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Abstract
In this paper, we present a new model of congestion games with finite and random
number of players, and an analytical method to compute the random path and link
flows. We study the equilibrium condition, reformulate it as an equivalent variational
inequality problem, and establish the existence and non-uniqueness of the equilibria.
We also upper bound the price of anarchy with affine cost functions to characterize
the quality of the equilibria. The upper bound is tight in some special cases, including
the case of deterministic players. Finally a general lower bound is also provided.

Keywords Congestion game · Network equilibrium · Price of anarchy

1 Introduction

Congestion games, first introduced by Rosenthal (1973), are a special class of non-
cooperative games that illustrate self-interested resources sharing. There is a finite
number of players and a finite set of resources. The strategies available to the players
consist of subsets of resources. Each player chooses a strategy to minimize the total
cost of his used resources. Since players’ strategies may overlap, congestion effects
occur and strategy interaction arises. The individual cost of using a resource depends
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on the total mass of the players using the resource. A typical application can be found
in the internet or overlay networks built on top of the internet, where each network
user (agent) chooses a path to send his traffic from his source to his destination and
wishes to minimize his own travel cost. It is said to be aNash equilibrium if the system
arrives at such a steady state that no user can decrease his cost by unilaterally changing
his path. It is well known that social cost normally is not minimized at Nash equilibria
(e.g., “the prisoner’s dilemma”). If all the players are fully coordinated by a central
authority, the global objective function is to minimize the sum of users’ costs (social
cost), in which case is called a system optimum.

The price of anarchy (PoA), a term coined by Koutsoupias and Papadimitriou
(1999), as a game-theoretical notion measures the system degradation resulting from
lack of coordination. It is defined as the ratio between the social cost at a worst Nash
equilibriumand that at a systemoptimum. Studies of the PoA startedwith networks of a
simple structure, for example, parallel link networks inKoutsoupias and Papadimitriou
(1999). For general network, the PoA was first studied for an extreme case of infinite
number of users, known as non-atomic congestion games. In particular, Roughgarden
and Tardos (2002, 2004) and Correa et al. (2008) proved that their upper bounds
of the PoA depend only on the class of cost functions. They showed that the price
of anarchy is exactly 4/3 for affine cost functions, and they also showed bicriteria
results for continuous and non-decreasing cost functions. These non-atomic works
were also extended to capacitated network (Correa et al. 2004) and asymmetric cost
functions (Perakis 2007). However, the model of classic congestion games with finite
players known as atomic congestion games, is closer to reality in most application
cases, especially when the number of players is relatively small. The upper bounds
of the PoA for (atomic) congestion games were obtained by Awerbuch et al. (2005)
and Christodoulou and Koutsoupias (2005) independently. The PoA with affine cost
functions is bounded by 2.5 for unweighted demands and 2.618 for weighted demands,
and both bounds were proved to be tight. Here with un-weighted demands, each player
holds one unit of resource demand; while with weighted demands, each player has
a weight which represents his resource demand (e.g., units of traffic). The PoA with
polynomial cost functions of degree m is bounded by m�(m). Aland et al. (2011)
improved the work of Awerbuch et al. (2005) and Christodoulou and Koutsoupias
(2005), and established exact bounds of the PoA with polynomial cost functions.

All the above studies on deterministic players were built on an underlying assump-
tion that every player knows the number of players in the system, which is not
reasonable inmany situations.Thus it is desirable to generalize thedeterministic setting
to the stochastic one with unknown number of players. There has been a growing inter-
est in investigating uncertainty in traffic demand. Wang et al. (2014) and Correa et al.
(2019) studied the PoA for non-atomic congestion games with stochastic demands.
Cominetti et al. (2019) studied the atomic setting of Bernoulli congestion games in
which each player participates in the game with an independent probability, and found
that the upper bound of the PoA for deterministic models still hold. Cominetti et al.
(2020) found such Bernoulli congestion games converge to a set of Poisson games in
the sense of Myerson (1998), when players’ participating probabilities tend to zero.
In this paper we study a different model for atomic network congestion games with
stochastic demands, an atomic counterpart of the model studied in Wang et al. (2014).
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Instead of individual participation probabilities, we consider distributions of numbers
of players as common knowledge, which follows the framework of population uncer-
tainty proposed by Myerson (1998). Demand uncertainty has also been considered in
other games such as resource allocation games Ashlagi et al. (2006).

