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Abstract: Multi reference CASSCF/NEVPT2 wavefunction 

calculations on planar cis-[MA2B2] complexes show that large dxz/dyz 

splittings are a feature of the symmetry of the ligand field and are not 

due to the Orgel effect or phase coupled ligation as previously 

proposed based on the MO version of the angular overlap model. 

Instead, the splitting can be attributed to the  components of the local 

ligand fields in the ‘void’ regions above and below the molecular plane. 

The potential in these regions is lower than the d orbital barycentre 

leading to negative parameter values which is fully consistent with the 

cellular ligand field interpretation of ligand field theory. The wider 

implications of ligand field effects from coordination voids are 

considered. 

The elegant spectroscopic studies of Cassidy and Hitchman on 

square planar [CuCl4]2- established a d-orbital sequence of 

dz2<dxz/dyz<dxy<dx2-y2.[1] However, this experimental sequence 

was at odds with the theoretical predictions of the angular overlap 

model (AOM).[2] The simplest AOM parameterization has just two 

adjustable parameters, e(Cl) and e(Cl) leading to the following 

d-orbital energy expressions: 

 

 E(dx2-y2) = 3e(Cl) 

 E(dz2) = e(Cl) 

 E(dxy) = 4e(Cl) 

 E(dxz) = E(dyz) = 2e(Cl) 

 

The two lowest energy transitions at 12500 (dxydx2-y2) and 

14300 cm-1 (dxz/dyzdx2-y2) give e(Cl) = 5367 cm-1 and e(Cl) = 

900 cm-1 whereupon the dz2dx2-y2 transition is expected at 2 x 

5367 = 10733 cm-1 about 6000 cm-1 lower than the actual 

transition energy of ~17000 cm-1. 

The apparently low energy of dz2 in planar systems is a universal 

feature of planar complexes and ultimately stems from 

interactions between the dz2 orbital and the metal’s valence s 

orbital. However, there are two very different mechanisms for 

accounting for this d-s interaction. 

One approach is based on simple molecular orbital (MO) theory. 

In D4h symmetry, both the 3dz2 and 4s Cu orbitals transform as a1g 

and may mix together. This d-s mixing configuration interaction 

can be added to the Schäffer/Jorgensen (SJ) version of the 

AOM[3] via the second-order eds parameter which alters the 

energy expression for dz2 to: 

 

E(dz2) = e(Cl) – 4eds 

 

Hence, an eds value of around 1500 cm-1 gives the required 6000 

cm-1 lowering of dz2. 

The alternative approach is based on ligand field theory (LFT) as 

described by Gerloch and Woolley (GW).[4] In the GW AOM 

(which we renamed the cellular ligand field (CLF)[5] model to 

distinguish it from the SJ version), the d orbitals are perturbed by 

local potentials associated with appropriate regions of electron 

density. As we discussed in the first of our original series of ligand 

field analyses,[6] the potential in the ‘void’ regions above and 

below the molecular plane has a metal 4s component which is of 

 symmetry with respect to the metal 3dz2. Since the 4s orbital is 

higher than 3dz2 (or equivalently, the potential in the region is 

lower than the d electron barycenter), the sign of the parameter is 

negative. By placing dummy ligands on the +Z and –Z axes and 

with e(void) = -3000 cm-1 for each, the required lowering of dz2 is 

achieved. 

The idea of a ligand field from a coordination void was 

controversial. Schäffer even described it as an “unintelligible 

concept”[7] but this assertion stems from the MO interpretation of 

the AOM. In the absence of a ligand, there are no orbitals with 

which the d functions can overlap. In contrast, once we recognize 

the true significance of the ‘field’ in LFT, a negative potential in a 

coordination void is both straightforward to understand and 

completely consistent with the CLF formalism. 

The basis set for a ligand field calculation is the set of states 

derived from an atom-like, pure dn configuration. As soon as there 

is at least one ligand attached to the metal, there will be a ligand 

field which surrounds the entire metal. As a matter of formal 

mathematics, it will always be possible to divide this potential field 

into spherical and aspherical components. The empirically-

observed fact that LFT calculations on real complexes (usually 

with four or more ligands and using the AOM to model the ligand 

field potential) consistently reproduce the experimental 

spectroscopic and magnetic properties of Werner-type 

complexes[8] suggests that the presumption of an atom-like set of 
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d orbitals is largely correct which in turn implies that the ligand 

field potential is dominated by the  spherical component. Hence, 

both interelectron repulsion and spin orbit coupling can 

successfully be treated within a central field – i.e. spherical – 

approximation. 

