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Highlights

e We pose the problem of identifying tissue phenotypes as a community
detection problem in histological landscape where each community rep-
resents a distinct tissue phenotype, for example tumor, benign, stroma,
inflammatory, complex stroma, and smooth muscle. To the best of our
knowledge, the formulation of tissue phenotyping as community detection

has not been done before.

e We propose geodesic density gradients for tissue phenotyping, a novel way
of phenotyping tissue segments in large multi-gigapixel WSIs of histology

slides. We show that it results in significant performance improvement.

e Instead of using texture features to represent a patch of WSI, we employ
potential interactions between various types of cells as representative fea-
tures. These features are biologically more meaningful and better capture

the distribution of different types of cells in the histology patch.

e We propose a new large-scale dataset for tissue phenotyping. It con-
sists of 280K patches extracted from 20 WSIs of CRC slides stained with
H&E. Each WSI contains exhaustive region level annotations of seven dis-
tinct tissue phenotypes labelled by experienced pathologists. This dataset
(CRC-TP) will be released with the publication of this manuscript.

e A dataset for Cell Classification (CC) has been extended to include five
distinct cell types: tumor epithelial, normal epithelial, necrotic, spindle-
shaped, and inflammatory cells. The extended dataset (CRC-CC) will

also be made publicly available with the publication of this manuscript.
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Classification of various types of tissue in cancer histology images based on the cellular
compositions is an important step towards the development of computational pathology
tools for systematic digital profiling of the spatial tumor microenvironment. Most exist-
ing methods for tissue phenotyping are limited to the classification of tumor and stroma
and require large amount of annotated histology images which are often not available.
In the current work, we pose the problem of identifying distinct tissue phenotypes as
finding communities in cellular graphs or networks. First, we train a deep neural net-
work for cell detection and classification into five distinct cellular components. Con-
sidering the detected nuclei as nodes, potential cell-cell connections are assigned using
Delaunay triangulation resulting in a cell-level graph. Based on this cell graph, a feature
vector capturing potential cell-cell connection of different types of cells is computed.
These feature vectors are used to construct a patch-level graph based on chi-square dis-
tance. We map patch-level nodes to the geometric space by representing each node as a
vector of geodesic distances from other nodes in the network and iteratively drifting the
patch nodes in the direction of positive density gradients towards maximum density re-
gions. The proposed algorithm is evaluated on a publicly available dataset and another
new large-scale dataset consisting of 280K patches of seven tissue phenotypes. The
estimated communities have significant biological meanings as verified by the expert
pathologists. A comparison with current state-of-the-art methods reveals significant
performance improvement in tissue phenotyping.

© 2020 Elsevier B. V. All rights reserved.

1. Introduction

better understand tumor heterogeneity and consequently exploit
it for therapeutic gain (Alizadeh et al. (2015)). Computational

Tumor microenvironment (TME) plays a crucial role in the
development of intra-tumor heterogeneity (ITH) (Marusyk et al.
(2012)). It is, therefore, vital that we develop ways to system-
atically profile spatial characteristics of the TME in order to

*Corresponding author: Tel.: +44-24-7657-3795; fax: +0-000-000-0000;
e-mail: n.m.rajpoot@warwick.ac.uk (Nasir Rajpoot )

pathology is a rapidly emerging discipline (van der Laak et al.
(2018)), spurred by the recent revolution in digital pathology
(DP) imaging which has been shown to be non-inferior to glass
slide based visual assessment by pathologists for routine diag-
nostic purposes (Snead et al. (2016)), concerned with the de-
velopment of computational algorithms for the processing and
analysis of DP images. Automatic tissue phenotyping, identifi-
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Fig. 1: A sample whole slide image of colorectal cancer (CRC) from CRC-TP
dataset. Different tissue components including tumor, stroma, smooth muscle,
necrotic, inflammatory, complex stroma, and benign tissue images are shown in
different colors.

cation, and localization of a diverse range of tissue types, in dig-
itized whole-slide images (WSIs) of tissue slides stained with
routine Hematoxylin & Eosin (H&E) dyes can serve as a build-
ing block towards the development of computational pathol-
ogy tools for systematic digital profiling of the spatial TME
(Kather et al. (2016); Madabhushi and Lee (2016); Nalisnik
et al. (2017); Sari and Gunduz-Demir (2018); Sirinukunwat-
tana et al. (2018) and can be employed for cancer grading and
prognostication Nalisnik et al. (2017); Sirinukunwattana et al.
(2018); Huijbers et al. (2012); Louis et al. (2015)).