The transition from deterministic to stochastic setting raises new conceptual and
modelling issues and is particularly complicated when the number of players is finite.
This is because every single player’s traffic load is not negligible, and his own load
will take an important role in the cost when switching from one strategy to another.
The stochasticity of this study only comes from the random number of players, and the
traffic hold by each player is still deterministic. We only focus on unweighed demand
in our model and assume that each player holds one unit of traffic. Players’ routing
behaviors in an incomplete information environment is significantly different from the
deterministic. The discreteness of the players’ number and traffic flows also enhances
the technical difficulty in analyzing the flow distributions, the network equilibrium
and the price of anarchy. In this study, we take the number of players as random, and
players only know the probabilities of possible numbers of players. We establish a
more general model of atomic congestion games and provide an analytical method to
determine random path and link flows under given distributions of random players.
We incorporate random number of players into the notions of equilibrium and system
optimum and establish their conditions in our newmodel. In addition, we also establish
an upper bound on the price of anarchy for affine cost functions, and prove that the
upper bound is tight in the special case.

The remainder of the paper is organized as follows. Section 2 introduces our new
models for atomic congestion games with random players. Section 3 presents the equi-
librium condition for the newmodel, and reformulates it into an equivalent Variational
Inequality (VI) problem. The existence and non-uniqueness of equilibria are also dis-
cussed. Section 4 provides our upper bound for the price of anarchy for affine cost
functions. Section 5 provides a lower bound of the price of anarchy. Section 6 dis-
cusses connections with existing results in the literature and makes some concluding
remarks.

2 Atomic congestion games with random players

In this section, we present a mathematical model for atomic congestion games with
random players.

2.1 Review of deterministic congestion games

Consider a deterministic congestion game. Let J = {1, 2, . . . , n} be the set of players,
E be a set of facilities (resources), � j ⊆ 2E be the strategy space of player j , and
ce(·) be a non-decreasing cost function associated with resource e. For a joint action,
every player selects a set of resources, and the congestion on resource e is the number
of players whose action (strategy) contains resource e. Thus the more players use one
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resource, the higher cost they will pay for it. The cost of player j is the individual cost
of all resources that his has selected.

Congestion games are usually modelled with a network framework by grouping
players into different types according to their strategy spaces. Consider a general
network G = (N , E), where N and E denote the set of nodes and links, respectively.
Each link represents a resource. To each link e ∈ E , we associate a (link) cost function
ce(·) : N → R

+, which is assumed to be nondecreasing in its argument, the link flow.
A subset of nodes form a set of origin-destination (O-D) pairs, denoted by I . Every
path, a sequence of connected links linking the origin to the destination, represents
a strategy. Denote by Pi the set of all the paths connecting O-D pair i . Each player
with O-D pair i holds one unit of load(traffic) and selects one path from Pi to send
his load from the origin to the destination. The demand of O-D pair i , denoted by
di ∈ N, i ∈ I , is just the number of players holding strategy set Pi . The cost (or
latency) of each player is the cost of the path he selected, which is the sum of the costs
associated with all the links of the path. The congestion (load) on each resource is
the flow on the link, which is the number of players using the link in their paths. The
above network game can be denoted by a tuple of (G,d, c), where d = (di : i ∈ I )
and c = (ce(·) : e ∈ E).

2.2 Congestion games with random players

As mentioned before, the assumption that every player knows the number of players
is not reasonable in practice. We assume instead that a player does not know the
exact number of other players, and only has knowledge of demand distributions from
historical information,which can be collected and published by the central coordinator.
Since each player holds one unit of load, the number of players for each O-D pair is
also its traffic demand. In our new model, the demand for each O-D pair follows a
discrete random distribution Di , which is considered as common knowledge. We
assume that there is at least one player for each O-D pair, i.e., Di ≥ 1, and demands
of different O-D pairs are independent. The assumption Di ≥ 1 is realistic for many
applications of network congestion games that usually have large demand for each
O-D pair. For example, O-D pairs with rare commuters are usually omitted when
modelling the transportation network. Technically, the assumption also guarantees
that all O-D pairs are considered in every scenario. We denote such a congestion game
with random players by a tuple (G,D, c), where D = (Di : i ∈ I ) is the vector of
random demands.

As we know, to attain a Nash equilibrium, every single player needs to know
all the others’ routing choices to find his best strategy. But this assumption is not
suitable for our stochastic model as the number of players is random and unknown.
In this paper we consider mixed strategies, so that each player independently selects a
probability distribution over all the paths between his O-D pair. Demand uncertainty
in our stochastic model fits into the general framework of games under population
uncertainty proposed by Myerson (1998) with O-D pairs as player types. Similar to
Myerson (1998), we assume that players can only form perceptions about how other
playersmake routing decisions depending on the information of whichO-D pairs these
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players belong to and the common knowledge of demand distributions. In addition, it
is difficult to perceive that two different individuals of the sameO-D pair would behave
differently given there is no attribute by which others can distinguish them from each
other. Furthermore, demand uncertainty implies random numbers of players, which
makes it impossible to specify strategies for individual players. All players from the
sameO-D pair are therefore assumed identical and treated symmetrically in ourmodel,
which means that players from the same O-D pair are assumed to adopt the same
mixed strategy at equilibrium. Similar assumptions can be found in other games under
population uncertainty such as resource selection games with unknown number of
players (Ashlagi et al. 2006).

