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Summary

This thesis consists of five original pieces of work contained in chapters 2, 4, 6, 7 and 

8. These cover four topics within the subject area o f theoretical ecology: epidemiology, 

chaos in ecology, evolution and spatially extended ecological systems.

Chapter 2 puts forward a new mechanism for producing chaos in ecology. We show 

that near extinctions in the SEIR model stabilise a chaotic repeller. This mechanism 

works for a wide-range o f parameter values and so resolves the debate about which 

dynamic regime is associated with realistic values. It also highlights the problem of 

treating fluctuations as being either deterministically or stochastically produced.

Chapter 4 describes a new technique for identifying chaos based on measuring the 

divergence o f trajectories over a range of spatial scales. It correctly identifies noise scales 

and chaos in model systems and is also applied to some real ecological data sets.

In chapters 4 and 5 we set evolutionary game theory in a nonlinear dynamical frame­

work. We introduce a powerful new tool, the selective pressure, for analysing ecological 

models and identifying evolutionary stable states. It allows analysis o f systems where 

complex attractors exist. We also study the evolution o f phenotypic distributions and 

provide a new mechanism for evolutionary discontinuities.

In chapter 6 we look at an individually-based spatially extended system. This model 

is spatially heterogeneous and stochastic. However we show that the dynamics on a 

certain scale are deterministic and low-dimensional. We show how to identify the most 

efficient spatial scale at which to monitor the system.
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1 Dynamical systems in epidemiology.

1.1 Introduction.

A central theme o f the study o f epidemiology is to explain the pattern and persistence 

of diseases. Childhood diseases have received a great deal of interest in this respect 

for a number o f reasons. There are striking patterns in the incidence o f infections, 

the transmission mechanism seems to be relatively simple and well-understood, there 

are relatively long notification series for these diseases and more recently, because they 

seem to be the best ecological candidate for an example o f  low-dimensional deterministic 

chaos. As such there has been a great deal of work trying to understand and explain 

their dynamics. With the availability of vaccines and the possibility o f  control this work 

has become additionally important. The greater our understanding the better able we 

are to implement control strategies that are effective and optimal.

1.2 Seasonality and periodicity.

A number o f features o f the incidence rates of childhood diseases are apparent. Firstly 

there seems to be an annual rise and decline in the incidence of infection. Large number 

of cases occur in the winter months and in the summer months the number of infections 

are consistently low. Several hypotheses could explain this pattern. The pathogen’s 

virulence could depend on climate, for example. However detailed analysis points to 

the school year as being the driving force of these seasonal patterns. During the summer 

months children are out o f  doors and generally not coming into close contact with a 

lot of children. Conversely, during the school term large numbers o f  children come 

into close contact in classrooms. Detailed analysis o f  measles in England and Wales 

[31] indicates that the transmission of the disease is much higher during school terms 

and is particularly high at the beginning of the term when there are large numbers of 

susceptibles. The transmission rate then drops during the school holidays at Christmas
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and Easter and particularly during the long summer break. This relationship had 

been put forward by a number of authors previously [100] and [54], but was clearly 

demostrated by the analysis o f weekly incidence data, as performed by Fine and Clarkson 

[31].

On top of this annual seasonality in infection there are recurrent epidemics, with the 

inter-epidemic period varying depending on the disease. For some diseases the inter­

epidemic period is fairly constant while for others it is more variable. For example 

the number o f measles cases in England and Wales seems to follow a biennial pattern, 

i.e. a small epidemic occurs one year followed by a large epidemic the year after. New 

York City post-1945 also seems to have a biennial pattern in measles while pre-1945 

it is more variable. Other diseases such as mumps, rubella and whooping cough have 

longer inter-epidemic periods. Work by Hamer [41] and Soper [100] using sim ple’’ mass 

action” models, was able to explain this phenomenon. The explanation derives from 

the constant influx o f new susceptibles, i.e. births, into the population. After one 

epidemic had occurred another epidemic could not happen until a sufficient number o f 

new susceptibles had built up for the disease then to spread through. The time between 

epidemics is a function of the biological parameters, such as the infectious and latency 

period, o f the particular disease [2]. This early work served to illustrate the importance 

of dynamic models for explaining observed patterns.

1.3 Compartmental models.

One particularly fruitful approach to modelling the dynamics of diseases has been the use 

of compartmental models [3]. The population is separated into different categories and 

then equations describing the dynamics between and within categories are formulated. 

These equations can be stochastic, which assign probabilities to transformations between 

states, or deterministic. Clearly the real process by which a disease spreads through 

a population is a discrete stochastic phenomenon. However, when populations are
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large, the changes occurring can be deterministically modelled by the expected changes. 

The deterministic system is thus an approximation to the mean behaviour o f the real 

system. When populations are small this approximation is no longer valid and this 

point will taken up in more detail in section 2.5. However the deterministic models are 

far easier to manipulate and analyse and are hoped to be realistic for large cities such as 

New York City (population ss 10 million). Various factors such as age-structure, [92], 

and spatial distribution, [69], at varying levels o f complexity can be included within 

a compartmental model. However, many of the features o f childhood diseases can be 

reproduced with very simple models.

1.3.1 SE IR  m odels.

An appropriate model for many diseases is the S E IR  model. The population is sep­

arated into four categories; susceptible (S), exposed (E), infective (I) and recovered 

(R). Individuals are born into the population as susceptibles. Through contact with 

infectives susceptibles move into the exposed category. After a latency period these in­

dividuals become infective. After an infectious period infectives become recovered and 

they are then assumed immune to further infections for life. For some diseases immunity 

is not permanent and there will be transitions from the recovered state to the suscep­

tible category. For other diseases it might not be applicable to have an exposed class, 

in which case an S IR  model would be more appropriate. The simplest implementation 

of this approach is to assume a fixed population size and homogeneous mixing so that 

four ordinary differential equations can be written down:

dS/dt =  m(N  -  S) -  bSI

dE/dt = 65/ -  (m + a)E

dl/dt =  a E - ( m  +  g )I  (1)

dR/di =  g l  — mR.
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Since the population is fixed then the population of R is completely determined by the 

other three through the relationship N =  S + E  +  I  +  R and therefore doesn’t need to be 

included. The population size N  is assumed constant and normalised to 1. The quantity 

1/m  is the average life expectancy of an individual and can be obtained from census 

data, 1 /a is the mean latency period and l/g the mean infectious period both o f which 

can be obtained from the medical literature. The most important parameter is the 

contact rate, 6, between susceptibles and infectives since it is these contacts which drive 

the disease. This parameter has to be estimated indirectly from age-specific serological 

profiles.

For estimated parameters for common diseases such as measles the solution of these 

equations is a damped oscillation. This is obviously inconsistent with the recurrent 

epidemics seen in reality. It has been noted, [6] and [2], that stochastic fluctuations are 

enough to stabilise these oscillations. However, as noted in section 1.2, there is strong 

evidence for a seasonality in transmission. It is reasonable, therefore, to assume some 

periodicity in the contact parameter reflecting the periodic nature of the school year. 

London and Yorke [54] (also [100]) analysing monthly data, show that the contact rate 

appears smooth and periodic with period one year. Hence we can model 6 as a function 

of time with period one year. It can be simply given by b(t) =  6o (l +  6i cos2jt<). The 

parameter, fci >  0, reflects the degree of seasonal forcing. Other more complicated 

forms for b [50] can be extrapolated from weekly data. With this modification the 

SE IR  equations can now sustain oscillations. Aron and Schwartz, [5], show that there 

is a period-doubling sequence starting from an annual cycle and leading to chaos as 

the degree of seasonal forcing, i j ,  increases. They also show that there is a functional 

relationship between between the degree of seasonal forcing, t j, the contact rate, bg, and 

the propensity for the model to produce biennial patterns. For low values of the contact 

rate it takes larger values o f  seasonal forcing to  produce biennial oscillations and vice 

versa. Hence large populations, with large contact rates, will be more susceptible to
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biennial outbreaks and also to chaos. However, the regular nature o f these oscillations 

is also inconsistent with the variability seen in real epidemics. Some authors (e.g. [73]) 

have, therefore, suggested using high values of 61 ( bi > 0.272) which then produce 

chaotic solutions to the model. Such high values o f  61 are considered by some to be 

biologically unreasonable, [20] and [93]. To a large extent this argument is resolved in 

chapter 2. However, this has also led to more realistic models being formulated.

1.3.2 A g e -stru ctu red  m odels.

The above S E IR  model relies on homogeneous mixing of the population. This model 

and related ones explain many o f the patterns we observe in real epidemics. However, 

as mentioned above, not all. One explanation o f this is that, in reality, the diseases 

are driven by children coming together at school and infecting one another. This is 

the justification behind seasonally varying contact rates, as this reflects the seasonal 

nature of the school year and infection transmission. A more appropriate model might 

be one where this age-dependence in contact rates is explicitly taken into account. 

Schenzle [92] introduced such a model. This model keeps the compartmental nature 

of the S E IR  model and the simple biology. The population is then divided up into 

21 cohorts ages 0-1, 1-2, .., 20-21, 21+. Each cohort comprises those born during the 

same school year. New-born susceptibles go into cohort 1. Individuals move into the 

next cohort simultaneously at the end o f each school year. The mortality rate is zero 

in the first 20 cohorts and constant in the last cohort. The cohorts fall into 4 age 

classes reflecting: pre-school(l-5), primary school (6-10), adolescents (11-20) and adults 

(21). The pattern o f contact rates is reflected in the discretised contact matrix. These 

contact parameters are estimated from age-structured case reports or from serological 

data. The specific pattern of the school calendar acts as a seasonal input. Thus the 

model carefully includes the most important heterogeneities neglected by the standard 

SE IR  model. This is reflected in the model’s quantitative performance, which is better
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than the global mass-action models. In particular it yields the biennial measles cycle, 

the characteristics o f which compare favourably to those observed in England prior to 

vaccination.

1.4 Fade outs.

In order for the deterministic S E IR  model to demonstrate irregular chaotic epidemics 

comparatively high amplitude seasonal forcing is needed. One problem with this is 

that it generates low levels of infectives in the inter-epidemic periods (the ’’ troughs” ). 

At very low numbers of infectives the S E IR  model is no longer a reasonable approx­

imation to reality (but see chapter 2). An approach more in keeping with the actual 

structure o f an epidemic is to reformulate the deterministic SE IR  model as a stochas­

tic Monte Carlo model. Here the equations are separated out into transitions between 

different states with an associated transition probability. For instance the probability 

that an individual moves from a susceptible state to an exposed state is proportional to 

b(t)(S(t)/N )(I(t)/N ), where N  is the population size. This approach deals with indi­

viduals and is thus a discrete process. The introduction o f  a finite population size intro­

duces some important real effects. Using stochastic models and observed data, Bartlett 

[6] established the important concept of threshold community size for the persistence 

of an infection. He noted that larger cities such as Manchester and Birmingham never 

show fade-out of infection while small towns have very irregular epidemics with many 

fade-outs. He identified the relationship o f population size with fade-outs and showed 

that his coupled stochastic models also possessed this property. For measles the urban 

critical community size is o f the order o f 250, 000. Olsen et al [74] performed Monte 

Carlo simulations with population sizes such as Copenhagen ( «  1 million). However, 

they still observed fade-out of infection and so introduced a constant immigration prob­

ability. This population size is well above Bartlett’s’ threshold community size for the 

persistence o f  infection. One resolution of this problem is that the models don’t incorpo­
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rate important heterogeneities o f a population which might enhance persistence. Since 

infectious diseases are driven by people coming into contact with each other, spatial 

heterogeneity might be an important factor. Bartlett used a spatial grid with migra­

tion of infectives between neighbouring cells to model this process. He demonstrated 

the relation between population size and fade-out o f  infection. Recently, Grenfell [40] 

has looked at the importance o f seasonality and spatial coupling on the probability of 

fade-out of infection. However he found there was still a significant probability o f fade 

out which is not observed in real epidemics.

1.5 Noise.

Such compartmental modelling, as explained above, has been successful at explain­

ing the gross features o f  childhood diseases. However, the size o f the epidemics varies 

in a seemingly irregular way. One question, therefore, is whether these annual fluc­

tuations in the size o f epidemics is a stochastic phenomenon or whether it is a case 

of low-dimensional chaos. There have been various mechanisms put forward whereby 

stochasticity, or noise, could be present in the system and thus explain the observed 

fluctuations. One source o f  noise is the reporting rate, or measurement noise. For New 

York, Baltimore and Copenhagen the reporting rate has been estimated at 12.5-50% 

for measles and 8-30% for chickenpox [54], [89]. In England and Wales, reporting rates 

for measles seems to be higher at 66%, [31]. If reporting rates vary this could bring 

observational errors into the data. For instance in 1941 in New York City there was 

an exceptionally large number o f measles cases reported. This was probably due to the 

publicity given to the epidemic in that year. Measles data from England and Wales 

shows drops in the number of cases reported at the end of the calendar year. This has 

been attributable to postal delays caused at Christmas time. Additionally there was a 

postal strike in the first quarter o f 1971 which led to a drop and then a surge in the 

number of cases documented. This type of variability may be important but is probably
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not sufficient to explain all the observed fluctuations. Another source o f noise could be 

variability in important parameters such as the birth rate or contact rate, so called 

dynamical noise (e.g. caused by a particularly severe winter keeping people inside more 

often then usual). Alternatively random movement o f infected individuals into or out 

of the population, inherent stochasticity, could be a source of noise. It is possible that 

such stochasticity is enough to explain the observed variance and undoubtedly there is 

such noise present in the data. However the question is to what extent the observed 

fluctuations are due to this noise and what could be due to deterministic chaos. This 

is important as understanding structure within the data and the underlying dynamics 

means we will be better placed to control the disease through more effective vaccination 

policies. However, the question is a debatable one. Various analyses o f the data and 

models formulated to mimic the dynamics o f the disease have been put forward in an 

attempt to resolve it.

1.6 Traditional methods o f analysis.

1.6.1 P ow er spectra .

An alternative method of representing t he incidence rates o f diseases (or any time series) 

is to study the data in the frequency rather than the time domain.

A process can be represented either in the time domain where some measurement is 

a function o f time, h(t), or the frequency domain where a process is represented as an 

amplitude as a function o f frequency, H (f).  Often the amplitude is a complex number 

representing phase also. One can go back and forth between these representations by 

means of the Fourier transform equations:

H(f) =  f "  h(t)eiwi/,dt

h(t) =  j "  HU)e-™t'df (2)
J — OO

Hence we can represent a time series, h(t), as a summation, or integral, o f  sin waves
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of different frequencies and amplitudes. The relative amount a certain frequency is 

represented in /i(<) is reflected by the amplitude at that frequency, H (f) .  Therefore 

dominant peaks, frequencies with a relatively large amplitude, in a Fourier transform 

represent periodic waves which are dominant in the original time series. In the analysis 

of epidemics we are only interested in the total power at a certain frequency. Since 

H (f)  is generally a complex number, x +  iy, representing phase also, we plot x 2 +  y2 

versus / .  This is known as the power spectrum.

Several authors have studied the power spectra o f epidemics including Schaffer and 

Kot [89], Schaffer et. al. [90] and Olsen et. al. [74]. Schaffer et. al. looked at incidences 

of chickenpox, measles, mumps and rubella in several North American cities and in 

Copenhagen, Denmark. All had dominant peaks in their power spectra at one cycle per 

year. Hence there is a strong annual forcing in the incidence of infection. While this 

was the only peak in the power spectrum for chickenpox, other diseases had additional 

peaks. Measles had significant peaks corresponding to cycles of 2-3 years, for mumps 

there were cycles o f 3-4 years and rubella 5-7 years. Power spectra are thus able to 

pick out the periodic features o f  the time series . However, they have yielded little 

further information except that the spectra are fairly flat which is indicative of noise 

or aperiodic motion ( but see [34] and [18] for more information that could possibly be 

extracted).

1.7 Nonlinear analysis.

1.7.1 D im en sion .

Estimating the dimension of a system is attempting to establish that the underlying 

system generating the observed behaviour is low-dimensional. Stochastic systems are o f 

infinite dimension and so should not converge to a low dimension. A first step in gauging 

the dimension o f the system is a qualitative inspection o f the geometry o f reconstructed 

attractors in the phase space. When data is plotted as incidence versus time, then there
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may appear a periodicity in the timing o f outbreaks but no regular pattern in their 

magnitudes. Hence one might conclude that the fluctuations are random. However, 

attractor reconstruction may demonstrate that the fluctuations are deterministic.

Various authors, e.g. [89] and [74], have used phase space portraits to illustrate the 

low-dimensional structure o f  the dynamics o f measles. Using embedding techniques (see 

section 3.2.2) it is possible to reconstruct the attractor o f a scalar time series. Although 

Takens’ theorem states that an embedding is achieved for E >  2d +  1, in practice it is 

often possible to choose an embedding dimension much smaller than this. Using this 

technique Schaffer and Kot [89] studied the phase space portraits of measles in New 

York City. The trajectory in the phase space clearly does not wander at random, but 

instead traces out a low-dimensional object that appears to lie within a 2-dimensional 

surface.

As outlined in section 3.3.4 the correlation dimension introduced by Grassberger and 

Proccacia (G -P algorithm) provides a convenient method for quantifying dimension 

analysis. Work by Schaffer et. al. [90] indicates no convergence to a low dimension as 

the embedding dimension is increased. This they attribute to the fact that the data 

is ’spiky’ , i.e. is nonuniform and hence needs much larger amounts of data to resolve. 

The modified G-P algorithm they suggest needs the calculation of first return maps as 

outlined in section 1.7.2. As such it has the same problems associated with it.

1.7.2 P o in ca re  sections.

In order to reduce the complexity o f a system it is useful to study its Poincare map. 

Given a D-dimensional flow one can transversely intersect that flow with a hyperplane. 

The intersection, the Poincare section, o f the flow with the plane will then have dimen­

sion D — 1. Hence we are able to abstract from our original continuous system a discrete 

representation o f lower order. Successive points x„, x„+i ,... on the Poincare section are
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related by the Poincare map, P , defined by:

x n+i =  P (x „ ) .

The dynamics o f the original system are thus captured by the Poincare map. A theory o f 

Oseledec [75] guarantees that the properties o f  this map will be independent of the choice 

of slicing plane. For a 2-dimensional flow the Poincare section will be 1-dimensional, 

either a line or a curve. Thus the mapping, P , might be relatively simple. Schaffer 

exploited this in studying epidemiological data.

After concluding that the motion in the phase space was 2-dimensional Schaffer and 

Kot looked at the Poincare section. The points in this section all lay on a thin band, 

indicating a 1-dimensional intersection between the attractor and the Poincare section. 

They then assumed a functional form for the Poincare map:

y =  axebz. (3)

By fitting the points on the section to this map the parameters a and 6 are estimated. 

The importance of finding such a simple map is that it reveals an underlying determin­

istic rule for the dynamics. Once such a map has been estimated it is straightforward 

to extract various properties. In particular, Schaffer and Kot estimated the Liapunov 

exponents. The exponents calculated for measles data from New York and Baltimore 

were both positive. Interestingly, in this same paper, they go on to explore the effects 

of adding noise into the 1-D maps and point out the importance o f repellers; a subject 

which will be taken up in some detail in chapter 2.

However, as Schaffer notes elsewhere, [90], this analysis is probably in error. A more 

reasonable assertion is that the measles dynamics correspond more closely to the S E IR  

model, see section 1.3.1 , with a periodically varying contact rate. Poincare maps are 

particularly useful for these forced systems. If we consider the forcing, Acosu/t, as one of 

the variables, then the Poincare section consists o f  points at times f„  =  2irn/u. For the 

SEIR  model this section is 2-dimensional (see figure 2). Hence an attempt to model
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the dynamics with a 1-dimensional map must be inaccurate. The Poincare sections of 

the original data appear 1-dimensional for the following reason. The data possesses 

large epidemics o f approximately 10,000 infectives followed by troughs o f less then 100 

infected persons. The Poincare sections are thus dominated by high-low oscillations. 

The fluctuations are effectively obscured due to the delay time used, 3 months, in the 

reconstruction. One coordinate o f the the point of intersection on the Poincare section 

is roughly proportional to the epidemic size. The other coordinate sits (due to the delay 

time used) in the trough between epidemics. As a result this coordinate shows relatively 

little variation and all points on  the intersection lie near a 1-dimensional curve, (27). 

To minimise this effect one should take logarithms o f the data. When this is done the 

Poincare sections lose, to some extent, their one-dimensional appearance.

Additionally, as noted by Schaffer and Kot, the results can be sensitive to the func­

tional form assumed for the Poincare maps. The form assumed here in equation (3) is 

arbitrary and does not reflect the underlying epidemiological mechanisms. We might 

expect other forms for P  to give different results.

1.7.3 Sensitive d ep e n d e n ce  on  in itial co n d itio n s .

The most important property o f  a chaotic system is sensitive dependence on initial 

conditions (see section 3.2.1).T h is is equivalent to the presence o f a positive Liapunov 

exponent. A great deal of work has focussed on directly measuring Liapunov exponents 

as well as indirectly. Details o f  these methodologies are given in section 3.3.

Schaffer attempted to calculate Liapunov exponents by two methods [90]. Firstly by 

directly estimating the divergence of nearby trajectories on the attractor using the Wolf 

method [115] or a modified W olf method (which Schaffer calls the ’’ Coyote” method). 

These methods both gave a positive exponent indicative o f chaos. This is looked at 

in some detail in chapter 4 and as such there is considerable doubt over the figures he 

gives. The second method [89] was to take a Poincare section through the attractor
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and, if this is one-dimensional, calculate a one-dimensional first return map for the 

Poincare section. From this it is straightforward to extract invariant measures such 

as the Liapunov exponent. However there is concern over this method as outlined in 

chapter 1.7.2 as the Poincare sections are not one-dimensional.

Sugihara and May [106] used a simplex prediction method (see section 3.3). They 

looked at two epidemiological data sets: pre-vaccination measles and chickenpox cases 

from New York. They concluded that measles showed evidence of chaos while chickenpox 

was a noisy limit cycle.

In chapter 2 I show that the S E IR  model is chaotic for both chickenpox and measles 

parameter values. Additionally the model is chaotic for a wide range o f values o f  the 

seasonal forcing not just for the restricted range considered too high by some authors. 

In chapter 4 I present evidence to show that the data from New York City for measles 

is chaotic, while chickenpox seems to be more periodic.
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2 Chaotic stochasticity: A ubiquitous source of un­

predictability in epidemics.

2.1 Introduction.

A topical and central question of epidemiology is whether or not epidemics such as 

those of chickenpox and measles have chaotic dynamics. The present controversy cen­

tres around the apparently contradictory theory and data [78]. While many o f the 

observed time-series possess all the signatures of chaos, for realistic parameter values 

the associated models often do not [73]. We reconcile these observations and present a 

new mechanism whereby complex stochastic processes like epidemics can behave chaot­

ically even though their mean-field approximations do not.

In this process the fluctuations from the mean field do not decrease with system 

size but are greatly amplified by the stabilisation o f chaotic repellers of the mean field 

equations. Such chaotic stochastic processes are likely to be ubiquitous, especially in 

biological and chemical dynamics, because the ingredients o f  the underlying mechanism 

are very common. It occurs for realistic parameter values for both the chickenpox and 

measles models.

For deterministic systems, the most important characterisation o f chaos is sensitive 

dependence upon initial conditions, i.e. the existence of a positive characteristic expo­

nent x  (see section 3.2.1). Nearby orbits o f such a system diverge exponentially fast at 

a mean rate exp(<x). This puts obvious limits upon the predictability o f the system and 

determines the characteristic time, tp =  X- 1 . giving the prediction horizon. A number 

of real-world epidemiological time-series show such exponentially decaying predictabil­

ity [73], [91]. However, for deterministic systems the long-term behaviour o f the system 

is usually determined by its attractors and in several cases the most realistic models 

for these epidemics only have periodic attractors (limit cycles). These have negative 

characteristic exponents.
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An example is chickenpox. If parameter values appropriate to chickenpox are chosen 

for the commonly used SEIR equations (4) below, then the only attractor is a simple 

stable annual cycle. On the other hand, real-world chickenpox epidemics appear to 

have characteristic exponents which range from x  =  0.12 to \ =  0.32 bits per year [73], 

[91]. (In section 1.7.2 some reservations about these results were discussed). Moreover, 

although for measles the S E IR  equations are chaotic for some acceptable parameter 

values, several have argued that the contact rate 6] used is too high [78] and have noted 

the importance of noise [78], [106], [89], [88] and section 1.5. .The alternative contact 

rate proposed for measles gives a periodic attractor corresponding to a biennial cycle 

rather than the chaotic signatures o f  the observed time-series. We treat both of these 

examples below.

Epidemics are complex stochastic processes at the microscopic level. The determin­

istic models are mean field equations which are derived by considering the behaviour 

of averaged quantities and assuming homogeneous mixing o f the population. Their 

justification is the assumption that the stochastic fluctuations around these averaged 

quantities tends to zero as the system size grows. This is not valid in systems that 

possess near extinctions, where a class of the population becomes so small that the sta­

tistical effects become important and the mean field assumptions fail. Moreover, such 

near extinctions are also often associated with instabilities in the deterministic mean 

field equations. There are thus two contrasting intrinsic sources o f unpredictability:

(i) the sensitive dependence upon initial conditions which characterises deterministic 

chaos and (ii) the stochastic fluctuations arising from the probabilistic structure o f the 

underlying epidemiological process. In addition, there are extrinsic sources such as 

stochastic fluctuations of the environment. We show that these factors can strongly 

interact with each other so that the stochastic process gives rise to large-scale chaotic 

behaviour with exponentially growing unpredictability even though the attractor o f the 

mean field equations is periodic and completely predictable.
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We divide the forms o f stochastic fluctuations into the following three types.