Because of the importance of this problem in computational
pathology, a number of approaches have been proposed for
the automatic identification of tissue phenotypes (Kather et al.
(2016, 2019); Nalisnik et al. (2017); Sirinukunwattana et al.
(2018); Bianconi et al. (2015); Huang et al. (2017b); Lazeb-
nik et al. (2006); Linder et al. (2012); Sarkar and Acton (2018);
Srinivas et al. (2014); Tamura et al. (1978); Vu et al. (2016);
Wright et al. (2009); Xu et al. (2016, 2017)). Texture analysis is
a commonly used approach for tissue phenotyping (Kather et al.
(2016); Bianconi et al. (2015); Linder et al. (2012); Tamura
et al. (1978)), whereby texture features such as local binary
patterns and Gabor features of different histology images are
computed to train classifiers which are then used to predict dis-
tinct tissue types. For instance, Sarkar and Acton (2018) re-
cently proposed a saliency guided dictionary approach where
Gabor features were extracted for histology image classifica-
tion. Bianconi et al. (2015) proposed five different kinds of
perception-based texture features, while Linder et al. (2012)
reported a simple SVM classifier trained on a set of local bi-
nary patterns and contrast measure features. Although texture-
based methods may be attractive due to their simplicity, texture
features do not fully capture the biological significance of tis-
sue types resulting in performance degradation (Kather et al.
(2016)).

In recent years, a growing number of deep learning methods
have also been proposed to classify WSIs into distinct tissue

types (Nalisnik et al. (2017); Huang et al. (2017b); Xu et al.
(2016, 2017); Janowczyk and Madabhushi (2016)). Xu et al.
(2016) proposed a fully supervised deep CNN model for seg-
mentation and classification of epithelial and stromal regions
in histology images. Huang et al. (2017b) proposed an unsu-
pervised domain adaptation deep network for segmenting his-
tology images into meaningful regions. Most deep learning
methods for tissue phenotyping share a common denominator
which is their need for large amount of annotated histology
data for training which may be tedious to obtain (Huang et al.
(2017b); Janowczyk and Madabhushi (2016)). Another short-
coming of most existing literature is that although encouraging
results were reported in these studies, most of the current meth-
ods are limited to the discrimination of tumor epithelium and
stroma only (Bianconi et al. (2015), Huang et al. (2017b), Lin-
der et al. (2012), Xu et al. (2016)). Like most solid tumors,
colorectal cancer (CRC) tissue does not consist of only tumor
and stroma components (Kather et al. (2016)). It also contains a
complex rich mix of several other tissue phenotypes including
smooth muscle, inflammatory, necrotic, complex stroma, and
benign tissue, as shown in Fig. 1.

In this paper, we propose the concept of cellular communi-
ties comprising of different types of cells and pose the problem
of tissue phenotyping as a cellular community detection prob-
lem. The premise is that spatially adjacent cells are more likely
to receive intercellular signals from each other than from cells
that are further away. It is also well established that the intercel-
lular signalling between various types of cells in the microen-
vironment can lead to the progression of cancer (Alberts et al.
(2015)). In clinical practice, pathologists consider the spatial
distributions of different cellular components while identifying
complex tissue phenotypes, such as the complex stroma.

Community detection methods have attracted a good deal of
attention in the literature for understanding real-world complex
networks in recent years, see for instance (Fortunato (2010);
Harenberg et al. (2014); Mahmood et al. (2017)). The edges
and nodes in a network are often inhomogeneous, resulting in
groups of nodes with higher concentration of edges known as
communities that share many common attributes and similar
behaviour. Different tissue types such as stroma, tumor, and
necrotic etc., also form local cellular communities which can
play an important role in the interpretation of WSIs as shown in
Fig. 1. We propose a novel semi-supervised community detec-
tion algorithm for automatic recognition of distinct tissue phe-
notypes in a colon cancer WSI. We first construct local cell-cell
networks using potential cell-cell connection between cells as
features and whereby adjacent cells are connected with each
other while distant cells are not, taking into account the various
ranges of cell signalling. Dividing a WSI into several thousand
patches, we then construct a patch-level graph for the WSI us-
ing the cell-cell connection frequencies as features. Finally, we
identify tissue phenotypes by mining in the patch-level graph
for cellular communities that are biologically meaningful and
clinically relevant.

