BF

n Time z w Time z w Opt Time z w M1-OPT Gap M1-LB Gap Time z w Time z w

1000 0.6 12.6 12.1 4.1 12.6 12.6 5 3.7 12.6 12.6 0.0 2.0 0.8 12.6 14.0 0.1 12.6 14.2

2000 24.5 24.0 23.4 32.2 24.0 24.0 5 8.3 24.0 24.0 0.0 1.2 2.4 24.0 26.6 0.1 24.0 27.8

3000 150.8 35.6 34.9 437.8 35.6 35.8 4 20.5 35.6 35.6 0.0 (-1.4) 1.0 3.4 35.6 39.8 0.3 35.6 43.2

4000 240.9 47.4 46.9 458.4 47.6 48.0 3 48.6 47.6 47.6 0.0 (-1.0) 1.0 5.6 47.6 53.0 0.4 47.6 55.6

5000 971.5 60.2 59.8 1800 61 62.2 - 127.3 60.8 60.8 - (-1.2) 1.3 8.0 60.8 68.4 0.7 60.8 73.0

5.4. Single Objective vs. Multiple Objectives

In this section, we compare the performances of M1-OPT, RMAT and that of single objective

model (1)-(4), denoted by SMM, in terms of the optimal number of required physical servers and

fire-ups separately. Note that, in Table 4, we only report the average test results where both SMM

and M1-OPT are solved to optimality. The first four columns in Table 4 show the characteristics

of the test instances. The fifth column shows the number of test instances solved out of five within

the specified time limit by SMM and M1-OPT. We note that the instances are solved by RMAT

with the average time of 32.9 seconds, whereas in those parameter settings where the number of

solved instances is smaller than five, SMM and/or M1-OPT fail to solve all instances to optimality

within 30 minutes. The next columns present the comparison measures for each method, namely

the average CPU time (in seconds) to solve the instances, the average number of physical servers

and the average number of fire-ups. As Table 4 depicts, the optimal number of servers is equal for

SMM and M1-OPT in all instances. By comparing the average number of fire-ups obtained by SMM

and other methods, we observe that the fire-ups can be significantly reduced when it is included

in the objective function. The improvements in the number of fire-ups are more significant as the

problem size increases (see the rows corresponding to n = 150, 200 in Table 4). Thus, by considering

the minimization of fire-ups as one of the objectives in the VMP problem, we can improve the VM

assignment schedule and increase the effectiveness of the shared physical servers.

29

In order to evaluate the impact of coefficient γ on the optimal number of active servers and

fire-ups, we repeat the numerical experiment by setting γ = 1. The average test results where both

SMM and M1-OPT are solved to optimality are reported by Table 10 in Appendix. Comparing

the results where both SMM and M1-OPT solved all five test cases in Table 4 with those in Table

10, we observe that the optimal number of active servers and fire-ups does not change when we

level both objectives with γ = 1. However, we observe that the number of solved tests changes for

M1-OPT when we adjust the value of coefficient γ.