Now, let pik be the probability that path k ∈ Pi is chosen. The set of mixed strategies
of each player from O-D pair i ∈ I is

�i =
{
pi = (pik ≥ 0 : k ∈ Pi ) :∑k∈Pi p

i
k = 1

}
.

Let � = ∏
i∈I �i . Then each vector p = (pi : i ∈ I ) ∈ � represents a strategy

profile of players from all O-D pairs. Let random binary variables {Xi
k, j : 1 ≤ j ≤

Di , k ∈ Pi , i ∈ I } indicate whether player j from O-D pair i ∈ I chooses path k,
i.e., P[Xi

k, j = 1] = pik and P[Xi
k, j = 0] = 1 − pik . Every player has to choose one

path for his traffic, i.e., ∑
k∈Pi

Xi
k, j = 1, ∀ 1 ≤ j ≤ Di . (1)

The total load (flow) on path k can be written as

Fi
k =

Di∑
j=1

Xi
k, j , k ∈ Pi , i ∈ I , (2)

which is a compound random variable (Ross 2002). When demand Di is realized at y,
the conditional path flow on k ∈ Pi follows binomial distribution B(y, pik). Then the
unconditional path flow Fi

k in (2) can be identified by the total probability theorem
with a given demand distribution. The mean path flow can be computed as

f ik = E[Di · E[Xi
k, j ]] = pikdi , k ∈ Pi , i ∈ I . (3)

Given that demands of different O-D pairs are independent, the flows on paths
connecting different O-D pairs are independent. However, the path flows from the
same O-D pair are dependent due to flow conservation constraint (1).

Let Xi
e, j be a random binary variable indicating whether player j (1 ≤ j ≤ Di ,

i ∈ I ) chooses link e ∈ E , i.e., Xi
e, j = ∑

k∈Pi δik,e X
i
k, j , where δik,e is the link-path

incidence indicator, which is 1 if link e is included in path k and 0 otherwise. Define
pie = ∑k∈Pi δik,e p

i
k , then P[Xi

e, j = 1] = pie for any 1 ≤ j ≤ Di . The link flow Ve is
a result of independent choices of all the players on link e:
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Ve =
∑
i∈I

Di∑
j=1

Xi
e, j , ∀ e ∈ E . (4)

Clearly
∑Di

j=1 X
i
e, j is also a compound random variable, which follows Binomial

distribution B(Di , pie) with Di itself a random variable. Thus the distribution of∑Di
j=1 X

i
e, j can be identified given the distributions ofD and the mixed strategy profile

p. The link flow in (4) is the sum of independent distributions
∑Di

j=1 X
i
e, j over all O-D

pairs. From (2) and (4), we have the following conservations between link and path
flows:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k , ∀ e ∈ E .

We can also write ve = ∑
i∈I
∑
k∈Pi

δik,e f
i
k for mean link flows. Given the link cost

functions, the random path cost is simply the sum of the costs of those links that
constitute the path, i.e.,

cik(F) =
∑
e∈E

δik,ece(Ve), ∀ k ∈ Pi , ∀ i ∈ I ,

where F is the vector of path flow, i.e., F = (Fi
k : k ∈ Pi , i ∈ I ).

3 Network equilibrium and the price of anarchy

In this section, we present the model of network equilibrium with random players,
reformulate it with an equivalent VI problem, prove the existence and non-uniqueness
of equilibria, and define the price of anarchy.

3.1 Network equilibrium formulation

At an equilibrium, there is no incentive for any player to change his strategy. Every
path of any given O-D pair with positive probability must incur the same expected
cost for every player from the O-D pair, since otherwise the expected cost of any of
the players can be decreased by taking the lower-cost path with a higher probability.
Given strategy profile p with the corresponding path flows F, the expected cost of
taking path k ∈ Pi for a single player j in O-D pair i ∈ I can be expressed as the
following conditional expectation

E[cik(F) | Xi
k, j = 1], ∀ 1 ≤ j ≤ Di , i ∈ I . (5)
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Since at a Nash equilibrium of mixed strategies, each pure strategy involved (i.e., a
path with positive probability) in the mixed strategy is a best response itself and yields
the same expected cost, we arrive at the following definition of an equilibrium.

Definition 1 (Network equilibrium) Strategy profile p with the corresponding path
flows F is an equilibrium if and only if, for any k, l ∈ Pi , with pik > 0,

E[cik(F) | Xi
k, j = 1] ≤ E[cil (F) | Xi

l, j = 1],

for arbitrary player j (1 ≤ j ≤ Di , i ∈ I ).