A major limitation of most community detection methods is
the presence of a relatively high number of inter-community
edges which makes the detection of communities difficult (For-
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tunato (2010)). To address this problem, we propose to map
the patch-level network nodes to the geometric space by repre-
senting each node as a vector of geodesic distances from other
nodes in the network. The geodesic density gradient is then
computed in the geodesic space and nodes are drifted towards
maximum density regions (Mahmood et al. (2017)). After the
convergence of the network in the geometric space, simple K-
means clustering algorithm is used to assign community labels
to each patch (see Fig. 1). The nodes in each community repre-
sent biologically meaningful tissue components which are dis-
tinct from the other communities. An earlier version of this
work was presented at the MICCAI Computational Pathology
workshop (Javed et al. (2018)). The main contributions of this
work are as follows:

1. Instead of using texture features to represent a patch of
WSI, we consider the potential cell-cell connections be-
tween various types of cells as representative features of
a patch. These features are biologically more meaning-
ful and better capture the distribution of different types of
cells in the histology patch.

2. We pose the problem of identifying tissue phenotypes as
a community detection problem in histological landscape
where each community represents a distinct tissue pheno-
type, for example tumor, benign, stroma, inflammatory,
complex stroma, and smooth muscle. To the best of our
knowledge, the formulation of tissue phenotyping as com-
munity detection has not been done before. The use of
geodesic density gradients for tissue phenotyping is also
novel and has resulted in significant performance improve-
ment.

3. We propose a new large-scale dataset for tissue pheno-
typing which consists of 280K patches extracted from
20 WSIs of CRC slides stained with H&E. Each slide is
taken from a different patient. Each WSI contains exhaus-
tive region-level annotation of seven distinct tissue pheno-
types labelled by experienced pathologists (KB and KH).
The dataset has two different testing and training settings
including patch-level separation and patient-level separa-
tion. This CRC Tissue Phenotyping (CRC-TP) dataset will
soon be publicly released.

4. An existing dataset known as CRCHistoPhenotypes
I(Sirinukunwattana et al. (2016)) for Cell Detection and
Classification (CDC) has been extended to include five
distinct cell types: tumor epithelial, normal epithelial,
necrotic, spindle-shaped, and inflammatory cells. This
dataset also contains patch-level and patient-level separa-
tions between training and testing splits. The extended
dataset named as CRC-CDC will soon be made publicly
available.

The proposed algorithm is evaluated on two independent
datasets including colon cancer tissue dataset (Kather et al.

Uhttps://warwick.ac.uk/TIAlab/data/crchistolabelednucleihe/

(2016)) and our proposed CRC-TP dataset and compared with
27 recent state-of-the-art methods. The results demonstrate the
superiority of the proposed algorithm over the existing methods
by a significant margin.

The rest of this paper is organized as follows. Recent liter-
ature on tissue phenotyping is given in Section 2. Section 3
describes the proposed algorithm in detail. Experiments and
results are discussed in Section 4, and finally conclusions and
future directions are given in Section 5.

2. Related Work

In the past few years, many studies have investigated his-
tology image classification problem (Bianconi et al. (2015);
Huang et al. (2017b); Kather et al. (2016); Lazebnik et al.
(2006); Linder et al. (2012); Nalisnik et al. (2017); Sarkar and
Acton (2018); Sirinukunwattana et al. (2018); Srinivas et al.
(2014); Tamura et al. (1978); Vu et al. (2016); Wright et al.
(2009); Xu et al. (2016, 2017)). Many excellent surveys have
also been contributed in this direction (Irshad et al. (2014);
Janowczyk and Madabhushi (2016); Komura and Ishikawa
(2018); Madabhushi and Lee (2016); Qaiser et al. (2018); Veta
et al. (2014)). Existing tissue phenotyping approaches can
be broadly categorized into texture-based methods (Bianconi
et al. (2015); Kather et al. (2016); Kothari et al. (2013); Linder
et al. (2012); Tamura et al. (1978)), sparse representation meth-
ods (Sarkar and Acton (2018); Srinivas et al. (2014); Vu et al.
(2016)), and deep learning methods (Bejnordi et al. (2018); Du
et al. (2018); Huang et al. (2017b); Nalisnik et al. (2017); Xu
et al. (2016, 2017)).

