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Abstract. The classical Lorenz flow, and any flow which is close to it in
the C2-topology, satisfies a Central Limit Theorem (CLT). We prove that
the variance in the CLT varies continuously.
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1. Introduction

In 1963, Lorenz [20] introduced the following system of equations:
⎧
⎪⎨

⎪⎩

ẋ = −10x + 10y

ẏ = 28x − y − xz

ż = − 8
3z + xy

(1)

as a simplified model for atmospheric convection. Numerical simulations per-
formed by Lorenz showed that the above system exhibits sensitive dependence
on initial conditions and has a non-periodic “strange” attractor. Since then, (1)
became a basic example of a chaotic deterministic system that is notoriously
difficult to analyse.

A rigorous mathematical framework of similar flows was initiated with the
introduction of the so-called geometric Lorenz attractors in [1,15]. The papers
[24,25] provided a computer-assisted proof that the classical Lorenz attractor
in (1) is indeed a geometric Lorenz attractor. In particular, it is a singularly
hyperbolic attractor [23], namely a nontrivial robustly transitive attracting
invariant set containing a singularity (equilibrium point). Moreover, there is
a distinguished Sinai–Ruelle–Bowen (SRB) ergodic probability measure; see
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for example [8]. Statistical limit laws, in particular the central limit theorem
(CLT) for Hölder observables, were first obtained in [16] for the classical Lorenz
attractor and were shown for general singular hyperbolic attractors in [5]. For
further background and a complete list of references up to 2010, we refer the
reader to the monograph of Araújo and Paćıfico [7].

Let Xε : R3 × R → R
3, ε ≥ 0, be a continuous family of C2 flows on R

3

admitting a geometric Lorenz attractor with singularities xε and corresponding
SRB measures με. Precise definitions are given in Sect. 2.1; in particular, the
framework includes the classical Lorenz attractor. By [2,9], the flows Xε are
statistically stable: for any continuous ψ:R3 → R

lim
ε→0

∫

ψ dμε =
∫

ψ dμ0.

The CLT in [5,16] states that for fixed ε ≥ 0 and ψ:R3 → R Hölder, there
exists σ2 = σ2

Xε
(ψ) ≥ 0 such that

1√
t

(∫ t

0

ψ ◦ Xε(s) ds − t

∫

ψ dμε

)
law−→N (0, σ2) as t → ∞. (2)

By [16, Section 4.3], σ2 is typically nonzero.
We prove continuity of the variance, namely that ε �→ σ2

Xε
(ψ) is con-

tinuous. At the same time, we obtain estimates on the dependence of the
variance on ψ. We now state the main result of the paper. Define ‖ψ‖ =∫ |ψ|dμ0 + |ψ(x0)|.
Theorem 1.1. Let ψ, ψ′:R3 → R be Hölder observables. Then,
(a) limε→0 σ2

Xε
(ψ) = σ2

X0
(ψ); and

(b) there exists a constant C > 0 (depending only on the Hölder norms of ψ
and ψ′) such that

|σ2
X0

(ψ) − σ2
X0

(ψ′)| ≤ C‖ψ − ψ′‖(1 + | log ‖ψ − ψ′‖|).
Remark 1.2. In part (b), we obtain closeness of the variances provided the
observables are close in L1 with respect to both the SRB measure and the
Dirac point mass at 0 (provided the individual Hölder norms are controlled).
It is an easy consequence of the methods in this paper that the logarithmic
factor can be removed if the norm ‖ ‖ is replaced by the Hölder norm.

Remark 1.3. All results in this paper go through without change for continuous
families of Cr flows, r > 1. We take r = 2 for notational convenience.

Our technique is based on first proving variance continuity for the corre-
sponding family of Poincaré maps and then passing the result to the family of
flows. The main difficulty in passing from maps to flows lies in the fact that
the return time function to the Poincaré section is unbounded. A key step in
overcoming this hurdle is to show that for any Hölder observable on R

3 vanish-
ing at the singularity, the induced observable for the Poincaré map is piecewise
Hölder. Related results for various classes of discrete time dynamical systems
can be found in [11,13,19] using somewhat different methods, but there are
no previous results for Lorenz attractors.
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The paper is organised as follows. In Sect. 2, we recall the basic set-up and
notation associated with (families of) geometric Lorenz attractors. In Sect. 3,
we show how to normalise the families of flows to obtain simplified coordinates
for the proofs. Section 4 contains properties of one-dimensional Lorenz maps.
Section 5 studies the family of Poincaré maps. It starts by showing that the
family of maps admit a uniform rate of correlations decay for piecewise Hölder
functions, using suitable anisotropic norms. We then use the Green–Kubo for-
mula to show continuity of the variance for the family of Poincaré maps. In
Sect. 6, we prove a version of Theorem 1.1 for normalised families and use this
to prove Theorem 1.1.

2. Geometric Lorenz Attractors

In this section, we recall the basic set-up and notation associated with (families
of) geometric Lorenz attractors. In Sects. 2.1 and 2.2, we recall the class of
(families of) geometric Lorenz attractors considered in the paper.

We begin with some notational preliminaries. Let U ⊂ R
m be open.

Fix α ∈ (0, 1) and recall that f :U → R
n is Cα if there exists C > 0 such

that |fj(x) − fj(y)| ≤ C|x − y|α for all x, y ∈ U and all j = 1, . . . , n. (Here,
|x| =

√
x2

1 + · · · + x2
m denotes the Euclidean norm on R

m.) Let Hα(f) be the
least such constant C and define the Hölder norm ‖f‖α = |f |∞+Hα(f). Then,
f is C1+α if Df :U → R

n×m is Cα and we set ‖f‖1+α = |f |∞+‖Df‖α. A family
fε of C1+α maps, ε ≥ 0, is said to be continuous if limε→ε0 ‖fε − fε0‖1+α = 0.
Similarly, we speak of continuous families of C2 flows, C1+α diffeomorphisms,
and so on. In the case of Lorenz flows, we are particularly interested in families
of C2 flows on R

3 restricted to an open-bounded region U of phase space; for
convenience, we suppress mentioning the subset U .

2.1. Definition of Geometric Lorenz Attractors

There are various notions of geometric Lorenz attractor in the literature de-
pending on the properties being analysed. Roughly speaking, we take a geo-
metric Lorenz attractor to be a singular hyperbolic attractor for a vector field
on R

3 with a single singularity x0 and a connected global cross section with a
C1+α stable foliation. As promised, we now give a precise description.

Let G:R3 → R
3 be a C2 vector field satisfying G(x0) = 0 and let X be

the associated flow. We suppose that the differential DG(x0) at the singularity
has three real eigenvalues λ2 < λ3 < 0 < λ1 satisfying λ1 +λ3 > 0 (Lorenz-like
singularity).

