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Abstract

We characterize timing choices in investments towards the conservation of a
global common and derive implications for interventions to contain the spread of
a contagious disease.

1 Introduction

The opportunity cost of irreversible investments under uncertainty includes the for-

gone value of the option to wait for new information before undertaking the investment

(Weisbrod, 1964; McDonald and Siegel, 1986). Policy interventions aimed at preserving

global commons typically involve some degree of irreversibility. Since the extent of the

depletion of the global common and of the damages this may cause are not well under-

stood ex ante, with new information being learnt as time goes by, delaying action has a
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positive option value, which must be weighed against its potential costs – more severe

damages from waiting and/or higher costs of future investments towards conservation.

However, when the benefits or costs from an irreversible investment are not fully

internalized by individual decision-makers, the timing of decentralized investment

choices can diverge from the timing that is collectively optimal: external benefits will

lead to overly-cautious decisions (too much learning), while external costs will lead

to overly-rushed decisions (too little learning). Thus, lack of cooperation over conser-

vation measures in relation to a global common can result in excessive delay rather

than (or in addition to) sub-optimal levels of intervention. Implications for global gov-

ernance are self-evident. This conclusion follows from a straightforward application of

standard solution concepts for non-cooperative games (Nash, 1951) to an option value

problem. But while the concept of option value has been invoked in relation to the con-

servation of natural resources (e.g., Krutilla, 1967), the consequences of non-cooperative

decision-making for the timing of investment, to the best of our knowledge, have not

been highlighted before.

Section 2 sets out the basic structure of a generic two-period commons investment

problem. Section 3 compares the cooperative and non-cooperative timing of interven-

tions in a model of epidemic contagion. Section 4 concludes.

2 The timing of investment in a two-period commons problem

The investment timing problem we have outlined and the conclusions that follow from

its analysis can be most easily illustrated by reference to a two-agent, two-period com-

mons problem.

There are two decision-makers, each having to make an investment that can be car-

ried out either at time t = 0 or at time t = 1. There are two states of the world, L and

H. In state L, the value of investment is zero to both decision-makers. In state H, the

private present value, evaluated at t = 0, of the investment to the investor is v/2 ≥ 1 if

the investment is carried out at t = 0 and is δρv/2 if it is carried out at t = 1, with δ < 1

representing a discount factor, and with ρ ≤ 1 reflecting an attenuation (beyond dis-
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counting) in the efficacy of investment if this is delayed. Benefits of the same size from

the investment also accrue to the other decision-maker in state H, making the collective

value of the investment equal to v and δρv respectively in each of the two periods. In re-

lation to both climate change and pandemics, the value of the investment would consist

of a reduction in future damages that can result from current conservation measures;

and the attenuation in the value of delayed investment, as reflected by ρ ≤ 1, would

correspond to the potential increase in the severity of damages from delaying action

(higher terminal temperatures, higher prevalence of infections).

At t = 0 the two decision-makers hold a common belief, β, about the likelihood of

state H occurring. At t = 1 the state of the world is fully revealed.

If the investment is carried out at t = 0, the cost of the investment (at t = 0) is unity;

if it is carried out at t = 1, the cost (at t = 1) is γ < 2. In the discussion that follows, we

assume that ρv/2 > γ, which implies that if investment has not occurred at t = 0 and

the state is revealed to be H at t = 1, investing at t = 1 is always individually optimal,

i.e. there cannot be an outcome where investment never takes place. This assumption

also implies ρv > 1 and v > γ, i.e. if investment has not occurred at t = 0 and the

state is revealed to be H at t = 1, investing at t = 1 is jointly optimal; and if β = 1 (at

t = 0, investors know with certainty that the state is H), then investing at t = 0 is jointly

optimal. This means that the only choice that we need to consider, from both a collective

and an individual perspective, is whether investment should take place at t = 0 or at

t = 1, rather than whether or not investment should take place at all.