Texture-based methods estimate the local texture around a
pixel of the histology image to alleviate the effect of hetero-
geneity (Bianconi et al. (2015); Kather et al. (2016); Kothari
et al. (2013); Linder et al. (2012); Tamura et al. (1978)). These
features consist of Local Binary Patterns (LPB), Gabor fea-
tures, lower and higher order histogram features, gray level co-
occurrence matrix at different directions, and perception-based
features. Texture features of different histology images are first
estimated, and then they are used to train SVM classifiers for
predicting tissue phenotypes. Tamura et al. (1978) proposed
five different perception-based features including coarseness,
contrast, directionality, line-likeness, and roughness. Bianconi
et al. (2015) exploited these perception features for tissue phe-
notyping. Kothari et al. (2013) proposed Fourier shape-based
descriptor for the identification of retinal tumor in images. Lin-
der et al. (2012) proposed to use LBP with contrast measure
features. Encouraging results were reported in these studies.
However, the studies presented in (Bianconi et al. (2015)) and
(Linder et al. (2012)) were limited for the identification of tu-
mor epithelium and stromal tissue phenotypes. To address this
deficiency, Kather et al. (2016) recently proposed to use six dif-
ferent types of texture-based descriptors for the classification
of eight different tissue phenotypes in colon cancer histology
images. Although, the discrimination performance improved,
the texture descriptors do not fully capture the biological sig-
nificance of the tissue components, hence this method is not
very accurate in identifying tumors with complex stroma and
mucosa (Kather et al. (2016)).
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Fig. 2: The framework of our proposed tissue phenotyping algorithm using community detection. (a) An example CRC WSI taken from CRC-TP dataset; (b) A
patch of size 150 x 150 pixels (extracted at 20x magnification level in our CRC-TP dataset); (c) Results of the cell detection and classification method where red,
green, blue, yellow, and black colors represent Tumor epithelial (T), Inflammatory (I), Debris or necrotic (D), Spindle-shaped (S), and Normal epithelial (N) cells;
(d) Construction of cell graph using Delaunay triangulation where nodes represent the spatial locations of cellular components and edges represent potential cell-cell
connections of cellular components; (e) Reduction in heterogeneity by removing cell-cell connections between distant cells; (f) Computation of 15 dimensional
feature vector from each cell graph capturing potential cell-cell connections and distribution of cell nuclei; The bars of single color show cell-cell connection
between similar types of cell, while the bars of two colors represent cell-cell connection between two different cellular components; For example, red bars show
T to T cell-cell connection and red-black bars show T to N cell-cell connection; (g) Patch-based graph construction, where each node is a feature vector of the
corresponding cell graph as shown in (d); (h) Proposed community detection algorithm where different colors represent local tissue communities; The nodes drift
iteratively towards local maximum geodesic density regions resulting in a reduced intra-class distance and increased inter-class distance; (i) Results of the proposed
algorithm where the local tissue communities are overlaid on WSI.

Sparse representation approaches encode a histology image  each tissue phenotype, a different dictionary is learned and
as a sparse linear combination of basis functions or dictionary based on the representation error, tissue phenotypes of test im-
atoms (Lazebnik et al. (2006); Sarkar and Acton (2018); Srini- ages are identified. Srinivas et al. (2014) proposed a multi-
vas et al. (2014); Vu et al. (2016); Wright et al. (2009)). For channel dictionary using the RGB tissue features. Vu et al.
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(2016) proposed a dictionary learning technique trained on in-
creasing the inter-class and decreasing the intra-class variabil-
ity. Sarkar and Acton (2018) recently proposed a saliency-
guided sparse representation approach for multi-class tissue
phenotypes. Results reported in these studies are promising
however, the dictionaries are trained by using the color and tex-
ture features resulting in the performance degradation similar to
the texture-based approaches.