Table 4: Average server and fire-ups

Instances # Solved SMM M1-OPT RMAT

n s̄ di cmax Time z w Time z w Time z w

50 50 dS cL 5 1.9 9.8 11.4 12.8 9.8 9.8 8.3 9.8 9.8

50 50 dS cH 5 1.5 12.8 20.8 6.7 12.8 13.0 12.5 12.8 13.0

50 50 dL cL 2 317.1 15.0 16.0 159.4 15.0 15.0 39.9 15.5 15.5

50 50 dL cH 5 173.7 23.0 25.8 622.3 23.0 23.0 82.7 23.0 23.0

50 60 dS cL 5 6.5 8.4 10.6 121.1 8.4 8.4 5.5 8.4 8.4

50 60 dS cH 5 1.2 11.8 18.8 16.9 11.8 12.2 15.2 11.8 12.4

50 60 dL cL 1 764.4 15.0 15.5 643.4 15.0 15.0 48.8 15.0 15.0

50 60 dL cH 4 23.5 21.2 25.5 80.0 21.2 21.2 34.4 21.2 21.2

100 100 dS cL 4 1.1 11.0 17.7 16.1 11.0 11.0 45.9 11.0 11.0

100 100 dS cH 5 17.9 16.8 45.2 253.2 16.8 18.0 47.0 16.8 18.2

100 100 dL cH 1 346.7 24.0 34.0 292.0 24.0 24.0 69.6 24.0 24.0

100 120 dS cL 3 3.6 9.7 18.0 73.4 9.7 9.7 19.0 9.7 9.7

100 120 dS cH 4 34.5 13.5 42.0 999.7 13.5 16.0 57.7 13.5 16.0

150 150 dS cL 5 24.1 10.8 20.0 212.7 10.8 10.8 17.6 11.0 11.2

150 150 dS cH 1 53.3 18.0 62.0 986.5 18.0 22.0 104.4 18.0 22.0

150 180 dS cL 5 163.6 9.8 24.0 108.8 9.8 9.8 13.7 10.0 10.0

150 180 dS cH 3 63.1 14.0 62.3 1233.8 14.0 19.7 62.2 14.0 20.0

200 200 dS cL 1 178.3 12.0 32.0 747.5 12.0 12.0 22.1 12.0 12.0

200 240 dS cL 5 56.5 10.6 39.4 407.3 10.6 11.0 28.0 10.6 11.8

30

6. Conclusion

In this paper, we looked into the assignment problem arising in cloud computing, namely the

virtual machine placement problem. This problem has been studied extensively in the literature,

however, we aimed to establish its position in the general combinatorial optimization literature

by discussing its similarity to various prominent problems, the bin packing problem with time

dimension being the most relevant. The major impact of this study is in the way the multi-objective

optimization problem is modeled, where the usual bin packing objective minimizing the number of

servers is augmented with the energy efficiency related objective of minimizing the number of fire-ups

on the used servers.

In order to solve the model, we proposed a heuristic algorithm based on exact solutions of smaller

problems defined on neighborhoods of interest iteratively. The performance of this heuristic has

been proven to be superior, which is proved by the MIP solution and a lower bound obtained by

our proposed column generation algorithm. Even though the VMP problem modeled with identical

servers, the heuristic algorithm is capable of solving servers with variable capacities. However, the

column generation algorithm must be modified to handle the heterogeneous case, which we plan to

work as a future study.

We plan to extend our work presented here to the problems arising in various applications, e.g.,

scientific computing services where the computing requests are to be assigned to high-performance

computers. This application brings about several other concerns regarding the priority, precedence

and computational speed of the requests.

Acknowledgment

We appreciate the comments offered by the referees. Their comments certainly helped us improve

this work considerably.

31

Appendix

Table 5: Computational results for each test instance (n = 50)

Instances s̄ = 50 s̄ = 60

(n, di, cmax) CG-LB/UB M1-LB M1-OPT RMAT CLH CG-LB/UB M1-LB M1-OPT RMAT CLH

(50, dS , cL) 8.798/9.180 9.166 9.180 9.180 10.200 7.905/8.160 8.146 8.160 8.160 9.180

9.971/10.200 10.192 10.200 10.200 11.220 7.841/8.160 8.141 8.160 8.160 9.200

8.670/9.180 8.160 9.180 9.180 10.200 8.415/9.180 8.150 9.180 9.180 9.200

10.725/11.220 11.208 11.220 11.220 12.240 8.160/8.160 8.147 8.160 8.160 9.180

9.818/10.200 9.175 10.200 10.200 11.220 8.840/9.180 9.165 9.180 9.180 9.200

(50, dS , cH) 12.240/12.240 11.220 12.240 12.240 15.340 11.730/12.240 10.199 12.240 12.240 12.300

14.280/14.280 12.230 14.280 14.280 15.420 14.300/14.300 11.218 14.300 14.300 14.380