(i) Fluctuations arising from the stochastic structure o f  the epidemic. These 

are particularly important when the number o f infectives becomes so small 

that the assumptions of the mean field model are no longer valid.

(ii) Intrinsic noise. This includes randomness in the environment and parameters 

affecting the epidemic, and fluctuations in the population other than those 

covered by (i).

(iii) Measurement errors. In principle, these are easier to handle as they are 

not involved in the dynamics. Indeed, for long data sets there are possi­

ble techniques to remove such noise based on the chaotic structure of the 

dynamics.

Based on numerical work several authors have postulated that the relevant dynamics 

for chickenpox is a stable cycle in the presence o f noise. However, neither multiplicative 

nor additive noise can produce a positive exponent without the existence of complex 

dynamics close to the limit cycle. Therefore such an explanation by itself is inadequate. 

It is also not difficult to see that realistic measurement error cannot contribute toward 

a positive characteristic exponent, thus we shall concentrate mainly upon the other two 

forms of noise.

2.2 Epidemiological models.

We firstly consider the following form of the SEIR equations (introduced in section

1.3.1):

dS/dt =  m (N  -  S) -  bSI

dE/dt =  bSI — (m +  a)E  (4)

dl/dt =  aE  — (m +  g)I.
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Individuals enter the population as susceptibles (S). Such a person becomes exposed ( E ) 

by contact with individuals (called infectives ( / ) )  capable o f transmitting the disease. 

After a latency period these exposed individuals become infectives and later immune or 

recovered (R ). It is not necessary to  include an equation for R  because it does not enter 

the equations for dS/dt, dE/dt or dl/dt except through the relation R +  S +  E +  I =  N .

The population size N is assumed constant and normalised to 1. The quantity 1/m  

is the average life expectancy of an individual: 1/a is the mean latency period and 1/g 

the mean infectious period. The m ost important parameter, b, represents the effective 

contact rate, the average fraction o f  susceptibles contacted by a single infective, which 

themselves catch the infection. It is a periodic function of time with period one year 

which we will take to be given by b(t) =  6o(l +  b\ cos 2x1).

We shall use the values of m, a and g shown in table 1. These values are taken from 

Olsen and Schaffer [73] and have been obtained from census data (in the case of m) 

and the medical literature (in the case of a and g). The parameters involved in 6 are

Measles Chickenpox

m 0.02 year-1 0.02 year-1

a 35.84 year-1 36.0 year-1

9 100 year-1 34.3 year-1

bo 1800 year-1 537 year-1

b\ 0.28 year-1 0.3 year-1

Table 1 : Parameter values for measles and chickenpox.

calculated indirectly by using age-specific serological profiles to obtain an average age 

o f infection. We note that although the SE IR  equations qualitatively capture the main 

dynamical features of epidemics, it does not give a good quantitative representation of 

observed measles dynamics [92], For this it is necessary to incorporate the age structure 

of both the population and the contact rate, b [92],
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As the equation depends periodically upon time (with period one year) it has asso­

ciated with it a Poincare map P  defined as follows:

P (S (0 ), £ (0 ), /(0 ))  =  (5(1 ), E ( 1), J (l)).

All o f the long-term dynamical phenomena that we discuss can be read off from this 

map.

To get some general idea o f the structure o f the attractors for the above system we 

have plotted bifurcation diagrams for the Poincare map P . In these we solve equation 

(4) to obtain P ” (5(0), 5 (0 ), 7(0)) =  (S(n), E (n), I (n )), remove transients and then, 

for each parameter value considered, project the resulting attractor onto the I  axis. 

Figure 1(a) shows the diagram obtained when we interpolate between the chickenpox 

and measles parameter values o f table 1. It shows the stability o f the annual limit 

cycle for chickenpox (which also persists for lower values) as well as the fact that, 

near the measles values, there are multiple attractors. The latter follows from the 

observation that the attractor suddenly jumps from being a biennial cycle to a much 

larger chaotic attractor. We know that the biennial cycle in fact continues further and 

period doubles and becomes chaotic in a continuous fashion so coexisting with the large 

chaotic attractor and finally merging with it. An inspection o f phase space confirms this. 

Note also that this diagram shows that chaotic attractors only occur in the immediate 

neighbourhood o f the measles parameters of table 1. By contrast, our mechanism will 

work at all the parameter values of this diagram as well as values below them.

The interpolation involved here mainly involves the contact parameter 6 i. In fig­

ure 1(b) we have plotted a similar bifurcation diagram but without removing all the 

transients and for the chickenpox parameter values with varying 6j. For the noise-free 

system the projection of the attractor is a single point. But when bo is modulated by 

a small amount o f Gaussian noise then we see the dramatic effect shown in figure 1(b). 

Without noise, the effective chickenpox attractor is a single point (representing a limit 

cycle) but with only 3% noise it has exploded to a size which is two orders o f magnitude
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Figure 1: (a) Bifurcation diagram for the SEIR equations (4) where all the parameters 

are interpolated linearly between the values for chickenpox and measles given in table 1 

and the abscissa is labelled with the corresponding value of 60- Transients are removed 

by ignoring the first 300 years, (b) Bifurcation diagram for the chickenpox values, but 

where bi is varied. The diamonds plot the position o f the attractor without noise. The 

other points are what is observed when 60 is modulated by 3% Gaussian noise so that 

b =  60(1 +  £ (t))(l +  6i cos2nt).
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greater than the noise amplitude. This occurs because o f the existence of a chaotic 

repeller [97].

2.3 A  simple chaotic repeller.

Consider a mapping /  : 3i —► 9i on the closed unit interval I  defined by:

/ ( x )  =  a x (l — x), a >  2 +  >/5 (5)

Since a > 4, after one iteration o f the mapping /  some points will be mapped outside 

the unit interval and some will remain inside. Those points leaving the interval will tend 

towards —oo under the action o f the map / .  Those points that remain in I after the 

second iterate of /  will be a subset o f  those remaining after one iteration. The action of 

the map /  continues to subdivide the unit interval. Almost all orbits / ' ( x ) , 0 <  i <  oo, 

x € / ,  eventually escape from I and tend towards —oo. But there is a set of points A 

whose iterates remain in I. This is an invariant set in that if x G A then / n(x) £ A, for 

all n >  0. This invariant set: A =  {x  : /* (x ) G / ,  i >  0} is a cantor set as it is a closed, 

totally disconnected and perfect subset of I. The requirement a >  2 +  y/5 ensures that 

| /  (x) |> 1 for all x G A.

D efin ition  1 A set A is a repelling hyperbolic set for f  i f  A is closed, bounded and 

invariant under f  and there exists an N > 0 such that | ( / n ) (x ) |> 1 fo r  all n >  N.

2.4 Chaotic repellers and the SEIR  equations.

Consider the Poincare map P  o f equation (1) with the chickenpox parameter values 

given in table 1. For these parameters P  has a single attracting fixed point x . =

(S .,E », / . )  corresponding to the simple annual cycle. For almost all initial conditions 

xo =  (So, Eo, /o), if x „  =  P n(xo), then x„ converges to the fixed point x . as n —» oo. 

However, this is not true for all initial conditions. There is a set A in the phase space such 

that, if x „  does not converge to the fixed point x . as n —» oo then instead it converges
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to A. Moreover, this set A is chaotic in the sense that it has a fractal structure (it is a 

Cantor set) and the orbits in it have a positive characteristic exponent [97]. This set is 

qualitatively similar, but more complex, to the one introduced in section 2.3. On the 

other hand, the set o f initial conditions that converge to it only has zero volume, so, for 

deterministic systems, it is effectively unobservable and only gives rise to metastable 

transient chaos [109]. Almost all orbits will eventually escape from A and be captured by 

the periodic attractor. However, orbits starting close to A take a long time to converge 

to the attracting periodic orbit, and while they stay close to A, like the orbits in A, 

they behave in a chaotic fashion. Moreover, A acts like a chaotic pinball machine. Its 

stable and unstable manifolds partition the phase space of the system into boxes of all 

scales through which orbits must pass in a specified sequence. Almost all orbits will 

eventually find their way through it, but small deviations will lead to radically different 

routes. If noise or fluctuations are constantly moving the state from one box to another 

then the orbit may never find its way out. Chaotic repellers are created after a period 

doubling sequence, but in multi-dimensional systems they can also occur before the 

main period doubling sequence. Experience shows and theory indicates that they are 

far more ubiquitous than chaotic attractors [109], [97].

In figure 2 we plot this chaotic repeller in the following way. Firstly, we note that for 

large times, E  is a function o f 5  and / ,  and is very close to I. Thus we need only plot 

S and I  as these determine the system. We start a large number o f initial conditions 

of the form (5, E  =  1,1) along the top edge o f the rectangle T o f figure 2. We only 

consider that part of the orbit which stays inside T and discard the initial and final 25% 

of this, plotting the remainder. This captures the non-trivial structure of the repeller.

We now consider how to detect the existence of a positive characteristic exponent 

for the repeller, as this method provides a particularly useful signature which we shall 

apply to our model epidemiological data. Let z(<) =  (5 (f), E(t), /(< )) be a solution of 

(1). For i =  0 ,1 ,2 , . . .  let j/j(<) be a solution of the equation for ir  <  t <  (i -1- l ) r  such

29



- 2.2

-3.4 -J------------ .------------ i----------- 1------------1----------- r
-25 -2 0  -15 -10 -5  0

log/

Figure 2: An approximation o f  the chaotic repeller o f  the SEIR equation (4) with the 

chickenpox parameter values o f  table 1. The square marks the position o f the fixed 

point corresponding to the annual cycle.

that (f) is very close to (say within ¿) o f x (t ) for this period o f time, and such that 

*(«V) -  y ,(ir ) is parallel to r ( i r )  — 2ft_ i(ir). Let

di =  ||r(ir) -  y.(«V)||/||*((«- l ) r )  -  y ,((i -  l)r)||

and D„ =  d i- - -d„. For almost all choices o f the y; the largest characteristic exponent 

Xo of the attractor is estimated by the long time limit o f  n_1 log Dn. We emphasise that 

we are not so much interested here in the precise value of xo> but in detecting when it 

is positive.

We plot log Dn against n in figure 3(b) and note that it grows linearly for a while 

at rate xo approximately equal to 0.38 bits per year, but then the slope, xo, suddenly 

plunges to a negative value o f  approximately -0 .17 . We interpret this as the signature 

of the existence o f  a chaotic repeller. The increasing D „ correspond to periods when the 

solution shadows the chaotic repeller (the chaotic transient) and the plunge corresponds 

to the solution finally entering the immediate basin o f the periodic attractor. This 

behaviour is to be contrasted with figure 3(a) which is instead for a solution o f the
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Figure 3: (a) The graph of D „ against n for the SEIR equation (4) with the measles 

parameter values of table 1. (b) As (a) but for the chickenpox parameters o f table 1. 

Note the non-uniform growth in log/?,, which is due to the fact that chaotic attractors 

and repellers contain a mixture o f  regions o f high and low instability.
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measles parameters of table 1. In this case we observe perpetual linear growth with 

a slope, xo. approximately equal to 0.32 bits per year. This signals the presence of a 

chaotic attractor.

Several authors have argued that this value of bi is too high for measles [78]. But, if 

6i is less than 0.272 then the only attractor is a limit cycle and the situation is similar 

to that of chickenpox above. In particular, for 6i not too small there exists a chaotic 

repeller for measles.

2.5 Fluctuations and noise.

Let us consider the contribution n to dE/dt which models the interaction, contact and 

infectious transfer between infectives and susceptibles. In equation (4) we have used 

/J =  bSI. Such a term is reasonable if the size of both I  and S  does not become too 

small. However, solutions of (4) for the parameters in table 1 at times have extremely 

small values o f I. Although the value of I for the annual cycle for chickenpox is approx­

imately 10- 4 , orbits in the repeller contain common events where I  becomes as small as 

10-6 and rare events where it becomes as small as 10-10. Transient events are observed 

with values as low as 10-14. Values less than 10-6  correspond to only a few infected 

individuals in the population or the extinction of the infection. The existence o f these 

near extinctions is thought to be realistic and the presence of a repeller clearly has con­

sequences for the theory of extinctions. But with so few individuals the approximation 

of n is not reasonable.

The real process by which susceptible individuals are brought into contact with and 

infected by infectious ones is clearly very complex. The simplest model for such a situ­

ation is to assume (i) that each susceptible and infected individual interacts with other 

members o f the population and this other person is chosen randomly and independently 

of the other such choices (ii) that such interactions occur at a constant rate r  and (iii) 

that the infectives and susceptibles are distributed uniformly and randomly throughout
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the population.

Consider a time interval (<, t+St). The probability o f an infective making an infectious 

contact with another individual during this period is p =  rSt. Let s =  N S(t) and i =  

N I(t) denote the number o f susceptibles and infectives at time t. Then the probability 

that a susceptible makes at least one infectious contact is 1 — (1 — rSt)' ss irSi, where we 

ignore terms that are 0(S t2). Therefore, the probability that j  individuals are infected 

during this period is

p ( j)  =  *C; (1 — Ti6t)‘ ~ i ( r iS ty .

If iSt —> 0 this is approximated by the Poisson distribution

pU )-  (6)

Thus we replace the first equation (4) by

dS/dt =  m (N — S) — dfi

dE/dt =  dfi — (m +  a )E  (7)

dl/dt =  aE — (m +  g )I  +  Iq.

where the term dp(t) is such that its integral on an interval (Í, t +  St) has the distribution 

p(j) given in (6). We do not attempt to stochastically model the other terms in the 

equation which correspond to immigration, birth, death and the transition from being 

exposed to being infective since these are far better controlled and accurately represented 

by the mean field approximation.

We have numerically simulated the stochastic solutions o f this equation with N  in the 

range 107— 1010. With these values o f N  the minimum value of i =  N I  in the repeller is 

o f the order o f 10—1000 for the common events. The rare events, « ’here it is even smaller, 

give extinctions if, as in (4), the term /o, which represents a very small constant import 

rate of infectives into the population is zero. We prevent these extinctions by taking la 

positive but very small, usually o f the order of 10-6  to correspond to the import o f a few
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individuals per year. We now observe that the solutions for the chickenpox parameter 

values o f  table 1 corresponding to those computed above now have values of Dn which 

grow linearly indefinitely with time (see figure 4(a)) and have a positive characteristic 

exponent xo approximately equal to 0.77. In figure 4(b) we have plotted a typical 

trajectory to verify that its density is a smoothed out version o f that for the repeller. 

Thus we see that the stochastic fluctuations corresponding to low I can stabilise the 

chaotic repeller.

We obtain similar results if we assume stochastic fluctuations o f the contact rate. For 

example, in figure 5 we show the growth in the Dn when we take 6 =  60(1 +  £ (t))(l +  

bi cos 2irt) where f  is white noise with mean 0, amplitude a =  0.03 and variance <r =  a2.

Finally, we note that when there is a coexisting periodic attractor and chaotic re­

peller, the existence of near extinctions can lead to large fluctuations in the size o f the 

basin of the attractor with time o f the year and hence to the critical size of perturba­

tions. They are moreover associated with instabilities which amplify fluctuations by an 

order of magnitude or more between periods o f  low and high I. This follows because 

(i) I varies over several orders o f magnitude and (ii) the equations corresponding to 

(4) for the quantities logS, log E  and log /  are well-balanced and for these the basin 

is roughly constant with phase and the expansion is roughly o f order unity. In the 

case of the chickenpox parameters, this amplification is by a factor of more than 20. 

This phenomenon greatly aids the mechanism we have described since the stochastic 

fluctuations at small I are greatly magnified.

2.6 Conclusion.

The deterministic mean field models for chickenpox and measles epidemics have a very 

rich dynamical structure with complex bifurcations, multiple co-existing attractors, frac­

tal basin boundaries and chaotic repellers. In particular, they possess a chaotic repeller 

for a very large range of parameter values. They also contain near extinctions where the
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Figure 4: (a) The graph of D n against n for the SEIR equation (3) with the chickenpox 

parameter values of table 1, /o  =  10-6  and with the contacts determined by the Poisson 

distribution, (b) The distribution o f a typical orbit. Note that it is a smoothed out 

version of the repeller shown in figure 2
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Figure 5: The graph of Dn against n for the SEIR equation (4) with the chickenpox 

parameter values of table 1 and 6 =  £>0(1 +  ( ( 0 ) 0  +  cos2jt<) where (  is white noise 

with mean 0, amplitude a =  0.03 and variance <r =  a2.

number of infectives becomes very small and the deviation from the mean behaviour is 

significant. We have shown that the corresponding stochastic fluctuations stabilise the 

chaotic repellers so that the resulting time-series are practically indistinguishable from 

those of a chaotic attractor. This is a potential explanation for the present discrep­

ancy between theory and experiment. Because o f its simplicity and the ubiquity and 

stability of its ingredients, this mechanism is likely to be very common in biological, 

chemical and some physical dynamical systems. For example, since they appear to fit 

into our scheme of things (including the existence o f  periods of very low numbers), it 

is tempting to use these ideas to model the dynamics of Nicholson’s blowflies [70] and 

other biological populations to explain the conjectured chaos as discussed by May [61].
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3 Detecting chaos

3.1 Introduction.

Until recently most biological and ecological systems have been presumed to posses 

simple dynamics: either an equilibrium or limit cycle with stochastic perturbations 

superimposed. The discovery oflow-dimensional deterministic chaos in the early sixties

[55] and its development and application in the physical sciences in the early seventies 

[86] has stimulated great advances in the nonlinear analysis o f systems. May [60] brought 

this body o f work to the attention o f ecologists by demonstrating that even the simplest 

nonlinear model for population dynamics had a rich dynamical structure, including 

chaos. Since then, the potential for biological and ecological systems to display chaos 

has been demonstrated in numerous different areas including epidemiology, physiological 

systems and population dynamics. The importance o f  this new phenomenon is that it 

may enhance our understanding, control and prediction o f previously badly understood, 

or presumed random, systems.

Initial techniques for identifying chaotic systems were developed in the physical and 

mathematical sciences. Deterministic chaos is usually characterised by the existence of 

an attractor with the following three properties: (i) sensitive dependence upon initial 

conditions, (ii) a fractal geometric structure and (iii) positive Sinai-Kolmogorov entropy. 

Of these (i) is the most fundamental for the following reasons: (a) it is the cause o f the 

exponentially decaying predictability characteristic o f chaos; (b) it implies (iii); (c) not 

all chaotic attractors are fractal and the Hausdorff dimension is severely constrained by 

the sizes of the Liapunov characteristic exponents.

Sensitive dependence is equivalent to the fact that, in a chaotic system, typical nearby 

orbits diverge exponentially fast from each other, at least on average. The Liapunov 

characteristic exponents (LCEs) are the different long-time exponential rates at which 

nearby orbits diverge or converge. Thus we have sensitive dependence provided the
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largest LCE, x , is positive. Hence, methodologies for detecting chaos have focussed on 

measuring the Liapunov exponents (although measuring the dimension has also been a 

very active area).

3.2 Dynamical systems.

Consider a dynamical system o f the form

$  =  F(y). (8)

where y is a D-dimensional vector (yi, j/2> Vd )- Under certain conditions on F this 

has a unique solution at a time t given an initial value yo. Thus we write

y  < =  / ‘ (yo).

For dissipative systems the flow will contract onto a set of dimension d where d <  D. 

These sets are called attractors.

D efinition  2 An attractor is an invariant set A with neighbourhood N  such that if 

y  € M  then the distance ( / ' (y ),A ) —* 0 as t —♦ oo.

The study o f dynamical systems is the study o f the geometry o f motion in the phase 

space. The phase space o f a dynamical system is a coordinate system which uniquely 

specifies the state o f the system at a particular time, t. Usually the state variables are 

used as the coordinates. A qualitative description o f the dynamic behaviour o f F  would 

begin with the geometric phase-space identification o f all possible attractors. These 

could include fixed point, periodic, quasi-periodic or chaotic attractors. For certain 

parameter values it is also possible for multiple attractors to exist in different parts 

o f the phase space. Once the attractors are known one can associate all the starting 

conditions that settle to it. This point set is the basin of attraction. All the basins of 

attraction should constitute the entire phase space.
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3.2.1 L iapunov exponen ts.

In order to illustrate the properties of chaos and Liapunov exponents consider a 1-

dimensional mapping /  : Si —* Si. Assume there exists an attractor, A. Let x, =  f ' ( x o )  

and y( =  / '(y o )  where xo and yo are both points on A and are a small distance, c, apart. 

Hence:

where A is the exponential rate o f growth. The Liapunov exponent, A, is thus defined

as:

The limit as t —* oo is needed for two reasons: (i) the rate of divergence or convergence 

will vary at different parts of the attractor and (ii) we are interested in the long-term 

behaviour which is independent o f the initial condition, Xo, chosen. The quantity A thus 

becomes a measure on the attractor, A.

For systems o f higher dimension the Liapunov exponent becomes a generalised eigen­

value averaged over the attractor as the derivative is replaced by the Jacobian at that 

point. There will be an exponent for each phase-space dimension describing orbital 

contraction or convergence in a particular direction. This direction will change over

I Vo -  x 0 |

Then:

Vt -  x, =  /* (y0) -  / ' ( * o),

=  (/ ') '( * o ) - (y o -* o )  +  0 (£2),

since /(y o ) =  / (x o )  +  e f  (xo) +  0 ( s 2) , by Taylor’s Theorem. By the chain rule:

I y< -  *. I =  I (yo -  * 0) I • I I I  /'(*<) I + ° ( £2)- (9)

If the uncertainty grows exponentially fast then (9) must be consistent with:

I y< -  *< I =  I (yo -  xo ) | -2A*,

i = 0
( 10)
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the attractor so it becomes impossible to associate a specific direction to a Liapunov 

exponent over long periods of time. The set o f  all the Liapunov exponents is called 

the Liapunov spectrum. Chaos is then defined as the presence of at least one positive 

exponent in the Liapunov spectrum. For periodic attractors, or point attractors, all the 

exponents will be negative or zero.

In general, if F is known then it is relatively straight forward to calculate the Liapunov 

spectrum directly from F, [95] and [7] . This can be done by calculating the long-time 

product o f local Jacobians along an orbit over all the attractor A. This matrix is thus 

the long-time average convergence or divergence. Normally, however, we do not know 

F a priori. In fact often we have only an observed scalar time series.

3.2.2 E m bedding .

Although we may be studying a D-dimensional system typically, in data from real 

systems, we have only an observed 1-dimensional time series where i is an

integer, a  is the sampling time between successive measurements and N ' the number 

of points in the time series. However we can understand and analyse the system by 

making use o f embedding theorems [114] as first applied to time series by Packard et. 

al. [76] and put on a firm mathematical basis by Takens [107]. The basic idea behind 

this methodology is that the past, and future, o f  a time series contain information about 

the present, unobserved state variables. This information can be utilised in the form 

of a delay vector. In fact there are many choices o f possible coordinate system, e.g. 

successive time derivatives, but the easiest and most widely used is delay coordinates. 

Takens studied the delay reconstruction map <I>:

*(y ) =  (*>(y). t>(/1 (y)),.... t»(/3m(y))),

where u(y) corresponds to a value o f a measurement made on the system in state y. He 

proved that $  is an embedding when m >  2</+1. An embedding is a smooth, one-to-one 

coordinate transformation with a smooth inverse (i.e. <I> is a dtffeomorphism). Hence
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the reconstructed attractor is topologically equivalent to the attractor for the whole 

system and thus preserves important geometrical invariants such as dimension of the 

attractor and Liapunov exponents o f  a trajectory.

For the observed scalar time series, Xi =  n(y( ), the function v  corresponds to mea­

suring one state variable o f the system at a particular time, t =  ai. Hence the delay 

coordinates are:

Xi =  (%it Z i—n  ( E — l)r)i (11)

where E is known as the embedding dimension and r  the delay time, which is conven­

tionally taken to be an integer here. Thus the time between elements o f the embedded 

vector is ra . Unfortunately, Takens’ theorem gives us no information as to how to 

choose the delay time t . Additionally E  is often hard to choose as the dimension, d,  

of the attractor o f F, is not known a priori. The number of embedded vectors, N, is 

N =  N' — E  +  1. The notation outlined above will be used throughout.

3.3 Basic methodologies.

Using the method o f delay coordinates, various techniques and algorithms for distin­

guishing chaotic and stochastic fluctuations have been proposed. These techniques can 

be separated into four categories: directly measuring the Liapunov exponents either 

through a) the divergence of nearby trajectories or b) estimating tangent maps; c) 

investigating the decay in predictability and d) measuring the number o f degrees o f  

freedom, or state space variables, needed to describe the dynamics. The first three cate­

gories are based on the property o f a positive Liapunov exponent. The fourth category, 

the dimension o f the system, is attempting to establish that the underlying system gen­

erating the observed behaviour is low-dimensional. Stochastic systems are o f infinite 

dimension so should not converge to a low dimension.