Recently, Deep CNN (DCNN) based methods have also been
proposed for tissue phenotyping (Bejnordi et al. (2018); Du
et al. (2018); Huang et al. (2017b); Nalisnik et al. (2017); Xu
et al. (2016, 2017)). DCNN models learn the rich hierarchy of
convolutional features for each class and then predict the tissue
type. Xu et al. (2016) proposed a DCNN model for classify-
ing breast cancer histology images. Their network comprised
of two convolutional layers, two max-pooling layers, and two
fully connected layers followed by a soft-max layer. Du et al.
(2018) and Huang et al. (2017b) proposed DCNN models in-
corporating the notion of domain adaptation in the AlexNet and
GoogleNet. Xu et al. (2017) improved the AlexNet model for
the segmentation and classification of histology images. Be-
jnordi et al. (2018) proposed three DCNN models for classify-
ing breast cancer WSIs. The first network was trained to clas-
sify WSI into fat, stroma, and epithelium tissues. The second
DCNN processed the stromal regions and predicted the com-
plex stroma regions. The third DCNN was trained to clas-
sify invasive cancer in the WSIs. These studies produced bet-
ter results in many complex situations however, these methods
are limited to binary classification including tumor epithelium
and stroma. Moreover, these methods require large amounts
of labelled training histology data, which may not always be
available. In contrast, we propose a semi-supervised algorithm
which does not require any labelled training data for the classi-
fication of tissue phenotypes.

Most of the existing approaches consider binary classifica-
tion only and rely on texture features. In contrast, we observe
that if the potential cell-cell connections between cellular com-
ponents can be exploited as a discriminator, the performance of
tissue phenotyping can be significantly improved in the pres-
ence of complex tissue structure. Moreover, we propose the tis-
sue classification problem as identifying network communities.
To the best of our knowledge, no similar method has previously
been reported for tissue classification.

3. Tissue Phenotyping via Community Detection

In the proposed tissue phenotyping algorithm, a given WSI
is divided into non-overlapping patches, and in each patch, we
classify cells using a deep neural network. In this study, we
have used a patch size of 150 x 150 pixels at 20x resolution
from each WSI. Based on the cell-cell connections and distri-
bution of different cellular components in each patch, we com-
pute patch-level feature vectors which are then used to compute
a patch-level graph. In this graph, each node represents a lo-
cality contained by a patch. Based on the connections between
different nodes, the patch-level graph is divided into seven his-
tology communities. A schematic diagram of the overall pro-
posed algorithm is shown in Fig. 2. The proposed approach

consists of four main steps including cell detection and classifi-
cation, cell graph construction and computation of cell-cell con-
nections features, construction of patch-level graph, and com-
putation of tissue phenotype communities using a community
detection algorithm. In the following subsections, each of these
steps are explained in more detail.

3.1. Cell Nuclei Identification

In this work, potential cell-cell connections between differ-
ent cellular components has been used as features which are
then used for identifying tissue communities. In order to com-
pute potential cell-cell connections, we first identify different
types of cells in each histology patch referred to as locality. For
this purpose, we use Spatially Constrained Convolutional Neu-
ral Network (SC-CNN) proposed by Sirinukunwattana et al.
(2016) and pre-trained Tunable Shape Priors CNN (TSP-CNN)
proposed by Tofighi et al. (2019) for cell detection. For the
training of SC-CNN for cell detection, nuclei centres were man-
ually marked. A probability map was generated such that max-
imum probability was assigned to the centroid pixels. For the
other pixels, the probability decreases as the distance from the
centroid increases. Using this probability map, the detection
network is trained to assign an appropriate probability to each
pixel in the test patch for being a nuclei centroid.