Let us calculate the conditional expectation in (5). We have

E[cik(F) | Xi
k, j = 1] = E

[∑
e∈E

δik,ece(Ve) | Xi
k, j = 1

]

=
∑
e∈E

δik,eE

⎡
⎣ce

⎛
⎝∑

i ′∈I

Di ′∑
j ′=1

Xi ′
e, j ′

⎞
⎠ | Xi

k, j = 1

⎤
⎦

=
∑
e∈E

δik,eE

⎡
⎣ce

⎛
⎝1 +

Di−1∑
j ′=1

Xi
e, j ′ +

∑
i ′ 	=i

Di ′∑
j ′=1

Xi ′
e, j ′

⎞
⎠
⎤
⎦ ,

which implies that E[cik(F) | Xi
k, j = 1] is independent of the choice of player j of

O-D pair i . Hence we can drop subscript j by denoting t ik(p) = E[cik(F) | Xi
k, j = 1].

Let us use the corresponding lower-case letters to denote the means of random
variables, e.g., d = (di : i ∈ I ) for mean demands, f = ( f ik : k ∈ Pi , i ∈ I ) for
the means of path flows, and v = (ve : e ∈ E) for the means of link flows. Then we
can reformulate the equilibrium condition as a variational inequality (VI) program as
follows.

Proposition 1 A mixed strategy profile p̄ is an equilibrium if and only if it satisfies the
following VI problem:

(f − f̄)T t(p̄) ≥ 0, ∀p ∈ �, (6)

where t(p̄) = (t ik(p̄) : k ∈ Pi , i ∈ I ), f and f̄ are the mean flows corresponding to
strategy profiles p and p̄, respectively.

Proof From the definition of the equilibrium, ∀ k, l ∈ Pi , ∀ i ∈ I , with p̄ik > 0, we
have

t ik(p̄) ≤ t il (p̄).

Let πi = minl∈Pi t
i
l (p̄) for i ∈ I . The equilibrium condition is equivalent to

p̄il

(
t il (p̄) − πi

)
= 0, ∀ l ∈ Pi , ∀ i ∈ I .
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Multiplying both sides of the above by di > 0, we obtain

f̄ il

(
t il (p̄) − πi

)
= 0, ∀ l ∈ Pi , ∀ i ∈ I .

Summing up the above over all the paths, we get

∑
i∈I

∑
l∈Pi

f̄ il

(
t il (p̄) − πi

)
= 0. (7)

On the other hand, for any feasible strategy profile p, as f il ≥ 0 for any l ∈ PI , i ∈ I ,

∑
i∈I

∑
l∈Pi

f il

(
t il (p̄) − πi

)
≥ 0,

which together with (7) leads to

∑
i∈I

∑
l∈Pi

(
f̄ il − f il

) (
t il (p̄) − πi

)
≤ 0. (8)

From the feasibility of the mixed strategies we have

∑
l∈Pi

f il πi =
∑
l∈Pi

f̄ il πi = πi di , ∀ i ∈ I .

Substituting the above into (8), we obtain

∑
i∈I

∑
l∈Pi

(
f̄ il − f il

)
t il (p̄) ≤ 0,

which is (6).
Next assume p̄ satisfies (6). We show that it also satisfies the equilibrium condition.

First with the first order optimality condition we observe that p̄ is an optimal solution
to the following linear program (LP):

min fT t(p̄)

s.t.
∑
k∈Pi

f ik = di , ∀ i ∈ I ,

f ik ≥ 0, ∀ k ∈ Pi , ∀ i ∈ I .

With LP duality we have

max λTd
s.t. λi ≤ t ik(p̄), ∀ k ∈ Pi , ∀ i ∈ I .
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Fig. 1 Multiple equilibria

Then the complementary slackness conditions lead us to

f ik (t
i
k(p̄) − λi ) = 0, ∀ k ∈ Pi ,∀ i ∈ I ,

which implies satisfaction of the equilibrium condition. 
�

3.2 Existence and non-uniqueness of network equilibria

Given the equivalent VI condition in Proposition 1, the existence of an equilibrium
can be guaranteed when link cost functions are continuous. Indeed, we can rewrite
condition (6) in the following form by substituting f ik = pikdi and f̄ ik = p̄ikdi :

(p − p̄)TS(p̄) ≥ 0, p ∈ �, (9)

where S(p) is a vector with the same dimension as t(p), obtained by replacing element
t ik(p) in t(p) with t ik(p)di for every k ∈ Pi , i ∈ I . When link cost functions are
continuous, the game admits at least one equilibrium, due to the fact that existence of
a solution p̄ ∈ � to VI problem (9) is guaranteed by the continuity of S(p) and the
compactness of �.

It is known thatmultiplemixed strategy equilibria can exist in simple instances of the
deterministic atomicmodelwith one single player perO-Dpair (Awerbuch et al. 2005).
These deterministic instances are apparently special cases of our stochasticmodel since
the fact that there is only a single player in each O-D pair implies the assumption of an
identical mixed strategy by all players of the same O-D pair. Therefore, our stochastic
model allows multiple mixed strategy equilibria in general. The following example
shows multiple mixed strategy equilibria of a stochastic instance with more than one
player.