Methods (a) and (b) can, in principle, measure the complete Liapunov spectrum; 

negative as well as positive exponents. In practice, with finite, noisy data sets, the
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calculation o f negative exponents is very difficult. However, it is sufficient to measure 

the largest exponent to identify whether a system is chaotic or not.

3.3.1 D ivergen ce  o f  tra jectories .

Although the reconstructed attractor is defined by a single trajectory from a discrete 

series of measurements it can provide points that may, because of the topological mixing, 

be considered to lie on different orbits provided our trajectory is long enough. Thus, 

Wolf et al [115] proposed directly measuring the divergence o f nearby orbits. Given a 

time series { i , } ^  we form delay vectors, Xj, as stated above. The nearest neighbour 

(in the Euclidean sense) is located to the initial point x i and the initial distance between 

these points is denoted ¿(0 ). For a chaotic system this distance will grow exponentially 

fast. However we wish only to measure the local stretching on the attractor and so this 

distance should only be allowed to grow for a small amount of time, T. If the time is too 

long the trajectories might pass through a folding region on the attractor. After a fixed 

time, T  =  ma, our initial point will have evolved a number of steps, m =  T /a ,  to X i+m 

and the distance apart is now ¿ '(1 ) . We then look for a new data point that is a near 

neighbour to x i+m but approximately preserves the original orientation o f x i+ m and 

our original evolved neighbour. The new distance apart is L (l) and the points are again 

evolved a time T. This is then repeated until the whole time series has been traversed. 

The largest Liapunov exponent is thus estimated as:

A -
1 m t ^  32L ( k - i ) ’ 

where M  is the total number o f replacement steps.

In the limit o f an infinite amount of noise-free data the largest exponent is obtained by 

definition. Depending on the nature of the attractor, estimates o f within a few percent 

of the true exponent value can be obtained for noise-free time series o f  a few thousand 

points or less. For noisy time series it is important to ignore length scales o f the order 

of the noise but still operate at small scales at which only the stretching nature o f  the
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attractor is probed. These problems are explored in some detail in chapter 4.

3.3 .2 Tangent space.

Eckmann and Ruelle [23] and Sano and Sawada [87] suggested obtaining tangent maps 

to the reconstructed dynamics. The evolution of a tangent vector, £, in a tangent space 

at y  is represented by linearising Eq. 8,

i  =  T ( y ) i ,  (12)

where T  =  D F  =  is the Jacobian matrix of F. The solution o f the linear equation

(12) can be obtained as

i ( 0  =  A 'i(O ), (13)

where A ( is the linear operator which maps tangent vector £(0) to £(<). We can then 

calculate A  at a time j ,  A j , over all the attractor A of F. The Liapunov exponents are 

then given by the eigenvalues of the product o f the matrices Ao • ... • A n.

From the observed data {z , };’! ,  it is possible to estimate the linear map Ay. Consider 

a small ball o f radius e centered at the embedded vector xy . Find any points Xt, within 

this ball, i.e || x*, — Xj ||< e, where || denotes the Euclidean norm. The displacement 

vector w ' =  xt, — Xy is thus a good approximation to the tangent vector, £, at the point j  

if the radius, £, is small enough. After the evolution of a time interval u =  ma, the point 

x j will evolve to x;+m and the neighbouring points x*t to xnl+m. The displacement 

vector w ' is thus mapped to z‘ =  x*,+m — Xj+m. The matrix A j  given by

z‘ =  A j  w ‘

is an approximation of the flow map A ' at xy given in Eq. (13). The map can now be 

estimated by a least-squares fit procedure which minimises the average o f the squared 

error norm, S, between r* and Ayw* with respect to the elements o f the matrix Ay, i.e

i n
S  — min — || z* — Ay w* ||J,

A , "  &  "
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where n is the number o f points in the ball. This procedure leads to n • E  simultaneous 

linear equations in E * E  unknowns. Hence it is well-defined if the number o f  points in 

the ball, n, is larger than the dimension, E, o f the embedded vectors. In practice it is 

usual to take n somewhat greater than E  for statistical reasons (but see [23]).

3.3.3 P red ictab ility .

Farmer and Sidorowich [30] formulated a prediction technique also based on local linear 

maps. In a chaotic system nearby trajectories diverge apart exponentially fast at a rate 

given by the Liapunov exponent. This means that any initial error in estimating the 

state o f the system will grow exponentially fast through time. Hence the accuracy of 

prediction o f a system from an initial point into the future will decay exponentially as 

you try to predict the evolution o f the point further ahead in time. For a periodic or 

steady state system this predictability should not decay. Hence an exponential decrease 

in predictability should be a signature o f chaos. Farmer and Sidorowich exploited this 

property by measuring the predictability of a time series by the following method based 

on local linear maps.

A state, x,-, will evolve to some other state, x1+m, a time T  =  mar in the future. 

Assume a map, A , exists such that x ,+m =  A (x ,), where x,- is the delay vector. To 

approximate the map A  we look for all nearest neighbours, x t , to x,-, i.e. || x< — x* ||< e 

and then fit the coefficients of A  using a least-squares fitting procedure as described 

above. The point x ,+m is then predicted from A (x ,). The accuracy o f this prediction 

will decay exponentially with increasing T.

Further work in this area has been done by several authors; notably Casdagli [14] 

who suggested using radial-basis functions instead of linear maps and other authors who 

have explored the use o f  higher-order local maps. Neural networks have also been used 

to learn optimal local maps and seem to perform as well or better than Farmer and 

Sidorowich’s method.
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Sugihara and May [106] proposed a simplex prediction method. To predict the evolu­

tion o f a point, x,-, you look back in the time series for points that will enclose x< within 

a simplex. They then look at the evolution of the simplex points a certain time T  =  ma 

into the future and use this to estimate a linear mapping from x,- to x 1+m. Since the 

decay in prediction accuracy is due to a positive Liapunov exponent, A, predictions will 

decay as exp(-tA). However none of the decays Sugihara and May observe are exponen­

tial. This is important because non-chaotic systems can produce non-exponential decay. 

For example (due to R.Law and J.Reed (pers. com m .)) a power law decay is obtained 

from x ,+ i =  f ( x t ) +  <r„ where <r„ =  ]T]f=1 2'<rn_,- and f ( x )  =  Additionally

the dynamical instability associated with A >  0 is essentially a local linear phenomenon. 

It is therefore important to able to work at small scales in the phase space where the 

nonlinearity o f the dynamics is small. A consequence o f this is that for prediction decay 

to indicate A >  0, it is necessary for short term predictions to be accurate. Sugihara 

and May observe order 1 errors after only one month.

3.3.4 D im en sion .

The dimension o f a system is, in some way, the amount o f  information needed to specify 

the position o f a point on an attractor to within some degree o f accuracy. It is also a 

lower bound on the number o f essential variables needed to model the dynamics. As 

such it has received a great deal o f attention. There are a host o f different dimension 

measures including for example the fractal dimension, D, information dimension, Haus- 

dorff dimension and Liapunov dimension. For low-dimensional systems these are often, 

but not always, similar in value. The most widely used is probably the Grassberger- 

Proccacia [38] and [39] correlation dimension. Here we calculate the number of pairs of 

points within a certain distance, r, apart. The correlation integral C (r ) is defined as:

. . number o f pairs o f  points separated by less than rO (r ) — ----------- ---- ---------------------------------- ;--------------------------
total number o f points

=  probability(|| Xj -  x /  ||< r),
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where x,- and x; are randomly chosen points from the attractor A. This is approximated 

by:

C s(r )  =  ^lim^ 0 { r  >|| x, -  x,- II},
ij= l

where 0  is the Heaviside step function which is equal to zero for the negative argument 

and one otherwise, N  is the number o f embedded vectors and « ^  j .  For small r we 

expect C s (r )  oc r*'E. Hence a log-log plot will have gradient ve - Care must be taken to 

investigate Cf;(r) with different values o f E. As E  is increased then ue should converge 

to the correlation dimension, v. Non-convergence indicates a high-dimensional system.

In reference [38] Grassberger and Proccacia compare their correlation dimension with 

the fractal dimension. Consider a coverage of an attractor by hypercubes of length 

length /. If the attractor is fractal then the number M (/) of cubes that contain a piece 

of attractor is

M (i)  oc r ° ,

where D  is the fractal dimension [58]. This measure is insensitive to to the density of 

points in different areas o f the attractor. It is only related to the geometrical structure. 

The correlation dimension is thus a superior measure as it is sensitive to the dynamical 

process, i.e. the fact that different areas of the attractor are visited at different rates. 

It also has a far greater convergence rate than D  and so is more practically applicable.

3.4 Data requirements.

A lot of the techniques for identifying chaos need large amounts o f  data for reliable 

results. Indeed spurious results can be obtained when using small data sets. Eckmann 

and Ruelle [25] proposed the following minimum data requirements.

Any method to calculate Liapunov exponents requires that near a point one finds 

other points so that the rate of divergence of orbits can be estimated. The number of 

points in a ball o f radius r around a point x is:

N (t) oc r*,
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where d is the dimension o f the attractor. Since N (D ) =  N , where D  is the diameter 

of the reconstructed attractor and N  the number o f points:

Now we need N (r) 3> 1 for statistical reasons and <C 1 in order to avoid nonlinearities. 

Hence we need:

logN > d lo g ( - ) .

For dimension calculations a similar argument holds except that the maximum num­

ber o f  pairs o f points, assuming we calculate the correlation dimension, is 1 /2 (N  — 

E )(N  — E  +  1) ss 1 /2N 2. Hence we get:

21ogN >  d l o g ( - ) .r

The quantity j j  will depend on the extent o f nonlinearity in the data, however we 

can estimate it to be of the order 0.1. Hence, for Liapunov calculations, assuming a 

low-dimensional attractor with 2 <  d <  3, we will need between 100 and 1000 points 

as a minimum. For larger dimensional systems, e.g. d ss 10, then impractically large 

amounts o f data are needed, as 1010 points. Hence one must be very careful in the 

application o f the above techniques to small amounts o f data.

In ecology there are precious few long data sets. Hence there has been a need to 

formulate techniques that not only work in the presence of noise but also with small 

amounts of data. There are some, however, that may be within the range stated above. 

For instance, measles epidemics in New York City before vaccination began is a good 

candidate for analysis as the time series is ss 500 points and there is evidence to suggest 

it has a low-dimensional attractor o f  dimension 2 <  d < 3. Liapunov exponents calcula­

tions, from the above analysis, seem to need the square o f the number o f points used in 

dimension calculations. However, dimension calculations seem particularly ill-behaved 

with small amounts of data. In chapter 4 I will outline a technique for calculating 

Liapunov exponents which cannot assign them a particular value but can distinguish
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whether an exponent is positive or negative even with small amounts of data. This is 

the central problem facing the detection o f chaos in ecological systems.

3.5 Noise.

In physical systems it is often possible to extract large amounts o f relatively clean data 

and it has thus been possible to demonstrate chaos in various well-controlled physical 

experiments in the laboratory [33]. Chaos in biological systems, however, has been 

much harder to identify. This is primarily due to (i) the far greater amount of ’noise’ or 

stochasticity in biological systems and that (ii) data sets tend to be o f a much shorter 

length than from physical experiments.

For infinite amounts o f noise-free data the methods in sections 3.3.1, 3.3.2 and 3.3.3 

achieve the Liapunov exponents by definition. The question, therefore, is how well the 

techniques work for finite data sets with varying amounts of noise? Noise has important 

effects on the particular methodologies.

O f importance to all the methodologies is the effect noise has on the embedding 

technique. Casdagli et. al., [16], studied the effects of, and how to achieve an optimal 

reconstruction in, the presence o f  noise. The delay vector technique is the most widely 

used, and easiest, but may not be the best. Singular value decomposition is an optimal 

local reconstruction but this is also complicated by the presence o f noise.

In theory a stochastic system has infinite dimension as the noise tends to fill out the 

state space. For length scales smaller than the noise amplitude we would therefore expect 

the G-P correlation dimension to be near the embedding dimension, E, as the noise fills 

out a portion o f E-dimensional space. For length scales far greater than the noise 

amplitude we would expect the dimension to behave as if noise was not present, [99]. 

The intermediate case is problematic and modifications have been proposed to attempt 

to address this problem, [99]. However, dimension estimates seem to be particularly 

sensitive to noise.
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Liapunov exponents are defined at any level of noise, [49], and therefore provide a 

good criterion for identifying chaos when a stochastic component may be present, [27], 

However, estimating the divergence of trajectories can be problematic in the presence 

o f noise as the trajectories being compared will not have the same sequence o f random 

events. Consequently the divergence between them might simply be due to the random 

component, [71]. This problem is resolved, at least for moderate amounts o f noise, in a 

new method outlined in chapter 4.

Liapunov exponents are also the cause o f  the exponentially decaying predictability 

seen in chaotic systems. However when such techniques, e.g. [106], have been applied to 

noisy ecological data exponential decay is rare. This is important as stochastic systems 

can produce power law decays, particularly autocorrelated noise.

3.5 .1  A u tocorre la ted  noise.

The signatures of chaos identified in relatively noise-free signals are often masked by 

noise and are thus not apparent in a time-series with a significant stochastic component. 

Additionally it seems possible to tailor a noise-generating process that can reproduce 

many supposedly chaotic signatures [79]. Ellner, [27], in a review of detecting chaos in 

population dynamics, emphasises this point and uses a non-chaotic stochastic population 

model to generate many supposedly chaotic features. The point here is that surrogate 

non-chaotic data sets cannot be distinguished from truly chaotic data (see section 3.5.2). 

O f particular importance in ecological systems is the presence o f coloured noise. By this 

is meant autocorrelated noise, e(<), which has the general form:

£ (t  +  1) =  0c{t) + Z(t),

with autocorrelation 0  and where Z(t) is a sequence o f  independent random variables 

with mean zero and variance cr2.

Nearly all techniques for identifying chaos work less well in the presence of coloured 

noise as opposed to Gaussian, or ’’ white” noise. For example autocorrelated noise can

49



cause prediction decay, see section 3.3.3. A considerable number of ecological data sets 

display ’’ coloured” spectra (e.g. [77] and [102]).

One conclusion to be drawn from the problems associated with noise is that it it 

important to use a battery of distinguishing characteristics rather than relying on one 

particular method.

3.5.2 N u ll h ypoth esis  and su rrogate data .

An approach taken by Theiler et. al. [110] and others, eg [98], [104] and [27], is the 

use of surrogate data. This method specifies some process, qualitatively different to the 

process we are attempting to identify, as a null hypothesis. Datasets are then generated 

consistent with this hypothesis. The discriminating method, or statistic, with which we 

are attempting to establish the existence of some property, e.g. chaos, is then applied 

to the generated surrogate data and to the original data. If the results are significantly 

different for the ensemble of values from the surrogate data than from the original data 

then the null hypothesis is rejected and the existence of the property is verified.

Some care needs to be taken in deciding which null hypothesis to test and there­

fore which process is used to generate surrogate data. Normally various properties of 

the original data are preserved in the null hypothesis in order to isolate some specific 

property to test.

In testing for nonlinearity in data Theiler et. al. [110] suggested various algorithms. 

One method, used in section 4.3, is to hypothesise the data comes from a linear Gaussian 

process while preserving the Fourier spectrum o f the original data. One way to do this 

is to compute the Fourier transform o f the original data, randomise the phases at each 

frequency by multiplying by e‘ s , where 0 is chosen randomly and independently from 

the interval [0,2ir]. The inverse transform is then the surrogate data.

Using such methods Theiler et. al. achieved good results for some model systems 

with small numbers o f data points and large amounts of noise. Additionally they were
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able to identify nonlinearity in some real data such as Rayleigh-Benard convection data.

Other authors propose surrogates based on stitching together Gaussian waveforms, 

[104], with random parameters estimated from the data or sine and cosine waves with 

added noise [27]. The particular method proposed is dependent on the problem and 

data being addressed.
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4 Detecting chaos in a noisy time series

4.1 Introduction.

A number of authors have addressed the problem o f distinguishing chaos from noise in 

complicated noise-contaminated nonlinear systems (e.g. [30] and [14]). These systems 

are commonly found in biology, ecology and epidemiology (see Sugihara and May [106] 

and [78] and [27]). In this note we propose a new approach based on a method outlined 

by W olf et. al. [115], see section 3.3.1.

Sensitive dependence is equivalent to the fact that, in a chaotic system, typical nearby 

orbits diverge exponentially fast from each other (see section 3.2.1), at least on average. 

The Liapunov characteristic exponents (LCEs) are the different long-time exponential 

rates at which nearby orbits diverge or converge. Thus we have sensitive dependence 

provided the largest LCE, x> ¡s positive. The exponential separation only occurs while 

the orbits are so close that their separation is described by the linearisation of the 

dynamical system. It ceases when nonlinear effects come into play. In the repeated 

stretching and folding that produces chaos, the stretching is essentially a local linear 

phenomenon that determines x , and the folding a larger scale property that should not 

enter into exponent calculations. Hence, in calculating it is important to  work at 

scales d in the phase space smaller than the scale dnonjjn above which the nonlinearity 

is significant. However, real data is always contaminated with some degree o f  noise and 

it is precisely at small scales d < dnoise that this noise has the greatest effect. We 

therefore should require that dnotse <  d <  <fn0nlin- The usual mathematical definition 

of x  involves taking the limit d —* 0 which is clearly injudicious in the presence o f noise.

We will show that in some noisy systems it is not possible to give a value for x ■ On 

the other hand, an essential point about our approach is that, even in such a system, 

it can indicate the sign o f x  and hence signal the presence o f  chaos. It also indicates 

when it is reasonable to assign a value to
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4.2 M ethodology.

For most real world ecological or biological systems it is often difficult to identify all 

o f the state variables since they are generally embedded in a more complex, higher- 

dimensional system. Very often we only have a time-series o f discrete measure­

ments of a single observable. The well-known technique o f phase space reconstruction 

with delay coordinates (see section 3.2.2) makes it possible to obtain from such a time- 

series an attractor whose Liapunov exponents are identical with those o f the original 

attractor.

Firstly, we choose an embedding dimension, E, and a time-delay, r, and then use 

delayed coordinates to represent each lagged sequence of data points

x t =  (*i> * i -r i  —)

as points in .E-dimensional space, where E  is known as the embedding dimension and 

r  the delay time, which is conventionally taken to be an integer here. The time-series 

is discretely sampled i, =  to where a  is the sample time. In all our examples we take 

t = 1. Let A denote the trajectory {x ¡ } ,> 0. Because of the topological mixing, our 

reconstructed attractor, though defined by a single trajectory, can provide points that 

may be considered to lie on different trajectories provided our trajectory is long enough.

Rather than try to estimate a single value for \ we instead approximate the function 

X(d) at different spatial scales d. We fix, assuming it exists, a spatial scale d <  dnon[¡n . 

Suppose that x s and x< are points of the trajectory whose initial distance apart d(0) is 

approximately d. Let d(u) =  ||xs+u — x (+u||. If the motion is chaotic, we expect d(u) 

to grow exponentially in time provided it is less than led, where k is some small fixed 

integer. When d(u) is greater than kd we replace x J+u by a point x s> in our trajectory 

which is within d o f x (+u and, with respect to x<+„, the angular separation between x,< 

and x ,+u is small. Continuing in this way, we can measure the exponent To make

this precise we now give a slightly more formal definition o f this approach.
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Given the time series x,- above, we define vectors z,- and y,- in A and a sequence of

steps rrii and a,- as follows:

(i) Let zo =  xo and ao =  0.

(ii) Let L(m ) =  ||x0m — y m||, where y m =  x , is the vector in A closest to 

x „m + ( l / f c ) ( z m — xam). Let t >  0 be such that for au <  t, d/k <  ||xam+„ — 

Ym+u || =  L'(m) <  kd while for au >  ( this is not the case. Then am+t =  

am +  u and zm+i =  ym+u.

Let Do =  0 and define

Figure 6: A schematic diagram illustrating the algorithm used in calculating x(d) for 

a specific scale d. For a negative exponent the vector zm will be a distance k~xd from

Then \-(d) is approximated by by the slope o f  the best fitting straight line through 

the set of points {(m , Dm)}.

In a noise-free chaotic system, x(d ) "'ill be approximately constant for small d and 

should converge to the largest characteristic exponent y  a s d - * 0 .  On the other hand,

z m+l~ x s+u

kd

u
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if the noise amplitude a is large in magnitude compared with d then x(d) "  ill be larger 

than x ■ This is due to the effect of noise pushing initially close points apart (the typical 

behaviour in multi-dimensional space).

To see the effect of this we can crudely argue as follows. With noise, our nearby 

trajectories start d apart and, after one time step t =  a  in our time series, end, not 

2x°d  apart but 2xad+a. Thus our estimate for the local divergence o f the trajectories is 

given by a -1 log2(2*Qd +  a /d ). When a is large compared to 2x°d, which is o f  the same 

order as d, this is approximated by a _1(log2 a — log2 d). As N  is fixed, this will tend 

to decrease with gradient a -1 with increasing l  =  log2 d. On the other hand, when d is 

large compared to a, x(d) is approximately the true exponent value x  and we expect to 

see no change in x(<f) with slightly increasing d. If d is increased further, x(<f) decreases 

as nonlinear effects become important and eventually converges to 0 when d is of the 

order o f the width of the attractor.

In order to measure x> we need that rfno;se < ^nonlin • The scale </„<>„];„ is related 

to the smallest length scales at which the nonlinearity becomes important. For some 

systems this scale will be clear from the graph, while for others an accurate estimate 

will be needed (e.g. see [15]). As a first estimate we arbritarily, but conservatively, 

take this scale to be 5% of the transverse attractor width. In order to estimate dnojse 

we extend a technique due to Broomhead and King [10] based on ideas from singular 

systems theory [8]. We do not intend to explain all the background but instead refer 

the reader to the references above. Given an embedded time series, x,-, as above (r  =  1 

and E  is suitably chosen) we let Y  be the matrix whose i ’th row is the vector x,- for

* =  0 , 1 , ........ , N and let the trajectory matrix, X  =  N ~ $ Y . In order to centre the mass

at the origin we subtract the mean of each column from each element of the column. 

If all data points are used N  =  Nt  — (E  — 1) where Nt is the number of data points 

in our original time series. The singular value decomposition o f this matrix is given 

by X  =  SEC"*' where S and c"*” contain the left and right singular vectors and the
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en tr ies  o f  th e  d ia g o n a l m a tr ix  E  a re  the  s in g u la r  v a lu es  <Ti >  <72 >  .........  > <te- A s

in Broomhead and King we expect all the singular values to be non-zero due to noise. 

However, we can distinguish between singular values associated with a deterministic 

component in the time series and those dominated by noise due to the presence of a 

non-zero noise floor in the singular spectrum. Given that we can separate the singular 

values which are noise dominated, we expect the noise amplitude at each time step, da, 

to equal the total noise power in the singular spectrum. Hence

where n is the largest eigenvalue which is noise dominated. Note also that the variance 

of the time series is equal to the total power in the spectrum:

4.3 Results.

Firstly, we consider model systems to illustrate these ideas. Unless otherwise stated 

noise is Gaussian white noise with mean 0, amplitude a and variance a~. This is added 

to one dimension of the system dynamically at each time step. For differential equations 

the noise is scaled by the square root of the time step. The variance is thus kept 

constant over one period. The exponent x(d) has units bits per unit time for the Lorenz 

equations, bits per year for the SEIR equations and the real epidemic data and bits 

per mean orbital period for the coupled oscillator data. The results in figure 7 are for 

the Lorenz equations with chaotic parameter values chosen. We have used the known 

equations o f  motion to generate two trajectories separated initially by d with different 

noise realisations added to each. We then follow the procedure as explained in the 

methodology except we generate new vectors rather than searching for them through a 

time series. We see the expected dependence o f x (d ) upon l  =  log2 d most clearly. For 

small (  the slope is a - 1 . Then the graph shows a plateau giving the approximate true
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value of x- For larger t, the nonlinear effects become apparent. From this graph one 

can also deduce the scales dno;se and dnon[jn at which the noise and nonlinearity are 

effective.

Figure 7: The graph of x(d) versus log2(d) using the Lorenz equations with a =  16.0, 

p =  45.92, b =  4.0 and sample time 0.005. The equations have been used to generate 

trajectories a known distance apart. Hence no embedding is needed as the exact state 

of the system is known. We calculate the largest exponent x  to be 2.17 bits per unit 

time for a =  0.

The other graphs are all calculated from a time-series treated as though it was data 

with no prior knowledge of the system that produced it. The deviation o f these other 

figures from the nearly ideal picture is due to the relative scarcity o f  data points.

In figure 8 we have used the SEIR equations for modelling epidemics and the measles 

parameter values taken from Olsen and Schaffer [73]. It should be noted that the time- 

series are only of 500 points, yet the difference between the chaotic measles dynamics 

and the periodic orbit o f the Lorenz equations is clear. Additionally when there is no 

noise in the system it is possible to obtain a reasonable estimate o f  x  for the chaotic 

measles dynamics. On the other hand, in the presence of significant noise it is not 

possible to associate a value to x  even though we can clearly distinguish its sign, i.e.
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the presence or absence of chaos.