13.280/13.280 12.234 13.280 13.280 15.340 10.740/11.240 10.199 11.240 11.240 12.320

13.800/14.280 12.234 14.280 14.280 15.400 11.750/12.260 10.199 12.240 12.260 12.300

11.220/11.220 11.202 11.220 11.220 13.260 10.030/10.200 10.187 10.200 10.200 11.300

(50, dL, cL) 16.065/16.320 15.288 16.320† 16.320 17.340 13.849/14.280 13.258 14.280† 14.280 15.300

14.496/15.300 14.278 15.300† 15.300 16.320 15.810/16.320 15.292 16.320 16.320 18.360

14.025/14.280 13.249 14.280† 14.280 15.300 14.663/15.300 14.268 15.300 15.300 16.320

14.729/15.300 15.284 15.300 15.300 16.320 14.293/15.300 14.275 15.300† 15.300 16.320

15.300/15.300 15.295 15.300 16.320 17.340 14.246/14.280 14.279 14.280 14.280 15.300

(50, dL, cH) 18.700/19.380 18.353 19.380 19.380 20.400 22.440/22.440 19.363 22.440 22.440 24.520

22.440/22.440 21.401 22.440 22.440 23.460 18.870/19.380 18.351 19.380 19.380 20.400

24.480/24.480 21.400 24.480 24.480 25.500 18.910/19.380 18.352 19.380† 19.380 21.420

27.540/27.540 23.446 27.540 27.540 29.600 24.480/24.480 22.424 24.480 24.480 26.520

23.460/23.460 21.402 23.460 23.460 25.500 20.400/20.400 17.330 20.400 20.400 21.420

† M1-OPT could not find the optimal solution within 30 minutes.

32

Table 6: Computational results for each test instance (n = 100)

Instances s̄ = 100 s̄ = 120

(n, di, cmax) CG-LB/UB M1-LB M1-OPT RMAT CLH CG-LB/UB M1-LB M1-OPT RMAT CLH

(100, dS , cL) 9.595/10.100 9.090 10.100 10.100 11.170 9.617/10.100 10.091 10.100 10.100 11.170

10.942/11.110 11.101 11.110 11.110 12.180 10.352/11.110 10.091 11.110 11.110 11.170

11.511/12.120 12.112 12.120 12.120 13.190 8.964/10.100 9.086 9.090 10.100 10.140

11.254/12.120 11.106 12.120† 12.120 13.190 9.679/10.100 10.091 10.100 10.100 11.180

10.605/11.110 10.095 11.110 11.110 11.140 9.176/10.100 9.086 10.100† 10.100 10.160

(100, dS , cH) 20.210/20.210 16.153 20.210 20.210 20.280 13.705/14.210 13.120 14.210† 14.210 14.340

17.180/17.180 13.129 17.180 17.180 18.270 12.660/13.150 11.103 13.150 13.150 13.250

15.180/15.180 13.128 15.180 15.180 16.290 15.165/15.170 13.127 15.170 15.170 17.340

15.665/16.180 14.137 16.170 16.180 16.280 12.145/12.150 11.102 12.150 12.150 12.260

16.160/16.160 14.130 16.160 16.160 16.300 14.165/14.170 12.125 14.170 14.170 14.210

(100, dL, cL) 17.107/18.180 17.167 19.190† 18.180 19.220 14.235/15.150 14.135 15.150† 15.150 15.180

18.012/19.190 18.171 19.190† 19.190 19.190 14.764/16.160 14.136 16.160† 16.160 17.180

17.128/18.180 17.166 18.180† 18.180 19.210 14.014/15.150 14.134 15.150† 15.150 15.170

17.026/18.180 17.164 19.190† 18.180 19.230 16.413/17.170 16.152 17.170† 17.170 18.210

16.218/17.170 16.156 18.180† 17.170 18.180 15.756/17.170 15.147 16.160† 17.170 18.220

(100, dL, cH) 22.220/23.230 22.216 24.250† 23.230 26.300 20.203/21.220 20.195 21.250† 21.220 22.310