Let Σ be a two-dimensional rectangular cross section transverse to the
flow chosen in a neighbourhood of the singularity x0, and let Γ be the in-
tersection of Σ with the local stable manifold of x0. We suppose that there
exists a well-defined Poincaré map F :Σ\Γ → Σ. Moreover, we assume that
the underlying flow is singular hyperbolic [23]. It follows [4, Theorem 4.2]
that a neighbourhood of the attractor is foliated by one-dimensional C2 stable
leaves. We assume q-bunching for some q > 1 in [4, condition (4.2)]. By [4,
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Theorem 4.12 and Remark 4.13(b)], it follows that the stable foliation for the
flow is Cq.

The foliation by stable leaves for the flow naturally induces (see for ex-
ample [5, Section 3.1]) a Cq (q > 1) foliation inside Σ of a neighbourhood of
the attractor intersected with Σ by one-dimensional C2 stable leaves for the
Poincaré map F . We denote this stable foliation for F by F .

The stable leaves for the flow are exponentially contracting [4, Theo-
rem 4.2(a)(3)], and this property is inherited by the stable leaves for F . This
means that there exists ρ ∈ (0, 1), K > 0 such that

|Fnξ1 − Fnξ2| ≤ Kρn|ξ1 − ξ2|, (3)

for ξ1, ξ2 in the same stable leaf in F and n ≥ 1.
Let I ⊂ Σ be a smoothly (C∞) embedded one-dimensional subspace

transverse to the stable foliation, and let T :I → I be the one-dimensional map
obtained from F by quotienting along stable leaves. Let ξ0 be the intersection
of I with Γ.

Proposition 2.1. T is a Lorenz-like expanding map. That is, T is monotone
(without loss we take T to be increasing) and piecewise C1+α on I\{ξ0} for
some α ∈ (0, 1) with a singularity at ξ0 and one-sided limits T (ξ+

0 ) < 0 and
T (ξ−

0 ) > 0. Also, T is uniformly expanding: there are constants c > 0 and
θ > 1 such that (Tn)′(x) ≥ cθn for all n ≥ 1, whenever x /∈ ⋃n−1

j=0 T−j(ξ0).

Proof. The map F is piecewise C1+α, and the foliation by stable leaves is
C1+α, so T is piecewise C1+α on I\{ξ0}. Uniform expansion follows from [5,
Theorem 4.3]. The remaining properties are immediate. �

The final part of the definition of geometric Lorenz attractor is that the
one-dimensional map T is transitive on the interval [T (ξ+

0 ), T (ξ−
0 )]. It is then

standard [2,5,8,17] that T has a unique absolutely continuous invariant prob-
ability measure (acip) μ̄ leading to a unique SRB measure μ for the geometric
Lorenz attractor containing x0. The basin of μ has full Lebesgue measure in a
neighbourhood of the attractor.

Remark 2.2. The classical Lorenz attractor for the system of equations (1)
(and for nearby equations) is an example of a geometric Lorenz attractor as
defined above. Except for q-bunching, the assumptions above are verified in
[25]. The q-bunching condition is verified in [6, Lemma 2.2]. (By [4, Section 5],
the optimal value of q lies between 1.278 and 1.705; hence, we have C1+α

regularity for the stable foliation as in [9] but not C2 regularity as in [2].)

2.2. Families of Geometric Lorenz Attractors

Let Xε, ε ≥ 0, be a continuous family of C2 flows on R
3 admitting a geometric

Lorenz attractor as in Sect. 2.1 with singularity xε. The constants K and ρ
in (3) derive from the singular hyperbolic structure which varies continuously
under C1 perturbations. Hence, K and ρ can be chosen independent of ε.

Making an initial C2 change of coordinates (varying continuously in ε),
we can suppose without loss that xε ≡ 0 and that Σ, Γ and I are given by
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Σ =
{
(x, y, 1): − 1 ≤ x ≤ 1, − 1

2 ≤ y ≤ 1
2

}
, Γ = {(0, y, 1): − 1

2 ≤ y ≤ 1
2} and

I = {(x, 0, 1):− 1
2 ≤ x ≤ 1

2} ∼= [− 1
2 , 1

2 ] for all ε. Throughout the paper, when we
speak of a continuous family of C2 flows admitting geometric Lorenz attractors,
we assume that this initial change of coordinates has been performed.

Define the Poincaré return time to Σ,

τε:Σ → (0,∞), τε(ξ) = inf{t > 0:Xε(ξ, t) ∈ Σ}.

Proposition 2.3. The return time τε:Σ\Γ → Σ is given by τε(x, y)
= − 1

λ1,ε
log |x| + τ2,ε(x, y) where τ2,ε is a continuous family of C2 functions.

Proof. Applying the Hartman–Grobman theorem for fixed ε, we can linearise
Xε in a neighbourhood of 0 so that the linearised flow is given by (x, y, z) �→
(eλ1,εtx, eλ2,εty, eλ3,εtz). The time of flight in this neighbourhood is readily
calculated in these coordinates to be − 1

λ1,ε
log |x| for x ∈ I and the same

formula holds in the original coordinates. The remaining flight time τ2,ε is a
first hit time for the C2 flow away from the singularity at 0 and hence is C2.
Since Xε is a continuous family of C2 flows, it follows that τ2,ε is a continuous
family of C2 functions. �
Theorem 2.4. Let Xε be a continuous family of C2 flows on R

3 admitting
a geometric Lorenz attractor. Then, there exists α > 0 such that the one-
dimensional maps Tε:I → I form a continuous family of piecewise C1+α maps.

Proof. Recall that Tε is obtained from the continuous family of piecewise
C1+α maps Fε by quotienting along the stable foliation. Our assumption of q-
bunching (q > 1) yields continuous families of Cq stable foliations [12]. Hence,
Tε is a continuous family of piecewise C1+α maps. �

3. Normalised Geometric Lorenz Attractors

Let Xε, ε ≥ 0, be a continuous family of C2 flows on R
3 admitting a geometric

Lorenz attractor. In this section, we show how to normalise the families of
flows to obtain simplified coordinates for carrying out the proofs.

Assume that the preliminary C2 change of coordinates in Sect. 2.2 has
been performed. Let Fε:Σ → Σ and Tε:I → I be the associated families of
Poincaré maps and one-dimensional piecewise expanding maps. Also, define
Σ̃ =

{
(x, y, 1): − 1

2 ≤ x, y ≤ 1
2

}
.

Proposition 3.1. There exists a continuous family of C1+α diffeomorphisms
ωε:Σ → Σ such that
(a) ωε restricts to the identity on I; and
(b) vertical lines in Σ̃ are transformed under ωε into stable leaves for Fε:Σ →

Σ.

Proof. For ε fixed, this follows by definition of the smoothness of the stable
foliation for Fε. (An explicit formula is given in [4, Lemma 4.9] where Y and
χ should be replaced by I and ωε, and the embedding is the identity.) Again,
we obtain continuous families of C1+α diffeomorphisms by [12]. �
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The change of coordinates ωε for the Poincaré map Fε extends to a change
of coordinates φε for the flow Xε. The extension is standard and essentially
unique, though heavy on notation.