I°g2(d)

Figure 8: The graph of \'(d) versus log?(d) using time-series of the SEIR equations with 

measles parameter values, m =  0.02, a =  35.84, g =  100.0, 60 =  1800.0 and 61 =  0.28, 

and for a periodic orbit o f the Lorenz equations, cr =  10.0, p =  350.0 and 6 =  8/3. In all 

our examples r, the delay time for the embedding equals one. The time series length is 

500 points, a  — 0.1 years for the SEIR equations and 0.1 for the Lorenz equations and 

the embedding dimension, E, equals 6. Note the reasonable approximation to the true 

exponent value, \ — 0.46 bits per year, in the time-series with no noise. The Lorenz 

time-series has ten times the noise amplitude in order that the signal to noise ratio is 

comparable to  that in the SEIR time-series.

For the Lorenz periodic orbit, when C is slightly larger than the noise level x (d ) 

is negative reflecting convergence onto the attractor due to a negative characteristic 

exponent. However when C is much greater than the noise level we cannot find points 

displaced off the attractor by this distance. W e can only find points further away 

on the deterministic orbit and so cannot measure any convergence. Hence x(d ) is 

approximately zero at these scales. This shown more clearly in figure 9 using 1000 

points from a periodic orbit o f  the the Lorenz equations.

In figure 10(a) we plot the normalised singular spectrum for a time-series from the
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Figure 9: The graph of x(d ) versus log?(d) using time-series from the Lorenz equations, 

a =  10.0, p =  350.0 and 6 =  8/3. The time series length is 1,000 points, a  =  0.005 and 

the embedding dimension, E, equals 6.

Lorenz equations with measurement noise, a =  0.01, added. After the ninth eigenvalue 

we see the constant noise floor and so we use this eigenvalue as our cutoff. In figure 

10(b) we plot the log of the estimated noise amplitude dn =  dac t~ i , against the cutoff 

used. For measurement noise we see an almost perfect prediction o f the noise in the 

system. Figures 10(c) and (d) show the same except for dynamical noise. The quantity 

/o?2(dnoise) >s then calculated by log2 (E $ d „) where E is the embedding dimension 

used in calculating \'(d). We obtain estimates for the Lorenz equations, with E  =  3, 

of /off2(<^noise) =  — 9-5 for a =  0.001 and /o j2(rfnoise) =  —6-3 for a =  0.01. There is a 

very good comparison o f these estimates o f /o02(dnoise) with the nearly ideal graph in 

figure 7. We have used the quantity logi0(dn) for figure 10 to illustrate the very good 

estimate o f  the noise amplitudes. In following noise amplitude graphs we will plot the 

quantity /o^a(rfno;se) in order to facilitate direct comparison with the graphs of x(d).

Finally, we consider some real data sets. The first is a time-series from an electronic 

circuit model o f the chaotic Van der Pol-Duffing oscillator, with no external forcing and 

three degrees o f freedom. In figure 11 we see that there is an approximate plateau and
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So!« ciftnvalue used

Figure 10: The singular spectrum and estimated noise for the Lorenz equations, <r =  

16.0, p =  45.92 and 6 =  4.0, using 10,000 points, window width =  20 and a =  0.005. (a) 

The normalised singular spectrum for measurement noise a =  0.01. (b) The estimated 

noise level for measurement noise a =  0.01. (c) The normalised singular spectrum for 

the Lorenz equations and dynamical noise a =  0.001 and a =  0.01. (d) The estimated 

noise level for dynamical noise a =  0.001 and a =  0.01.
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so the time-series is chaotic with x  ** 0 . 6  bits per mean orbital period.

Figure 11: The graph o f x(d) versus /ojo(d) using a time series from an electronic circuit 

model of the chaotic Van der Pol-Duffing oscillator, with no external forcing and three 

degrees of freedom. The time series length is 5,000 points, a =  1/30 o f the mean orbital 

period and the embedding dimension, E =  7.

Figure 12(a) is calculated from a time-series o f monthly reported measles cases from 

1928-1966 and monthly reported chickenpox cases from 1928-1972 in New York City. 

The difference between the two is apparent with the chickenpox case possessing some 

of the features o f a periodic orbit and the measles case looking chaotic. Further work 

is needed to precisely distinguish these cases as the lengths of these two time-series are 

on the boundary for this method. Figure 12(b) is the estimated noise in each time 

series. This gives estimates for /o02(</noise) in figure 12(a) as -2 .9  for measles and -3 .4  

for chickenpox. The graphs appear to have much more noise than the figures above 

suggest. This is due to scarcity o f data since this defines a scale below which we cannot 

find sufficient points to form a realistic embedded trajectory.

Figure 13(a) is from a time-series of measles cases reported weekly in England and 

Wales from 1948 to 1966. Here we need to know precisely the scale dnon|jn in order to 

interpret this graph. If I°ff2(dnonijn) <  0 fben the exponent is positive, otherwise the
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Figure 12: (a) The graph of x (d ) versus log^id) using time-series o f monthly reported 

measles and chickenpox cases as reported by doctors in New York City from 1928 to 

1966 and from 1928 to 1972 respectively. The time-series lengths are 456 and 534 points, 

a  equals one month with embedding dimension, E — 6 used, (b) The estimated noise 

level for each time-series, window width =  20.
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exponent is negative. Preliminary results, based on the width of the attractor, suggest 

/o</2(dnoni;n) ss 1.0. Further work directly measuring the degree o f linearity of the data 

at various spatial scales is needed to estimate this more precisely (see [15]). Figure 13(b) 

is the estimated noise.

It has been suggested to us that we generate surrogate time series by taking the 

Fourier transform of a data set then inverting the transform using the observed ampli­

tudes but with random phases (as in Theiler et. al. [110], see section 3.5.2). If our 

method is able to distinguish these stochastic surrogates from the data then it is a very 

reliable one. This transformation will effectively increase the noise in the system as well 

as destroying any dynamic structure. We illustrate this in figures 14(a) and (b) for the 

Lorenz equations showing the difference between the original data, which has a clear 

plateau, and the surrogate data. When there is not a clear plateau present, though, 

this will not be a good comparative method as it is important to compare time-series of 

similar signal-to-noise ratios. Hence the surrogate data in figure 14 is not comparable 

to the SEIR data in figure 8.

In general it seems possible to mimic any signature of chaos by tailoring some noise 

generating function. Hence we feel it is important to use a series of tests in order to 

distinguish chaos and not to rely solely on one method.
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Figure 13: (a) The graph o f x(d)  versus logi{d) using time-series o f weekly reported 

measles cases in England and Wales from 1948 to 1966. The time-series length is 991 

points, o  equals one week with embedding dimension E  =  6 used. Being weekly, this 

time-series has more points than the two from New York City. However, the overall 

time period (18 years versus 38 and 42 years) is much shorter. This is probably the 

reason why this graph is less clear than the previous two. (b) The estimated noise level 

for the time-series, window width =  30.
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Figure 14: (a) A comparison o f a Lorenz data set and a surrogate data set generated 

from it. The parameters used for the Lorenz equations are a =  16.0, p =  45.92 and 

6 =  4.0. The surrogate data was generated by taking the Fourier transform o f  the Lorenz 

data, multiplying each complex amplitude by e'1 where 0 is independently chosen for 

each frequency from [0, 27r], and then taking the inverse transform. The sample time =  

a  =  0.005, time series length was 1,000 points and the embedding dimension was E  =  6. 

(b) The estimated noise amplitude for each data set in (a). This clearly shows the large 

increase in noise in the surrogate data. ¿Ifnce for very noisy time-series generating 

surrogate data will not be a good comparative tool. The window width used in the 

SVD procedure was 20.



5 Dynamics and evolution.

5.1 Density-dependent selection.

On an ecological time-scale there exist processes that regulate population densities. 

These processes also have evolutionary effects and as such the two need to be analysed 

together. Early work looking at the evolutionary effects o f density-dependent population 

regulation was done by MacArthur [56] and MacArthur and Wilson [57]. They identified 

two evolutionary processes arising from such regulation: ” r-selection” and ” K-selection” . 

Populations that are expanding and have negligible crowding effects undergo r-selection 

where selection acts to maximise the reproductive rate or intrinsic rate of increase, r. 

Crowded populations undergo K-selection where selection acts to maximise the carrying 

capacity, K. Roughgarden [85] used Sewall Wright’s notion of selective value and showed 

that in both cases evolution favoured the genes that produced the phenotype with the 

highest selective value. This was a 2-allele genetic model with one homozygote having 

high r/low K and the other having low r/high K. The density-dependence was introduced 

as a linear drop off in the selective value with increasing population size. As pointed 

out in this paper the selective value can be interpreted as a measure of the fitness of a 

phenotype and also as a determination o f  the growth characteristics of a population of 

that phenotype. The two are intrinsically related.

5.2 Frequency-dependent selection and linear game theory.

5.2.1 In trodu ction .

Maynard-Smith and Price [66] introduced the concept o f game theory to biology. This 

deals with the complications of frequency-dependent selection within a strategy model. 

Although game theory was developed in economics it has turned out to be more easily 

applicable in biology. There are two reasons for this: (i) a common currency is used for 

payoffs for different outcomes from different strategies and in biology there is a genuine
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currency with which to compare all outcomes, Darwinian fitness, (ii) The solution of the 

game is sought in terms o f evolutionary stability as opposed to rationality in economics. 

This is defined as:

D efin ition  3 An evolutionary stable strategy, an ESS, is a strategy such that if all 

members of a population adopt it, then no mutant strategy could invade it under the 

influence o f  natural selection, [64].

Stability is an important concept as non-stable strategies are not expected to be ob­

served in populations since, by definition, they will be invaded and taken over by other 

strategies.

Evolutionary game theory was first applied by Maynard-Smith and Price to deal 

with animal conflicts. As such it was couched in terms of strategies. However it can 

equally apply to any phenotypic variation, e.g. dispersal strategy. Thus, evolutionary 

game theory refers to the evolution o f phenotypes in a population when the fitness o f a 

particular phenotype depends on the frequencies of other phenotypes in the population. 

An example is mimicry in the passion flower butterfly, Heliconius melpomeme and H. 

erato. H. erato is a distasteful butterfly to predators which learn to avoid butterflies with 

the warning pattern (a striking colouration). H. melpomeme has evolved to mimic the 

colouration o f H. erato so it too avoids predation. This will only work while the relative 

frequency o f H. melpomeme remains small, otherwise predators will re-learn that there 

is a good chance o f a fair-tasting meal from the strikingly coloured butterflies.

An essential first step o f a game theoretic analysis is to specify the set of possible 

phenotypes that could be taken up. In the case above it is possible that the set is 

nearly continuous from all one colour to a fantastic mixture o f colour and patterns. 

In specifying this set any constraints must be identified. For instance it may not be 

possible to display a certain colour. Constraints such as these and trade-offs, where 

the development o f  one characteristic inhibits or constrains another, turn out to be 

crucially important and game theory highlights them by ensuring they must be specified
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beforehand.

5.2.2 T he H aw k-D ove gam e.

The hawk-Dove game, introduced by Maynard Smith and Price [66], is the basic model 

in evolutionary game theory. Two animals are competing for a resource which will 

increase their fitness, if obtained, by a value V . The resource may be a particularly 

good territory for breeding, for example. Two strategies are available to the contestants; 

to be a Hawk or a Dove. The Hawk strategy is to escalate the contest, i.e to fight. The 

Dove strategy is only to display and if the opponent escalates to run away. Thus, if a 

Hawk meets a Dove the Hawk escalates, the Dove runs away and the Hawk gains all the 

resource V . If a Hawk meets another Hawk then they both escalate and fight and there 

is a chance o f an injury at a cost C . The uninjured Hawk then gains the resource. On 

average a Hawk will win the resource half the time and be injured half the time. Thus 

the average payoff to a Hawk in a Hawk-Hawk contest will be ( V  — C)/2. When a Dove 

meets another Dove they both display and they share the resource equally, so the payoff 

will be V/2. We can thus write down the payoff matrix for the different strategies. In

H D

H ( V - C ) / 2  V

D  0 V/2

Table 2: Payoff matrix for the Hawk-Dove game.

this matrix the entries, or payoffs, show the increase in fitness to the strategies as the 

outcome of the particular contest. Let Wo be the fitness of an individual prior to the 

contest. Let the fitness of a Hawk strategy be W (H )  and the fitness o f a Dove be W {D ).  

Let E(D, H) be the payoff from strategy D  playing strategy H and p be the proportion
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of the population playing the Hawk strategy. Then:

W (H )  =  W0 + p E ( H ,H )  +  ( l - p ) E ( H , D )

W (D )  =  W0 + p E ( D ,H )  +  ( l - p ) E ( D , D ) .  (14)

The dynamics of this game and the frequency o f Hawks in the next generation, p', are

given by:

p' =  p W (H )/ W ,  (15)

where W  is the average fitness of the population and is given by W  =  p W (H )  +  (1 — 

p )W (D ).  The dynamics of the Doves can be completely determined from the dynamics 

of the Hawks since the total proportion o f Hawks and Doves equals one. The dynamics 

are 1-dimensional and take place on a line. Equation 15 is analytically complex to solve 

but we can understand the dynamics by looking for stable strategies, or ESS’s. The 

dynamics of a mutant strategy J in a population o f strategy I  are given by:

s!_ w {J)
q ? W (J ) +  ( 1 - , ) W ( / ) ’

where q 1 is the proportion of mutants, J . Since q 1 the number o f mutants will 

only decrease if W (I)  >  W(J).  The fitnesses o f  the strategies are:

W (I )  =  Wo +  (1 - q ) E ( I ,  / )  +  *£?(/, J)

W (J )  =  W0 +  ( \ - q ) E ( J , I )  +  qE(J,J).  (16)

Since j  <  1 this requires for all J ^  / ,

either E (I ,  I) >  E(J, I)  (17)

or E(I,  I) =  E(J, I) and E (I ,  J) >  E(J, J). (18)

These conditions for an ESS were given in Maynard-Smith and Price [66].
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For the Hawk-Dove game it is clear that Dove can never be an ESS as E(H, D) >  

E(D, D) and so a Hawk strategy could always invade. Hawk will be an ESS if (V  — 

C )/2  >  0 , i.e. V >  C.  This is intuitive as this means the reward for gaining the 

resource outweighs the cost of an injury. Hence the only possible pure strategy is Hawk. 

Given a payoff matrix, such as in table 2, it is possible to immediately identify ESS’s 

as the diagonal payoff needs to be greater than any of the other payoffs in that column 

for a strategy to be an ESS. If V <  C  there is no pure ESS but there is the possibility 

of a mixed strategy ESS.

A mixed strategy is one where an individual plays different strategies for set propor­

tions of time. This mixed strategy is then asexually passed onto the next generation. 

To identify ESS’s in the mixed strategy case a theorem proved by Bishop and Cannings 

[9] is needed: If I  is a mixed ESS which includes, with non-zero probability, the pure 

strategies A,B,C..., then

E(A, / )  =  E(B, I)  =  E(C,  / ) . . .  =  E(I, I). (19)

To find the mixed ESS in the Hawk-Dove game we need to solve E (H ,I )  =  E (D ,I ) .  

Let P  be the mixed ESS and the time spent playing the Hawk strategy:

E (H ,P )  =  P E (H ,H )  +  ( l - P ) E ( H , D ) ,

E (D ,P )  =  P E (D ,H )  +  ( l - P ) E ( D , D ) .  (20)

Thus:

P{̂ Q + ( \ - P ) V  = ( 1  -/>)£,
=*(1 - P ) V  =  (C - V ) P ,

=>p = (21)

Hence, if there is a mixed ESS then it will be given by equation (21). We need to check

that this satisfies equation (18) since E(P, P) =  E (H ,P )  =  E (D ,P ) .  Therefore we

5.2.3 P u re  strategies, m ixed strategies and p o ly m orp h ic  popu lations.
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need E(P, H)  >  E(H,H)  and E(P, D) >  E(D,  D).

E(P, H) =  PE(H, H),

V  (V - C )
~  C '  2 ’
>  E(H, H ) , as C  >  V.

E(P, D) =  P E ( H , D ) + ( 1 -  P )E (D ,D ) ,

>  E(D, D) , as E(H, D) >  E (D , D).

Thus a mixed strategy given by P  =  V/C is an ESS when V <  C.  When V >  C  then 

the pure hawk strategy is an ESS.

The third situation that is possible is that there could be a population made up of 

pure strategies of Hawk and Dove which could be evolutionary stable. If V >  C  then a 

pure Hawk population would be an ESS. If this is not the case, is there a stable genetic 

polymorphism made up of a mixture of pure breeding Hawks and Doves? At equilibrium 

the fitnesses \V(H) and W ( D )  must be equal. That is

pE(H, H) +  ( 1 -  p)E(H, D) =  p E (D , / / )  +  ( ! -  p)E{D, D)

where p is the frequency o f Hawks. This equation is the same as equation (20). Thus 

the condition for a mixed ESS is the same as for genetic polymorphism. This is also 

true when there is more than two strategies. However is this polymorphism stable? 

When there are only two strategies then when the mixed ESS is stable then so is the 

polymorphism. When there are more than two strategies then the situation is more 

complex. There are examples when the mixed ESS is unstable and the polymorphism is 

stable and vice versa. However a polymorphic population in which only pure strategies 

are possible will always be stable if it satisfies conditions (17) and (18) against invasion 

by any pure or mixed strategy. It must satisfy these conditions for any mixed strategy 

as it is possible for a population to be stable against invasion by all pure strategies while 

still being unstable to a mixed strategy invasion. For example the payoff matrix in table 

3, due to [64], has strategy A  stable to invasions by pure B or C but not against the

71



mixed strategy (0 , 5 , 5 ).

A B C

A 1 1 1

B 1 0 10

C 1 10 0

Table 3: A game in which strategy A is stable to any pure invasion but not if B and C 

mutants invade simultaneously.

5.2 .4  P laying  the field.

In some cases the fitness o f a certain strategy will depend not on the outcome of indi­

vidual contests but on some average property, or strategy, o f the population as a whole. 

An example of this type is the evolution o f  the sex ratio. The success of a particular 

strategy, i.e. the proportion of male or female offspring an adult has, depends on the 

ratio of the number of males to females in the whole population. In this case let the 

fitness of a single J strategist in a population of I strategists be W(J, I). Clearly I will 

be an ESS if for all J ?  I, W(J, I) <  W (I ,  I). If W(J, / )  =  W (/, I) then we need to 

think o f a population P  consisting o f a small proportion q o f J strategists and (1 — q) I  

strategists. Then the fitness of the J strategy is W(J, P)  and if this is less than W ( I , P )  

then /  is again an ESS.

In a 2-strategy game then /  is an ESS if W (I ,1 )  > W(J,1)  and J is an ESS if 

W (J,J )  >  W (I ,J ) .  If neither condition is true then the ESS will be a mixture o f J 

and I . In this case the frequencies o f I  and J can be found, as in the Hawk-Dove game, 

using the condition W ( I ,P )  =  W (J ,P )  where P  is the equilibrium population. For a 

continuously varying strategy, s, finding the ESS is more difficult. We seek a strategy 

s ' which is uninvadable, i.e. W (s ,s ’ ) <  W (s *, s’ ) where s ^  s ' and is a small invading
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population. If the function W (s, s ')  is differentiable then we can find s' by locating the 

function’s maximum, i.e.
d iy (s ,s* )

ds =  0, (22)

and
ô 2IV(s, s ')  

ds2 !.=.• <  0.

If (22) has a unique solution then the the strategy s' will be an ESS. If there is more 

than one possible solution then the situation is more complex as the strategy s* is a 

local maximum. If it is also a global maximum then it is an ESS. Otherwise we need to 

redefine the concept of stability to include invasion only by those mutants close to s*. 

The strategy s* will then be locally evolutionary stable.

5.2.5 A ssum ptions, com p lica tion s  and extensions o f  th e  m odel.

Various assumptions are inherent in the simple Hawk-Dove game analysed above. Some 

have used these assumptions and simplifications to suggest the limited and artificial 

nature of the game theoretic approach. On the contrary though, it seems that the basic 

concept is very robust and able to deal with a wide variety o f  different circumstances. 

The following assumptions have been relaxed in order to extend the model into new and 

interesting areas.

(i) The population reproduces asexually. Most populations that are of interest are 

sexual and so extending the approach to diploid populations with genetics is clearly a 

natural progression.

If the ESS is a phenotype that can be produced by a homozygous diploid genotype 

then the ESS will be stable. If the ESS is a mixed one which can only be achieved 

by a genetically variable population then complications can arise. Work by Maynard 

Smith [63], Maynard Smith and Parker [65] and others has demonstrated that sexual 

populations evolve ” as close as possible” to the ESS. Hines [46] showed that for the 

single-locus multi-allele case with additive inheritance the population mean will evolve to
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the ESS when possible. Treisman [111] considered the cases of both additive inheritance 

and strict dominance for the two-allele model and reached a similar conclusion. The 

ESS approach is in fact relevant for fairly general inheritance patterns. However, it is 

possible that natural genetic constraints can adversely affect the stability of an ESS or 

can prevent the population from evolving to it. This is due to the non-convex nature of 

the set o f possible mean strategies.

It is often reasonable to assume that there is some additive genetic variance under­

lying phenotypic variability because artificial selection experiments have almost always 

revealed such variance. Thus we can assume that ’like begets like’ . Then in general as 

the number of loci, or number o f alleles per locus increases, it becomes more likely that 

a population will reach the ESS, [96].

(ii) The population is randomly mixed. If dispersal o f individuals is not random 

then it is more likely that one mixes with like individuals. Models looking into effects o f 

spatial dispersion have used discrete lattices with discrete updating (cellular automata). 

Analysis o f  the Hawk-Dove game in this context has shown that for some payoffs that 

the ESS formulation would predict a pure Hawk strategy ESS the spatial model shows a 

dynamic coexistence of Hawks and Doves. This is consistent with findings that spatial 

heterogeneity increases species diversity [43],

In genetic models non-randomly dispersing populations may mean there is a greater 

chance o f meeting relatives than otherwise. This can lead to altruistic behaviour or 

cooperation. In the standard ESS formulation any behaviour that helped an opponent 

with no gain for oneself is selected against. In the sexual population a concept sim­

ilar to that of Hamilton’s inclusive fitness needs to be incorporated. This has been 

approximated in work by Grafen [37], Aoki [4] and others [48]. Some o f the results are 

analogous to that suggested by the concept o f  inclusive fitness while others seem not to 

be.

(iii) Infinite population size. This ensures that the probability of meeting a particular
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strategy is proportional to the density of that strategy and that mutants are rare. The 

use of deterministic models of infinite population is justified on the basis that for large 

populations deviations from expected values are negligible in size and effect. This has 

yet to be fully explored for its appropriateness in ESS population model formulations. 

Some theory suggests that finite population size in deterministic models will result in a 

slightly greater tendency for pure as opposed to mixed strategies while some stochastic 

models suggests a centralizing tendency towards the ESS.

(iv) No variability. Some randomness or noise can be introduced by assuming a 

variable environment, mistakes in strategy expression or inexact strategy transmission. 

If environmental variability is modelled by small random changes in the payoff matrix 

then it results in greater average fitness for those strategies near the ESS and hence 

will tend to decrease diversity [47). Inexact strategy transmission will result in greater 

diversity [117].

(v) Games are symmetrical, i.e. the two individuals are in exactly the same position 

with the same choice of strategies and payoffs. This is clearly invalid for biological 

populations since they display a rich variety o f structure. Animal conflicts are often 

between a large animal and a smaller one or between a male and a female for example. 

An asymmetry which alters payoffs will often alter the choice o f action. For example 

Riechert’s study [83] of the funnel web spider showed that it was the size of spider 

(and the quality o f the web site) which influenced the course o f action and the result in 

contests over ownership o f webs. However, it is also the case that an asymmetry which 

doesn’t alter payoffs or the chance of success in escalated contests can still determine 

the choice of action. An example is the Hawk-Dove-Bourgeois game where there is a 

contest between an owner of a resource and an intruder. Hawk and Dove are the same 

as before whilst the third strategy Bourgeois is ” if owner play Hawk; if intruder play 

Dove” . The payoff matrix for this game is shown in table 4. From the payoff matrix it 

is clear that B is an ESS. Thus an asymmetry o f ownership is used to settle the contest
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H D B

H - 1 2 0.5

D 0 1 0.5

B -0 .5 1.5 1.0

Table 4: The Hawk-Dove-Bourgeois game.

even though it doesn’t affect the payoffs or success in fighting.

(vi) The basic model can be extended to study the evolution o f learning processes. 

One can look for evolutionary stable learning rules, i.e. a learning rule such that a 

population adopting it cannot be invaded by mutants adopting a different learning rule. 

Under certain assumptions Harley [42] proved that an evolutionary stable learning rule 

is one which will take an initial population to the ESS within one generation (such a 

rule is called ” a rule for ESS’s” ). Harley proposed the following as a realistic learning 

rule:

/ . ( i )  =  r. / X > .

/.(<) = '< + Er=I TO‘ T (23)

where / ¡( f )  is the probability o f  playing action i on trial t , Pi(t) is the payoff received on 

trial t for action i and there are n possible actions or strategies. There are two learning 

rule parameters r,- the residual preference for action i and m the discount memory factor, 

0 <  m <  1. The closer m is to one then the more attention is payed to earlier payoffs. 

This learning rule will be returned to in section 6.10.
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5.3 Coevolution.