The classification SC-CNN network proposed by Sirinukun-
wattana et al. (2016) was able to classify only four classes in-
cluding Epithelial, Miscellaneous, Inflammatory, and Fibrob-
last. In the current work, we extended the classification net-
work to predict five distinct classes including Tumor epithelial
(T), Spindle-shaped (S), Debris or necrotic (D), Normal epithe-
lial (N), and Inflammatory (I) cells. Multiple shifted patches
are extracted around each detected nuclei location which are
used for the training of the classification network. The classi-
fication network comprises of two convolution layers and two
max-pooling layers with a stride of 2 X 2, two fully connected
layers followed by the classification layer and the probability
for each label is predicted using soft-max layer. For a test nu-
clei, multiple shifted patches are extracted and classified using
the network and the class label of the test nuclei is computed
from a weighted sum of all the probability maps of the shifted
patches. A patch having a larger distance from the detected nu-
clei is assigned smaller weight compare to a patch closer to the
nuclei. The output of the network is a set of five different types
of cell nuclei shown in Fig. 2 (c).

3.2. Cell Graph Construction

For each patch X; € RP*? (patch size is 150x150 at 20x
magnification level),), we construct a cellular graph such that
the vertices correspond to the spatial locations of cells and the
edges are assigned using Delaunay triangulation (Fig. 2 (d)).
The Delaunay triangulation estimates a triangle for each cell
by finding two nearest cells and inserts edges among the three
cells. We observe that cells on the opposite sides of tissue
constituent white space also known as lumen and endothelium
known as micro-vessels do not communicate to each other. To
avoid these edges, we use a distance threshold between the
cells. The edges between cells which are at a distance larger
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than a threshold are discarded as shown in Fig. 2 (e). By re-
moving these edges, the problem of heterogeneity within the
edges is also reduced.

For each patch, we compute a feature vector by computing
15 potential cell-cell connections between cellular components
including T to T (red), T to I (red and green), T to S (red and
yellow), T to D (red and blue), T to N (red and black), I to I
(green), I to S (green and yellow), I to D (green and blue), I
to N (green and black), S to S (yellow), S to D (yellow and
blue), S to N (yellow and black), D to D (blue), D to N (blue
and black), and N to N (black) as shown in Fig. 2 (f). The cell-
cell connection features are computed as the frequency of each
cell-cell connection in a given cell graph:

h; = Cell—CellConnectionFeat(Afg,lfg), (1)

where Afg is the adjacency matrix of cell graph of iy, patch and
I¥ is the cell labels for each node in the same cell graph, and
h; € R™ represents distribution of cellular components in the
cell-graph, where m = 15. We create an input data matrix for
each WSI as

H = [h;, hy, ..., h,] € R™, (©))

where n denotes the number of patches in the WSI.

3.3. Patch-Level Graph Construction

Using the cell graph feature vectors, we construct an undi-
rected graph G, = (V, A) such that each vertex v; corresponds
to h; in the feature matrix H. The adjacency matrix A € R™" is
computed by employing chi-squared distance as:

A =exp( - M) 3

= hj; +hj;

where h; € R™ and h; € R™ are two feature vectors, and o
is a weight decay control parameter. The adjacency matrix A
represents a weighted graph whereby the weight between two
vertices quantifies the closeness or the similarity between the
corresponding cell graphs. Using the adjacency matrix A, we
compute a geodesic distance matrix G.

G = All-Pairs-Shortest-Paths(A). 4)

The geodesic distance is more meaningful in case the data
is distributed on a nonlinear manifold. In such cases, the chi-
squared distance between two features may be small but cor-
responding geodesic distance may be large. We assume that
the network represented by the adjacency matrix A in Eq. (3) is
fully connected. We represent each network node h; € R” using
its shortest distances from all other nodes in the network g; € R"
also known as geodesic distances using Eq. (4). Note that the
geodesic distance computation acts as a kernel projecting the
feature vector to a higher dimensional space. This projection
results in better separation between different clusters in the tis-
sue phenotype network. The distance between two geodesic
vectors g; and g; in G = [g;, -, g,] is defined as

dij = (&~ 2) W(g —g), 5)

where W € R™" is a diagonal matrix containing weights for
each dimension of the geodesic distance vector. These weights
are adjusted such that the local and global structure of the net-
work becomes equally important (Mahmood et al. (2017)).

Lifp=q=1{ij}
L, ifp=q# i, j), (6)
0, if p#gq.