Cooperative choice

Consider first the jointly optimal investment timing choice. The joint expected payoff

(the payoff of a representative player) from joint investment at t = 0 is βv− 1, whereas

the joint expected payoff, evaluated at t = 0, from waiting and investing at t = 1 if H

is realized (which occurs with probability β) is δβ (ρv− γ). Equating these two values,

we can solve for a critical level of β above which it will be jointly optimal to act at t = 0
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and below which it will be jointly optimal to delay:

βC =
1

δγ + (1− δρ)v
. (1)

This is decreasing in v, i.e. for a given investment cost, it will be optimal to act under a

less precise prior the higher is the potential value, v, of the investment.

Decentralized choice

We next consider decentralized choices and derive conditions under which investment

at t = 0 by both parties is a Nash Equilibrium. Let ai
t ∈ {0, 1} denote the investment

choice by investor i at t. Under the assumption ρv/2 > 1, each investor will always

invest at t = 1 in state H if she has not invested at t = 0, implying ai
1 = 1− ai

0. Then the

expected private payoff (evaluated at t = 0) to i from investing at t = 0 is

EΠi(ai
0 = 1, a−i

0
)
= β

(
1 + a−i

0
)

v/2− 1 + δβρ
(
1− a−i

0
)

v/2, (2)

(with −i denoting the other investor), and the expected private payoff from postponing

the investment to t = 1 (while benefiting immediately from any investments made by

the other party at t = 0) is

EΠi(ai
0 = 0, a−i

0
)
= β a−i

0 v/2 + δβ
(
ρ(2− a−i

0 )v/2− γ
)
. (3)

Equating these two expressions, we can solve for a critical level of β above which in-

vestment at t = 0 by both parties is a Nash Equilibrium and below which it is not:

βN =
1

δγ + (1− δρ)v/2
. (4)

Thus, if β ∈ (βC, βN), taking action at t = 0 is jointly optimal but the non-cooperative

outcome involves postponement to t = 1: action will eventually take place (in the un-

favorable realization), but it will happen too late, producing a lower ex-ante net return.

Note that this can even occur for γ = 1/δ, i.e. when the present value of the gross cost

of investing at t = 0 is less than that of investing at t = 1.
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Atomistic agents

The previous results have been derived for a game involving a finite number of players.

This is the right setting for modelling situations where the decision-makers are institu-

tional players, such as the governments of different sovereign countries. But a problem

with the same structure could arise in an environment with a large number of atomistic

players whose individual actions have negligible impact on other players – what could

be described as a “competitive” environment with externalities. This would be the right

setting to use when the investment choices that affect the global common are made by

private-sector agents.

To see how the previous conclusions can carry over to such a setting, consider a unit

mass of players, and let at(i) ∈ {0, 1} denote the investment choice of player i ∈ [0, 1],

and suppose that the effect of all players’ investment choices at t on player i’s period-t

payoff, gross of the cost of the investment, equals
(
ωat(i) + (1− ω)

∫ t
0 at(j) dj

)
v, with

ω ∈ (0, 1]. Proceeding as before, we obtain an expression for βC that coincides with (1),

whereas the expression for βN becomes

βN =
1

δγ + (1− δρ)ωv
. (5)

In order to bridge the gap between the privately optimal and socially optimal timing of

investment, a central planner could in this case resort to a Pigouvian remedy that either

taxes investment in the second period and/or subsidizes investment in the first period.

3 Delaying epidemic contagion

The discussion that follows examines the investment timing problem in the context of

a stylized, infinite-horizon model of epidemic contagion. The basic relationships that

define the process of contagion reflect those that have been described in the epidemi-

ological literature (Anderson and May, 1979), but these are augmented by a dynamic

model of costly intervention choices.
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Contagion

There is a unit mass of identical, infinitely-lived individuals. At time t, each individual,

if not already immune, contracts a contagious disease with probability

φt = κ lt (1− at), κ ∈ (0, 1], (6)

where lt denotes the proportion of individuals in the population that have contracted

the disease at t or in any previous period and have survived from it, and at ∈ (0, 1)

reflects the severity of the delaying measures adopted at t. Mathematical models of epi-

demic contagion typically also account for how the immunization of recovered individ-

uals can limit further contagion. For the sake of simplicity, the discussion that follows

will abstract from this effect.1 A version of the model where survivors can become non-

infectious (presented in the appendix) leads to qualitatively similar conclusions.