5.3.1 T h e R.ed Q ueen ’ s H ypothesis.

In an influential paper in the early seventies Van Valen [112] discovered an important 

phenomenon in the fossil record. This was that the extinction rate o f groups is approx­

imately constant. This was derived from empirical data on thousands of extinct and 

living species from a very wide-ranging variety o f different genera and families. A log-log 

plot of the proportion of the original sample that survives for a given time will have a 

linear relationship for a constant probability of extinction. Considering sampling error, 

which may be large when considering the fossil record, there is a clear linear relation­

ship for many taxa. Van Valen recast this discovery in an ecological form: ” the effective 

environment o f the members o f any homogeneous group of organisms deteriorates at 

a stochastically constant rate” . Environment here means the physical and biotic envi­

ronment, i.e. its physical surrounding and surrounding species. A homogeneous group 

is defined in terms of ecology and factors impinging on the regulation of population 

density (as such it is somewhat ambiguous and will depend on the circumstances).

That the probability o f extinction of a taxon is independent o f age suggests a ran­

domly acting process. However the probability o f extinction must be deterministically 

linked to the ecology of the taxon in question. Van Valen suggested the following link.

Consider a fixed amount o f a limiting resource. If one species evolves an adaptation 

which increases its resource holding power, or resource gaining power, then this must 

involve a decrease to another species. In this sense the resource is like a fixed-volume 

mobile landscape with peaks and troughs. The height o f the landscape at a particular 

point indicates the relative success o f the species at that point compared to others 

and the fitness o f a species is assumed to be related to this height. Adaptations in 

one species thus adversely effect another and cause a decrease in their fitness, <f>. On 

average a species will generate a response which equals the deterioration caused by
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other species. This reciprocity can mean that evolution will continue indefinitely. This 

gives it its name, ” The Red Queen’s Hypothesis” . So called because the Red Queen 

in Through the Looking Glass [13] says to Alice that you have to keep running just 

to keep still, i.e. it is necessary to continually evolve yourself just in order to keep up 

with other species. However, at any particular moment this response to other species’ 

adaptations will vary. Species will differ in the threshold of <j>, or its components, to 

which they cannot respond since response to these stresses will often mean paying a 

cost elsewhere. If they cannot respond they might then go extinct. Since the extinction 

rate is constant this implies that the stresses on species are sufficiently varied that they 

affect most species similarly over long periods o f time. The conclusion from the model 

is thus that species will continually evolve at a constant rate even when there are no 

physical changes in the environment.

While the Red Queen’s Hypothesis explains the empirical data it is not the only 

explanation. The hypothesis needs to be tested before we can be sure it is the correct 

one. Nevertheless it has generated considerable theoretical interest and authors have 

tried to explore its consequences. The two main consequences o f  the theory are the 

fact that evolution is perpetual and constant even when there is no change in the 

physical environment and that ecological dynamics are crucial in determining the path 

o f evolution.

5.3.2 T h e  R ed  Q ueen an d  arm s races.

The Red Queen describes how adaptations in one species might change the selection 

pressure on another species. This might then induce counter adaptations in the other 

species. If this happens reciprocally, Red Queen evolution ensues which was described 

by Dawkins and Krebs [19] as analogous to an ’’ arms race” An example of such a
t

phenomenon might be the adaptations for predator avoidance in a prey species and 

adaptations for catching prey in predators. These adaptations have an assumed cost
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which is that less energy is spent on other adaptations such as reproduction. Hence, 

in the absence of a changing environment, a species will evolve to an optimum which 

balances competing selection pressures. However, the continual evolution of a preda­

tor (prey) ensures the continual evolution of anti-predator (prey-catching) adaptations. 

One such example may possibly be the trend for larger brain sizes in carnivorous and 

herbivorous mammals from the early Tertiary [35] to the present. As the brains of 

herbivorous mammals grew larger, presumably under intense selection pressure from 

carnivores, so the brains o f predators increased [35]. Another example may be the 

coevolution o f  sabre-toothed tigers and their prey.

Arms races may be unequal which could end in one side winning. This might occur if 

there is unequal selection pressures, Dawkins’ ” life-dinner” principle, on the two species. 

The ’’ life-dinner” principle comes from a predator-prey situation where the pressure on 

the prey to develop adaptations is more intense than on the predator. This is because 

a prey that fails to avoid predation will be eaten, while a predator that fails to catch a 

prey will only lose a dinner. If the selection pressure is very unequal then it is possible 

that the prey develops adaptations that will enable it to completely avoid predation. 

This would then result in specialised predators only hunting a few species of prey. 

Generalist predators, however, could evolve to exploit the ” rare-predator” principle. 

This is when the prey only meets a predator rarely so that the selective pressure to 

evolve anti-predator adaptations will be small.

Species competing for similar resources will be unlikely to enter prolonged arms races 

as it is more probable that selection will lead to avoidance of competition through niche 

separation. This has been analysed by various authors, e g. [52]. An example of an 

intra-specific arms races may be the competition among males for females. Larger males 

may tend to win contests so there is an evolutionary pressure for larger and larger males. 

Races of this kind may help to explain evolutionary trends for larger size (Cope’s Rule).

This theory has been disputed by some authors (e.g. [1]) . They argue that the
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selective pressure on species to evolve certain characteristics is a function of the detailed 

interactions determining population dynamics and fitness.

5.3.3 C oev o lu tion  o f  lag-loads.

In order to investigate evolutionary rates and in particular the efficacy, or not, o f Red

is a multi-species model which explicitly addresses the fact that the evolution o f one 

species will be to the detriment of another.

phenotype is the fittest possible in the contemporary environment, i.e. it incorporates all 

possible favourable mutations, whether they have occurred or not, while all the other 

species do not change. Hence it is the fitness of species i when all other species are 

prevented from changing and species i has stopped evolving. Let the present species 

fitness be Wi. The evolutionary lag, or lag-load, is then defined as :

Li is thus the relative fitness deficiency from the optimum in species i. Maynard Smith 

then assumed that the rate o f evolution o f the lag-load is linearly dependent on L ,. 

Hence the further a species is from its optimum the greater the selective pressure on 

it to change. However a species’ evolution is dependent on not only its own lag-load 

but also the evolution of species within the same ecology. Let the coefficient /?y be the 

effect of one unit change in the lag-load of species j  on the lag-load o f species ». For s 

species we now have s simultaneous differential equations given by:

where fc,- is the rate of change o f L; per unit Li and 0a =  0. Normally 0ij >  0 as a 

decrease in the lag-load o f species j  will lead to an increase o f the lag-load in species

Queen evolution Maynard Smith [62] proposed what he called the lag-load model. This

For each species i there is a perfect phenotype whose fitness is defined to be IV,-. This

(25)
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The Red Queen’s hypothesis can now be restated in terms o f lag-load: In the s- 

dimensional lag-load space of the s species, there will be a stable, internal equilibrium 

point. This means that (i) all lag-loads, Li, are positive, (ii) all the values dLi/dt will 

be zero and (iii) any perturbations from this point will result in dynamics bringing the 

system back to it, [84].

As the basic model stands Maynard Smith showed that it cannot predict the Red 

Queen hypothesis, only stasis. However in a further paper, [103], speciation and ex­

tinction rates are incorporated into the model which led to a variety of conclusions: 

stationarity, Red Queen evolution or extinction depending on parameter values. This 

is looked at further in section 5.3.5 where the results of this model are compared to 

others.

There are various criticisms of the lag-load model, (i) Firstly lag-load is something 

that could never be measured in real systems, indeed it is doubtful that it could even 

be measured in the laboratory, (ii) Lag load is a scalar quantity whereas evolutionary 

pressures have a direction to them. Lag-load should be a vector indicating improvement 

against a particular species. This can bring out inconsistencies, such as the fact that 

lag-loads do not unambiguously determine the sign of the coefficients Pih a similar 

change in the lag-load of two species could have opposite effects on the lag-load of 

another species, (iii) The model pays little attention to phenotypic properties which are 

the actual characteristics that determine success and selection pressures. Thus crucially 

important factors such as constraints are ignored in the model. Strategies are effectively 

unbounded.

5.3.4 C oevolu tion ary  games.

The modelling o f coevolution as a frequency-dependent evolutionary game is appropriate 

as it is the strategies of one’s coevolutionary partners which are the driving force for one’s 

own evolutionary change. This is further improved upon by the inclusion of density-
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dependent effects since evolution must take place in an ecology where population size 

has an effect on the dynamics.

In the following formulation, due to Brown and Vincent [11], gene frequencies are 

not modelled specifically but instead the focus o f interest is the phenotype, referred to 

as the strategy. Not including genetics means various evolutionary constraints imposed 

by specific genetic mechanisms, such as sexual reproduction in diploid populations, are 

not modelled. However, it has been shown that despite these constraints the population 

will usually evolve to as close to the ESS as possible, [65]. The fitness of an individual, 

G, using a scalar strategy u is written as:

where u  =  (u j, U2, .., ur) is the vector of all current strategies in the population and 

p =  (p i, p2, .., pr) is the vector o f  frequencies o f each strategy and N  is the population 

size. The fitness of u is frequency-dependent through p and density-dependent through 

N . The mean fitness o f the population as a whole, G, is given by:

In order for a single strategy, say uj, to be an ESS then it must be the strategy that 

maximises individual fitness as given by equation (26). If not, then the strategy could 

be invaded. If the strategy set is unconstrained then a necessary condition for uj to be 

an ESS is:

where the vector u* has every component uj, p* has pi =  1 and all other entries zero 

and N * is the equilibrium population size of a population composed solely of individuals 

ui. From equations (27) and (28) we have the additional condition:

G(u, u, p, TV), (26)

(27)

and so the dynamics are:

N,+l =  N,G. (28)

G (u i, u ” , p*, TV*) =  1. (30)
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The two equations (29) and (30) are used to solve for the two unknowns, ui and N m. 

The stability o f the solution also needs to be checked, if possible by looking at the sec­

ond derivative of G with respect to u and a linear stability analysis o f  equation (30). 

Condition (29) can be thought o f as the evolutionary process governing the change in 

strategy frequencies and condition (30) the ecological process governing the popula­

tion dynamics. But these two processes are not independent and cannot be analysed 

separately.

For a coalition of strategies, u °  =  ( « i ,  « 2,...., u,) where s <  r, the conditions for 

the ESS are very similar. If the strategy set is unconstrained then equation (29) and 

equation (30) must be true evaluated for each element of the vector u®. Hence there 

are 2s +  1 equations (since there is also Ui +  «2 +  •• +  =  1) to solve for s ESS

coalition strategies, s coalition strategy frequencies and the equilibrium population size 

N " . Hence an ESS can be composed of more than one strategy and coevolution can 

thus occur.

This formulation for finding the ESS is very general as long as the fitness generating 

function, G, can actually be written down. However it suffers the drawback of having to 

rely on equilibrium population dynamics at the ESS. This will not always be true and 

there are examples given in chapter 6 where an ESS has chaotic dynamics. A formulation 

to deal with complex dynamics is outlined in chapter 6. Vincent and Brown [113] also 

propose additions to analyse non-equilibrium dynamics.

With the function G in mind evolution can be visualised as occurring on a frequency- 

dependent adaptive landscape. This landscape is constructed by considering the indi­

vidual’s fitness as a function o f its strategy. The rate of evolution is then proportional 

to the slope of the landscape. As evolution occurs the landscape will change due to 

the density- and frequency-dependence. A species will then always evolve with respect 

to the current landscape. The partial derivative o f the function G with respect to an 

individual’s strategy is effectively the selection pressure acting on that strategy. Hence

83



assuming the rate of evolution to be proportional to the selective pressure is reasonable. 

However, the rate o f evolution is also dependent on the arrival of new mutations which is 

essentially a stochastic process. Therefore, assuming this relationship between selective 

pressure and evolutionary rate implies that the arrival of new mutations is independent 

o f the phenotypic trait being analysed. This might not always be the case.

Metz, Nisbet and Geritz [67] (in work done parallel to the work outlined in chapter 

6) propose a measure for defining fitness similar to the invasion exponent introduced 

in section 6.2. This is defined in a similar way to a Liapunov exponent and as such is 

applicable to any dynamical situation, not just the equilibrium case. This measure is 

the long-term growth rate of the population. In this sense it is analogous to fitness. Any 

bounded population will thus have zero fitness as .over the long term, the population is 

neither decreasing or increasing.

To analyse evolution in ecologies they look at the initial growth rate of a small 

invading population in the environment set by the resident genotype. This growth rate 

can be positive or negative. A positive growth rate indicates an invasion can occur 

and evolution will tend to move the population in the direction o f the mutant invaders. 

When any possible mutation has a negative growth rate then the resident genotype 

is an ESS. This was applied to a well-known single species population model. They 

indicated the direction o f evolution and noted that the presence o f constraints is crucial 

in determining where evolution will stop. This work looks ahead to the work outlined 

in chapter 6.

5.3.5 C onstra in ts.

A main result from the work by Rosenzweig, Brown and Vincent [84] (which uses the 

formulation outlined in section 5.3.4) is that ESS’s will dominate when constraints or 

interdependencies are put on phenotypic characters. Red Queen evolution depends 

on the existence of limitless, unbounded traits the extreme o f which will make the
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best phenotype (e.g. the biggest or most quickly growing). Since it is probable that 

limitless traits will be the exception (if possible at all) then ESS’s and stasis will be the 

predominant feature o f evolution. This will be interspersed with periods o f fast evolution 

when interdependencies (or constraints) are broken and traits become more independent. 

However, Maynard Smith’s original lag-load model predicted stasis even though the 

strategies, or phenotypic traits, are unbounded. This was resolved by Rosenzweig, 

Brown and Vincent [84] who assumed that given the lag-load o f s — 1 species then the 

lag-load o f the last species is completely determined. Thus the dimension of the system 

is reduced by one. This is equivalent to assuming there is a fixed amount of resource 

available and perfection would be to have it all. The original formulation o f the Red 

Queen by Van Valen also assumed this. With this addition the lag-load model again 

predicts the Red Queen.

Stenseth and Maynard Smith [103] made additions to the early lag-load model by 

adding speciation and extinction rates. This then predicted a variety of results including 

stasis and continual evolution depending on parameter values. However, once Rosen­

zweig et. al.’s addition is included then this model always predicts a Red Queen. Thus 

this earlier work on lag-loads is consistent with the conclusion that it is the presence or 

absence of constraints that is crucial in determining how evolution will occur.

In [84] the dynamics in the phenotype space are given by the partial derivative of 

the fitness function G  with respect to the phenotypic trait o f interest. An alternative 

approach is to introduce new equations describing the population dynamics o f mutant 

strategies. This new mutant will compete with the original strategy through interaction 

terms, see section 6.1.2. Depending on how these interaction terms are specified then 

density and frequency-dependent selection as well as interactions between species can 

all be analysed together. As new mutations arise the number of equations can get 

impossibly unwieldy. Often though it is only necessary to deal with one mutation at 

a time. For Lotka-Volterra predator-prey systems it is possible to show that if a rare
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mutation can spread then it will always take over and displace the original strategy. 

Thus evolution has occurred in the phenotype space and now mutants o f the new species 

can be looked at. If a rare mutant cannot spread then it dies out and no evolution 

will occur. Hence for two coevolving species (e.g. predator and prey) the maximum 

dimension of the system is four.

Marrow et. al. [59] studied such a predator-prey Lotka-Volterra system. They 

introduced constraints by specifying how the phenotype strategies, in this case the 

body size of the predator and prey, influence the ecological dynamics. They assumed 

that the the predator-prey interaction term in the predator’s equation is a bell shaped 

function of the body size of prey and predator. Hence an intermediate size o f predator 

and prey will maximise the benefit o f  the prey to the predator. For the prey this is 

the opposite. This effective constraint set produces interesting results. For different 

parameter values ESSs and evolutionary saddle points are observed. Coevolution of the 

predator and prey can tend to an ESS or perpetual evolution in a Red Queen fashion.

It is the nature of the constraint set in this case that produces very interesting 

results showing that evolution can continue indefinitely or tend to an ESS. However, 

one drawback of the work was the continued assumption of equilibrium dynamics. In 

chapter 6 a new formulation is proposed which relaxes this assumption.
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6 Evolutionarily stable attractors, the invasion ex­

ponent and phenotype dynamics.

6.1 Preliminary framework.

We start by considering a simple example with the aim of illuminating the general 

mathematical discussion that follows.

The example is a resource-predator-prey system with the following dynamics

=  (1 +  6. ) exp ( - » £ 1 - Cl -\ i 3 l +  d.a:./

=  (1 -  d2)e x p (c2x .)  (31)

=  (1 +  63)exp ( - y  -  c3* i )

Here xi ,  X2 and £3 denote respectively the population size of prey, predators and re­

source and the primed variables represent the corresponding numbers in the next period. 

The biological interpretation o f the various terms in the equation is outlined in table 

5. We do not attempt to defend this model on grounds of realism. It is just used here

Term in equation Interpretation

1 +  6. prey’s unconstrained birth rate

" “ f t decrease in fitness of prey due to resource limitation

Cl l + <hxi decrease in fitness of prey due to predation

1 -  ¿2 predator’s unconstrained death rate

C2* l predator’s fitness increase due to feeding

I +  63 resource’s unconstrained reproductive rate

k resource’s carrying capacity limitation

- c 3xi resource’s fitness decrease due to feeding by prey

Table 5: An explanation o f the construction of equation 31.
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as an illustrative example. As the parameters are changed, it displays a wide range 

of dynamical behaviour including periodic, quasi-periodic and chaotic attractors. For 

example, it is chaotic when the parameters are as in table 6. The attractor for the first 

set of these parameter values is shown in figure 15.

a *l b 3 Cl Cj C3 di ¿2 k

0.3 1.1 1.8 0.0025 0.0015 0.005 0.01 0.05 1000

0.5 1.1 2.8 0.001 0.0005 0.005 0.01 0.05 1000

Table 6: Parameter values for equation (31) giving chaotic dynamics.

In this example we distinguish three groups of species: resource, predator and prey. 

In the pure system there is one species in each group. However, we want to consider 

the effect of adding mutant resources, predators and prey. Therefore, we will allow for 

mutations within each group and thus consider systems with more than one species in 

each group.

6.1.1 P h enotypes

At this point it is important to discuss the relation between phenotype and dynamics. 

We regard the phenotype of a species group i as being described by a vector p,- o f real 

numbers. Thus each aspect o f the phenotype is capable of continuous variation. We 

let Pi denote the set of possible values that pt- can take. By p we denote the vector 

( p i , . . . , p , ) which encodes all the phenotypes o f our pure system, s =  3 for equation 

(31). One can think of p as representing the ecosystem’s phenotype. The set of values 

which p can take is denoted by P.

The dynamics and evolution o f a system such as that described by equation (31) are 

determined by the parameters that occur in the equations. Within our framework it 

is useful to consider a subset o f  the parameters that occur in the dynamical equations 

as being a part of a phenotype. When the dimension of the phenotype is higher than
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Figure 15: A 2-dimensional projection of the attractor for equation (31) with the first 

set of parameters as in table 6.

this subset there is some redundancy as other aspects o f the phenotype cannot express 

themselves. Suppose that some character ir o f the phenotype has no influence upon 

the parameters of the equation. Then the behaviour o f the system is independent of 

?r. Thus, we can get evolutionary drift with respect to ir and the system cannot be 

evolutionarily stable for this trivial reason. A similar remark holds if the dimension o f p 

is greater than the number o f parameters. Then we expect subsets o f positive dimension 

in P  to give rise to the same parameter values. Evolutionary drift can occur along these. 

These trivial obstructions to evolutionary stability should be removed by restricting p 

to only those characters that play a definite role in setting the parameters. One way to 

do this is to use the parameters and interactions to define the phenotype. Hence one 

takes the parameters that depend on p,- to be the vector p,-. In this case, there is an 

exact balance in the equation s(p) =  0 for evolutionary stability (see section 6.5). Thus, 

generically, we will obtain isolated points p as solutions and hence as ESA values.

There are several parameters in equation (31). O f these 6i is a function of the
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phenotype o f species one, bi =  &i(pi) and 63 =  63^ 3), d, =  d,(pi) and k =  k(p3 ). The 

other parameters are a function of more than one phenotype. For example c 1 relates the 

decrease in fitness in the prey due to predation. Evolution o f the prey phenotype may act 

to decrease this while evolution o f the predator phenotype will have the opposite effect. 

Since the parameters are functions of the phenotypes they are not independent and 

there may be constraints on the values that they can take. The phenotypic constraint 

manifold P  is the set of all possible values o f the vector o f parameters. Because of the 

constraints the dimension of this is often less than the number of parameters.

These constraints on p are represented by the structure o f P  and this is why we call 

P  the phenotypic constraint manifold.

There are two sorts of constraints. The first concerns constraints internal to P,-. 

These may occur because two parameters in the equation for the ith species group, e.g. 

hi =  bi(pi) and ci =  cj(p i), are functions o f a single component o f p,-. Then locally 61 

will be a function of c i . We will see that the existence o f  these internal constraints is 

very important for the existence of ESAs1 and is also an important natural property of 

real ecosystems.

The other constraints are cross-group constraints where a parameter in the equation 

for the ith species group depends upon a phenotype o f another species group p; with 

j  i. This is the case, for example, for the parameter Ci in equation (31) which depends 

upon the phenotype of both the prey and the predator. However, it is usually the case 

that these parameters are part of the interaction terms that we are going to define 

below. It then follows that their dependence upon the pj for which j  -f- i is not relevant 

to the question of evolutionary stability.

Our approach allows for the simultaneous coevolution o f all the species phenotypes,
1 This is relevant to the debate on the Red Queen Hypothesis. We would suggest that this hypothesis is essentially equivalent to the non-existence of ESAs. Therefore, in view of our results, its veracity is largely equivalent to the absence of constraints that enhance the possibility of an ESA. The debate should therefore concentrate upon understanding the structure of these constraints in real ecosystems.
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and all our general ideas are developed in this context. However, in the examples that 

we treat, we consider mutations of only a single phenotypic attribute that is linked to 

parameters that are internally constrained.

We can write equation (31) in the abstract form

showing the dependence o f  the dynamics upon the phenotype parameter.

6.1.2 In teractions.

Let us now return to our example and suppose that a mutant prey species is present, 

consisting o f yi individuals. Then to equation (31) we must add an equation for jq 

similar to that for xi but with a different value p\ o f the phenotypic parameter pi.

The original and mutant prey will compete for the same available resource x3. The 

resource-limiting term in equation (31) is exp(—OX1/X 3) which expresses the effect of 

the magnitude o f the number of prey per unit o f resource. When the mutant population 

yi is present, the number o f  prey per unit o f resource is instead (x i +  y i ) / i 3. Thus, the 

resource-limiting term should be replaced by exp(—o ( i i  4- y i) /x 3). In fact, in general, 

it should be of the form exp(—e n /e i3), where e\j is the total number of individuals 

belonging to a species in group j .  When there are cross-group constraints these terms 

will also include a parameter reflecting the phenotype of species group j .

It is necessary for our development to single out such terms e,j which represent those 

average quantities o f species group j  which enter the equations for group i. We call them 

interaction terms and incorporate them in our formulation. Thus, we rewrite equation 

(31) for the dynamics with no mutants as

X i(x ,p )  ( ¿ = 1 ,2 ,3 ) (32)

(33)
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where we have only allowed the parameters c< to have the possibility o f cross-group 

constraints. It is these terms which include the parameters c,- that we shall focus on 

in order to clarify the nature of the of the interaction parameters, ety . When there are 

no mutants present and no constraints then e<j =  c, Xj. When there is a single mutant 

species j/j present then e,j =  c,(x j  +  yj). In general

ey =  a  J tj(Pj)dpj

where £j is the phenotypic distribution of species group j .  In the pure case the distribu­

tion ( j  has only one phenotype present and is thus a delta function, *p* centered at pj . 

Thus ( j  =  Xj 6Pj and and e,-,- =  c,- /  Xj6Pj dpj =  a x j .  If there are cross-group constraints 

then the parameter c,- is a function o f the phenotypes p,- and p; . Hence

ey =  J ̂ ¡(pi, Pj)(j (pj)dpj

=  species group j  weighted mean of c,-

The interaction terms are a function of the distribution of species group j ,  which reflects 

the phenotypic distribution of j ,  and the phenotype i. The matrix e has the entries e^-, 

thus e =  (ey(iy.P i)). We can now write the equations with no mutants in the abstract 

form

*< = a: (. = 1,2,3)

e< = (ey(*,iPi, pi))j=1,2,3 (34)

We call this the pure dynamics o f the system. This formulation has been derived because 

all our definitions and constructions follow from the form of the pure equations and the 

interactions.

Now introduce a small mutant population y =  ( y i , . . . , j y )  with phenotype p' =  

(p\, ■.. ,p',)- The new phenotypic distribution is given by

xSp +  ySpi =  ( x j  Spi + y i 6p-i , . . . ,  x ,S p, +  y , i P’t)

92



and therefore the equations for the new system are given by

x\ =  X t(x ,e t ,p )  (« '=  1 ,2 ,3 )

l/i =  X>(V, (*■ €  M )  (35)

«. =  ( e i j ( x j 6 Pi + « ,5 p j,P < ))i= i,» ,s

ei =  (« ¡/( i jip j +  yj<5P',p i))j= i,2 ,3

where M  is the set of t such that p{ ^  p,-. We specify the set Af because we do not want 

to include equations for mutants which do not differ from the original species.