W(p,q) =

Thus, the weight of the shortest distances corresponding to
p = g = {i,j} becomes 1.00 and the weight of the remain-
ing shortest distances, which are n — 2, also collectively be-
comes 1.00. So, we ensure a balance between direct distances
and indirect distances. Using this definition of distances in the
geodesic space, we compute cellular communities in the patch-
level graph as described below.

3.4. Computing Cellular Communities

In the patch level graph, instead of considering each network
node as a discrete point in the geodesic space, we consider it
yielding a continuous density function. As an example, a den-
sity at a point s induced by a node g; is given by

(_(gi -5)"W(g, - s)

Kislg o) = - o ) %)

2m)3 oy

The parameter o, is the bandwidth of the kernel function in
geodesic space. By varying o, we can vary the probability den-
sity induced by a node at a particular distance from that node.
Each network node is assumed to induce its density in the whole
geodesic space. The probability density at point s induced by
all network nodes gets superimposed. The resulting density is
given by

f(s) =

1 & VWGs-g)
@n)iot Z K( o ) ®

i=1 8

The cumulative density function as defined by Eq. (8) varies
across the space. We intend to drift the network nodes towards
the higher density regions. Each density region corresponds
to a particular tissue phenotype in the WSI. For this purpose,
we compute the gradient of the cumulative density function as
follows

Vfs) =

W SuMen)

enicy &
where V is a gradient operator with respect to each of the di-
mensions of the space. Using the values of K from Eq. (7) and
differentiating it with respect to g as:

WS (V8 g 0) (10)

8 i=1 8

Vi) = 2

where Vf(s) is the estimate of the average density gradient
pointing in the direction of the maximum increase in density. If
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Fig. 3: Representative cluster centres of seven distinct tissye phenotypes using our proposed algorithm. The representative tissue images are also shown in each

tissue phonotype.

each network node is drifted towards positive density gradient,
then nodes will converge towards maximum density regions. In
these regions, the density gradient will approach to zero. It is
because density will be the same in all directions. Assuming s
to be the current estimate of a node, setting Vf(s) = 0, we get
the new estimate as follow:

i1 sexp((g; — )" W(g; = S)/20'§)
XL exp((g = )TW(g; = )/207)

Eq. (11) is repeatedly applied to each node of the network to
get updated node position g1 = gk + As, where g¥ is the cur-
rent position of the node in k" jteration and g*! is the updated
position k + 1 iteration. It results in each node iteratively drift-
ing towards local density maximum. The nodes are assumed to
converge to the final positions when the cumulative drift ry.;
becomes less than a threshold.

k+1
Tkl = Z”g *

In maximum density regions, gradients become very small
therefore most of the nodes may not converge to a single point
in space, instead, most of the nodes stop at different close-by
positions. Therefore, in order to obtain a discrete community
labels, we apply K-means algorithm on the final positions gk+1
of nodes.

As = (11

(12)

{ k+l}

¢ = K-means( "), (13)

where ¢; is the number of tissue communities, and ¢ € R" is
the community label vector. Each cluster indicates a discrete
community corresponding to a particular tissue phenotype. Us-

ing the community labels found by Eq. (13), we compute the
geometric centres for each tissue community for the cell con-
nectivity features given by Eq. (2). These geometric centres c;
are considered as representative samples of each tissue pheno-
type. Figs. 3 (a)-(h) show these representative samples obtained
from each cluster centre. The tissue patches belonging to each
cluster are presented to the experienced pathologists. The com-
puted clusters are biologically meaningful and the pathologists
assigned a distinct tissue phenotype to each cluster including tu-
mor, stroma, complex stroma, smooth muscle, debris, benign,
and inflammatory. Algorithm 1 describes each step of the pro-
posed method. The predicted community labels are compared
with the ground truth labels of each patch using three different
clustering quality measures including normalized mutual infor-
mation, adjusted rank index, and purity as discussed in Section
4.4 below.

4. Experiments and Evaluations

The proposed Tissue Phenotyping using Community Detec-
tion (TPCD) algorithm is evaluated both quantitatively and
qualitatively on two different CRC datasets including Colon
Cancer Tissue (CCT) dataset (Kather et al. (2016)) and our
newly proposed CRC-TP dataset which has two versions. The
first version has patch-level separation between testing and
training data while the second version has patient-level separa-
tion as specified below. The results of tissue phenotyping algo-
rithm are compared with 27 state-of-the-art methods including
12 published methods, 4 deep neural networks-based methods,
5 Graph CNN-based (GCN) methods, and 7 variants of the pro-
posed algorithm. Since, the cell detection and classification are
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Algorithm 1: Proposed Tissue Phenotyping Algorithm.