An individual contracting the disease at t becomes ill at t + 1 and remains ill for one

period, dying in the same period with probability θ. If a diseased individual survives

to the following period, she becomes immune and can no longer contract the disease.

Thus, the cumulative number of infections at t + 1 equals

qt+1 = qt + φt (1− qt), (7)

the number of deaths at t + 1 is

dt+1 = θ (qt+1 − qt), (8)

and the number of recovered survivors is

lt+1 = (1− θ) qt+1. (9)

Framing the above relationships in terms of the categories employed in Susceptible-

Infectious-Recovered (SIR) models of contagion, 1− qt corresponds to the Susceptible,

qt to the infected, and (1− θ) qt to the Infectious (the survivors, who are assumed here

to remain indefinitely contagious), and θ qt to the Recovered (the deceased), with with

qt+1 − qt representing the number of currently diseased individuals.

1An implication of this simplification is that “herd immunity” is only ever achieved if at = 1 (or if

θ = 1, i.e. all individuals who contract the disease die).
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Payoffs

Each infection entails a private and social cost of η in all periods following infection

until a cure is discovered (if it is discovered), with each death entailing an additional

private and social cost of unity in the period in which it occurs; the overall (negative)

social value of infection at t is therefore

vt = −dt − η qt. (10)

Intervention at level at has a private and social cost of

gt = −ζ ln
(
1− γat

2) ≡ h(at), (11)

with γ ∈ (0, 1]. This cost schedule exhibits the following properties: h′(at) ≥ 0, h′′(at) >

0, h′(0) = 0, limγ→1 h(1) = ∞.

Information structure

There are two possible states of the world. In state s = 1 in each period a cure becomes

available with probability π; in state s = 0, a cure can never be found. The state of the

world is not directly observable. The prior belief at t = 0 that a cure can be found, i.e.

that the state of the world is s = 1, β0 ∈ (0, 1). Let σt = {0, 1} be an informative public

signal received at t about s, with σt = 1 denoting that a cure has been discovered and

σt = 0 denoting no discovery. The probabilities with which a signal σt = 1 is observed in

each state are respectively Pr(σ = 1 | s = 1) = 1 and Pr(σ = 1 | s = 0) = 0; i.e. a signal

σt = 1 fully reveals that the state state of the world is s = 1. The probability with which

a signal σt = 0 is observed in each state are respectively Pr(σ = 0 | s = 1) = 1− π and

Pr(σ = 0 | s = 0) = 1. Then, the (common) posterior belief at t of a cure being possible,

if a cure has not yet been discovered at t, evolves as

βt =
β0(1− π)t

β0(1− π)t + (1− β0)
=

1
1 + (1/β0 − 1)(1− π)−t . (12)

This is decreasing in t: as time goes by, if a cure is not discovered, agents become more

pessimistic about the possibility of a discovery ever occurring.
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The belief at t of a cure becoming available next period is βt π. An equivalent inter-

pretation is that 1− βt π represents the belief of the infection developing into a damag-

ing epidemic – and so, starting from an initial belief that the infection will cause lim-

ited damage, the arrival of new information suggesting that the infection will cause

widespread damage will lead decision-makers to take the threat more seriously.

The planner’s problem

Consider a utilitarian planner making decisions about the level of intervention at t. The

planner’s optimization problem can be expressed recursively as

Vt(qt) = max
at

vt − gt + (1− βt π) δ V(qt+1). (13)

with βt satisfying (12); and where V(qt+1) denotes the continuation value of the problem

at t if a cure is not discovered at t + 1.