28.290/28.310 23.226 28.320† 28.310 30.400 25.270/25.270 22.218 26.330† 25.270 26.370

24.240/24.240 23.229 24.240 24.240 26.270 20.537/21.210 20.194 21.210† 21.210 22.300

22.220/23.240 21.209 24.240† 23.240 25.260 22.745/23.250 21.205 23.330† 23.250 25.340

26.785/27.290 25.246 27.290† 27.290 29.340 21.715/22.220 20.194 22.220† 22.220 23.270

† M1-OPT could not find the optimal solution within 30 minutes.

33

Table 7: Computational results for each test instance (n = 150)

Instances s̄ = 150 s̄ = 180

(n, di, cmax) CG-LB/UB M1-LB M1-OPT RMAT CLH CG-LB/UB M1-LB M1-OPT RMAT CLH

(150, dS , cL) - /10.067 10.064 10.067 10.067 11.147 10.067/10.067 10.062 10.067 10.067 11.160

10.822/11.073 11.068 11.073 11.073 12.140 - /9.060 9.054 9.060 9.060 9.120

- /11.067 10.060 10.067 11.073 11.120 - /10.067 8.053 9.060 10.067 10.107

11.493/12.080 12.074 12.080 12.080 13.127 - /10.067 9.057 10.067 10.067 10.127

- /11.080 11.070 11.073 11.080 12.120 - /11.073 11.068 11.073 11.073 12.147

(150, dS , cH) 18.146/18.147 15.114 18.147 18.147 19.247 13.683/14.180 13.122 14.180† 14.180 16.307

17.680/18.187 16.117 18.187† 18.187 19.313 11.838/12.087 11.007 12.087 12.087 13.200

17.160/17.167 16.101 17.160† 17.167 18.273 14.121/14.133 12.074 14.133† 14.133 16.313

15.216/16.127 14.095 16.127† 16.127 16.240 14.650/15.153 13.102 15.153 15.153 15.260

16.120/16.120 14.092 16.173† 16.120 17.267 15.146/15.160 13.095 15.153 15.160 16.300

(150, dL, cL) 18.624/19.127 18.119 20.133† 19.127 20.167 - /16.107 15.098 17.113† 16.107 17.153

20.039/21.140 20.130 22.147† 21.140 22.167 - /17.120 15.100 18.120† 17.120 18.133

19.756/21.140 20.127 21.140† 21.140 21.153 - /16.107 15.097 -∗ 16.107 16.127

18.875/20.133 19.122 21.160† 20.133 21.153 15.690/17.120 16.101 17.140† 17.120 17.133

19.001/19.127 18.120 20.133† 19.127 21.180 15.603/17.113 15.099 17.113† 17.113 17.133

(150, dL, cH) 23.661/25.173 23.152 26.227† 25.173 26.240 25.173/25.180 20.133 25.173† 25.180 26.267

27.690/28.190 25.162 -∗ 28.193 28.267 20.983/22.153 20.129 22.247† 22.153 22.240

27.704/29.200 26.169 30.380† 29.200 31.307 24.685/25.200 21.140 26.280† 25.200 26.327

28.691/29.193 26.171 -∗ 29.193 29.280 24.186/24.193 21.136 24.207† 24.193 25.293

23.171/24.167 22.141 -∗ 24.167 25.253 24.063/25.167 22.146 25.220† 25.167 25.267

† M1-OPT could not find the optimal solution within 30 minutes.

∗ M1-OPT could not find a feasible solution within 30 minutes.