First, define the transformed Poincaré map and return time

F̃ε = ω−1
ε ◦ Fε ◦ ωε:Σ̃ → Σ̃, τ̃ε = τε ◦ ωε:Σ̃ → (0,∞).

The set Uε = {(Xε(ξ, t):ξ ∈ Σ, 0 ≤ t ≤ τε(ξ)} defines a neighbourhood
of the Lorenz attractor for Xε. Note that Xε(ξ, τε(ξ)) = Fεξ for ξ ∈ Σ. Define
the transformed flow X̃ε:Uε × [0,∞) → Uε given by X̃ε(x, t) = Xε(x, t) subject
to the identifications X̃ε(ξ, τ̃ε(ξ)) = F̃εξ for ξ ∈ Σ̃.

Finally, define φε:Uε → Uε by φε(x) = Xε(ωε(ξ), t) for x = Xε(ξ, t) ∈
Uε, where ξ ∈ Σ and 0 ≤ t ≤ τ̃ε(x). It follows from the definitions that
φε|Σε

≡ ωε and X̃ε(x, t) = φ−1
ε ◦ Xε(φε(x), t). Hence, φε is the desired change

of coordinates.

Corollary 3.2. The changes of coordinates φε:U → U are continuous families
of C1+α diffeomorphisms.

Proof. By assumption, Xε is a continuous family of C2 flows. Hence, the result
follows from Proposition 3.1. �

Lemma 3.3. The transformed flow X̃ε(x, t) = φ−1
ε ◦ Xε(φε(x), t) satisfies:

(i) The Poincaré map F̃ε:Σ̃\Γ → Σ̃ is a continuous family of piecewise C1+α

diffeomorphisms and has the form

F̃ε(x, y) = (Tεx, gε(x, y)),

where Tε:I → I is the family of Lorenz-like expanding maps in Theo-
rem 2.4(a).

(ii) |F̃n
ε ξ1 − F̃n

ε ξ2| ≤ Kρn|ξ1 − ξ2| for all ξ1 = (x, y1), ξ2 = (x, y2) and n ≥ 1,

(iii) The return time τ̃ε:Σ̃\Γ → (0,∞) is given by τ̃ε(x, y) = − 1
λ1,ε

log |x| +
τ̃2,ε(x, y) where τ̃2,ε is a continuous family of C1+α functions.

(iv) The SRB measures μ̃ε for X̃ε are given by μ̃ε = φ−1
ε ∗με and are statisti-

cally stable.

Proof. (i) By Proposition 3.1(b), F̃ε = ω−1
ε ◦Fε ◦ωε has the form F̃ε(x, y) =

(Tεx, gε(x, y)). By Proposition 3.1(a), the maps Tε:I → I are unchanged
by this change of coordinates. Also, ωε is a continuous family of C1+α

diffeomorphisms and Fε is a continuous family of piecewise C1+α diffeo-
morphisms, so F̃ε a continuous family of piecewise C1+α diffeomorphisms.

(ii) This is the uniform contraction condition (3) in the new coordinates.
(iii) By Proposition 2.3 and Proposition 3.1, τ̃ε = τε ◦ ωε = − 1

λ1,ε
log |x| +

τ2,ε ◦ ωε where τ̃2,ε = τ2,ε ◦ ωε is a continuous family of C1+α functions.
(iv) By Proposition 3.1(a), the acip μ̄ε for Tε is unchanged by the change of

coordinates and hence remains absolutely continuous. Using this and the
construction of the SRB measure (see for example [2,8] for the standard
construction of με from μ̄ε), we obtain that μ̃ε = φ−1

ε ∗με is the SRB
measure for X̃ε. Moreover, strong statistical stability [2,9,14] of the acips
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μ̄ε on I is preserved and hence the SRB measures μ̃ε remain statistically
stable.

�

In the following sections, we prove Theorem 1.1 for normalised families
of geometric Lorenz attractors. At the end of Sect. 6, we show how results for
normalised families imply Theorem 1.1.

4. The Family of One-Dimensional Maps

In this section, we recall some functional–analytic properties associated with
the family of one-dimensional Lorenz maps Tε. For p ≥ 1, we say f :I → R is
of (universally) bounded p-variation if

Vp(f) = sup
− 1

2=x0<···<xn= 1
2

(
n∑

i=1

|f(xi) − f(xi−1)|p
)1/p

< ∞.

We take p ≥ 1
α .

Let Sρ(x) = {y ∈ I:|x − y| < ρ}. For f : I → R, define

osc(f, ρ, x) = esssup{|f(y1) − f(y2)| : y1, y2 ∈ Sρ(x)},

and

osc1(f, ρ) = ‖ osc(f, ρ, x)‖1,

where the essential supremum is taken with respect to Lebesgue measure on
I × I and ‖ · ‖1 is the L1- norm with respect to Lebesgue measure on I. Fix
ρ0 > 0 and let BV1,1/p ⊂ L1 be the Banach space equipped with the norm

‖f‖1,1/p = V1,1/p(f) + ‖f‖1, where V1,1/p(f) = sup
0<ρ≤ρ0

osc1(f, ρ)
ρ1/p

.

(The space BV1,1/p does not depend on ρ0.) The fact that BV1,1/p is a Banach
space is proved in [17]. Moreover, it is proved in [17] that BV1,1/p is embedded
in L∞ and compactly embedded in L1. In addition, [17] shows that

V1,1/p(f) ≤ 21/pVp(f). (4)

We recall results from the literature that we use later in Sects. 5 and 6of
the paper. Recall from [17] that Tε admits a unique acip μ̄ε for each ε ≥ 0.
Let hε denote the density for μ̄ε. Let Pε : L1(I) → L1(I) denote the transfer
operator (Perron–Frobenius) associated with Tε (so

∫
Pεf g d Leb =

∫
f g ◦

Tε d Leb for f ∈ L1(I), g ∈ L∞(I)).

Proposition 4.1. There exist C > 0 and Λ ∈ (0, 1) such that

(a) ||hε||∞ < C, and
(b) ‖Pn

ε f − hε

∫
f d Leb ‖1,1/p ≤ CΛn||f ||1,1/p

for all n ≥ 1, ε ≥ 0, f ∈ BV1,1/p.
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Proof. By [9, Lemma 3.3], there exist A1, A2 > 0, 0 < κ < 1, such that for all
n ≥ 1, f ∈ BV1,1/p,

||Pn
ε f ||1,1/p ≤ A1κ

n||f ||1,1/p + A2||f ||1.
Taking f = hε and letting n → ∞, we obtain ‖hε‖1,1/p ≤ A2 and part (a)
follows. Moreover, it was proved in [9] that

lim
ε→0

sup
||f ||1,1/p≤1

||(Pε − P0)f ||1 = 0.

Thus, the Keller–Liverani stability result [18] implies that Pε has a uniform
(in ε) spectral gap on BV1,1/p. This proves part (b). �

5. Variance Continuity for the Poincaré Maps

In this section, we prove the analogue of Theorem 1.1 at the level of the
Poincaré maps Fε. Throughout, we work with normalised families as in Sect. 3.