The optimal intervention policy, at, at time t depends on the current belief βt, the

cost of intervention, gt, and the cost of the infected individuals, which is a function of

the rate at which susceptible individuals become infected and the number of infectious

individuals at t− 1. The FONC for an optimum choice of qt at t is

−h′(at) + (1− βtπ) δ
dV(qt+1)

dat
= 0. (14)

where h′(at) = (2ζ γat)/
(
1− γat

2). If the corresponding condition holds at t + 1, then,

by the envelope theorem,2 we must have

dV(qt+1)

dat
= κ(1− θ)(η + θ)(1− qt−1)qt−1. (15)

This allows us to re-write the FONC as

Λt(1− qt−1)qt−1 −
2ζγat

1− γat2 = 0, (16)

2The envelope theorem applies if at+1 corresponds to an interior optimum choice at t + 1. The as-

sumed cost structure guarantees that at > 0, and thus that at an interior solution as long as we focus on

parameterizations for which at remains below unity.
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where Λt ≡ δκ(η + θ)(1− θ)(1− βtπ), giving

at =

√
γ
(

ζ2γ +
(
Λt(1− qt−1)qt−1

)2
)
− ζ γ

γΛt(1− qt−1)qt−1
≡ aC

t . (17)

In conjunction with (12), this delivers a socially optimum intervention schedule for a

given initial prior, β0 < 1, about the state of the world and initial condition q0.

Decentralized intervention

Suppose next that there are M symmetric countries i = {1, . . . , M}. Each country has

a large population, and each of them makes a decision on the intervention measure to

avoid/contain the spread of the disease. The cost of intervention for country i at level at

at time t is still equal to gi
t = h(ai

t) = −ζ ln
(
1− γ(ai

t)
2); and in country i an individual

contracts the disease, if not already immune, with probability

φi
t = κ lt

(
1−

(
ai

t ∏
j 6=i

aj
t

)1/M)
. (18)

The number of newly individuals infected in country i at time t thus depends on i’s cho-

sen level of intervention as well as that of other countries. All the other country-specific

variables evolve in each country following the rules described the previous section. The

information structure is identical to that described in the previous section, with beliefs

at time t being common across the players. If a cure is discovered in either country, both

countries will make use of it without delay.

Conditions for a Markov-perfect Nash equilibrium (Maskin and Tirole, 1988) can

be derived as follows. The continuation payoff at t of country i, if a cure has not been

discovered in any of the previous periods, is

Vi
t (q

i
t) = max

ai
t

vi
t − gi

t + (1− βt π)δVi
t+1(q

i
t+1), (19)

where Vi
t+1(q

i
t+1) is country i’s the continuation payoff at t + 1. Deriving the FONC

associated with (19) and solving for the symmetric Markov-perfect Nash equilibrium
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level of at, we obtain ai
t = aN

t , i ∈ {1, . . . , M}, we obtain

at =

√
γ
(

M2ζ2γ +
(
Λt(1− qN

t−1)qN
t−1

)2
)
−Mζ γ

γΛt(1− qN
t−1)qN

t−1
≡ aN

t , (20)

with qi
t = q−i

t = qN
t , and where Λt is as previously defined. The common level of inter-

vention, aC
t that recursively maximizes expected payoffs for the two countries coincides

with the planning optimum derived earlier (expression (17)). The larger is the number

of countries (M), the larger is the difference between aC
t and aN

t before a cure is discov-

ered (if a cure is discovered in period t, the cure is adopted without delay in both cases,

and contagion stops).

When viewed from a collective perspective, countries independently deciding lev-

els of intervention are excessively cautious and wait too much. Specifically, comparing

the expression for aC
t with the expression for aN

t , it is easy to see that the level of inter-

vention level under cooperation, in each period, is higher than the one chosen under

non-cooperation if no cure has been discovered before t, i.e. qC
t−1 = qN

t−1 ⇒ aC
t ≥ aN

t .

Since players here choose a continuous level of intervention, we no longer have the

clear-cut characterization of investment timing choices that was in evidence in the dis-

cussion of Section 2. Nevertheless, if we compare two paths along which at and qt are

both increasing with t, and such that at eventually reaches a certain level a′ in both, then

the above ranking implies that the level of intervention a′ will be reached at an earlier

point under cooperation than under decentralized decision-making.

To illustrate the comparative implications of cooperative and non-cooperative

decision-making, it is useful to consider a parameterized example. Figure 1 shows op-

timal (solid line) and Markov-perfect equilibrium (dotted line) levels of intervention,

along a path in which a cure is never discovered, for M = 2, θ = 0.2, β0 = 0.99, π = 2/3,

δ = 0.95, κ = 5/8, η = 0.05, and ζ = 0.01, when γ (the parameter determining the size

of intervention costs) is 0.8.