We call this system the p1-mutated equation and note that it is completely determined 

by the pure equations and the interactions.

In the above example x,- is a scalar and so ey is just a number. In general, though, 

x,- and yi can be vector quantities reflecting age-structure for example. In this case ey 

will also be a vector. The species groups interact here through abundance but generally 

may interact through average properties such as mean strategy or biomass etc..

6.2 The invasion exponent.

This section contains an important characterisation of evolutionary stability which pro­

vides the mathematical and computational tool for analysing examples. The full-blown 

definition for general attractors requires the use of less well-known mathematical tools 

(such as invariant measures), and is given in [80]. Here we illustrate the case where the 

attractor A o f our pure system is either a fixed point or a periodic orbit.

We consider when an attractor A of the pure dynamics with phenotype p is stable to 

mutation from phenotype p to p'. The mutated dynamics are given by equation (35).

Let us denote by y the vector (p,) where the index i runs over those i such that 

p{ qt Pi. Equation (34) for the pure dynamics defines a mapping x ■—► x' =  / (x )  

and equation (35) for the p'-mutated dynamics defines a mapping (x ,y ) »-♦ ( r ' , ! / )  =  

9 (x ,y )  =  (g i(x ,y ) ,g 2(x ,y ) )  where ffi(x ,0) =  / ( x )  and p2( x ,0) =  0.
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We are interested in determining whether or not there are small invading populations 

y which will grow under iteration of the mapping g. In [80] it is shown that in the generic 

case such an invasion will occur if it occurs in the system where the equation for y is 

replaced by its linearisation. This defines a mapping, V:

(* , ( / ( * ) ,  T. y) (36)

where Tz =  dyg (x ,0 )  is the partial derivative o f g with respect to y evaluated at (x ,0 ). 

Below we show how to calculate this for some important examples.

Now let us consider the simplest case where the attractor of /  is just an attracting 

fixed point, A =  {* o }-  Then the action of V  on the x  component is trivial and the map 

reduces to

V<— TIO -y

where TZ0 is the linear map dvg (xo,0). Thus we can apply standard theory to deduce 

that the behaviour is determined by the eigenvalues of TZo. If all the eigenvalues of 

T,TO are inside the unit circle in the complex numbers C then the system is stable. We 

express this in the following way. Let A denote the eigenvalue with largest modulus 

and let x  =  log |A|. Then the system is stable to invasion by a small population y with 

phenotype p' if x  <  0 or equivalently, |A| < 1.

A similar result holds if our attractor is a periodic orbit x o , . . . , z <_ i o f period q. 

Then we let A be the eigenvalue with largest modulus o f  the product T i,.x  ■■•Te„ 

corresponding to iterating once around the orbit. Again, the system is stable to small 

invasions if x  =  log I'M < 0.

To the attractor A of /  and a mutated phenotype p' we are going to associate a 

number t?p(A ,p ') which characterises the stability o f A with respect to the mutation 

p'. We call this number the invasion exponent. This measures the rate o f growth of a 

small invading population with phenotype p'. A positive growth rate i$ means that a 

small population with phenotype p' will be able to invade and either take over or coexist
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with the original population. In our examples the principle of mutual exclusion holds 

which means that, after successful invasion, the invading population actually takes over 

and replaces the original population. Thus we observe evolution from p to p '. The 

magnitude o f 1}  is related to the selective pressure and determines the speed at which 

the invasion initially takes place and hence the speed o f the evolution. A negative <) 

implies that invasion by a small population with phenotype p' is impossible. In the 

simple cases above we would set

*V(A,p') =  X-

Then A is evolutionarily stable if for all p' ^  p near p, 0F(A,p') <  0. Moreover, if 

t?p(A ,p ') >  0 for p' arbitrarily near p then it is evolutionarily unstable.

The action of the mapping V  on y is linear. Thus, we may expect that on average, 

under iteration, the length ||jr|| o f y grows or decays exponentially fast. The exponential 

growth rate associated with a generic choice o f y and x in the attractor A thus provides 

us with our invasion exponent, i.e. \ *s tlr® growth rate of a typical y vector. This 

means that if (x „ ,y n) =  l /" (z ,  y), then 11t/n 11 grows like exp(ny) or more precisely that

X =  lim — log ||j/„|| n—00 n

This gives us a numerical method of evaluating the invasion exponent. When P  is 1- 

dimensional it is useful to consider the functions /+ (p )  =  Op(p+ e) and / - ( p )  =  *1p(p—e). 

These respectively measure the selective advantage o f p + e  and p —C over p. If / + (p) >  0 

then a small population with phenotype p' =  p +  e will be able to invade a p population. 

If mutual exclusion holds, then we get evolution to increasing values of p. If /+ (p )  <  0, 

the invading population will die out. If / - ( p )  >  0 then a small p' =  p — e population 

will be able to invade the p population and if /_ (p )  <  0, it will not. For small e >  0, the 

zeros of these two functions approximate an evolutionary stable attractor, an ESA, (see 

section 6.3) in the following way: if for p <  p , , /+ (p ) >  0 and for p >  p . , / _  (p) >  0 then 

this indicates that A . is an ESA. If the inequalities are the other way round, then we
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may regard A . as an evolutionary repeller. If P  is an interval then the right-hand (resp. 

left-hand) end-point is a boundary ESA if / + >  0 (resp. / + <  0) near the end-point.

Since to detect an ESA it is only necessary to consider one o f /+  or / _  in later 

sections we will concentrate our attention upon /+ .

6.3 Evolutionarily stable attractors.

Now we suppose that equation (34) has an attractor A. It is well-known that the 

equations of population dynamics have a rich variety of attractors including stationary, 

periodic, quasi-periodic and chaotic ones. One advantage of our approach is that it 

applies to all these cases.

We now make the standing assumption that if a species has a zero population then 

equation (34) implies that it remains zero for all time. The only way it can become 

non-zero is by mutation. Then the set

Ao =  {(* ,!/)  : x £ A, y =  0}

is an invariant set for the dynamics of the p'-mutated equation (35).

D efin ition  4 The attractor A o f the pure system (34) is said to be strongly evolution­

arily stable if for  all p' in P near p, Ao is an attractor for the p'-mutated system (35).

This means that for all p' in P  near p, a small invading mutant population y will die 

out and the system will relax back to its pure state. For deep mathematical reasons, see 

[80], this turns out to be too strong a condition for chaotic attractors because generically 

there are often ways in which chaotic attractors can be invaded. However, the possible 

invasions have measure zero in some sense and are therefore not observed and irrelevant. 

Therefore, we use the slightly weaker definition of evolutionary stability given below. 

For non-chaotic attractors the strong evolutionary stability and the weaker form are 

equivalent. Experience shows that for practical purposes this is as effective a condition
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as strong evolutionary stability. Moreover, we conjecture that in systems with a small 

amount o f stochastic noise the two notions are equivalent.

The weaker notion of evolutionary stability means that the probability o f very small 

invasions succeeding is very small and goes to zero with the size of the invasion. It is 

precisely defined as follows. Let U be a neighbourhood of A in the x-space. Let Uc 

denote the set of all points (x ,y ) such that x 6 U and ||y|| <  e. Let A ', denote the set 

of all points (x, y) €  Uc such that, if  (xn,y „) =  y " (x ,y ), ||y„|| —► 0 as n —► oo.

D efin ition  5 We say that A is evolutionarily stable to p' if the Lebesgue measure of the 

set o f points in U1 but not in A '( tends to 0 as £ —► 0. We say that A is evolutionarily 

stable if it is evolutionarily stable to p' for all p' near p

We call such an attractor an ESA. The associated phenotype p is called an ESA value. 

We say that A is globally evolutionarily stable if this stability holds not only for small 

perturbations p' o f p in P, but also for all p' in P .

The precise form of the above conjecture on noise is as follows. If A is evolutionarily 

stable and there is some small amount of noise perturbing the system, then the proba­

bility that A '/ =  U‘  tends to one as e —* 0. Thus, with noise, strong stability and this 

weaker notion are equivalent.

We distinguish interior ESAs from boundary ESAs. If p is an ESA value and the 

phenotypic constraint manifold is a smooth manifold near p then we say that the ESA is 

interior. If not then we say that it is a boundary ESA. We use this terminology because 

in our examples this occurs when P  is an interval and one of the end-points o f P  gives 

an ESA.

The dynamics o f these invasions is, o f course, given by the p'-mutated dynamics. The 

correct mathematical definition o f 0  is given in reference [80]. The relation o f i?p(A ,p ') 

to ESAs is given by the following theorem.

T heorem  1 1. If 0p(A ,p') <  0 then A is evolutionarily stable to p '.
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2. I f  t?p(A ,p ') >  0 th en  A is ev o lu tio n a r ily  u n sta b le  to  p ' .

3. If  i?p(A,p') <  0 for  all p' p near p then A is evolutionarily stable. If there exists 

a sequence pi —► p such that t)p(A ,p,) >  0 then A is not evolutionarily stable.

We illustrate these ideas by returning to our resource-predator-prey example, equa­

tion (33). Suppose that our phenotype parameter is p =  b\. Then only the prey are 

allowed to mutate. Let us assume that there are no constraints on p. Then:

P ro p o s it io n  1 There are no ESAs for  the unconstrained system.

The reason is obvious but non-trivial to prove because o f the complexity of the 

attractors o f  (33) and the proof is given in section 6.6. A prey with a given phenotype 

6i can always out-compete one with a slightly lower 6i. If we plot /+  then we find 

that it is always positive. Clearly, to get evolutionary stability we need to introduce 

constraints.

Indeed, if the phenotype parameters are constrained then (33) does have an evolu­

tionarily stable attractor. For example, it is natural to suggest a trade-off between the 

prey growth parameter b\ and its contact parameter ci with the predator. It is sufficient 

that Ci increases with 6i. For definiteness, we assume that Ci is proportional to 6j. At 

the same time, because the contact rate of prey with predators and predators with prey 

must be equal, let us keep the ratio o f C2 to ci fixed. We regard the other parameters 

a, C3, di as fixed. Thus our phenotype space P  is given by

P  =  {(*l.C i,c2) : 6! > 0, &i/ci =  / ,c i /c j  =  m, } (37)

where / =  440 and m =  1.7 for the first set o f parameter values and l =  1100 and 

m =  2.0 for the second set. The phenotype space is 1-dimensional and parametrised by

6i >  0.

P rop os it ion  2 If the parameter values (except b\ which is variable)  are as in table 6, 

this constrained system has at least one evolutionarily stable attractor. This is chaotic.
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A plot o f  f+  for equation (33) for parameter values corresponding to the two cases 

given in table 6 is shown in figure 16. In the first case there is a single ESA value 

p. ss 0.59 and the corresponding ESA is chaotic. In the second there are two ESA 

values separated by an evolutionary repeller. One is a fixed point and corresponds to 

Pf si 0.75. The other, which corresponds to pj tst 1.1, is chaotic. Thus we see that 

even in relatively simple systems we should expect multiple ESAs. Moreover, this and 

our other examples show that evolutionary stability and chaotic dynamics are perfectly 

compatible, as is any other common form of dynamical behaviour.

6.4 Gam e theory in a dynamic environment.

Our approach allows us to consider many extensions of the usual game-theoretic formal­

ism. We illustrate this by considering one example based upon the usual Hawk-Dove 

prototype. We will suppose that the species playing a mixture of these two strategies is 

a predator and that the resource gained in each contest is a proportion Vo of the prey 

population x i. Thus the payoff matrix is shown in table 7. The phenotype, p, is the

H D

H (V  — C )/2  V

D  0 V/2

Table 7: Payoff matrix for the Hawk-Dove predator game with prey where V =  VqX\.

amount of time spent playing the Hawk strategy. The main difference from the usual 

theory is that V =  VoZi depends upon the number of prey i i  and this is changing 

dynamically. If we denote the payoff matrix by E  =  (JEy) and use the same notation
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Figure 16: The graph of /+  for equation (33) for parameter values corresponding to the 

two cases given in table 6. The jagged parts o f the graph correspond to parameter values 

where the attractor is chaotic. The jaggedness is caused by the nonuniform convergence 

of time-series for the ergodic measures o f chaotic attractors.
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as above, then our pure equations are2

/ (  * *\ c\e\2 \X ,  =  X l ( l  +  6)exp

x '2 =  x 2e~aE (p ,e22) (39)

where E (p ,q ) =  Pi9j exp(c2.Sy), e n ( i i )  is the total prey population f  ( i(p i) dpu 

e i2(£2) is the total predator population /  i 2(P2) dp? and e22( f 2) is the mean predator

population strategy

J P2Î2(P2)dP2// « * ) * , .

We have included the death rate —a  in the equation for the predators so that, without

the increase in fitness gained by winning prey, their numbers would naturally decline.2 One aspect of our treatment of linear evolutionary games is nonstandard. If the payoff to strategy* against strategy j  is then the contribution towards fitness is taken to be ex p ( r E i j )  wherer (=ci in table (8)) is some constant largely set by the time-scale of the interactions. Then the mean fitness of an individual playing the strategy p in a population whose mean strategy is e is 
E (p ,e )  =  j pjCj exp( r E g ) .  For discrete time dynamics this has a number of advantages while also giving the same ordinary differential equation as is usual for the continuous time dynamics. The advantages include (i) natural positivity, unlike E i j , exp(E i j )  cannot be negative; (ii) invariance of the dynamics under addition of a constant to a column of the payoff matrix E ij ;  and (iii) sensible scaling with the unit of time r . For example, in the classical Hawk-Dove game E h h  — ( V  — C )/2 which can be negative, and this cannot be overcome by adding a constant to the fitnesses as this changes the classical version of the discrete-time dynamics as formulated in [64]. Replacing the payoffs such as 
&HH by terms of the form exp{cE jjh) overcomes all these problems for mappings and preserves the continuous-time dynamics. The continuous-time dynamics are derived as follows: Assume that E tJ is the contribution to fitness over a small time period r. Let W ( p ye) =  ̂piCjEij.  Then,

x ( t  + r)
x(i +  r) 

x(t  + r) -  x(t)

*(0 Vi'l  exp( rE i j ) ,
•J. « ) ! > ,  + r x ( t ) ' y '  p .C jEj,,  
‘J

*,j

(38)

and therefore in the limit r —» 0 we obtain dx/dt = W ( p ,c ) x ( t ) .  This is the same differential equation as that obtained in [108] and [118]. Finally, we stress that our preference for this formulation does not affect our conclusions in any important way.
101



It will be shown in section 6.7 that this system has an ESA at p„ =  V/C  where 

V  =  Voxi and x j is the time-averaged value o f x j. This fact is also clear from the graph 

of the function /+  (see section 6.2) which was calculated numerically and is plotted in 

figure 17. This ESA corresponds to that for the classical linear game. However, it is 

also clear from this plot that there is a significant difference, because p =  1 is also a 

boundary ESA value.

The reason for this can be clearly seen from figure 18 where we plot the the ob­

served value o f V/C against the proportion o f Hawk behaviour. Since this proportion 

is equivalent to p, we use p to denote it. Note that one o f  the values p. where the 

graph crosses the diagonal corresponds to the ESA and the other pr to the evolutionary 

repeller. From the graph one can easily see the following: if p is less than p. then 

the proportion of Hawk behaviour is less than V/C  and therefore there is a selective 

advantage to more hawkish behaviour. By similar reasoning, if p is greater than p. and 

less than pr then p >  V/C  and more dove-like behaviour is selected. But if p is greater 

than the evolutionary repeller then p <  V/C  and therefore more hawk-like behaviour 

is selected. This explains why p =  1 is a boundary ESA value.

6 *i Cl C2 di VÓ c <T

0.5 1000 0.01 0.001 0.005 1.0 75 variable 0.006

Table 8: Parameter values for for the Hawk-Dove system given by equation (39).

For low p the system has a fixed point as its attractor while for larger values it has 

a quasiperiodic attractor. In this example the ESA is a fixed point.

Later in section 6.9.3 we will see that this example has particularly interesting pheno­

type dynamics for both the corresponding mixed strategy and polymorphic population 

problems. In the first case it has a highly structured asymptotic distribution o f strategies 

and, in the second, it displays complicated oscillatory behaviour.
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Figure 17: The graph of /+  for the Hawk-Dove predator-prey system given by equation 

(39) for parameter values as given in in table 8 and for variable injury cost C.

Figure 18: The graph o f V/C  against the proportion o f Hawk behaviour, where the 

injury cost, C, is 75.

103



6.5 Differential selective pressure.

The equations for the mutant species are given by yJ/ju =  F,(y, e,p ') where pj ^  p,-. If 

there is only one mutant species then the invasion exponent, t)p(p'), is given by averaging 

/oyF,(0,e,-,p') over the attractor using the so-called natural measure, u .. In reference 

[80] it is shown that when there is more than mutant species then the growth rate of 

the tth component, dp l(p '), is given by looking at the partial derivative with respect 

to the ith component (using the assumption that if yt- =  0 then y[ =  0). Furthermore 

this partial derivative only depends on p< and not on p' as all cross group terms enter 

through the interaction terms which are evaluated at y =  0.

Let 0,(*,p5) =  logFi(0, e,-,pj). Then

=  J 6i(x,p[)i/(dx). (40)

Expanding <?i(x,p{) using Taylor’s Theorem:

M x >Pi) =  Oi(x,Pi) +  dK 0 i(x ,p i)-(p< -  p ,) +  ^ 0i(,x,Pi)- (p! -  P. )2 +  0 ( ( p! -  Pi )3)- (41)

Thus,

J 9i(x ,P i)v (dx) =  J  0,(x ,p ,) v(dx) +  (̂ j dp'0i(x,pi) i'(dx)^ ■ (p < -p .)

+  Q  J < $ * (* , Pi) « ' ( * ) )  • (Pi -  P i?  +  0 ( ( r i  ~ P i?)- (42)

If each y, is either 1-dimensional (and under certain conditions if y,- is a vector, [80]) then 

the first term in equation (42), f  0 j(x ,pt) i/(dx), is zero. This is because x is bounded 

away from 0 and infinity in the sense that there is a k >  0 such that for all x 6 A, 

k~l <  x,- <  k.

D efin ition  6 We call «¡(p) =  /  dp-i,(x , p,) u.(dx) the differential selective pressure of 

the ith species group. The differential selective pressure of the ecology is the function

®(p ) =  (®o(p), - . ,s ,(p ) )  •
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T h eorem  2 I f  p is an interior point of P, p is an ESA value if, for  all i, Si(p) =  0 

and s'{ (p) is negative definite (or  just negative in the /-dimensional case). Conversely, 

if A is an ESA then s,(p) =  0 fo r  all ».

If s,(p) #  0 for some i then t?P],(pJ) would be positive for some i and so mutants 

could invade.

In the 1-dimensional case we can observe that the function /+ (p ), introduced in 

section 6.2, and s(p) effectively determine each other. This is because, from equation 

(40) and equation (42):

We now use the differential selection pressure to find ESAs analytically.

6.6 ESAs in the resource-predator-prey model.

We consider why propositions 1 and 2 are true. The equation for the mutant prey y is

Thus, if p' differs from p only in having a larger 6 value, then the system is unstable to

P'-

tip(Pi) =  s(p ) • (p' -  P) +  0 ( (P i  ~  P i)2)-

Therefore, since /+ (p ) =  0(x ,p  +  e),

/+ (P ) =  s(p) • £ +  0 ( s 2).

where b\ is a function o f p'. Thus,

In the unconstrained case,

<fi ;e ( l ,p ')  =  ( l + 6 ' , ) - 1 > 0 .
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On the other hand, for the constrained system of proposition 1,

« W )  =  .0 1 (1 + K ) —

where / =  440 for the first set o f parameter values of table 6 and / =  1100 for the second 

set. Therefore,

* .* ( * , ✓ )  =  ( i + » i

Let /i =  f-> f  12(1 +  d i l l ) -1  v,(dx). Then

s(b) = J  di'i0(x,p')v.(dx) = (1 + i'i)_l -  ft

and

s '(6 )= 4 iff(*,p') = - ( l  + 6i)-J< 0

hence s(6) =  0 if 6 =  /x—1 — 1. Since 0 <  p <  1, there is such a value. Moreover 

s'(p) <  0. Consequently, this value corresponds to an interior ESA for the constrained 

system. Note that this argument does not exclude the possibility o f more than one ESA.

In figure 19 we show the graphs of x)p for the two ESA values p for the second set of 

parameter values.

6.7 ESAs in the Hawk-Dove predator-prey system.

We now consider the Hawk-Dove predator game with dynamic prey as discussed above 

in section 6.4. For this example, ¡ / / y  =  <p(x,y,p') where tp(x,p') =  ip(x,0,p') is given 

by

A x <p') =  c - ' ’ '52p'ipj exp(cEij)

= exp (-tr + c^PiPjEtj} -M9(c2). 

since YlijPiPj — 1- Thus, ignoring terms which are o f order c2,

P') =  - c r  +  c  ] C  p ip > E*i

106



Figure 19: A plot of the function (b[) for the two ESA values of the resource-predator- 

prey model corresponding to the second set o f parameter values in table 6.

Let p be the proportion o f time spent playing Hawk, then the proportion o f  time 

playing dove is 1 — p and:

0 (r ,p ') =  -<r -  £pp'  +  ^ (p ' - p )  +  j

where V =  Voxx. Thus,

dp.0 (x ,p ') =  -C p / l  +  V/c

and

J  dp.0{x, p') =  —C p /2  +  V0x x/ 2 

where x x =  f  x x u.(dx). It follows that

*(p) =  2 ( ,/oi > ~ C p ).

Thus s(p) =  0 if for the natural measure v. for the phenotype p,

Vbii
P= —
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However, in this case, d^,6 =  0 and therefore for this value o f p

*'(P) =  0. (43)

6.8 The generic structure of i

The degeneracy expressed by equation (43) is a result of the linear dependence of the 

payoff upon p'. For this linear game theory, it is the reason why it is necessary to use 

the second-order condition in the ESS criterion ([66]). For general nonlinear games or 

dynamical systems such second-order conditions are not needed. This is illustrated by 

the previous example. For such generic cases, we observe that that if p is an ESA value 

then the invasion exponent function tip(p') has a quadratic maximum at p where it takes 

the value 0. This is the situation shown in figure 19.

6.9 Phenotype dynamics.

We now consider the dynamics on phenotype space implied by the system consisting 

of both the pure dynamics and the interactions. The difference between the phenotype 

dynamics and before is that a distribution of phenotypes is present in each species group 

and we study the way in which this distribution changes in time. However, in all the 

examples that follow we study only a distribution of phenotypes in one species group. 

All other species groups have only one phenotype present. We will also introduce a 

mutation process which will allow for mutations between phenotypes within a species 

group. We let x ,(p () denote the phenotypic density o f individuals in species group », 

i.e. Xi(pi) dpi is the number of individuals in species group i whose phenotype lies in a 

volume dpi based at p,-.

M u tation -free  dynam ics. *

*i(P.) =  X i(x (p ),e i,p i)  (44)

The (mutation-free) dynamics are then given by
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e ;(l,p )e, =

where X j  is given by the pure dynamics in equation (34), z(p) =  ( x i (p i ) , .. . ,x ,(p ,) ) ,  

P — (p 1, . . . ,  ps) and e(x, p) is the value o f the interactions corresponding to the distri­

bution given by x.

This defines a dynamical system. Let us denote the mapping given by this by L i.e. 

L(x) =  x'.

We can restore the pure dynamics, equation (34), from equation (44) by taking for 

Xj the distribution x°SPi for each j  where «Pi is the delta function on Pj concentrated 

at pj (i.e. each species group j  is represented by a single population of x°  individuals 

each with the phenotype pj). The p'-mutated dynamics (35) are then also given by (44) 

by taking for Xj the distribution x°6Pj if p'- =  pj and x°6Pi + y jS p' when p'- ji pj.

M utations.

Now, we consider how to add mutations to this process. VVe discuss this in terms of 

distributions on the phenotype space. These represent the distribution o f the phenotypes 

present in the system. In the case where only a single phenotype py is present in species 

group j ,  this is represented by a delta function ip,- We assume that under mutation 

in group j  such a pure situation changes to the probability distribution Mj(SPi). This 

means that after one time step, mutation causes the dist ribution of phenotypes to change 

from «Pi to Mj(SPi). Usually, Mj(6Pi) will be a smooth distribution close to the delta 

function «Pi-

Now if x =  z(p) then the phenotype dynamics are given by F (x ) =  M (L (x ))  i.e.

L M

x _  L(x) ^  A I(L (x )).

local dynamics mutation process
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6.9.1 C om pu tation a l m ethods.

The implementation of the phenotype dynamics involves the discretisation o f  the phe­

notypic constraint manifolds P;. If they are 1-dimensional then we approximate them

the spacing by o  =  a (P )  and always check that our results are not dependent upon 

the particular choice of a. The phenotypic population distribution Xj(pj) dpj is then 

approximated by the vector (x j(p j) , . . . ,  Xi(Pi'r))- The interactions ey which are all 

integrals over dpj in the examples that we consider then become sums.

For the 1-dimensional discretised case the mutation process is taken to be of the 

following form

where the parameter A is the mutation rate and 0 <  A <  1. In this discretised situation,

zero except that corresponding to the fth entry. In all the examples we set A =  0.001.