It is well known [8] that Fε admits a unique SRB measure μFε
for each

ε ≥ 0. Moreover, for any continuous ψ : Σ → R we have

lim
ε→0

∫

ψ dμFε
=

∫

ψ dμF0 ;

i.e. the family Fε is statistically stable [2,9,14]. We require the following
strengthening of this property. In general, we say that Ψ : Σ → R is piecewise
continuous if it is uniformly continuous on the connected components of Σ\Γ.
Similarly, Ψ is piecewise Hölder if it is uniformly Hölder on the connected
components of Σ\Γ.

Proposition 5.1. Suppose that Ψ:Σ → R is piecewise continuous and fix n ≥ 0.
Then, limε→0

∫
Ψ · (Ψ ◦ Fn

0 ) dμFε
=

∫
Ψ · (Ψ ◦ Fn

0 ) dμF0 .

Proof. If Ψ · (Ψ ◦ Fn
0 ) were continuous, this would be immediate from the

statement of Proposition 3.3 in [2]. The proof in [2] already accounts for tra-
jectories that visit Γ in finitely many steps, and it is easily checked that the
same arguments apply here. �

For fixed ε ≥ 0, the CLT holds (see for instance [21]); i.e. for Ψ:Σ → R

piecewise Hölder there exists σ2 = σ2
Fε

(Ψ) such that

1√
n

(
n−1∑

i=0

Ψ ◦ F i
ε − n

∫

Ψ dμFε

)

law−→N (0, σ2) as n → ∞.

The variance satisfies the Green–Kubo formula

σ2 =
∫

Ψ̂2
ε dμFε

+ 2
∞∑

n=1

∫

Ψ̂ε · (Ψ̂ε ◦ Fn
ε ) dμFε

, (5)

where Ψ̂ε = Ψε − ∫
Ψε dμFε

.



Vol. 21 (2020) Variance Continuity for Lorenz Flows 1881

5.1. Uniform Decay of Correlations

Let α ∈ (0, 1] and p ≥ 1
α . Let Ψ:Σ → R be piecewise Hölder with exponent α.

Set

||Ψ||α,s = Hα,s(Ψ) + ||Ψ||∞, Hα,s(Ψ) = sup
x,y1,y2∈I

y1 �=y2

|Ψ(x, y2) − Ψ(x, y1)|
|y2 − y1|α .

For − 1
2 = x0 < · · · < xn = 1

2 and yi ∈ I, 1 ≤ i ≤ n, we define

V̂p(Ψ; (x0, . . . , xn); (y1, . . . , yn)) =

⎛

⎝
∑

1≤i≤n

|Ψ(xi−1, yi) − Ψ(xi, yi)|p
⎞

⎠

1/p

,

and

V̂p(Ψ) = sup V̂p(Ψ; (x0, . . . , xn); (y1, . . . , yn)),

where the supremum is taken over all finite partitions of I and all choices of
yi ∈ I. Finally, we define

(ΠΨ)(x) =
∫

I

Ψ(x, y) dy.

We state and prove the following theorem about uniform (in ε) decay of cor-
relations. Define

DΨ = ||ΠΨ||1,1/p + V̂p(Ψ) + ||Ψ||α,s.

Note that DΨ is finite.

Theorem 5.2. Assume that there exists K > 0 such that

||Π(Ψ ◦ F j
ε )||1,1/p + V̂p(Ψ ◦ F j

ε ) ≤ DΨKj (6)

for all j ≥ 1, ε ≥ 0. Then, there exist C > 0 and θ ∈ (0, 1) such that
∣
∣
∣
∣

∫

Ψ · (Ψ ◦ Fn
ε ) dμFε

−
(∫

Ψ dμFε

)2
∣
∣
∣
∣ ≤ CDΨ||Ψ||α,sθ

n

for all n ≥ 1, ε ≥ 0.

Proof. The proof follows from [3, Theorem 3]. The fact that C and θ do not
depend on ε follows from the uniformity of the constants in Proposition 4.1(b)
and the uniformity of the contraction on vertical fibres. �

We now verify assumption (6) in Theorem 5.2.

Lemma 5.3. V1,1/p(ΠΨ) ≤ 21/pV̂p(Ψ).

Proof. Fix y ∈ I and let x0 < · · · < xn be a partition of I. We have
∑

1≤i≤n

|ΠΨ(xi−1) − ΠΨ(xi)|p =
∑

1≤i≤n

∣
∣
∣

∫

(Ψ(xi−1, y) − Ψ(xi, y)) dy
∣
∣
∣
p

≤
∑

1≤i≤n

∫

|Ψ(xi−1, y) − Ψ(xi, y)|p dy ≤ V̂p(Ψ)p.
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Combining this with (4), we have V1,1/p(ΠΨ) ≤ 21/pVp(ΠΨ) ≤ 21/pV̂p(Ψ) as
required. �

Recall that Fε can be written in coordinates as Fε(x, y) = (Tεx, gε(x, y)).

Lemma 5.4. Let M = 4(1 + supε ‖gε‖α
C1). Then,

V̂p(Ψ ◦ F j
ε ) ≤ (2j − 1)M ||Ψ||α,s + 2j V̂p(Ψ) for all j ≥ 1, ε ≥ 0.

Proof. We suppress the dependence on ε. Fix − 1
2 = x0 ≤ x1 ≤ · · · ≤ xn = 1

2
and yi ∈ I, 1 ≤ i ≤ n. Then,

V̂p(Ψ ◦ F ; (x0, . . . , xn); (y1, . . . , yn))p =
∑

1≤i≤n

|Ψ ◦ F (xi−1, yi) − Ψ ◦ F (xi, yi)|p

≤ 2p−1
∑

1≤i≤n

Hα,s(Ψ)p|g(xi−1, yi) − g(xi, yi)|αp

+ 2p−1
∑

1≤i≤n

|Ψ(Txi−1, g(xi−1, yi)) − Ψ(Txi, g(xi−1, yi))|p

≤ 2p−1Hα,s(Ψ)p‖g‖αp
C1

+ 2p−1
∑

1≤i≤n

|Ψ(Txi−1, g(xi−1, yi)) − Ψ(Txi, g(xi−1, yi))|p.

Let x0, . . . , xk ∈ [− 1
2 , 0) and xk+1 /∈ [− 1

2 , 0). Since T |[− 1
2 ,0) is continuous and

increasing, we get
∑

1≤i≤k

|Ψ(Txi−1, g(xi−1, yi)) − Ψ(Txi, g(xi−1, yi))|p ≤ V̂p(Ψ)p.

A similar estimate holds for xk+1, . . . , xn ∈ (0, 1
2 ]. Moreover,

|Ψ(Txk, g(xk, yk+1)) − Ψ(Txk+1, g(xk, yk+1))|p ≤ 2p||Ψ||p∞.