Not only is the level of intervention affected by a lack of cooperation (Figure 1), also

the speed at which a given level of intervention is reached is different in the two sce-

narios (Figure 2). In both scenarios the level of intervention chosen in the early periods
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Figure 1: Optimal and noncooperative levels of intervention

– high cost of intervention
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Figure 2: Timing of interventions

– high cost of intervention
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Figure 3: Beliefs about the probability of a cure at

– high cost of intervention
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Figure 4: Spread of infection under optimal and noncooperative levels of intervention

– high cost of intervention
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Figure 5: Proportion of survivors

under optimal and noncooperative levels of intervention

– high cost of intervention

of the epidemic, increases with t (despite the fact that players become more pessimistic

with time about the possibility of finding a cure: Figure 3); but as players become more

pessimistic, in both scenarios the level of intervention starts decreasing with time. Thus,

equilibrium strategies are non-monotonic in t.

When the cost of intervention is sufficiently high (as is the case in this example), the

anticipated flow of intervention cost for sufficiently pessimistic beliefs becomes higher

and higher until it surpasses the anticipated damage caused by the infection (including

deaths). Thus, in the long run, both the planner and the two countries end up adopting

no intervention. Thus, the main difference between the two cases is in the speed at

which a complete spread of contagion is reached: although the proportion of infected

individuals is the same in the long run, maximum spread is reached more quickly under

non-cooperation, and, in the transition to this maximum, the number of survivors is

lower (Figures 4 and 5).

If we carry out the same comparison when the cost of intervention is lower (γ = 0.6),
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then, as before, independent decision makers stop taking intervention measures when

they become sufficiently pessimistic about the possibility of a cure, whereas a central

planner never stops increasing its level of intervention even as it becomes more pes-

simistic. As result, the level of intervention (Figure 6) still evolves non-monotonically

over time under non-cooperation, leading to maximum spread in the long run; whereas

under cooperation, the (optimal) level of intervention keeps increasing until the spread

of the disease is fully stopped and the proportion of infected individuals converges to

a level that is below unity (Figure 7). Accordingly, the number of survivors in the long-

run is higher under cooperation than under non-cooperation (Figure 8). In this case, lack

of cooperation does not just affect the speed of transition to a given common long-run

outcome; rather, it leads to a different long-run outcome.

Atomistic agents

We can use an almost identical analytical structure to characterize privately optimal

choices by atomistic agents in relation to the prevention of contagion. Suppose that the

probability of agent i ∈ [0, 1] becoming infected at t, if she has not yet contracted the

disease, is

φt(i) = κ lt
(
1− at(i)ω At

1−ω
)
, ω ∈ (0, 1), (21)

where at(i) is the agent’s own prevention effort, for which the agent incurs a cost

h
(
at(i)

)
as specified in (11), and where At ≡ exp

( ∫ t
0 ln at(j) dj

)
. Proceeding as before,

we obtain:

at =

√
γ
(

ζ2γ/ω2 +
(
Λt(1− qN

t−1)qN
t−1

)2
)
− ζ γ/ω

γΛt(1− qN
t−1)qN

t−1
≡ aN

t . (22)

Lack of full internalization of the consequences of their prevention efforts leads agents

to exert too little effort, unless they face corrective fines, ft, for downwards deviations

from aC
t . The optimal level of such fines is that which makes an individual indifferent

between choosing aC
t or choosing aN

t and paying the fine, i.e. ft = (1− ω) h
(
aC

t
)
. The

time path of optimal corrective fines will thus mirror the evolution of cooperative levels

of intervention.
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Figure 6: Optimal and noncooperative levels of intervention

– low cost of intervention
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Figure 7: Spread of infection under optimal and noncooperative levels of intervention

– low cost of intervention
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4 Discussion

Managing global commons requires global cooperation, not just about whether action

should be taken to preserve them, but also about when it should be taken. Lack of coop-

eration can result in excessive delay, even when decision-makers share common beliefs.