6.9.2 P h en otyp ic  a ttractor  for  the con stra in ed  resou rce -p red a tor-p rey  m od el.

Recall that in this constrained problem we only allow the phenotype o f the prey to 

vary. Thus only 6], ci and ci vary and these are related so that the phenotype p =  Pi 

is determined by bi and hence identified with it. Therefore, the discretised phenotype 

dynamics for the resource-predator-prey system whose pure dynamics and interactions 

are given by equation (33) are, denoting xi(p*) by x\ and Ci(pf) by c\\

where eln  =  Y .t *!> eiJ =  c ix i< «is =  ¿33 =  *3, «21 =  D r cix \ and «31 =  c a ^ x f .  The 

parameter values are as in table 6. Recall that for the first set o f values, there is a single

by considering an equally spaced lattice of phenotypes pj, j  =  1 We denote

(45)

the delta function is just represented by the vector in 1RN all o f whose entries are”j

(46)
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ESS at p =  p.. There is a distribution i i (p j)  such that, under the phenotype dynamics 

(with the mutation process defined by equation (45)), any initial distribution converges 

to Î i (pÎ). This asymptotic distribution is a “smoothed out” delta function and is shown 

in figure 20. Note that it is very much wider than the mutated delta function ^fi(5p. ). 

In figure 21 we show the time dependence of the mean phenotype. It shows convergence 

to the ESA value.

Figure 20: The asymptotic distribution for the phenotype dynamics o f  the resource- 

predator-prey system whose pure dynamics are given by equation (33) with parameter 

values from the first set in table 6.

Not surprisingly in the second case, where there are two ESA values separated by 

an evolutionary repeller, the behaviour is more complicated. Any initial condition 

converges to one o f two asymptotic distributions, but to which depends upon the initial 

condition and the mutation rate. If the latter is relatively large, then the asymptotic 

state is always a “smoothed out” delta-function close to the larger ESA value as in figure 

22. If the mutation rate is smaller and the support o f the initial condition is very close 

to the smaller ESA value or to the left o f this, then the asymptotic state is a “smoothed

111



Figure 21: Time dependence o f the mean phenotype showing convergence to the ESA 

value.

out” delta function close to this ESA value. This is also shown in figure 22. Otherwise, 

it converges to the other asymptotic state.

In figure 23 we show the time dependence o f the mean phenotype for an initial 

condition which, depending on the size o f the mutation rate, converges to one o f the 

two asymptotic distributions. The phenotypes present in the initial condition are all to 

the left o f the smaller ESA value.

6.9.3 P h e n o ty p e  dynam ics fo r  th e  H aw k-D ove system  o f  section  6.4.

M ixed  strategies.

Recall that we studied this in section 6.4 for the case where each predator played a 

mixed strategy o f Hawk or Dove. We therefore consider the phenotype dynamics for 

this case first before proceeding to the case of a polymorphic population.

It follows from the definition o f  the pure dynamics and the interactions that the
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Figure 22: The two asymptotic distributions for the second set o f  parameter values in 

table 6 for the resource-predator-prey system.

Figure 23: Time dependence o f the mean phenotype showing convergence to the two 

ESA values.
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phenotype dynamics are given by

xi =  * i ( l  +  ò)exp ( _ « X  ~  {—+ l X l) )  

x 2 =  x 2e~c E (p ,e22) (47)

e =  e(x)

where E(p,q) =  JZ, j Piij exp(c2 .£,;), C n (i2) is the total predator population weighted 

mean of c\, f  Ci(pi,p2)£2(p2) dp2, and e22(£2) is the mean predator population strategy 

f  P2&(P2 ) dp2/ f  ̂ 2(P2) dp2. We discretise these as follows, denoting x 2(pl ) by x 2 and 

Ci(p') by cj,

= Xl(1 + 6)exp( - “T-(TT^T))
( * $ ) '  = x i e -  E(pl ,e„) 

e t2 =

e22 =  ] r y * 2 / ] C x2-
i i

Note that c\ =  cj does not depend upon l  since we assume that ci is the same for both 

Hawks and Doves. Therefore e i2 is cj times the total predator population size.

Recall that this system has two ESA values separated by an evolutionary repeller 

at pr «  0.8 (with quasi-periodic dynamics): the first at p, =  VqXi /C «  0.2 <  pr and 

the other a boundary ESA at p =  1. The phenotype dynamics reflect this. If the 

initial condition is a distribution with only phenotypes p with values greater than the 

evolutionary repeller pr then, under the dynamics without mutation, it converges to 

a delta function at the boundary ESA. With mutation this asymptotic distribution is 

smoothed out. Other initial conditions converge to the distribution shown in figure 24 

whose mean is at the interior ESA. This is not close to the delta function at p. that 

might be expected, and the addition of mutation makes virtually no difference. The 

mean o f this distribution is the ESA value, p . =  VqXi/C. Thus, the population plays 

the same mean strategy as the pure ESA, but there is very great phenotypic variation 

in the population.
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3.5

Figure 24: The asymptotic distributions for the phenotype dynamics for the Hawk-Dove 

predator-prey system. The value o f  the parameter C  is 75.

In figure 25 we show the time dependence o f  the mean strategy for two initial condi­

tions which converge to each of the two asymptotic distributions.

P o ly m orp h ic  popu lation s.

The dynamical behaviour of polymorphic populations is very different. In a poly­

morphic population each individual plays one o f the pure strategies and not a mixed 

strategy as in the previous case. Firstly, let us consider the pure equations for this 

system. The phenotype p o f the predators belongs to the discrete set P =  {H , D }. 

Those individuals with p =  H  play the pure Hawk strategy and those with p =  D  play 

the pure Dove strategy. The pure equations are given by

"  Z , ( 1 + ‘ )eX P (  °  k ( 1 +  * « , ) )

x 2 =  x^e- " E(p, 622) (48)

«12 =  predator population mean o f ci =  c\x2

«23 =  mean population strategy =  p.
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Figure 25: Time dependence o f the mean strategy showing convergence to the two ESA 

values.

The notion o f  an ESA for the pure dynamics is not so interesting for this system because 

of the discreteness of P. Trivially the only possible ESAs correspond to systems that 

consist only o f Hawks or only o f Doves and small phenotypic mutations are not possible.

However, the phenotype dynamics which are obtained from this system are very 

interesting and are a generalisation o f the Jonker-Taylor-Zeeman dynamics [108], [118]. 

The equations for this are

* W Y
x ( H )

£Co y  

*(D)

( . a  y  +  1

e - ff E(H , e ji) 

e- ® E (D , e jj)

(49)

(50)

where e22 is the mean predator population strategy and eu  is the predator population 

mean c i(D )x (D ) +  C\(H)x{H) o f  Cj. The latter equals ci(x (D ) +  x ( / / ) )  since we take 

ci(-D) =  c , ( t f )  =  ci. The term 1 which is added to the right-hand side of the first
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equation represents a very small import o f prey into the system. It is added to control 

numerical instability associated with near-extinctions. It does not affect our conclusions.

When the prey are not present and the value o f the resource is set at a constant V, 

then, as is well-known, any initial condition (x (D ), x (H )) with x(H )  ^  0 and x(D ) £  0 

converges to x (H )  =  V/C if  V/C  <  1 and to x (H )  =  1 if V/C >  1. T he behaviour 

is very different when the prey are present. For the parameter values in table 9, we 

observe complex oscillatory behaviour as shown in figure 26.

6 Cl cj d k Vo C <T

6.5 0.01 0.001 0.005 2000 1 450 0.006

Table 9: Parameter values for the Hawk-Dove predator-prey equation (49).

Figure 26: Time dependence o f the numbers o f Hawk and Dove predators and prey.
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6.9.4 P h e n o ty p e  dynam ics fo r  the p red ator-p rey  system  w ith  stra teg ic  prey.

We now consider another type o f interesting phenotypic dynamics and introduce a new 

system. This is again a predator-prey system, but now we assume that the prey are 

strategic. Their strategy is represented by a number p in the unit interval P  =  [0,1] 

which represents the weight given to searching for food. Those with p =  0 put a large 

effort into actively searching for food with a consequently higher risk o f predation. Those 

with p =  1 do not actively search for food and are therefore immune to predation but 

are likely to go hungry. Intermediate strategies are represented by intermediate values 

o f p. For the pure equations and interactions we take the following:

where en  is the total prey number and «21 is the prey population weighted mean o f C2.

introduced to control numerical instabilities that arise because of near extinctions in the 

dynamics. The first term is chosen so that it goes to zero with x\ to allow competition 

with successfully invading mutants to wipe the original population out. Normally, we 

would introduce a further interaction term, e j2, corresponding to the total number of 

predators. However, since we are not going to consider mutations o f the predator, this 

is not necessary.

In figure 27 we plot the graph o f / + for this equation when the parameter values are as 

in in table 10. We observe that there are two ESA values separated by an evolutionary 

repeller. There is a boundary ESA at p =  p& =  0 and evolutionary repeller at pr as 0.07 

and an ESA at p, as 0.23. In the phenotype dynamics these ESAs compete with 

the result that the mean strategy p oscillates in an irregular fashion between p =  0 and 

p =  1. When the system is near the state where p is close to 0 or 1, then the population’s

(51)

x'2 =  *2(1 -  <*2)exp(e2i) +  1

For the pure case en =  x j. As in the previous example, the terms X j/eJ, and 1 are
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phenotypic distribution is bunched up close to this end-point. As the system moves to 

the opposite extreme all the individuals move to the other end o f phenotype space. For 

this reason, and because the strategy is akin to confidence, we regard this as a biological 

business cycle.

r Cl Cl d 2 k di

1.8 0.01 0.001 0.1 130 0.001

Table 10: Parameter values for the strategic prey equation (51).

Figure 27: The graph o f / + for the risk trade-off model (51) for parameter values given 

in table 10.

6.10 Learning dynam ics.

In this section we are interested in the following learning problem. We consider a general 

dynamical system o f the form

( '  =  H ( ( ,  x , c )
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Figure 28: Time dependence o f the mean prey strategy caused by the oscillating evolu­

tion between the two almost-boundarv strategies.

* '  =  A t f . x . c ) .

Here {  is some dynamically varying background environmental variable and x describes 

a distribution o f strategies or behaviour amongst a population of agents. The variable 

c represents external control variables. Unlike our previous systems, the strategy dy­

namics are not given by reproduction but rather by learning. This is represented by 

the function A which gives the learning rule. This can represent a sort o f  phenotype 

dynamics because x can contain distributions o f  strategies.

The function A will be our phenotype and we will allow mutations in this learning 

rule.

As an example we will consider the following simple learning system. We assume 

a discrete set of strategies S  =  and assume a population IT consisting of

individuals t . The state o f  the system is given by the configuration <r =  ( c y , )  where 

0V,» is the probability that ir G IT plays strategy i.
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We denote by Pi (<7) the payoff to strategy i if the population is playing the configu­

ration <r =  (<7,|lr). Then we define <r' =  A(<7) by

a'i.w =  r. +  ^  ((o'.-.» -  r, )m exp(P,(<7) -  P (g )))  (52)

where P(<r) is the population’s mean payoff and Z  is chosen so that Yli =  1. Note 

that this generates the sequence

<^,/(< +  1) =  ( ri +  exp(mPj(t) +  m2Pi(t -  1) +  • • •))

where P;(f) =  Pi(<) — P(t) is the excess payoff at the ith time step. This is analogous 

to the Harley learning rule [42] (see section 5.2.5). The parameter m is a discount 

factor. It is also important to note that the initial condition <Ti „ must satisfy <Ti „ >  ri. 

Otherwise the probabilities will become negative.

To make things simple let us further suppose that the payoffs are given in the usual 

linear way by a payoff matrix E  =  ( Eij). Then the payoff is given by

pi(z )  =  Y l q>Eii
i

where qj =  o’; , » ' /H i  H » ' ° ï,*•' >s the population’s mean strategy.

The simplest case to consider is where n  =  {1 } . One can regard this as the situation 

where everyone is forced to play the same strategy. Then the state o f  the system is 

given by a =  (<r,-). It follows that qj =  <Tj.

We use the payoff matrix o f our previous Hawk-Dove predator-prey system discussed 

in section 6.9.3. Instead o f being prey we regard the agents corresponding to the pop­

ulation (  =  Xj as consumers and the agents corresponding to the predators as agents 

who either adopt a high-risk aggressive selling strategy (Hawks) or else are risk-averting 

(Doves). The strategic learning process A is as described above.

Thus, if we let (  denote the number of consumers, 1 (D ) and x(f/) denote the numbers 

of Hawk and Dove agents, r  =  x (H ) +  x (D ), h =  x ( H ) / t ,  d — x(D )/r  and a — x(H )/r,
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then our pure dynamics are given explicitly by

=  i ( l  +  6 ) e x p ( - i - c l n I ^ )  

h' =  r „  +  i ( h  -  r „ r  exp(E (H ,p) -  E (p,p)) (53)

d' =  rD +  ^ ( d - r D)m exp(E (D ,p) -  E (p,p)) 

t ' =  exp(c3 E(p,p)).

The parameters are given in table 11. For these parameter values, the attractor o f  this 

system is a fixed point.

b Cl C2 d k Vo c a C3 m

0.5 0.01 0.001 0.001 1000 1 180 0.02 0.05 0.8

Table 11: Parameter values for the learning system given by equation (53).

Now recall that we think of A as the phenotype p and consider evolutionary stability to 

mutated learning processes. Here we only consider evolution within the class of learning 

processes A of the form described above. These are parametrised by the discount factor 

m and the residual biases or preferences rp  and rp . The evolution of m is simple. 

Under evolution, the value of m increases. Here we fix its value at 0.8.

Thus we consider p =  (r //, r o ) . For simplicity we consider these separately. Recall 

that we must have r< < 1 since, as was pointed out above the initial condition <7,iX 

must be greater than r,-. For the Hawk’s residual preference rp  there are two boundary 

ESAs at rp  =  0 and rp — l separated by an evolutionary repeller. The value r p  =  1 

is not a boundary ESA value in the usual sense. This is because in practise it cannot 

be realised because of the constraint <r// x > rp . However, the system will evolve to 

values arbitrarily close to r# =  1 if the initial strategy has a greater value than the 

evolutionary repeller.

For the Dove’s residual preference rp there is an interesting ESA at rp  =  r"D ss 0.34. 

The graph of / + for rp  is shown in figure 29. Thus we see that the learning evolves
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to give us a specific learning structure with a specific residual preference. We observed 

that the ESA value and the evolutionary repeller are given by a condition analogous to 

that for the classical linear Hawk-Dove game. They are precisely the values for which 

the proportion o f time playing Hawk equals V/C  where V  is the mean resource value 

Vol

Figure 29: The graph o f / + for the learning system given by equation (53) when p =  rD, 

for the parameter values given in table 11. The parameter r!f is set to 0.

We then consider the phenotype dynamics for this system where we separately take 

the phenotype p to be one o f r // and rp. We take the usual mutation process given 

by equation (45) in our phenotype dynamics. For p =  r // initial distributions converge 

under the phenotype dynamics to one o f two distributions depending upon initial con­

ditions. These are shown in figure 30. They show great phenotypic variation. However, 

we believe that this is due to the fact that the selective pressures are small and therefore 

the effect o f the mutation process is amplified. Without mutations, the system will con­

verge to a delta function at one o f the ESAs. For p =  rp  they converge to the interesting 

distribution shown in figure 31. This gives a wide distribution of phenotypes with mean
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Figure 30: The asymptotic phenotype distributions for p =  rj{ for the learning system 

given by equation (53). The parameter i'o is set to 0. With the distributions we show 

two initial conditions that converge to them.

value at the ESA value r 'D. Thus we conclude that in such a population with phenotypic 

variation, the learning rule will evolve (under non-reproductive learning evolution) to 

one with the rn  having a very low or high value and the rp having great phenotypic 

diversity around the mean given by the ESA value.

124
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0 0.2 0.4 0.6 0.8 l

Figure 31: The asymptotic phenotype distribution for p =  rp for the learning system 

given by equation (53). The parameter r/f is set to 0.

7 Evolutionary catastrophes, punctuated equilibria 

and gradualism in ecosystem evolution.

7.1 Introduction

In chapter 6 and in [80] a general mathematical theory o f Darwinian evolution in ecosys­

tems is developed. In this chapter we wish to address the important issue of gradualism 

v. punctualism in evolutionary theory, [26], [36] and [101]. We discuss this in terms of 

a simple illustrative example, but emphasise that it follows from reference [80] that our 

results apply quite generally and are ubiquitous and wide-ranging. We show that our 

model displays stasis, gradualism and punctuated equilibria and we use it to present a 

new general mechanism for such phenonema involving what we call evolutionary catas­

trophes. We also consider the Red Queen Hypothesis, [112] and [103], and discuss a 

mechanism for speciation. We argue that the possibility o f Red Queen evolution is a
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function o f the system’s phenotypic constraints. Thus, we propose that rather than ask 

about its general occurrence one should switch attention to the structure o f phenotypic 

and genotypic constraints in ecosystems.

7.2 Evolutionary stability of ecologies

7.2.1 T h e  m od el and ev o lu tion arily  stab le  a ttractors

One o f the basic concepts o f chapter 6 is that o f an evolutionarily stable attractor. This is 

formulated along lines which generalise Maynard Smith’s evolutionarily stable strategies, 

see section 5.2, to a much wider class o f dynamical systems including coevolving ecologies 

with complex dynamics. Here, rather than give a general mathematical description, we 

conduct the discussion in terms o f  the following illustrative example. It is the predator- 

prey-resource ecosystem introduced in section 6.1. The dynamics are given by a mapping 

which displays a wide range o f dynamical behaviour including chaos. This mapping is 

o f  the form:

—  =  F i(x ,e ,p )  (. =  1 ,2 ,3). (54)
Xi

Here x j, x 2 and X3 denote respectively the population size o f a prey species, a predator 

species and a resource species with respective phenotypes pi, pi and p3. Each aspect of 

the phenotype is capable o f  continuous variation. We let P  denote the set of possible 

values that the phenotype vector p =  (p1.P2.p3) can take. The primed variables repre­

sent the corresponding numbers in the next period. The variable e =  (eo(Pi'))i,>=1,2,3 

describes the interaction o f these species with any mutants that are present. The term 

e,j(p.) represents the effect of species group j  upon those individuals in species group 

t with phenotype p,-. In fact, in equation (54), e,  ̂ is either the total population size of 

species group i or else represents the jth  species group population weighted mean of 

some contact parameter c,(p, ,Pj). For example, 621 measures the aggregated effect on 

the predator individuals with phenotype pi o f the total prey population.
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In the pure case, Fj =  (1 +  6i)exp  (—011/13 — Ci*2( l  +  d ir i ) -1 ), Fa =  (1 — 

¿ 2) exp (c2i i )  and F3  =  (1 +  63) exp ( —1 3 /k — C3i i ) .  The biological meaning of the vari­

ous terms is explained in table 12. However, we want to write these so that the equations 

are still correct even when mutants are present. Thus we will write them in terms o f the 

variables e =  (ey )(p ,)J = 1,...,. Then F\ =  (1 +  6i)exp  ( - o e u /e i 3 -  e12( l  +  dieu ) - 1 ) ,  

F2 =  (1 -  ¿ 2) exp (e2i)  and F3 =  (1 +  b3) exp ( - e 33/fc -  e3i).

Term in equation Interpretation

I +  61 prey’s unconstrained birth rate

- o f i decrease in fitness o f prey due to resource limitation

C, __£2__C1 l+J.r, decrease in fitness of prey due to predation

1 — do predator’s unconstrained death rate

cix  1 predator’s fitness increase due to feeding

I +  63 resource’s unconstrained reproductive rate

k resource’s carrying capacity limitation

-C 3 X1 resource’s fitness decrease due to feeding by prey

Table 12: An explanation of the construction of equation 54.

If there are no mutant species then ey =  =  xj if i j  =  11, 13 or 33 and

ey = e?ure(pi) = Ci(pi,pj)xj if i j  = 12, 21 and 31. Then we call equation (54) the 

pure system. Let us consider now the situation where there are mutants in each species 

group i with phenotype p' and population size ¡ft. Then ey =  i ,  +!ft if i j  =  11, 13 or 33 

and ey =  ey“r*(pi) =  Ci(pt,pj)xj +  Ci(pi,p'j)yj if ij =  12, 21 and 31 and the dynamical 

equation is

= F,(i,e,p), — = Fj(y,e,p') (¿=1,2,3) (55)Vi

where y =  (y i,y 2,y3)-

We call this the p'-mutated dynamics. We ask if there is a negligible probability
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that any such a small population with these mutant phenotypes can invade. If so, then 

we say that p is p'-stable. Using this notion, we say that an attractor A o f the pure 

system (54) is evolutionarily stable if for all p' near p, p is p'-stable. Then we call p 

an ESA value. In chapter 6 we illustrate the wide range o f this concept. The way 

in which we have formulated our definition of p-stability is dictated by the subtlety 

of chaotic attractors. However, from a practical point o f  view the subtle theoretical 

definition which is given in [80] can be regarded as equivalent to the obvious one since 

the differences are practically unobservable.

7.2.2 T h e  invasion e x p o n e n t

The invasion exponent, i?p(p ') =  i?(Ap,p ') is a mathematical tool which enables ana­

lytical and numerical analysis of relatively complex situations, such as the coevolution 

of multiple species with chaotic population dynamics. It characterises the evolutionary 

stability o f  an attractor A =  Ap, corresponding to a phenotype p, to a small mutant 

population with phenotype p '. It measures the rate o f growth of the invading mutant 

population. It can be calculated for all dynamical situations including those with pe­

riodic, quasi-periodic and chaotic attractors. For equilibria, its definition corresponds 

to notions that have already appeared in the literature (see for example [17] and [64]). 

However, for general attractors its definition involves less well-known mathematical 

ideas such as the ergodic invariant measures o f the attractor A. It is given by averaging 

l°gF,(0, (e?“re(p<),p') over the attractor Ap using the so-called natural measure.

The important point is this:

Ap is an ESA if dp(p ') is negative for all p' in P  near but not equal to p

In fact, if t?p(p') <  0 then p  is p'-stable and conversely, if t?p(p') >  0, then p can be 

invaded by p'-mutants. For ESA values p in the interior o f  P , the generic situation is 

that iJp(p') is o f the form — /c(p' — p)2 +  <3((p' — p)3) for p' near p with k >  0. However, 

if p is an ESS of a linear evolutionary game, then «  =  0. This degeneracy is reflected in
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the fact that Maynard Smith’s condition for an ESS (equations (17) and (18) and 2.4 

of [64]) mixes a first order condition with one that is second order. Generic nonlinear 

systems only require a first order condition.

7.2.3 ESAs in th e  resou rce -pred ator-prey  system .

If there are no constraints upon the parameters o f equation (54) then there are no 

ESAs. This is easily proved using the results of chapter 6. However, the absence of 

such constraints is biologically unrealistic. For example, it is natural to suggest a trade­

off between the prey growth parameter 6i and its contact parameter ci. A change in 

behaviour which causes an increase in 6i may involve more exposure to predators and 

hence an increase in c j. Such a relationship implies the existence of an ESA. For the 

purposes of exposition we will assume a linear relationship ( c i /6i =  k). At the same 

time, since the contact rate of prey with predators and predators with prey must be 

equal, we keep the ratio of c2 to ci fixed (c2/c i  =  I). The other parameters a , C3, d{ 

are fixed. Thus our phenotype space P  is given by

P  =  {(*>i.ci,c2) : 6! >  0 ,c i/6 i =  k ,c2/ci =  l}. (56)

It is 1-dimensional and parametrised by 61 >  0.

In figure 32 we plot the differential selective pressure

s(p) =
r - 0  e

If s(p) >  0 (resp. < 0) then higher (resp. lower) values o f p can invade. If p is an ESA 

value, then s(p) =  0. In our examples the principle of mutual exclusion holds which 

means that, after successful invasion, the invading population actually takes over and 

replaces the original population. Thus, by inspecting the graph o f s we can see which 

of its zeros are ESA values and which initial phenotypes evolve to which ESA.

In figure 32 we show the graph o f s for three values of the parameter 63 and with 

the parameter values given in table 13. VVe observe that for some values o f 63, there is
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Figure 32: The differential selective pressure s as a function o f  61 for the constrained 

system with parameter values given by table 13 and three values o f  63. The zeros of 

these graphs are either ESA values or evolutionary repellers. Which, can be determined 

from the sign o f s on either side of the zero. The jaggedness o f  the graph in places is 

caused by the nonuniform convergence of time-series for the ergodic measures o f chaotic 

attractors.

a bi ¿3 Cl C l C3 di d2 *

0.5 1.1 variable 0.001 0.0005 0.005 0.01 0.05 1000

Table 13: Parameter values for equation (54) giving chaotic dynamics.
%
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one ESA value while, for others, there are two. When there is more than one they are 

separated by an evolutionary repeller. Moreover, the associated ESAs in this example 

are often chaotic. Thus we see that even in relatively simple examples we should expect 

to see multiple ESA values. In such a situation there may be some indeterminacy in 

the evolution.

7.3 Evolutionary catastrophes and punctuated equilibria

This evolution to the ESA takes place on an ecological time-scale. We now want to 

consider longer time-scales. We postulate some environmental change taking place on a 

time-scale which is slow compared to the prey species’ adaptation. As the ecosystem’s 

environment changes we find that the ESA values change in ways which correspond to 

stasis, gradualism and punctuated equilibria.