Consequently,

V̂p(Ψ ◦ F )p ≤ 2p−1
(
Hα,s(Ψ)p‖g‖αp

C1 + 2V̂p(Ψ)p + 2p||Ψ||p∞
)

≤ Mp||Ψ||pα,s + 2pV̂p(Ψ)p ≤ (M ||Ψ||α,s + 2V̂p(Ψ))p.

Therefore,

V̂p(Ψ ◦ F ) ≤ M ||Ψ||α,s + 2V̂p(Ψ).

Using the last inequality repeatedly and the fact that ||Ψ ◦ F ||α,s ≤ ||Ψ||α,s,
we obtain the result. �

For Ψ:Σ → R piecewise Cα, we define

‖Ψ‖α = ‖Ψ‖∞ + Hα(Ψ), Hα(Ψ) = sup
ξ1 �=ξ2

|Ψ(ξ2) − Ψ(ξ1)|
|ξ2 − ξ1|α ,

where we restrict to the cases ξ1, ξ2 ∈ Σ+ and ξ1, ξ2 ∈ Σ− in the supremum.
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Corollary 5.5. There exist C > 0 and θ ∈ (0, 1) such that
∣
∣
∣
∣

∫

Ψ · (Ψ ◦ Fn
ε ) dμFε

−
( ∫

Ψ dμFε

)2
∣
∣
∣
∣ ≤ C||Ψ||2α θn

for all n ≥ 1, ε ≥ 0 and all piecewise Cα observables Ψ:Σ → R.

Proof. By Lemma 5.3,

||Π(Ψ ◦ F j
ε )||1,1/p + V̂p(Ψ ◦ F j

ε ) ≤ ‖Ψ‖∞ + (21/p + 1)V̂p(Ψ ◦ F j
ε ).

By Lemma 5.4, there is a constant K0 > 1 such that

||Π(Ψ ◦ F j
ε )||1,1/p + V̂p(Ψ ◦ F j

ε ) ≤ K02j(‖Ψ‖α,s + V̂p(Ψ)).

Hence, assumption (6) holds with K = 2K0. The result follows from Theo-
rem 5.2 since DΨ ≤ 3‖Ψ‖α and ‖Ψ‖α,s ≤ ‖Ψ‖α. �

5.2. Variance Continuity for the Family of Two-Dimensional Maps

We continue to fix α ∈ (0, 1].

Theorem 5.6. Let Ψε, ε ≥ 0, be piecewise Cα with supε ||Ψε||α < ∞. Assume
that

lim
ε→0

∫

|Ψε − Ψ0|dμFε
= 0. (7)

Then, limε→0 σ2
Fε

(Ψε) = σ2
F0

(Ψ0).

(The hypotheses of this result will be verified in Sect. 6. In particular, condi-
tion (7) is addressed in Lemma 6.2.)

We first prove a lemma that will be used in the proof of Theorem 5.6.

Lemma 5.7. Let Ψ:Σ → R be piecewise continuous and fix n ≥ 0. Then,

lim
ε→0

∫

|Ψ ◦ Fn
0 − Ψ ◦ Fn−1

0 ◦ Fε|dμFε
= 0.

Proof. Let δ > 0, j ≥ 0, and define Eδ,j =
⋃j

i=0 F−i
0 (Bδ) where Bδ is the

δ-neighbourhood of Γ. Then, μF0(Eδ,n) ≤ (n + 1)μF0(Bδ) ≤ Mδ where M =
2(n + 1)‖h0‖∞.

The closure of Eδ,n lies in the interior of E2δ,n, so there exists a continuous
function χ:Σ → [0, 1] supported in E2δ,n and equal to 1 on Eδ,n. By statis-
tical stability, for ε sufficiently small, μFε

(Eδ,n) ≤ ∫
χdμFε

≤ 2
∫

χdμF0 ≤
2μF0(E2δ,n) ≤ 4Mδ.

Let Ec
δ,j = Σ\Eδ,j . Now F0(ξ) ∈ Ec

δ,n−1 for ξ ∈ Ec
δ,n. Also, Fε → F0

uniformly on Ec
δ,n as ε → 0, so F0(ξ), Fε(ξ) ∈ Ec

δ/2,n−1 for all ξ ∈ Ec
δ,n

and all sufficiently small ε. Moreover, Ψ ◦ Fn−1
0 is uniformly continuous on

Ec
δ/2,n−1. It follows from this and the uniform convergence of Fε on Ec

δ,n that
Sε = supEc

δ,n
|Ψ ◦ Fn−1

0 ◦ Fε − Ψ ◦ Fn
0 | → 0 as ε → 0.
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Hence,
∫

|Ψ ◦ Fn
0 − Ψ ◦ Fn−1

0 ◦ Fε|dμFε
≤

∫

Eδ,n

|Ψ ◦ Fn
0 − Ψ ◦ Fn−1

0 ◦ Fε|dμFε

+
∫

Ec
δ,n

|Ψ ◦ Fn
0 − Ψ ◦ Fn−1

0 ◦ Fε|dμFε

≤ 2||Ψ||∞ μFε
(Eδ,n) + Sε ≤ 8||Ψ||∞Mδ + Sε → 8||Ψ||∞Mδ.

The result follows since δ > 0 is arbitrary. �

Proof of Theorem 5.6. We use the Green–Kubo formula (5). Recall that Ψ̂ε =
Ψε − ∫

Ψε dμFε
. By Corollary 5.5, the series in (5) is absolutely convergent

uniformly in ε. Therefore, it suffices to show that
∫

Ψ̂ε · (Ψ̂ε ◦ Fn
ε ) dμFε

→
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
0 ) dμF0 as ε → 0 for each fixed n ≥ 0. Now

∫

Ψ̂ε · (Ψ̂ε ◦ Fn
ε ) dμFε

−
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
0 ) dμF0

=
∫

Ψ̂ε · (Ψ̂ε ◦ Fn
ε ) dμFε

−
∫

Ψ̂0 · (Ψ̂ε ◦ Fn
ε ) dμFε

+
∫

Ψ̂0 · (Ψ̂ε ◦ Fn
ε ) dμFε

−
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
ε ) dμFε

+
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
ε ) dμFε

−
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
0 ) dμFε

+
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
0 ) dμFε

−
∫

Ψ̂0 · (Ψ̂0 ◦ Fn
0 ) dμF0

= (I) + (II) + (III) + (IV ).

We have |(II)| ≤ ‖Ψ̂0‖∞
∫ |Ψ̂ε − Ψ̂0| ◦Fn

ε dμFε
= ‖Ψ̂0‖∞

∫ |Ψ̂ε − Ψ̂0|dμFε
→ 0

by (7), and similarly (I) → 0. Also, (IV ) → 0 by Proposition 5.1.
Finally, |(III)| ≤ ‖Ψ̂0‖∞

∫ |Ψ̂0 ◦ Fn
0 − Ψ̂0 ◦ Fn

ε |dμFε
. Note that

∫

|Ψ̂0 ◦ Fn
0 − Ψ̂0 ◦ Fn

ε |dμFε

≤
n∑

i=1

∫

|Ψ̂0 ◦ F i
0 ◦ Fn−i

ε − Ψ̂0 ◦ F i−1
0 ◦ Fn−i+1

ε |dμFε

=
n∑

i=1

∫

|Ψ̂0 ◦ F i
0 − Ψ̂0 ◦ F i−1

0 ◦ Fε|dμFε
.