The delay may be a matter of months and years in the case of climate change or a matter

of days and weeks in the case of pandemics, but the structure of the problem remains

the same.

The events that unfolded in 2020 suggest that, although the costs of contagion within

national borders may have eventually been accounted for reasonably well, with most

countries introducing similar containment measures, this might all have happened too

late in comparison with the timing that might have been deemed to be optimal if trans-

boundary effects had also been accounted for. The consequence might have been an

above-optimal global loss of life and above-optimal long-run impacts on the global

economy. And although shutting down borders removes one of the components of

the transboundary externality, other dimensions remain for which a coordinated effort

would be called for – for example in relation to the adoption of consistent standards

of measurement and testing, which could improve the understanding of the process of

contagion and help anticipate and prevent further outbreaks.

Global cooperation requires global institutions. In a commons problem such as the

one we have described, if valuations are (at least in part) private, then designing opti-

mal, incentive-compatible global cooperation institutions would be especially challeng-

ing. Arguably, this is one of the key obstacles delaying progress in multilateral negotia-

tions on climate; but in relation to epidemic contagion, it is difficult to see how costs and

benefits could be fundamentally heterogeneous across different regions of the world.

Our analysis, however, has left out any costs and benefits to decision-makers that relate

to political motives and incentives. That is perhaps where an explanation for the failure

to coordinate the response to the pandemic can be found.

While all efforts to build multilateral institutions for the governance of global climate

have so far produced disappointing results, where epidemics are concerned there have
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been several instances of countries successfully cooperating – one of the first examples

being the 1892 International Sanitary Convention for the control of cholera. As is the

case for other supranational organizations, however, the WHO lacks the real powers

that would be needed to force countries to take action. A concrete and manageable way

forward could be for the WHO to start producing regularly updated rating scores for the

epidemic risk conditions of individual countries (accounting both for current levels of

contagion and for the readiness of countries to anticipate, contain and manage any new

epidemics), much as global credit rating agencies do for sovereign debt. Not only could

this induce countries to act more swiftly to contain future pandemics, but could also

help restore confidence and speed up economic recovery in the post-lockdown phase.
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A Cooperative and noncooperative action in a SIR model of epi-
demic contagion

The state variables of a canonical SIR model of contagion are the proportion of susceptible indi-

viduals, St, proportion of infectious individuals, It, and the proportion of recovered individuals,

Rt, with St + It + Rt = 1.

Consistently with the treatment in the main text, but allowing for a fraction, ρ, of infected

individuals who survive to the following period to cease to be infectious, the proportion of

newly infected individuals at t is

∆I+t = κ (1− At) It St, (23)

where

At ≡
(

∏
i

ai
t

)1/M
, (24)

and where M is the number of countries. The change in the proportion of recovered (or deceased)

individuals at t (from t to t + 1) is

∆Rt = (θ + ρ) It; (25)

the change in the proportion of infectious individuals is

∆It = −∆Rt + ∆I+t ; (26)

and the change in the proportion of susceptible individuals is

∆St = −∆Rt − ∆It = −∆I+t . (27)

All variables above, except for the levels of intervention, refer to the combined population of all

countries.

Adopting the same specification of costs and benefits described of the analysis in the main

text, the expressions for symmetric cooperative and noncooperative levels of intervention coin-

cide with the expressions qt−1 and 1− qt−1 being replaced respectively by It and St.

Time paths under cooperative and noncooperative intervention for all state and control vari-

ables (contingent on a cure not being discovered) are shown in Figures 9 and 10 for an example

with M = 4, θ = 0.05, ρ = 0.1, ζ = 0.01, β0 = 0.95, π = 1/4, δ = 0.9, κ = 1/3, η = 0.05, ζ = 0.01,

and γ = 0.15. Intervention is higher under cooperation, and it occurs sooner. Note that, while

this (optimally) slows down the spread of the disease in comparison with the noncooperative

case, a byproduct of the slower contagion is a slower recovery.
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Figure 9: Susceptible-Infectious-Recovered paths under cooperative intervention
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Figure 10: Susceptible-Infectious-Recovered paths under noncooperative intervention
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