34

Table 8: Computational results for each test instance (n = 200)

Instances s̄ = 200 s̄ = 240

(n, di, cmax) CG-LB/UB M1-LB M1-OPT RMAT CLH CG-LB/UB M1-LB M1-OPT RMAT CLH

(200, dS , cL) - /12.060 11.054 12.060† 12.060 13.120 - /10.060 9.049 10.060 10.060 11.130

- /12.060 12.056 12.060 12.060 13.145 - /10.050 9.045 10.050 10.050 11.140

- /14.075 13.064 14.075† 14.075 15.125 - /11.055 11.050 11.055 11.060 12.140

- /12.060 10.049 11.060† 12.060 12.130 - /10.060 9.045 10.050 10.060 10.130

- /12.060 11.055 12.060† 12.060 12.090 - /12.065 12.057 12.060 12.065 13.165

(200, dS , cH) - /17.125 15.084 18.175† 17.125 18.260 - /15.130 13.070 15.160† 15.130 17.275

- /17.125 14.066 17.195† 17.125 17.275 - /15.125 12.056 14.160† 15.125 15.265

- /17.105 15.071 17.130† 17.105 17.230 - /15.120 14.071 15.185† 15.120 16.260

- /14.070 13.062 13.080† 14.070 14.190 - /15.175 13.107 15.190† 15.175 15.315

- /15.100 14.069 15.135† 15.100 18.205 - /17.150 13.078 17.175† 17.150 17.250

(200, dL, cL) - /21.105 18.089 21.110† 21.105 21.140 - /18.090 17.080 19.115† 18.090 20.135

- /21.105 19.092 21.110† 21.105 21.125 - /16.085 14.069 16.080† 16.085 16.100

- /21.110 19.092 21.105† 21.110 21.120 - /18.090 16.075 18.090† 18.090 18.115

- /19.095 18.086 -∗ 19.095 19.120 - /19.100 17.083 19.095† 19.100 19.145

- /20.100 18.087 -∗ 20.100 20.145 - /16.080 14.069 16.085† 16.080 16.115

(200, dL, cH) - /26.155 24.118 -∗ 26.155 26.260 23.627/24.135 21.105 -∗ 24.135 25.245

29.145/29.145 24.118 -∗ 29.145 30.230 21.105/21.110 19.095 23.210† 21.110 23.240

24.623/26.130 23.113 -∗ 26.130 27.260 24.137/24.155 21.103 25.225† 24.155 26.280

- /29.150 25.122 30.265† 29.150 30.250 24.131/24.145 21.102 -∗ 24.145 25.235

29.041/30.165 27.132 31.240† 30.165 31.245 22.115/23.140 20.097 25.325† 23.140 25.240

† M1-OPT could not find the optimal solution within 30 minutes.

∗ M1-OPT could not find a feasible solution within 30 minutes.

35

Table 9: Computational results for real world application

Instance Size M1-LB M1-OPT RMAT CLH BF

n z w z w z w z w z w

1000 13 12.1 13 13 13 13 13 15 13 15

12 11.8 12 12 12 12 12 14 12 14

12 11.7 12 12 12 12 12 12 12 13

13 12.2 13 13 13 13 13 14 13 14

13 12.7 13 13 13 13 13 15 13 15

2000 23 22.8 23 23 23 23 23 25 23 25

24 23.8 24 24 24 24 24 25 24 26

24 23.5 24 24 24 24 24 26 24 28

24 23.1 24 24 24 24 24 26 24 27

25 24.1 25 25 25 25 25 31 25 33

3000 36 35.0 36 36 36 36 36 41 36 41

35 34.2 35† 36† 35 35 35 38 35 39

35 34.5 35 35 35 35 35 42 35 47

36 35.4 36 36 36 36 36 38 36 47

36 35.5 36 36 36 36 36 40 36 42

4000 47 46.3 47 47 47 47 47 53 47 59

47 46.9 48† 48† 48 48 48 51 48 51

47 46.3 47 47 47 47 47 50 47 57

49 48.1 49† 51† 49 49 49 58 49 58

47 46.7 47 47 47 47 47 53 47 53

5000 61 60.1 61† 63† 61 61 61 68 61 73

60 59.7 61† 63† 61 61 61 70 61 76

61 60.9 62† 62† 62 62 62 68 62 73

59 58.8 60† 61† 60 60 60 69 60 73

60 59.3 60† 62† 60 60 60 67 60 70

†M1-OPT could not find the optimal solution within 30 minutes.