In contrast, the CLF e parameters depend on the interaction 

between the d electrons and the aspherical components of the 

local ligand field potential. If the local potential is higher than that 

for the spherical average – the barycenter – positive e parameters 

will result. If the local potential is less than the barycenter, the 

parameters exert a negative effect. In a coordinatively saturated 

octahedral complex, for example, the potential in the bond regions 

will be higher than the barycenter and the CLF parameters will be 

positive (Figure 1, left). It is then easy to imagine that removing 

the ligands on the Z axis, and bringing those on X and Y closer to 

compensate, will increase the potential in the bond regions – 

hence giving larger, positive CLF parameters – whilst reducing 

the potential in the void region to below the barycenter which then 

implies negative CLF parameters (Figure 1, right). 

 

 

Figure 1. Schematic representation of the cross section of the spherical (green 

dashed circle) and aspherical (black dashed line) CLF potential for an 

octahedral (left) and planar (right) complex. Blue indicate regions with a 

potential higher than the CLF barycentre and red, regions which are at a lower 

potential than the barycentre. The sizes of the blue and red regions compared 

to the green spherical average have been enlarged for illustrative purposes..  

Our CLF analysis for planar [CuCl4]2- yielded a strong  

component from the coordination voids.[6] While we considered 

the possibility of a coordination void also providing a  effect, we 

dismissed the idea at that time since (i) we could reproduce the 

observed d-d spectra already, (ii) there were insufficient 

experimental data to support adding extra parameters and (iii) we 

assumed the effect would be small. However, with the advent of 

ab initio ligand field theory (AI LFT)[9], we can now generate data 

from first principles and explicitly test this assumption. 

 

 

Figure 2. Structural diagram for Co(salen) with axis frame definition and 

experimental EPR g values (see ref. [10] for details). 

AI LFT as implemented in the ORCA program suite[11] is based on 

multiconfigurational, complete active space SCF (CASSCF) 

wavefunction theory with an n-electron valence shell perturbation 

(NEVPT2) treatment of dynamic correlation. The active space 

comprises the five ‘d’ orbitals with n electrons corresponding to 

the formal dn configuration of the metal center. This generates a 

one-to-one mapping between the CASSCF configuration state 

functions and the Russell-Saunders term energies familiar from 

LFT from which the one-electron d-orbital energies and the two-

electron Racah interelectron repulsion parameters can be 

extracted. The AI LFT d orbital energies can then be used to 

derive AOM (or CLF) e parameter values. 

A major difference between the SJ AOM and the GW CLF 

approaches occurs for planar Co(II) Schiff’s base complexes like 

Co(salen) (salen = N, N’-ethylenebis(salicylaldiminate), Figure 2). 

Since the bite angles are close to 90º, both AOM and CLF 

schemes initially predict (nearly) degenerate dxz and dyz orbitals. 

For the idealized case of exactly 90 º bite angles, the d orbital 

energy expressions are as given below with dxz and dyz exactly 

degenerate. (N.B. the ligand field effects from 

centrosymmetrically-related ligands cannot be separated so only 

the average of the N and O perturbations is relevant.) 

 

 E(dx2-y2) = 3e(N/O) 

 E(dz2) = e(N/O) – 4eds (AOM) = e(N/O) +2e(void) (CLF) 

 E(dxy) = 2e(O) 

 E(dxz) = E(dyz) = 2e(N/O) 

 

However, based on the experimental EPR g-values, Hitchman 

suggested a dyz/dxz splitting of ~3000 cm-1.[12]  

Hitchman’s analysis of the d-orbital sequence in Co(salen) was 

informed by considering related Cu(II) complexes. The AOM 

bonding parameters deduced for Cu(salen) were increased by 

~10% for the Co(II) analogue and the estimated dxz/dyz splitting of 

3000 cm-1 was accounted for by adding the rhombic terms 

<dxz|VLF|dxz> = -1500 cm-1 and <dyz|VLF|dyz> = +1500 cm-1 to the 

ligand field potential. The magnitude of these terms was justified 

‘by comparison with the analogous copper complex’ even though 

in his analyses of these analogues, Hitchman consistently argues 

for the near degeneracy of dxz and dyz.[13] The exception appears 

to be Cu(3-Phacac)2 (3-Phacac = 3-phenylacetylacetonate) 

where the observation of four distinct d-d transitions suggests a 

dxz/dyz splitting of at least 1600 cm-1. However, there is no detailed 

discussion about the mechanism of the splitting – i.e. whether its 

origin is electronic, structural or some combination of both. 