Example 1 Consider the network in Fig. 1 with two O-D pairs, i.e., from s1 to t and
s2 to t , denoted by i = 1, 2 respectively. There is only one player from s2 to t , while
the player number from s1 to t follows a random distribution D. Each player has two
paths to choose from, paths 1 and 2 from s1 to t and paths 3 and 4 from s2 to t , where
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path 1 consists of links 1 and 3, path 2 of links 1 and 4, path 3 of links 2 and 3, and path
4 of links 2 and 4. The cost function on each link is indicated in the figure. Let binary
variable Xi

k, j denote the random choice of player j = 1, 2, . . . , D on path k. Then the

flows on paths 1 and 2 follow compound random distributions, i.e., F1
k =∑D

j=1 X
1
k, j ,

k = 1, 2. The path flows on paths 3 and 4 follow binary distributions, since there is
only one player from s2 to t . Recalling t ik(p) = E[cik(F) | Xi

k, j = 1], we have the
following:

t11 (p) = E

[
c11(F) | X1

1, j = 1
]

= E

[
c1(D) + c3(F

1
1 + F2

3 ) | X1
1, j = 1

]

= E[D] + E

⎡
⎣

D−1∑
j=1

X1
1, j + 1 + F2

3

⎤
⎦ = d + (d − 1)p11 + 1 + p23,

t12 (p) = E[D] + E

⎡
⎣

D−1∑
j=1

X1
2, j + 1 + F2

4

⎤
⎦ = d + (d − 1)p12 + 1 + p24,

t23 (p) = 1 + E

[
c3(F

1
1 + 1)

]
= p11d + 2,

t24 (p) = 1 + E

[
c4(F

1
2 + 1)

]
= p12d + 2.

Apparently, any feasible strategy profile satisfying p11 ≤ p12 and p23 ≤ p24 makes
t11 (p) ≤ t12 (p) and t23 (p) ≤ t24 (p), and hence is an equilibrium strategy according to
Definition 1.

3.3 Definition of the price of anarchy

Before addressing the price of anarchy for random players, let us introduce the system
optimum, which is the optimal strategy profile p∗ that minimizes the expected total
cost in the network. At a system optimum the traffic can be considered as centrally
coordinated and assigned so that the expected total social cost is at minimum. With
deterministic demands, the system optimum can always be reached by an assignment
with pure strategies, namely each player is allocated to a certain path (Awerbuch
et al. 2005). However, with demand uncertainty (i.e., random numbers of players),
such an assignment is no longer possible. What the central coordinator can do is to
identify (mixed) routing strategies, one for eachO-Dpair, and use them to route players
depending on which O-D pair they belong to. This setting follows naturally from our
discussion in Sect. 2.2 that players from the same O-D pair are not distinguishable
and they adopt the same mixed strategy at equilibrium.

Definition 2 (System optimum) A strategy profile p is at a system optimum for con-
gestion game (G,D, c) if and only if it solves the following minimization problem:

min
p∈�

T (p) ≡ E[
∑
e∈E

ce(Ve)Ve]. (10)
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The price of anarchy is the worst-case ratio between expected total cost at an
equilibrium and at a system optimum, as formally defined below.

Definition 3 (Price of anarchy)Given a stochastic instance (G,D, c), the correspond-
ing PoA is defined as:

R(G,D, c) = sup

{
T (p)

T (q)
: p,q ∈ �,p an equilibrium; q a system optimum

}
,

where T (·) is the expected total cost as social (system) objective function in (10).
Given any set I of stochastic instances, the PoA with respect to I is defined as

R(I) := sup
(G,D,c)∈I

PoA(G,D, c).

4 Upper boundwith affine cost functions

In this section, we consider affine cost functions, i.e., ce(x) = aex + be, ae, be ≥ 0
for any e ∈ E , and upper bound the price of anarchy.

Denote θi as the ratio of the standard deviation to the mean of the demand in O-D
pair i ∈ I , i.e., θi = σi/di . Let θ = maxi∈I θi . We start by bounding the total expected
cost in terms of θ , f∗ and t by establishing the following technical lemma.

Lemma 1 Let p and p∗ be an equilibrium and a system optimum respectively. When
cost functions are affine, we have

T (p) ≤ (1 + θ
2
)f∗T t(p).

Proof From law of total variance, we have

Var

⎡
⎣

Di∑
j=1

Xi
e, j

⎤
⎦ = E

⎡
⎣Var

⎛
⎝

Di∑
j=1

Xi
e, j | Di

⎞
⎠
⎤
⎦+ Var

⎛
⎝E

⎡
⎣

Di∑
j=1

Xi
e, j | Di

⎤
⎦
⎞
⎠

(11)

Since

Var

⎡
⎣

Di∑
j=1

Xi
e, j | Di = di

⎤
⎦ = Var

⎡
⎣

di∑
j=1

Xi
e, j

⎤
⎦ = di p

i
e(1 − pie),

and

E

⎡
⎣

Di∑
j=1

Xi
e, j | Di = di

⎤
⎦ = E

⎡
⎣

di∑
j=1

Xi
e, j

⎤
⎦ = di p

i
e,
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we have

Var

⎡
⎣

Di∑
j=1

Xi
e, j | Di

⎤
⎦ = Di p

i
e(1 − pie), and E

⎡
⎣

Di∑
j=1

Xi
e, j | Di

⎤
⎦ = Di p

i
e.