36

Table 10: Average server and fire-ups for γ = 1

Instances Num of SMM M1-OPT RMAT

n s̄ di cmax Tests Time z w Time z w Time z w

50 50 dS cL 5 1.9 9.8 11.4 36.6 9.8 9.8 35.7 9.8 9.8

50 50 dS cH 5 1.5 12.8 20.8 35.7 12.8 13.0 27.5 12.8 13.0

50 50 dL cL 1 2.9 15.0 16.0 69.0 15.0 15.0 65.8 15.0 15.0

50 50 dL cH 5 173.7 23.0 25.8 481.5 23.0 23.0 125.6 23.0 23.0

50 60 dS cL 4 3.5 8.2 9.7 10.6 8.2 8.2 13.9 8.2 8.2

50 60 dS cH 4 4.1 11.2 17.2 65.4 11.2 11.5 15.0 11.2 11.5

50 60 dL cL 2 855.1 14.0 14.5 113.5 14.0 14.0 29.6 14.0 14.0

50 60 dL cH 4 23.5 21.2 25.5 242.7 21.2 21.2 75.5 21.2 21.2

100 100 dS cL 3 8.2 11.0 18.0 108.3 11.0 11.0 11.1 11.0 11.0

100 100 dS cH 5 17.9 16.8 45.2 479.3 16.8 18.0 42.5 16.8 18.4

100 120 dS cL 3 3.6 9.7 18.0 225.6 9.7 9.7 53.8 9.7 9.7

100 120 dS cH 5 61.5 13.6 40.6 641.4 13.6 17.0 64.9 13.6 17.2

150 150 dS cL 4 16.0 10.7 18.7 374.3 10.7 10.7 74.3 11.0 11.0

150 180 dS cL 5 163.6 9.8 24.0 290.0 9.8 9.8 16.3 9.8 9.8

150 180 dS cH 2 21.1 13.5 58.5 509.3 13.5 18.0 33.0 13.5 18.5

200 200 dS cL 1 415.1 12.0 38.0 1771.7 12.0 12.0 150.0 12.0 12.0

200 240 dS cL 5 56.5 10.6 39.4 180.1 10.6 11.0 63.4 10.6 11.0

37

References

Barnhart C, Johnson E, Nemhauser G, Savelsbergh M, Vance P. Branch-and-price: column gener-

ation for solving huge integer programs. Operations Research 1998;46(3):316–29.

Beloglazov A. Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Com-

puting. Ph.D. thesis; Department of Computing and Information Systems, The Univeristy of

Melbourne; 2013.

Calcavecchia NM, Biran O, Hadad E, Moatti Y. VM placement strategies for cloud scenarios. In:

IEEE Fifth International Conference on Cloud Computing. 2012. p. 852–9.

Caprara A, Furini F, Malaguti E. Uncommon dantzig-wolfe reformulation for the temporal knapsack

problem. INFORMS Journal on Computing 2013;25(3):560–71.

Caprara A, Furini F, Malaguti E, Traversi E. Solving the temporal knapsack problem via recursive

dantzig–wolfe reformulation. Information Processing Letters 2016;116(5):379–86.

Cauwer MD, Mehta D, O’Sullivan B. The temporal bin packing problem: An application to work-

load management in data centres. In: 28th IEEE International Conference on Tools with Ar-

tificial Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016. 2016. p. 157–64.

doi:10.1109/ICTAI.2016.0033.

Chaisiri S, Lee B, Niyato D. Optimal virtual machine placement across multiple cloud providers.

In: 2009 IEEE Asia-Pacific Services Computing Conference (APSCC). 2009. p. 103–10.

Cohen MC, Keller PW, Mirrokni V, Zadimoghaddam M. Overcommitment in cloud services - bin

packing with chance constraints. 2016. Available at SSRN 2822188.