However, not only do we consider the behaviour of the ESAs and the evolution of 

pure strategies, but wre also consider the evolution of a distribution of phenotypes in 

the population. We study the detailed dynamics and evolution of the phenotypes using 

the phenotypic dynamical system introduced in section 6.9. This incorporates a small 

mutation rate between neighbouring phenotypes.

We assume that the eflect of this slow environmental change is to decrease the pa­

rameter £ =  63. Changes to other combinations o f parameters can produce similar 

behaviour.

For all the values o f  the environmental variable £, the attractor of the phenotype 

dynamics is a distribution with very small standard deviation and whose mean is an 

ESA value.

When £ is large there are two ESA values p\ <  p j. The ESA value pi dominates the 

other in the following sense. From arbitrary initial conditions, the population evolves 

under the phenotype dynamics to one with all its phenotypes close to this ESA value.

At £ =  £cr\t as 1.85 the dominant ESA value collides with the evolutionary repeller
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and, for smaller values, only the other ESA value persists. Thus as e passes through £Cnt 

we see a very fast evolution in the population’s phenotype distribution. We term such 

a phenomenon an evolutionary catastrophe. The variation in the population’s mean 

phenotype as e changes is shown in figure 33. In this we see gradualism (s  <  £Crit)i 

punctuated equilibrium (e =  £crit) and stasis (e >  Ccrit)-

There is a resemblance to the jumps observed in Catastrophe Theory. In Catastrophe 

Theory, the jump occurs in phase space when the attractor of a dynamical system 

disappears. The jump is along a trajectory of the dynamical system. In an evolutionary 

catastrophe, an ESA value disappears and the resulting jum p in phenotype space is 

due to mutation and natural selection. A possible explanation of punctuated equilibria 

in terms o f  Catastrophe Theory was proposed in [21] . However, this relied upon the 

assumed existence of a fitness function which evolution sought to maximise.

Figure 33: The graph of the mean prey phenotype as the parameter t  is slowly decreased.
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7.4 Discussion

We argue that both evolutionary gradualism and evolutionary discontinuity akin to 

punctuated equilibria are natural and ubiquitous phenomena o f this nonlinear dynamical 

theory o f evolution. They should be viewed as different sides o f the same coin rather than 

as opposing theories. Which will be observed will depend upon the detailed dynamical, 

ecological and environmental structure. Over long times o f environmental change both 

should occur, side by side. Our discussion presented above also gives insights into the 

nature of Red Queen evolution and suggests a mechanism for speciation.

7.4.1 C onstraints and th e  R e d  Q ueen H ypothesis

According to the Red Queen Hypothesis [112], even if the surrounding physical envi­

ronment is constant, the majority of organisms are most o f  the time unlikely to be 

completely well-adapted since their ecological environment changes as a result o f the 

evolution o f coexisting species. On the other hand, an ecology at an ESA clearly vi­

olates this. Thus, Red Queen evolution can only occur if the system does not evolve 

to an ESA. We therefore interpret the absence of ESAs as being equivalent to the per­

petual coevolution implied by the Red Queen Hypothesis and are led to the problem 

of determining when ESAs exist. This point has also been made by Marrow et. al. 

[59]. Constraints in their model come through the functions assumed for the interaction 

between prey and predator (see section 5.3.5).

We have already observed that if there are no constraints upfon the parameters of 

equation (54) then there are no ESAs. The proof o f this is in section 5.3.5, which clearly 

applies to a much wider range o f problems. Moreover, the general results given there, 

strongly suggest that this is the general rule. Furthermore, these results can be used to 

determine which constraints are important in specific problems. Therefore, we suggest 

that, so far as this question is concerned, we should concentrate on understanding the 

nature of these constraints in real ecosystems. We note that ecological coevolution
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certainly does not imply Red Queen evolution. This supports a similar conclusion in 

previous work on the equilibrium case, [84].

7 .4 .2 S p ecia tion

It has been suggested that the episodes o f rapid evolutionary change coincide with events 

of speciation, [26], [36] and [101]. This can be understood by applying an argument of 

Zeeman, [119], from a different context to our theory as follows.

Figure 34: Evolution of the phenotypic support o f  the population. The phenotypic sup­

port at different times is shown hatched. The circular broken contours are the mutation 

fronts and the other contours are the selection fronts. The population’s phenotypic 

support is caught between these. The phenotypic support is initially connected. How­

ever, after it lias passed through the middle contour, it separates into two disconnected 

populations.

Consider a phenotypically variable population. We call the set o f phenotypes in the 

population it’s phenotypic support. It can be thought o f  as a subset o f the phenotype 

space P  above. Just after an evolutionary catastrophe, this phenotypic support is
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rapidly changing. At a given time, mutation acts on it to increase it ’s extent and natural 

selection acts to reduce it. The most important part of this process for speciation takes 

place at the boundary o f the phenotypic support.

The effect of natural selection can be measured by our differential selective pressure 

s introduced above. This is particularly informative when P  is multi-dimensional. It 

defines a “pressure field” on P  which tells us the pressure of selection between two 

nearby phenotypes in P. Using it we can determine the selection front o f a population 

i.e. the set of phenotypes within the population which cannot be invaded by the rest of 

the population. During the rapid evolution following an evolutionary catastrophe, we 

expect this to be on the boundary o f the phenotypic support.

Just after the evolutionary catastrophe, the phenotypic support will be connected 

and correspond to a single species. However, we can apply Zeeman’s [119] argument to 

show that if the selection front is not aligned to the mutation front, then after a while 

the phenotypic support will break up into several components. These phenotypically 

disconnected components are the precursors o f new species. They could, for example, 

now evolve to different ESAs or undergo Red Queen evolution with diverging evolution­

ary paths. The way in which the population splits and speciates is illustrated in figure 

34.
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8 Low-dimensional spatial dynamics in an artificial

ecology.

8.1  Introduction.

Biological populations are composed of individuals whose movement is limited in space. 

Consequently ecological systems show heterogeneity and patchiness at a broad range 

o f temporal and spatial scales and this heterogeneity is fundamental to population 

dynamics, [28] and [29], and to stability, [43] and [44]. Three basic types of models 

have been formulated to analyse spatial heterogeneity, (i) Assume homogeneous mixing 

within a patch and then link the patches by dispersal, [81], [82] and [45]. (ii) Reaction- 

diffusion equations, [94] and [72], which assume mass-action at every point in space 

and diffusion throughout the spatial domain, (iii) Individual-based spatially extended 

models called cellular automata, [32], [51], [68] and [22], This third class of model is 

interesting as its basis is with the individual and dynamics and competition are built 

into the model through the use o f simple transition rules and space.

We introduce an artificial ecology model of a resource-predator-prey system. This 

is a generalisation of a cellular automaton. The model is defined by the states a cell 

can be in and the rules governing the evolution of the cells. In this model the rules 

are stochastic, i.e. the state o f the neighbourhood of a cell at time t determines the 

probability o f  various events in the neighbourhood occurring which determines the state 

at time t +  1.

We address the problem o f spatial scale, i.e. the appropriate scale at which to make 

measurements of the population. This is a fundamental question in ecology and it is 

well-known (e.g. [105]) that the scale at which measurements are taken will influence 

the results and the conclusions gained. T oo small a scale and the results may be domi­

nated by noise. Too large a scale and dynamics may be masked out. We show how to 

extract a clearly defined spatial scale at which the system should be sampled to extract
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the interesting dynamical effects. Similar work on this question has been noted and 

addressed by a number of authors (e.g. [53] and [12]);

Notwithstanding the probabilistic nature o f the transition rules, at appropriate spa­

tial scales the population dynamics are deterministic. Additionally these dynamics are 

low-dimensional. This allows us to characterise the complex spatial patterns observed in 

the ecology by a low-dimensional vector. We use these ideas to develop a general theory 

for data analysis o f  ecosystems to allow monitoring and management and to provide 

tools for detecting long-term structural change or drift.

8.2 The m odel.

Artificial ecologies (AEs) are a slight generalisation o f probabilistic cellular automata 

(PCAs). Physical space is represented by a 2-dimensional L x  L  lattice fi o f cells. Each 

cell x can be in any one of a number of discrete states S\, . . ., s j  and time t proceeds 

discretely. Therefore, the state o f  the system is given by a configuration S =  {S r } r6n- 

The state S(t) at time t determines a probability distribution on the potential future 

states and S(< +  1) is chosen randomly from this.

In a PCA each site is updated independently. This is not appropriate for many 

ecological applications because an event at one site can determine a specific change at 

another neighbouring site. Thus, in an AE the state o f each neighbourhood determines 

a probability distribution on a finite set o f admissible events. Each o f these events is 

a transformation o f the state on the neighbourhood. Thus the state S(t) at time t 

determines a probability distribution of the states at time i +  1. In a PCA all events 

only change the central site.

In this paper we consider a 2-dimensional resource-predator-prey system. Each cell 

can be in one of five states; resource, predator, predator in a resource, prey or empty. 

A predator in a resource is effectively both and its evolution can be described by what 

happens to each separately. Hence we will ignore this as a separate state. The boundary
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conditions are wrap-around which can be interpreted as giving a torus as physical space.

To define the transition rules, it is simplest to explain our model by focussing on 

how the individuals within it act. This completely defines the event set and the event 

probabilities for a given neighbourhood state. In this description by an adjacent site to 

x we mean one of the sites x +  ( 1, 0), x  — (1, 0), x  +  (0, 1) and x — (0, 1).

• A resource site will grow into an adjacent empty site with probability g.

• A prey will move into and eat an adjacent resource site. Thus the adjacent resource 

site will become a prey and the original site will become empty. If there are no 

resource in adjacent sites a prey will move randomly into one o f its adjacent sites.

There is a certain probability o f  giving birth Pj into an adjacent empty site. This 

probability is zero if a prey individual hasn’t eaten for a certain amount o f time, 

tpb. A prey will die with probability one if it hasn’t eaten for a certain amount of 

time tpd (where tpd >  tpb).

• An empty site does nothing.

• A predator has a more complex neighbourhood to that of the other species. Its 

immediate neighbourhood is an 8-cell neighbourhood: A/"(x) =  { x  +  z : |zi| <  

1, I22I < l , z 6 Z 2, 2 ^  (0 ,0 )}. A predator will move into and eat a neighbouring 

prey site.

As for the prey there is a cert ain probability o f giving birth Zj into a neighbouring 

empty site. This probability is zero if a predator individual hasn’t eaten for a 

certain amount of time, tzb- A predator will die with probability one if it hasn’t 

eaten for a certain amount o f time, tzd (tzd >  <zt ), .

If there are no neighbouring prey then a predator has a hunting ability in that 

it can sense prey much further away than it can actually move. A predator can 

’’ see” a prey anywhere in a 48-cell neighbourhood, i.e. the neighbourhood is 

M (x)  =  {x  +  z : |zi | <  3, | 1  <  3, z € Z 2, z £  (0, 0 )}. A predator, as the prey,
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can only move one cell in one time step and will thus move to the cell in its 8-cell 

neighbourhood which is nearest (in the Euclidean sense) to the located prey.

All the simulations in this paper have the parameter values as given in table 14.

9 Pk ip> tPi zh tz h tz 4

0.4 0.2 2 8 0.1 5 8

Table 14: Parameter values for the resource-predator-prey model. All times are in time 

steps o f the model.

The model is meant to simulate a resource-predator-prey ecology in order to probe 

biological and mathematical mechanisms that might emerge from a spatially extended 

system. It is not meant to be biologically exact. For instance all the species are moving 

and reproducing on similar spatial and time scales. This would not always be true and 

would be an important, and interesting, refinement to the model to if this were not the 

case.

8.3 Spatial scale.

The importance o f spatial scale in ecology is fundamental. The results one obtains both 

from models and field studies is influenced by the scale at which we observe and and 

make our measurements, (e.g. Sugihara, Grenfell and May 1991). For many ecological 

systems, if they are sampled on too small a scale, then the dat a is noisy and dominated 

by stochastic effects. On the other hand, if they are sampled on too large a scale then 

the interesting effects are averaged out. We wish to address the question of how to 

choose the scale at which to monitor the system. We show that in our system there is a 

clearly-defined intermediate scale on which to observe the dynamics which gives us the 

maximum amount o f ecological information about the system and its dynamics relative 

to the amount of data and work necessary to describe it. This scale is an inherent
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characteristic o f the ecosystem and is also the appropriate scale o f  measurement.

We investigate the effects o f scale in our model by simply increasing or decreasing 

a window o f size V (where V  =  l2 is the number o f sites in the observation window 

and l <  L) through which we are observing and making measurements o f  the model. 

Without loss of generality we can fix the top corner o f our window as the top corner of 

the lattice. A typical observable in biological systems is the population size o f  a species. 

Studying how this evolves is the study o f the population dynamics. After iterating the 

model for a number of time steps so that the system has settled onto its attractor, we 

count the number of cells in our window of each particular species to give the species’ 

population size. We then output the numbers at each time-step; thus generating a time- 

series, x t . In the specific discussion o f our model this species is usually the resource.

When I is very small (say I <  l\) we are observing on a scale smaller than the natural 

scale of the dynamics. The dynamics are thus dominated by stochastic fluctuations. 

These take place at a scale o f the order of a few pixels as it is on this scale that 

randomness enters the model. We expect that as / increases, the decrease in the relative 

size of the stochastic fluctuations scales as V ~ i =  I- 1 .
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On the other hand, at intermediate scales l\ <  l <  ¡2 the motion we see is dominated 

by deterministic oscillations in the species numbers x t. Figure 35 is a typical time-series 

of the numbers of resource. However, when / is very large (say / >  /2), distant parts 

of the lattice begin to act independently or become uncoupled. The result of this is a 

decoupling o f the phases of the oscillations which results in an averaging effect. Thus as 

I is increased an averaging effect occurs so that the size o f these oscillations decreases 

at a rate proportional to V ~ i  and the dynamics will tend to a fixed point. We can use 

this fact in order to identify a spatial scale L, above which distant parts o f the lattice 

are acting independently.

For two variables X i  and Yi the variance of their sum is equal to: V a r ( X i  +  YJ) =  

V a r(X f)  +  V a r (Y i )  +  2 / N  — X )  * (Vi — Y): the sum o f the variances plus

the correlation between the two variables. When X  and Y  are independent then this 

correlation is zero and V a r (X i  +  Y,) =  V a r ( X i )  -f V a r (Y i) .  When the window size is

very large we expect that it is a conglomeration o f d independent patches, (X,-......,X j ) ,

each o f  size V,. For a size V we expect d =  V/V, patches each with variance Var(V,). 

Thus the variance o f the whole window, V, is:

d d
V a r ( V )  =  V a r ^ X i , .....X d) =  £  K a r (* () +  £  C o r ( X it X j ) ,

1=1 •j = 1
where C o r (X i ,X j)  is the correlation betw’een the patches i and j .  The patches are 

acting independently and so are uncorrelated except for the fact that they are all acting 

out dynamics on the same attractor. Hence there will be some small correlation between 

the patches related to the attractor dynamics within a patch. Hence:

V ar(V ) =  X .V a r ( V . ) + ^ C o r ( V , ) ,

where C or(V ,) is the correlation between patches o f  size V, due their acting out similar 

dynamics. The important point being that above the scale V, the variance scales very 

differently with the window size to when V <  V,. The scaling above V, should only come 

from the correlations due to patches being on the same attractor. In figure 36 we plot
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V ar(V )/V  against V. We see a clear change in the scaling behaviour at V  =  10,000. 

This is the scale V,.

Figure 36: The variance of the resource time series as viewed through a window of size 

V. The lattice size is 300x300.

8.4 D eterm inism , dynam ics and dim ensionality.

After letting initial transients die away the model appears to settle down onto an at­

tractor, A. This is a set of states such that:

(i) as t -*  oo, St —♦ A

(ii) once the system is on the attractor it doesn’t leave it, i.e. if S< G A then 

S(. G A, V i' > t.

The fact that attractors exist in cellular automata is well-known (e.g. [116]). It 

is important because only the attractor o f the model needs to be studied since the 

automaton will always settle onto it. The spatial structure of the states in the attractor is 

quite complex, non-homogeneous and time-dependent. Resource is patchily distributed 

with prey associated with the edges o f  patches and predators with prey.
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Locally the model is stochastic as the rules governing the transition from one state to 

another are probabilistic. We wish to show that, notwithstanding this, the population 

dynamics are governed by a deterministic function. By deterministic we mean that 

there is some time-independent functional relationship between the present state, z ( 

and the past states

Z, =  F (x t-E T ,X t-(E - l ) r . ........* < - r ) .  (5 7 )

where E  is an integer known as the embedding dimension, and r  the delay time. We 

make no attempt to determine the function F , only to demonstrate that such a function 

must exist. As well as the deterministic component to the dynamics there is also present 

a small noise component, £(, where is a random variable:

Z, =  F(Xt-ET, Z (_(E _l)r , ...... , Z(_r) +  (<-!■ (58)

However at intermediate length scales this noise is small and the dynamics are dominated 

by the deterministic component.

By definition determinism means that given some state the system will evolve in a 

fixed and predictable manner. If the system returns to this state then it will evolve in 

the same manner as before. T o test this in our time-series we first form time delayed 

vectors:

*1 ~  (^1  — JSri l ) r » .........

Choosing some state at time t, x j, we find a previous state, X|_</, very close (in the 

Euclidean sense) to our original state, i.e ||x, — x (_,<|| <  £. We check that, as in a 

deterministic system, the evolution o f these two states will be very similar.

In our case the deterministic part o f the population dynamics are chaotic. This means 

that nearby states diverge apart from each other exponentially fast at a rate determined 

by the Liapunov exponent. In figure 37 we show the typical divergence of two nearby 

states. The exponential divergence is clear. We interpret this as further evidence of
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determinism since a stochastic system is unlikely to produce such a pattern. In figure 

38 we show the average of the log o f the divergence calculated over all vectors in the time 

series. This is a straight line indicating exponential divergence. Note that the best-fit 

straight line has a correlation coefficient close to one. We only expect to see exponential 

divergence at small scales in the phase space, below the scale at which nonlinearities 

are affecting divergences. This system is highly nonlinear and so this scale, although it 

will vary at different points on the attractor, is relatively small. Hence we only plot the 

divergence for a short time.

Figure 37: The typical divergence o f two nearby states in the resource time series. The 

embedding dimension, £1 =  4 and the time delay r  =  5. The lattice size is 100x100.

Further evidence comes from the dimension o f the time-series. A stochastic sys­

tem has infinite dimension as the noise tends to fill out the state space. Thus low- 

dimensionality is evidence for a deterministic system.

Given our embedded vectors, x», we wish to calculate the dimensionality of this em­

bedded space. To do this we need to know the number of linearly combined orthogonal 

vectors needed to fully describe the dynamics in this space. In order to investigate this 

we make use o f a technique introduced into dynamical systems theory by Broomhead 

and King [10] based on ideas from singular systems theory [8].
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Figure 38: The logarithm o f  the average divergence of vectors in the resource time 

series. The embedding dimension, E, used is 4 and the time delay r  =  5. The length o f 

the time series is 10, 000 points. The lattice size is 100x100. The figure was calculated 

by taking the first vector in the time series and locating the nearest neighbour, in the 

Euclidean sense. Their distance apart at time < is recorded. We then take the next 

vector in the time series and so on until the end. The average o f the log of the distances 

apart at various times t is then plotted. A geometric average such as this is appropriate 

when trying to estimate Liapunov exponents.
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Figure 39: The normalised singular spectrum o f the resource time series from a lattice 

size 150x150. The window size used in the SVD procedure was 40, the number of points 

was 10,000 and the time delay, t =  1.

If x t is an embedded time series as above (where r and E  are suitably chosen) we

let Y  be the matrix whose r’th row is the vector x,- for i =  0 ,1 , .........,N  and let the

trajectory matrix, X  =  Y . If all data points are used N  =  Nt (E  — 1) where Nr 

is the number of data points in our original time series. In order to centre the mass at 

the origin we subtract the mean o f each column from each element o f the column. The 

singular value decomposition o f this matrix is then given by X  =  where S and

C ± contain the left and right singular vectors and the entries o f the diagonal matrix S

are the singular values <7j >  ai >  ....... >  ae - The singular vectors e j , e j ....... . ejs form an

orthogonal basis set that spans the embedding space. Each singular value is the mean 

square projection o f the trajectory onto the corresponding singular vector. Hence the 

dimension of the embedding space is given by the number o f non-zero singular values.

In the presence o f  noise, however, all singular values will be non-zero as the noise, as 

mentioned above, tends to fill out the state space. By inspecting the singular spectrum 

we can distinguish the singular values associated with a deterministic component and 

those associated soley with noise. Those associated with noise will tend to show up as
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a constant noise floor. Figure 39 is a typical singular spectrum o f a time-series of the 

resource. We see that 94% o f the variance o f  the time-series is captured in the first 

four eigenvalues. This means that virtually all the dynamics in the original signal are 

occurring in a four-dimensional embedded space. Such a result is a strong indicator of 

determinism. It is also surprising considering the high-dimensionality o f  the original 

spatial system. We can project the time-series onto the first four eigenvectors in order 

to reconstruct the time-series minus some noise. Recall the matrix o f embedded vectors 

and its decomposition, X  =  S E C ^ . We can decompose the matrix of singular vectors, 

C into two subspaces:

c =  C D +  c\ where C D =  [ c j , ...., cd,0 , ..

and c *  =  [0......0, c j+i , .. . . , C e ]

X C (= SS) = X C D + X C ‘ .

= > X  = X C DCT +  X C 'C T.

Thus d is the number of nonzero eigenvalues associated with the deterministic compo­

nent o f the signal and X D =  X C DC T is the projection onto the subspace associated 

with the deterministic dynamics. Each row, p,-, of X D is a rf-dimensional vector which 

gives us a characterisation of the state of the system at time t =  i. We show the recon­

structed signal (the first column of X D) on top of the original in figure 40 and note its 

similarity to the original.

8.5 D etecting  change.

An essential factor in the management o f ecosystems is the detection o f change. We 

outline a technique to detect long-term change or drift in the parameters governing the 

dynamics in an ecosystem. Drift can be detected at orders of 0.1% per period. The
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------- projected time series
original

Figure 40: The resource time series projected onto the four eigenvectors with the highest 

eigenvalues (the first column o f  X ° ) .  The parameters in the SVD procedure are as in 

figure 39. The original time series is shown for comparison.

detection o f change is also important in the analysis of ecological data. Nearly all data 

analysis techniques assume stationarity in the time series being analysed.

We make use of a technique introduced by Eckmann, Kamphosrt and Ruelle [24] 

for detecting non-stationarity in data sets. This is based on recurrence plots. Given a 

time series we form embedded vectors, x ( , as in section 8.4. We then look for nearby 

vectors, || x ( — x (< ||< e. This is done for all vectors and gives us a measure, i/(e), on 

the recurrences in the time-series:

1 N
" ( £) =  772 >H *■ “  x i  ii}>

i j ' = i

where 0  is the Heaviside step function which is equal to zero for the negative argument 

and one otherwise. N is the number of embedded vectors and |> — j\ >  10. Vectors on 

the same orbit very close in time will tend to be close together in distance. However 

these are not true recurrences and should not be included. Hence the requirement that 

the time difference between two vectors is at least 10, |i — j\ >  10.

We consider two different problems. The first is when we have a continuous time
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series from an ecology and wish to detect change occurring within it. In this case 

we look for nearby vectors, as above, but this time record the time difference |t — f'| 

between the two. This is done for all vectors and we then plot the number o f vectors 

found, Nv(s), a time s =  |< — i'| apart. We plot this for the Lorenz equations in figure 

41(a). We see that the time o f recurrences is spread evenly. Compare this to figure 

41(b) which is the plot when there is a 0.1% drift per unit time in the parameter p. We 

see that there are far fewer recurrences and that most of the recurrences are a short time 

apart. We emphasise the distribution of recurrences by plotting D (u) =  Af„(s).

For the stationary time series we see a linear decrease in D (u) reflecting the even spread 

o f Nv(s). For the time series with drift we see an exponential decrease in D (u). We 

plot this in figure 42.

The second problem is when we have two different time series and we wish to identify 

if there is a significant difference between the two. Using the measure j/ (e) the problem 

is reduced to comparing two measures and looking for statistical significance between 

the two. An improvement on this is to take cross-recurrences. We first calculate the 

measure u(e) for one o f the time series. We then calculate v(e) for recurrences that 

occur between the two, i.e. x,- is taken from the first time series but recurrences Xj are 

taken from the second time series.

We show two graphs for the resource-predator-prey artificial ecology. Figure 43(a) is 

the internal recurrence plot plotting Nv(s) against s =  |i —1'\ for a time series using the 

parameter values as in table 14. Figure 43(b) is the cross-recurrence plot between the 

first time series and one where g =  0.6. This figure clearly indicates substantial change 

between the two.
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Figure 41: (a) The recurrence plot for the Lorenz time series using <j =  16.0, p — 45.92, 

b =  4.0 and sample time a  =  0.05. The number o f points is 20,000. The embedding 

dimension used is 5, r  =  1 and e =  0.2. (b) The recurrence plot for the Lorenz time 

series with drift o f  0.1% in the parameter p, i.e. O.OOlpa was added to p(t) each time 

step. The other parameters are as in (a).
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10000

Figure 42: The distribution of the Lorenz recurrences, D (u), with time. The parameter 

values are as in figures 41(a) and (b).
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