Substituting the above into (11), we have

Var

⎡
⎣

Di∑
j=1

Xi
e, j

⎤
⎦ = E

[
Di p

i
e

]
+ Var

[
Di p

i
e

]
= di p

i
e(1 − pie) + σ 2

i

(
pie
)2

.

Then the variance of the link flow can be written as

σ 2
e = Var [Ve] =

∑
i∈I

δieVar

⎡
⎣

Di∑
j=1

Xi
e, j

⎤
⎦

=
∑
i∈I

δie

(
σ 2
i − di

) (
pie
)2 +

∑
i∈I

δiedi p
i
e

=
∑
i∈I

δie

(
σ 2
i

(
pie
)2 + pie(1 − pie)di

)
, (12)

where δie is the link-commodity indicator, which is 1 when link e is involved in O-D
pair i ∈ I , and 0 otherwise. Therefore, we can write the total cost as follows:

T (p) =
∑
e∈E

E[ce(Ve)Ve] =
∑
e∈E

(
aeE[V 2

e ] + beve
)

=
∑
e∈E

(
aev

2
e + aeσ

2
e + beve

)

=
∑
e∈E

(
aev

2
e + beve

)
+
∑
e∈E

∑
i∈I

δieae

(
σ 2
i

(
pie
)2 + pie(1 − pie)di

)

=
∑
e∈E

(
aev

2
e + beve

)
+
∑
e∈E

∑
i∈I

δieae(θi di )
2
(
pie
)2 +

∑
e∈E

∑
i∈I

δieae p
i
e(1 − pie)di

≤
∑
e∈E

(
ae(1 + θ

2
)v2e + beve

)
+
∑
e∈E

∑
i∈I

δieae p
i
e(1 − pie)di , (13)

where the last two lines hold from θi = σi/di and θ = maxi∈I θi , respectively. Recall
that, for any player j from O-D pair i ∈ I ,

t ik(p) =
∑
e∈k

E[ce(Ve) | Xi
k, j = 1] =

∑
e∈k

E[ce(Ve + 1 − Xi
k, j )], ∀ k ∈ Pi .

As cost functions are affine, we have

t ik(p) =
∑
e∈k

(
aeve + be + ae(1 − pik)

)
.
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Thus

fT t(p) =
∑
i∈I

∑
k∈Pi

f ik · t ik(p)

=
∑
i∈I

∑
k∈Pi

f ik ·
∑
e∈k

(
aeve + be + ae(1 − pik)

)

=
∑
e∈E

(aeve + be)ve +
∑
i∈I

∑
k∈Pi

pikdi ·
∑
e∈k

(
ae(1 − pik)

)

=
∑
e∈E

(aeve + be)ve +
∑
e∈E

ae

(∑
k:e∈k

(1 − pik)p
i
kdi

)

≥
∑
e∈E

(
aev

2
e + beve

)
+
∑
e∈E

∑
i∈I

δieae p
i
e(1 − pie)di , (14)

where the third equality holds according to (3).
From (13) and (14), we can derive the following connection between T (p) and

fT t(p) for any feasible strategy profile p:

T (p) ≤ (1 + θ
2
)fT t(p).

Together with Proposition 1, we have

T (p) ≤ (1 + θ
2
)f

T
t(p) ≤ (1 + θ

2
)fT t(p). (15)

The lemma can then be proved by setting f = f∗ in (15). 
�
In order to bound the PoA, we need the following two additional technical lemmas.

Lemma 2 (Christodoulou and Koutsoupias 2005, lemma 1) For every pair of non-
negative integers X and Y , it holds

X(Y + 1) ≤ 5

3
X2 + 1

3
Y 2.

Lemma 3 Let p and p∗ be an equilibrium and a system optimum respectively. Then

f∗T t(p) ≤ 5

3
T (p∗) + 1

3
T (p).

Proof First we have

f∗T t(p) =
∑
i∈I

∑
k∈Pi

(
f ik

)∗
t ik(p)

≤
∑
i∈I

∑
k∈Pi

(
f ik

)∗∑
e∈k

E[ce(V e + 1)]
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=
∑
e∈E

v∗
eE[ce(V e + 1)].