Thus, by Lemma 5.7, (III) → 0 as ε → 0. �

We end this section with the following result which gives explicit esti-
mates in terms of Ψ as required for the proof of Theorem 1.1(b).

Proposition 5.8. Let ‖Ψ‖1,ε =
∫ |Ψ|dμFε

. For all H > 0 and α > 0, there
exists C > 0 such that

|σ2
Fε

(Ψ) − σ2
Fε

(Ψ′)| ≤ C‖Ψ − Ψ′‖1,ε(1 + | log ‖Ψ − Ψ′‖1,ε|)
for all Ψ, Ψ′ piecewise Hölder with ‖Ψ‖α, ‖Ψ′‖α ≤ H and all ε ≥ 0.
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Proof. Let Ψ̂ = Ψ − ∫
Ψ dμFε

and Ψ̂′ = Ψ′ − ∫
Ψ′ dμFε

. Let N ≥ 1. It follows
from the Green–Kubo formula (5) that

|σ2
Fε

(Ψ) − σ2
Fε

(Ψ′)| ≤ 2
N−1∑

n=0

‖Ψ̂(Ψ̂ ◦ Fn
ε ) − Ψ̂′(Ψ̂′ ◦ Fn

ε )‖1,ε

+ 2
∞∑

n=N

‖Ψ̂(Ψ̂ ◦ Fn
ε )‖1,ε + 2

∞∑

n=N

‖Ψ̂′(Ψ̂′ ◦ Fn
ε )‖1,ε.

Now

‖Ψ̂(Ψ̂ ◦ Fn
ε ) − Ψ̂′(Ψ̂′ ◦ Fn

ε )‖1,ε ≤ ‖Ψ̂ − Ψ̂′‖1,ε‖Ψ̂ ◦ Fn
ε ‖∞

+ ‖Ψ̂′‖∞‖Ψ̂ ◦ Fn
ε − Ψ̂′ ◦ Fn

ε ‖1,ε

= (‖Ψ̂‖∞ + ‖Ψ̂′‖∞)‖Ψ̂ − Ψ̂′‖1,ε ≤ 4(‖Ψ‖∞ + ‖Ψ′‖∞)‖Ψ − Ψ′‖1,ε.

Also, by Corollary 5.5, ‖Ψ̂(Ψ̂◦Fn
ε )‖1,ε ≤ Cθn‖Ψ̂‖2

α ≤ 4Cθn‖Ψ‖2
α and similarly

for Ψ′. Hence,

|σ2
Fε

(Ψ) − σ2
Fε

(Ψ′)| ≤ 8N(‖Ψ‖∞ + ‖Ψ′‖∞)‖Ψ − Ψ′‖1,ε + C ′θN (‖Ψ‖2
α + ‖Ψ′‖2

α).

where C ′ = 8C(1 − θ)−1. Taking N = [q| log ‖Ψ − Ψ′‖1,ε|] for q sufficiently
large yields the desired result. �

6. Variance Continuity for the Flows

By [5,16], the CLT holds for Hölder observables for the Lorenz flows Xε.
In this section, we show how to obtain continuity of the variances, proving
Theorem 1.1. During most of this section, we continue to work with normalised
families as in Sect. 3, culminating in Corollary 6.5 which is an analogue of
Theorem 1.1 for normalised families. We conclude by using Corollary 6.5 to
prove Theorem 1.1. Throughout, we fix β ∈ (0, 1).

First, we recall some results from the literature. Let ψ:R3 → R be Cβ .
Define

ψ̃(x) = ψ(x) − ψ(0).

Also, define the induced observables Ψε:Σ\Γ → R, ε ≥ 0, by

Ψε(ξ) =
∫ τε(ξ)

0

ψ̃(Xε(ξ, t)) dt. (8)

The left-hand side of (2) is identical for ψ and ψ̃, so

σ2
Xε

(ψ) = σ2
Xε

(ψ̃). (9)

Proposition 6.1. The variances for ψ̃ and Ψε are related by

σ2
Xε

(ψ̃) =
σ2

Fε
(Ψε)

∫
τε dμFε

.
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Proof. By [16], ψ̃ satisfies the CLT. The method of proof in [16] is to show
that Ψε and τε satisfy the CLT, whereupon the CLT for ψ̃ follows from [22,
Theorem 1.1]. The desired relation between the variances is given explicitly in
[22, Theorem 1.1]. �

By [2, Lemma 4.1],

lim
ε→0

∫

τε dμFε
=

∫

τ0 dμF0 . (10)

Hence, the main quantity to control is σ2
Fε

(Ψε). First, we verify condition (7)
in Theorem 5.6.

Lemma 6.2. limε→0

∫ |Ψε − Ψ0|dμFε
= 0.

Proof. Fix N ≥ 1 and set τε,N (ξ) = min{τε(ξ), N}. Define

Ψε,N (ξ) =
∫ τε,N (ξ)

0

ψ̃(Xε(ξ, t)) dt.

Then,

|Ψ0 − Ψε| ≤ |Ψ0 − Ψ0,N | + |Ψ0,N − Ψε,N | + |Ψε,N − Ψε|.
Now,

|Ψε(ξ) − Ψε,N (ξ)| =
∣
∣
∣

∫ τε(ξ)

τε,N (ξ)

ψ̃(Xε(ξ, t)) dt
∣
∣
∣ ≤ 2‖ψ‖∞(τε(ξ) − τε,N (ξ)).

Recall that ξ = (x, y, 1). Now τε(ξ) − τε,N (ξ) ≤ −C log |x| − N , and τε − τε,N

is supported on Bε = {ξ:τε(ξ) > N} ⊂ {ξ:|x| < e−N/C}. Hence,
∫

|Ψε − Ψε,N |dμFε
≤ 2‖hε‖∞‖ψ‖∞

∫

Bε

(−C log |x| − N) dx

= 4‖hε‖∞‖ψ‖∞
∫ e−N/C

0

(−C log x − N) dx = 4C‖hε‖∞||ψ||∞e−N/C .

By Proposition 4.1(a), there exists C ′ > 0 such that
∫ |Ψε − Ψε,N |dμFε

≤
C ′e−N/C‖ψ‖∞. Similarly,

∫ |Ψ0 − Ψ0,N |dμFε
≤ C ′e−N/C‖ψ‖∞.