However, notwithstanding how they were arrived at, Hitchman’s 

d-orbital sequences for Cu(salen) and Co(salen) are largely 

corroborated by AI LFT (Figure 3). 
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Figure 3. Relative d-orbital energies for Cu(salen) and Co(salen) from AI LFT 

calculations (see Supporting Information) or derived from Figure 2 of reference 
[12]. d-orbital labels refer to axis frame definition shown in Figure 2 of this paper. 

Hitchman generated a splitting of the dxz and dyz orbitals in 

Co(salen) by recognizing that the actual C2v symmetry could 

generate a rhombic ligand field the effect of which he ‘added 

subsequently as a perturbation.[12] Subsequently, Ceulemans et 

al.[14] extended the MO AOM and attributed the splitting to ‘phase 

coupled ligation’ (or the Orgel effect)[14-15] which relates to a ligand 

where the cis donor atoms are connected by a delocalized  

system. The phases of the p  orbitals on the donor atoms, and 

perpendicular to the ligand plane, switch from in-phase for the 

lowest  level to out-of-phase for the next one, to in-phase for the 

one above that and so on. In-phase combinations (-type in 

Figure 4) overlap only with dxz and out-of-phase(-type in Figure 

4) only with dyz. Hence, if one or other  level dominates, the 

dxz/dyz orbitals will split. 

  

Figure 4. Schematic representation of phase-coupled ligation. Left: the -type 

orbitals at the ligand donor atoms are in phase and overlap only with the metal 

dxz orbital. Right: the -type orbitals at the ligand donor atoms are out of phase 

and overlap only with the metal dyz orbital.. 

In the CLF model, the ligand field potential has no phase 

information so phase coupling is not possible. In our original 

analysis of Co(salen)[10] we were able, after much work, to find a 

region of parameter space which reproduced the g-values and 

their directions and kept the dxz/dyz splitting small at ~250 cm-1. AI 

LFT now shows us that the expectation of near degenerate dxz 

and dyz orbitals was incorrect and that the large dxz/dyz splitting is 

real and quite large (~1500 cm-1, see Supporting Information). 

However, some 30 years after our original study, the present 

analysis finally provides a much simpler and more elegant 

solution – asymmetric   interactions from the coordination voids. 

This yields new expressions for the dxz and dyz orbital energies 

which facilitate any desired splitting of dxz and dyz. For Co(salen), 

all we require for dyz to be 1500 cm-1 higher than dxz is for ex(void) 

- ey(void) to be -750 cm-1, a reasonable number given that 

e(void) is of the order of -3000 cm-1.  

 

 E(dxz) = 2e(N/O) + 2ex(void) 

E(dyz) = 2e(N/O) + 2ey(void) 

 

A  interaction from the coordination void requires the 

involvement of the metal’s valence p orbitals. The mechanism 

behind this p-d coupling parallels that for s-d coupling (Figure 5). 

The e parameters in the CLF formalism depend on the interaction 

between local d orbitals and the potential in the cell which 

normally arises from bonding orbitals, . Critically, the have 

contributions from the ligands and the metal valence s and p 

orbitals. As the ligands on the Z axis are removed to generate a 

planar species, the ligand parts of  disappear and we are left 

only with the metal contributions – valence metal s gives e(void) 

and valence metal px and py give respectively ex(void) and 

ey(void). 

We had presumed the metal 4p orbitals would be far away in 

energy and the associated matrix elements would be negligible. 

However, until now, we had no independent way to test this 

assumption. AI LFT provides the necessary, first principles tool 

and shows that the metal valence p orbitals make an important 

contribution. 