From the independence of Ve and V
∗
e for every e ∈ E , we obtain

f∗T t(p̄) ≤
∑
e∈E

E[V ∗
e ce(V e + 1)]

=
∑
e∈E

E[V ∗
e (ae(V e + 1) + be)]

≤
∑
e∈E

(
aeE[5

3
V ∗2
e + 1

3
V

2
e] + beE[V ∗

e ]
)

≤
∑
e∈E

5

3
E[aeV ∗2

e + beV
∗
e ] + 1

3

∑
e∈E

E[aeV 2
e]

≤ 5

3
T (p∗) + 1

3
T (p),

where the second inequality holds because of Lemma 2. 
�
Lemma 4 Let p and p∗ be an equilibrium and a system optimum respectively. Then
we have

f∗T t(p) ≤ √T (p)T (p∗) + T (p∗).

Proof For any feasible strategy profile p, we have

T (p) =
∑
e∈E

E[ce(Ve)Ve]

=
∑
e∈E

(
aev

2
e + aeσ

2
e + beve

)
≥
∑
e∈E

(
aev

2
e

)
. (16)

In addition, we have

T (p) =
∑
e∈E

(
aev

2
e + beve

)
+
∑
e∈E

∑
i∈I

δieae

(
σ 2
i

(
pie
)2 + pie(1 − pie)di

)

=
∑
e∈E

(
aev

2
e + beve

)
+
∑
e∈E

∑
i∈I

δieaeσ
2
i

(
pie
)2 +

∑
e∈E

∑
i∈I

δieae p
i
edi −

∑
e∈E

∑
i∈I

δieae
(
pie
)2

di

=
∑
e∈E

(aeve + beve) +
∑
e∈E

∑
i∈I

δieaeσ
2
i

(
pie
)2 +

∑
e∈E

ae

⎛
⎝v2e −

∑
i∈I

δie

(
pie
)2

di

⎞
⎠

=
∑
e∈E

(aeve + beve) +
∑
e∈E

∑
i∈I

δieaeσ
2
i

(
pie
)2 +

∑
e∈E

ae

⎛
⎜⎝
⎛
⎝∑

i∈I
δie p

i
edi

⎞
⎠
2

−
∑
i∈I

δie

(
pie
)2

di

⎞
⎟⎠ ,
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where the first equality holds from (12). As di ≥ 1 for any i ∈ I , we have

T (p) ≥
∑
e∈E

(aeve + beve) +
∑
e∈E

∑
i∈I

δieaeσ
2
i

(
pie
)2

+
∑
e∈E

ae

⎛
⎝
(∑

i∈I
δie p

i
edi

)2

−
∑
i∈I

δie

(
pie
)2

d2i

⎞
⎠

≥
∑
e∈E

(aeve + beve) +
∑
e∈E

∑
i∈I

δieaeσ
2
i

(
pie
)2

≥
∑
e∈E

(aeve + beve) , (17)

where the second inequality is from AM-GM inequality. Consequently, we obtain

f∗T t(p) =
∑
i∈I

∑
k∈Pi

(
f ik

)∗
t ik(p) ≤

∑
i∈I

∑
k∈Pi

(
f ik

)∗∑
e∈k

E[ce(V e + 1)]

=
∑
e∈E

v∗
eE[ce(V e + 1)] =

∑
e∈E

v∗
e (aeve + ae + be)

=
∑
e∈E

aevev
∗
e +

∑
e∈E

(
aev

∗
e + bev

∗
e

) ≤ √T (p)T (p∗) + T (p∗),

where the last inequality holds because of (16) and (17). 
�
With all the preparations, we are now arriving at an upper bound of the PoA.

Theorem 1 (Upper bound) Let I be the set of atomic congestion games with random
players and affine cost functions. Then

R(I) ≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A(A + 2) + √
A(A + 4)

2
, if θ ≥ √

2,

min

{
A(A + 2) + √

A(A + 4)

2
,
5(1 + θ

2
)

2 − θ
2

}
if θ <

√
2,

where A = 1 + θ
2
.

Proof From Lemma 1 and 3, we have

T (p) ≤ (1 + θ
2
)

(
5

3
T (p∗) + 1

3
T (p)

)
,

which is equivalent to

(
2 − θ

2
)
T (p) ≤ 5

(
1 + θ

2
)
T (p∗).
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Fig. 2 Upper bound of the PoA

Thus when 2 − θ
2

> 0, we have

T (p)

T (p∗)
≤ 5(1 + θ

2
)

2 − θ
2 . (18)

Similarly from Lemmas 1 and 4, we have

T (p) ≤ (1 + θ
2
)
(√

T (p)T (p∗) + T (p∗)
)

,

from which we can derive another upper bound for the whole range of θ as

T (p)

T (p∗)
≤ (θ

2 + 1)(θ
2 + 3) +

√
(θ

2 + 1)(θ
2 + 5)

2
. (19)

The theorem is proved by combining (18) and (19). 
�
Figure 2 illustrates the upper bound of the PoA in Theorem 1.