Dantzig G, Wolfe P. Decomposition principle for linear programs. Operations Research

1960;8(1):101–11.

De Carvalho JV. LP models for bin packing and cutting stock problems. European Journal of

Operational Research 2002;141(2):253–73.

Dell’Amico M, Fischetti M, Toth P. Heuristic algorithms for the multiple depot vehicle scheduling

problem. Management Science 1993;39(1):115–25.

Dell’Amico M, Furini F, Iori M. A branch-and-price algorithm for the temporal bin packing problem.

arXiv preprint arXiv:190204925 2019;.

38

Delorme M, Iori M, Martello S. Bin packing and cutting stock problems: Mathematical models and

exact algorithms. European Journal of Operational Research 2016;255(1):1 – 20.

Di S, Kondo D, Cappello F. Characterizing cloud applications on a google data center. In: 2013

42nd International Conference on Parallel Processing. 2013. p. 468–73.

Dong J, Jin X, Wang H, Li Y, Zhang P, Cheng S. Energy-saving virtual machine placement in

cloud data centers. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing. 2013. p. 618624.

Dumas Y, Desrosiers J, Soumis F. The pickup and delivery problem with time windows. European

journal of operational research 1991;54(1):7–22.

Fan L, Gu C, Qiao L, Wu W, Huang H. Greensleep: A multi-sleep modes based scheduling of

servers for cloud data center. In: 2017 3rd International Conference on Big Data Computing and

Communications (BIGCOM). 2017. p. 368–75.

Ferland JA, Michelon P. The vehicle scheduling problem with multiple vehicle types. Journal of

the Operational Research Society 1988;39(6):577–83.

Furini F, Shen X. Matheuristics for the temporal bin packing problem. In: Recent Developments

in Metaheuristics. Springer; 2018. p. 333–45.

Gao Y, Guan H, Qi Z, Hou Y, Liu L. A multi-objective ant colony system algorithm for virtual

machine placement in cloud computing. Journal of Computer and System Sciences 2013;:1230–42.

Glover F. Tabu search-part I. ORSA Journal on Computing 1989;1(3):190–206.

Gu C, Li Z, Huang H, Jia X. Energy efficient scheduling of servers with multi-sleep modes for cloud

data center. IEEE Transactions on Cloud Computing, In Press 2018;:1–14.

Hellerstein JL. Google cluster data. 2010. Website.

Irnich S, Desaulniers G. Shortest path problems with resource constraints. In: Column generation.

Springer; 2005. p. 33–65.

Jiang D, Huang P, Lin P, Jiang J. Energy efficient VM placement heuristic algorithms comparison

for cloud with multidimensional resources. Information Computing and Applications 2012;:413–

20.

39

Liu X, Zhan Z, Deng JD, Li Y, Gu T, Zhang J. An energy efficient ant colony system for vir-

tual machine placement in cloud computing. IEEE Transactions on Evolutionary Computation

2018;22(1):113–28.

Mangoubi R, Mathaisel DF. Optimizing gate assignments at airport terminals. Transportation

Science 1985;19(2):173–88.

Martello S, Toth P. Bin-packing problem. Knapsack problems: Algorithms and computer imple-

mentations 1990;:221–45.

Pires FL, Barn B. A virtual machine placement taxonomy. In: 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing. 2015. p. 159–68.

Speitkamp B, Bichler M. A mathematical programming apporach for server consolidation problems

in virtualized data centers. IEEE Transactions on Services Computing 2010;3:266–78.

Wang G, Ben-Ameur W, Ouorou A. A lagrange decomposition based branch and bound algorithm

for the optimal mapping of cloud virtual machines. European Journal of Operational Research

2019;276(1):28 – 39.

Wu Y, Tang M, Fraser W. A simulated annealing algorithm for energy efficient virtual machine

placement. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

2012. p. 1245–50.

Xie R, Jia X, Yang K, Zhang B. Energy saving virtual machine allocation in cloud computing. In:

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops. 2013.

p. 132–7.

40