Next, |Ψε,N (ξ) − Ψ0,N (ξ)| ≤ (I) + (II) where

(I) =
∫ τε,N (ξ)

τ0,N (ξ)

|ψ̃(Xε(ξ, t))|dt ≤ 2‖ψ‖∞|τε,N (ξ) − τ0,N (ξ)|,

(II) =
∫ τ0,N (ξ)

0

|ψ̃(Xε(ξ, t)) − ψ̃(X0(ξ, t))|dt

≤
∫ N

0

|ψ(Xε(ξ, t)) − ψ(X0(ξ, t))|dt ≤ Hβ(ψ)
∫ N

0

|Xε(ξ, t) − X0(ξ, t)|β dt.

For δ > 0 fixed sufficiently small, there exists ε0 > 0 such that τε,N (ξ) ≡
N for |x| < δ and ε < ε0. Also, it follows from smoothness of the flow and
boundedness of first hit times for |x| ≥ δ that τε,N → τ0,N uniformly on
{|x| ≥ δ}. Hence, limε→0 ‖τε,N − τ0,N‖∞ = 0 and so limε→0 ‖(I)‖∞ = 0.
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By continuity of the flow in initial conditions and parameters, Xε(ξ, t) →
X0(ξ, t) uniformly in ξ ∈ Σ and t ∈ [0, N ]. Hence, limε→0 ‖(II)‖∞ = 0.

We have shown that limε→0

∫ |Ψε − Ψ0|dμFε
≤ 2C ′e−N/C . The result

follows since N is arbitrary. �

Next, we show that supε ‖Ψε‖α < ∞ for some α > 0.

Lemma 6.3. Define Ψ̃ε:Σ → R by setting

Ψ̃ε(x, y) =
∫ − 1

λ1,ε
log |x|

0

ψ̃(xeλ1,εt, yeλ2,εt, eλ3,εt) dt.

Choose 0 < α′ < −λ3,εβ/(λ1,ε − λ3,ε). Then, Ψ̃ε is piecewise Cα′
. Moreover,

there is a constant C > 0 such that ‖Ψ̃ε‖α′ ≤ C‖ψ‖β for all ε ≥ 0.

Proof. We suppress the dependence on ε. Write ψ̃(x, y, z) = ψ1(x)+ψ2(x, y, z)
where ψ1(x) = ψ̃(x, 0, 0). Then, ψ1 and ψ2 are Hölder with Hβ(ψ1) ≤ Hβ(ψ)
and Hβ(ψ2) ≤ 2Hβ(ψ). Also, ψ1(0) = 0 and ψ2(x, 0, 0) ≡ 0. Define

Ψ̃1(x) =
∫ − 1

λ1
log x

0

ψ1(xeλ1t) dt, Ψ̃2(x, y)

=
∫ − 1

λ1
log x

0

ψ2(xeλ1t, yeλ2t, eλ3t) dt.

Recall that λ2 < λ3 < 0 < λ1.
First, we carry out the estimates for Ψ̃1 with α′ = β. By the change of

variables u = xeλ1t,

Ψ̃1(x) =
1
λ1

∫ 1

x

ψ1(u)
u

du.

Now |ψ1(u)| = |ψ1(u) − ψ1(0)| ≤ Hβ(ψ)uβ , so |Ψ̃1|∞ ≤ Hβ(ψ)
λ1

∫ 1

0
u−(1−β) du =

Hβ(ψ)
λ1β . Also, for x1 > x2 > 0,

|Ψ̃1(x1) − Ψ̃1(x2)| ≤ Hβ(ψ)
λ1

∫ x1

x2

u−(1−β) du

=
Hβ(ψ)
λ1β

(xβ
1 − xβ

2 ) ≤ Hβ(ψ)
λ1β

(x1 − x2)β .

Here, we have used that xβ
1 − xβ

2 ≤ (x1 − x2)β for all β ∈ [0, 1]. Hence,
‖Ψ̃1‖β ≤ 1

λ1β ‖ψ‖β .

Next, we carry out the estimates for Ψ̃2. Note that

|ψ2(xeλ1t, yeλ2t, eλ3t)| = |ψ2(xeλ1t, yeλ2t, eλ3t) − ψ2(xeλ1t, 0, 0)|
= |ψ2(xeλ1t, yeλ2t, eλ3t) − ψ2(xeλ1t, yeλ2t, 0)|

+ |ψ2(xeλ1t, yeλ2t, 0) − ψ2(xeλ1t, 0, 0)|
≤ Hβ(ψ2)(eβλ3t + |y|βeβλ2t) ≤ 4Hβ(ψ)eβλ3t. (11)
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In particular,

|Ψ̃2|∞ ≤ 4Hβ(ψ)
∫ − 1

λ1
log x

0

eβλ3t dt =
4Hβ(ψ)
β|λ3| (1 − x−βλ3/λ1) ≤ 4Hβ(ψ)

β|λ3| .

Similarly,

|Ψ̃2(x, y1) − Ψ̃2(x, y2)|

≤
∫ − 1

λ1
log x

0

Hβ(ψ2)|y1 − y2|βeβλ2t dt ≤ 2Hβ(ψ)
β|λ2| |y1 − y2|β .

For x1 > x2 > 0, we have |Ψ̃2(x1, y) − Ψ̃2(x2, y)| ≤ A + B where

A =
∫ − 1

λ1
log x2

− 1
λ1

log x1

ψ2(x2e
λ1t, yeλ2t, eλ3t) dt,

B =
∫ − 1

λ1
log x1

0

|ψ2(x1e
λ1t, yeλ2t, eλ3t) − ψ2(x2e

λ1t, yeλ2t, eλ3t)|dt.

By (11),

A ≤ 4Hβ(ψ)
∫ − 1

λ1
log x2

− 1
λ1

log x1

eβλ3t dt =
4Hβ(ψ)
β|λ3| (xγ

1 − xγ
2) ≤ 4Hβ(ψ)

β|λ3| (x1 − x2)γ

where γ = −λ3β/λ1. Let

α′ = δβ, λ′ = δλ1 + (1 − δ)λ3,

where 0 < δ < −λ3/(λ1 − λ3) < 1. In particular, α′ < γ and λ′ < 0. Since the
eigenvalues λ1, λ3 depend continuously on ε, we can choose δ independent of
ε. The inequality min{a, b} ≤ aδb1−δ holds for all a, b ≥ 0. By (11),

|ψ2(x1e
λ1t, yeλ2t, eλ3t) − ψ2(x2e

λ1t, yeλ2t, eλ3t)|
≤ min{Hβ(ψ2)(x1 − x2)βeβλ1t, 8Hβ(ψ)eβλ3t} ≤ 8Hβ(ψ)(x1 − x2)δβeδλ′t.

Hence, B ≤ 8
δ|λ′|Hβ(ψ)(x1 − x2)α′

completing the proof. �

Corollary 6.4. There exists α ∈ (0, β) such that Ψε is piecewise Cα. Moreover,
there is a constant C > 0 such that supε ‖Ψε‖α ≤ C‖ψ‖β.