Remark 1 When demands return to deterministic, i.e., θ → 0, the bound in Theorem 1
matches the deterministic bound 5/2 for un-weighted atomic congestion games in
(Christodoulou and Koutsoupias 2005; Awerbuch et al. 2005), which implies that the
bound in Theorem 1 is tight in the special case.

Remark 2 The bounding technique is extended from (Awerbuch et al. 2013) by consid-
ering the randomness of player number. With stochastic demand, we involve variance

of σe = ∑
i∈I

δie

(
σ 2
i

(
pie
)2 + pie(1 − pie)di

)
, e ∈ E , in computing the expected total

cost, which significantly increase the difficulty of the bounding work.
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Fig. 3 Two-link network

5 Lower bound

In this section, we provide a lower bound of the price of anarchy with affine cost
functions by the following example.

Example 2 Consider a two-link network in Fig. 3. A random number D of players
have to move from node s to t . They can choose either the upper link with constant
cost of d = E[D], or the lower link with cost of x .

Apparently, all the players will choose the lower link at the equilibrium, thus the
expected total cost is E[D2] = d2 + σ 2, where σ is the standard derivation of the
demand.At the same time,we can find the optimal strategy byminimizing the expected
total cost, which can be written as

T [p] = E[V1d] + E[V 2
2 ] = v1d + v22 + σ 2(p2)

2 + p2(1 − p2)d

= (d2 + σ 2 − d)p22 − (d2 − d)p2 + d2

The optimal solution is attained at

p∗ =
(
1 − d2 − d

2(d2 + σ 2 − d)
,

d2 − d

2(d2 + σ 2 − d)

)
,

and the minimal expected total cost is

T (p∗) = d
(
d2
(
4θ2 + 3

)− 2d − 1
)

4
(
dθ2 + d − 1

) .

Thus we can compute the PoA as

PoA = (d2 + σ 2)/T (p∗) = 4d
(
θ2 + 1

) (
dθ2 + d − 1

)

d2
(
4θ2 + 3

)− 2d − 1
, (20)

where θ = σ/d. The PoA in (20) is increasing with d by its derivative, thus the
following supremum is a lower bound of the PoA for general instances with affine
cost functions
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Fig. 4 Upper bound and lower bound of the PoA

lim
d→∞

4d
(
θ2 + 1

) (
dθ2 + d − 1

)

d2
(
4θ2 + 3

)− 2d − 1
= 4

(
θ2 + 1

)2
4θ2 + 3

.

Theorem 2 Let I be the set of atomic congestion games with random players and
affine cost functions. Then we have

R(I) >
4
(
θ2 + 1

)2
4θ2 + 3

.

Figure 4 illustrates both the upper and lower bound in Theorem 1 and 2. The lower
bound goes up as the variation rate of players’ number θ increases, and approaches
to infinity when θ → ∞. Thus the equilibrium can be extremely inefficient when the
variation of players’ number is large.

Remark 3 Theorems 1 and 2 show that the bounds of PoA in our model depend on
the coefficients of variation and increase with the level of uncertainty, which are quite
intuitive, given that when the variation is high, it will be more difficult to balance
individual costs and the social cost. In contrast, Cominetti et al. (2019, 2020) consider
the Bernoulli congestion games and the PoA in their model is maximized to 5/2 as
uncertainty decreases. This striking difference on the behavior of PoA bounds comes
from the fact that the two models are very different. We focus on network congestion
games with uncertain number of players for each O-D pair and follow the framework
of population uncertainty proposed byMyerson (1998) with the assumption that play-
ers of a same O-D pair have the same (mixed) strategy at equilibrium. In contrast, in
the model of Cominetti et al. (2019), players are not assumed to join the game, instead
they do so independently with known probabilities (common knowledge). They use
Bayesian Nash equilibrium concept to transform the stochastic model into an equiv-
alent deterministic game with (unconditional) expected costs, while our approach is
to define the equilibria using the conditional expected costs, i.e., players only pay
attention to the cost when (not if ) they participate in the game.
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6 Conclusions

In this paper, we have presented a general model for atomic congestion games with
random number of players. The notion of mixed strategies has been adopted to model
equilibrium and system optimum with random players to describe players’ and coor-
dinator’s behaviors.

Based on our reformulation of the equilibrium condition as a variational inequality
problem, we have proved the existence and non-uniqueness of equilibria for our new
model.We have provided upper bounds of the price of anarchy for affine cost functions,
which are proved to be tight in some special cases including the deterministic case
and the extreme case of infinite number of players.

Our bounding approach can be extended to become applicable for a wider range of
cost functions, such as polynomial cost functions. However, the actual analysis, which
would not provide additional insights, is much more complicated, since each link flow
is a sum of independent compound random variables and its higher moments are very
complex. Even though the lower bound in this study goes to infinity when θ → ∞,
there still exists a gap between the upper and lower bound when θ is small, which
suggests that better lower bound is worth investigating further in future study.
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