The interesting feature of this p-d coupling is that it is a  effect 

with respect to the void cell interaction with the metal center but 

is actually mediated via the in-plane M-L -bonding interactions 

which populate the valence metal p orbitals. Since there are two 

in-plane p orbitals, pX and pY, differences in in-plane  bonding 

are manifest as differences in void cell  contributions. Importantly, 

p-d coupling can thus restore the correct molecular symmetry to 

the ligand field. Without p-d coupling, the effective ligand field 

symmetry of Co(salen) is D4h and dxz and dyz are accidentally 

degenerate. With p-d coupling, the ligand field regains the correct 

molecular C2v symmetry and dxz and dyz can have substantially 

different energies. 
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Figure 5. Schematic representation of s-d and p-d coupling from the 

coordination voids in planar complexes. 

Crucially with respect to which version of the AOM/CLF model is 

correct, the p-d coupling should be a general feature of cis-planar 

complexes while the Orgel effect is restricted to those ligands with 

a suitable delocalized  system. Hence, the MO version of the 

AOM predicts degenerate dxz/dyz for a system like cis-[NiF2(CO)2] 

where there can be no phase coupling of the Orgel type. AI LFT 

calculations (Figure 6 and the Supporting Information) give a large 

dxz/dyz splitting of 1880 cm-1 which demonstrates from first 

principles that the Orgel effect is the wrong mechanism and that 

the CLF coordination void concept is correct. 

 

Figure 6. Geometric and electronic structure of model cis-NiF2(CO)2 complex. 

All acute L-M-L angles are 90 º. Details of the AI LFT calculation are in the 

Supporting Information. 

 

The ramifications of s-d and p-d coupling are widespread and 

affect both the MO version of the AOM and the CLF as well as our 

basic understanding of the ligand fields of metal complexes. The 

MO AOM can get into difficulties when orbital-overlap arguments 

from simple MO models are used to interpret ligand field 

properties which are inherently multi-configurational. The (non-

existent) Orgel effect is one such example where simple MO 

theory suggests a plausible model which turns out to be 

inconsistent. There are many others which will be described in 

detail elsewhere. However, p-d coupling will also require certain 

CLF analyses to be rethought. Any analysis, whether theoretical 

or experimental, where the effective ligand field symmetry is 

higher than the actual molecular symmetry will need re-examining. 

For example, the spectroscopic study[16] and the CLF analysis[17] 

of cis-[PtCl2(NH3)2] both presumed degenerate dxz/dyz orbitals and 

hence that there were only three possible excited singlet states. 

AI LFT calculations (Figure 7 and Supporting Information) show 

this is an erroneous assumption since there is a substantial dxz/dyz 

splitting of 1637 cm-1 consistent with significant p-d coupling. 

Hence, all four excited singlets should have been considered. 

 

 

Figure 7. Geometric and electronic structure of model cis-[PtCl2(NH3)2]. All 

acute L-M-L angles are 90 º. Details of the AI LFT calculation are in the 

Supporting Information. 

There is also now the significant question of how large does a void 

cell need to be before s-d and p-d coupling effects are 

observable? Not all couplings will be obvious. Some will be 

subsumed within the existing parameters and may easily be 

missed. The challenge is that p-d coupling adds more parameters 

which will make it harder to find unique solutions. Nevertheless, 

after some 30 years, AI LFT appears to have finally vindicated the 

GW version of ligand field theory.  

AI LFT is close to the embodiment of the ‘more complete theory’ 

which Orgel and Griffith[18] named ligand field theory but could not 

access in 1957. Significantly, it should be noted that these 

pioneers also considered that crystal field theory and MO theory 

would only be capable of ‘expressing certain aspects’ of their 

more complete model. AI LFT has highlighted some fundamental 

differences between potential-based ligand field theory as 

expressed in the CLF model and orbital-overlap-based MO theory 

as expressed in the SJ AOM. These results suggest that a 

potential-based picture of the ligand field is the better 

representation of the special physics of d electrons in Werner 

complexes. 
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Potential is everything. The local ligand field potential in a cell containing a ligand is higher than the average which leads to positive 

parameter values and an increase in d orbital energies but it is lower in a ‘coordination void’ and the parameters are negative. Voids 

can exert strong  and  effects. They also illustrate a fundamental difference between ligand field theory as originally envisioned by 

its pioneers and the simple MO overlap approach which has become the commonly accepted picture. 

 

 

 