Proof. After a Cα change of coordinates in a neighbourhood of the singularity,
we may suppose without loss of generality that the flow Xε is linear near
the singularity. Here, α > 0 can be chosen independent of ε with bounded
Hölder constants for the linearisation [10]. We choose α < α′ where α′ is as in
Lemma 6.3

For the remainder of the proof, we suppress the dependence on ε. The
first hit time in this neighbourhood is given by τ1(ξ) = − 1

λ1
log |x|. Recall that

ξ = (x, y, 1) and set ξ′ = X(ξ, τ1(ξ)) = (1, yx−λ2/λ1 , x−λ3/λ1). Note that the
dependence of ξ′ on ξ is Hölder (also uniformly in ε). Then, τ = τ1 + τ2 where
τ2 is Cα in ξ′ and hence ξ (uniformly in ε). Also, Ψ = Ψ̃ + Ψ̂ where

Ψ̃(ξ) =
∫ τ1(ξ)

0

ψ̃(xeλ1t, yeλ2t, eλ3t) dt, Ψ̂(ξ) =
∫ τ2(ξ)

0

ψ̃(X(ξ′, t)) dt. (12)
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Since ‖τ2‖∞ is bounded, it is immediate that Ψ̂ is Cα uniformly in ε. By
Lemma 6.3, the same is true for Ψ̃. �

We can now state and prove the analogue of Theorem 1.1 for normalised
families. Define ‖ψ‖(ε) =

∫ |ψ|dμε + |ψ(0)|.
Corollary 6.5. Let Xε be a normalised family of flows admitting geometric
Lorenz attractors. Then,
(a) limε→0 σ2

Xε
(ψ) = σ2

X0
(ψ) for all Cβ observables ψ:R3 → R

(b) For any H > 0, there exists C > 0 such that

|σ2
Xε

(ψ) − σ2
Xε

(ψ′)| ≤ C‖ψ − ψ′‖(ε)(1 + | log ‖ψ − ψ′‖(ε)|)
for all Cβ observables ψ, ψ′:R3 → R with ‖ψ‖β , ‖ψ′‖β ≤ H, and all
ε ≥ 0.

Proof. By Corollary 6.4, there exists C1 > 0 and α ∈ (0, 1) such that Ψε, Ψ′
ε

are piecewise Cα and

sup
ε

‖Ψε‖α ≤ C1‖ψ‖β , sup
ε

‖Ψ′
ε‖α ≤ C1‖ψ′‖β . (13)

By (9) and Proposition 6.1,

|σ2
Xε

(ψ) − σ2
Xε′ (ψ

′)| = |σ2
Xε

(ψ̃) − σ2
Xε′ (ψ̃

′)| =

∣
∣
∣
∣
∣

σ2
Fε

(Ψε)
∫

τε dμFε

− σ2
Fε′ (Ψ

′
ε′)

∫
τε′ dμFε′

∣
∣
∣
∣
∣

≤ σ2
Fε′ (Ψ

′
ε′)

∣
∣
∣
∣

1
∫

τε dμFε

− 1
∫

τε′ dμFε′

∣
∣
∣
∣ +

1
∫

τε dμFε

∣
∣
∣σ2

Fε
(Ψε) − σ2

Fε′ (Ψ
′
ε′)

∣
∣
∣ .

First suppose that ψ = ψ′ and ε′ = 0. By Lemma 6.2 and (13), we can
apply Theorem 5.6 to deduce that limε→0 σ2

Fε
(Ψε) = σ2

F0
(Ψ0). Part (a) now

follows from (10).
Next suppose that ε = ε′. By Proposition 5.8 and (13), there is a constant

C > 0 (independent of ε) such that |σ2
Fε

(Ψε) − σ2
Fε

(Ψ′
ε)| ≤ C‖Ψε − Ψ′

ε‖1,ε(1 +
| log ‖Ψε − Ψ′

ε‖1,ε|) where

‖Ψε − Ψ′
ε‖1,ε =

∫

|Ψε − Ψ′
ε|dμFε

≤
∫ ∫ τε(ξ)

0

|ψ̃(Xε(ξ, t) − ψ̃′(Xε(ξ, t)|dt dμFε

=
∫

τε dμFε

∫

|ψ̃ − ψ̃′|dμε

≤
∫

τε dμFε

( ∫

|ψ − ψ′|dμε + |ψ(0) − ψ′(0)|
)
.

This proves part (b). �

Proof of Theorem 1.1. Let φε:U → U be the family of normalising conjugacies
in Sect. 3. Recall that X̃ε(x, t) = φ−1

ε ◦ Xε(φε(x), t). Define

ψε = ψ ◦ φε, ψ′
ε = ψ′ ◦ φε, μ̃ε = φ−1

ε ∗με.
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Then, ψε is Hölder and
∫

ψε dμ̃ε =
∫

ψ dμε,

∫ t

0

ψε ◦ X̃ε(s) ds =
( ∫ t

0

ψ ◦ Xε(s) ds
)

◦ φε.

Hence,
∫ t

0
ψ◦Xε(s) ds−t

∫
ψ dμε and

∫ t

0
ψε◦X̃ε(s) ds−t

∫
ψε dμ̃ε have the same

distribution (relative to the probability measures με and μ̃ε, respectively), so
it follows from (2) that σ2

Xε
(ψ) = σ2

X̃ε
(ψε). Similar comments apply to ψ′.

It follows from the definitions that X̃ε is a normalised family. By Corol-
lary 3.2, there exist H > 0 and β ∈ (0, 1) such that supε ‖ψε‖β ≤ H and
supε ‖ψ′

ε‖β ≤ H.
By Corollary 6.5(b), there is a constant C > 0 such that

|σ2
Xε

(ψ) − σ2
X0

(ψ)| = |σ2
X̃ε

(ψε) − σ2
X̃0

(ψ0)|
≤ |σ2

X̃ε
(ψε) − σ2

X̃ε
(ψ0)| + |σ2

X̃ε
(ψ0) − σ2

X̃0
(ψ0)|

≤ C‖ψε − ψ0‖∞(1 + | log ‖ψε − ψ0‖∞|)
+ |σ2

X̃ε
(ψ0) − σ2

X̃0
(ψ0)|.

By Corollary 6.5(a), the second term on the right-hand side converges to zero
as ε → 0. Also, limε→0 ‖ψε − ψ0‖∞ = limε→0 ‖ψ ◦ φ−1

ε − ψ ◦ φ−1
0 ‖∞ = 0 by

Corollary 3.2. Hence, limε→0 σ2
Xε

(ψ) = σ2
X0

(ψ) proving part (a).
Finally, by Corollary 6.5(b),

|σ2
X0

(ψ) − σ2
X0

(ψ′) = |σ2
X̃0

(ψ0) − σ2
X̃0

(ψ′
0)|

≤ C‖ψ0 − ψ′
0‖(0)(1 + | log ‖ψ0 − ψ′

0‖(0)|)
= C‖ψ − ψ′‖(1 + | log ‖ψ − ψ′‖|)

yielding part (b). �
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