Input: n image patches X = [X}, Xy, ...
each X; € RP*P,
Ouput: Representative tissue communities such as
Tumor (¢, € R™), Stroma (c; € R™), Debris
(c; € R™), Inflammatory (c;, € R™), Smooth muscle
(cym € R™), Benign (¢, € R™), and Complex stroma
(ccs € R™)
Step 1: Cell detection and classification on each
X; € RP*P,
Step 2: Construct cell-level graph.
Step 2: Compute h; using Eq. (1).
Step 3: Compute H using Eq. (2).
Step 4: Compute A € R™" using Eq. (3).
Step 5: Compute G € R using Eq. (4).
while not converged do
1. Compute drift for each node using Eq. (11).
2. Check convergence according to Eq. (12)
end
Step 6: Compute community labels using Eq. (13).

, X, ], where

pre-processing steps for our proposed tissue phenotyping algo-
rithm, therefore, we also discuss the performance of different
existing methods on our newly proposed CRC-CDC dataset.

4.1. State-of-the-art Compared Methods

4.1.1. Comparison with existing Tissue Phenotyping Methods

We compared our proposed algorithm with the follow-
ing methods: K-Medoids clustering with Chi-square Dis-
tance (KM-CD) (Sirinukunwattana et al. (2018)), Subspace
Clustering (Elhamifar and Vidal (2013)), Dictionary Learn-
ing with KL Divergence (DL-+kldiv) (Mairal et al. (2012)),
Sparse representation-based Compression Distance (SCD)
(Guha and Ward (2014)), Sparse Representation-based Classi-
fication (SRC) (Wright et al. (2009)), Best Five Features with
SVM classification (BSF-SVM) (Kather et al. (2016)), Best Six
Features with SVM classification (B6F-SVM) (Kather et al.
(2016)), Discriminative Features Oriented Dictionary learn-
ing (DFOD) (Vu et al. (2016)), Simultaneous Sparsity model
for Histopathological Image Representation and Classification
(SHIRC) (Srinivas et al. (2014)), Spatial Pyramid Matching
(SPM) (Lazebnik et al. (2006)), Saliency-based Dictionary
Learning with Smoothness constraints (SDLs) (Sarkar and Ac-
ton (2018)), and SVM-CNN (Xu et al. (2017)). All implemen-
tations are obtained from the original authors and we used the
default parameters as proposed by the original authors. We im-
plemented SVM-CNN method for multi-class tissue classifica-
tion (Xu et al. (2017)). We extracted deep features from the
fully connected layer 2 (fc-2) of AlexNet (Krizhevsky et al.
(2012)) and then we trained linear SVM classifier for tissue
phenotyping.

4.1.2. Tissue Phenotyping Using Deep Neural Networks

We compared our methods with the four deep neural net-
works including Mobile DCNN (MobileNet) (Howard et al.
(2017)), deep Residual CNN-50 (ResNet50) (He et al. (2016)),
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Fig. 4: Varying values of threshold to remove distant edges in cellular graph.

ResNet101 (He et al. (2016)), and DenseNet (Huang et al.
(2017a)). These networks were pertained on the ImageNet
database (Deng et al. (2009)). We replaced the classification
layer and fine-tuned these networks with stochastic gradient
descent with a momentum of 0.8. To gauge the performance
of these network architectures, we randomly divided the tis-
sue phenotyping datasets into 70% training set and 30% test-
ing set. We trained all networks on a desktop workstation with
two NVidia Titan Xp GPUs with a mini-batch size of 256 and a
learning rate of 3 X 10~ for 130 epochs. In all cases, rotational
invariance was achieved through data augmentation with ran-
dom horizontal and vertical flips of the training images. Images
were re-sized to the neural network input size if necessary.

4.1.3. Tissue Phenotyping using GCN Methods

The Graph CNN (GCN) methods compute the node embed-
ding of the graph which are then used for node classification
in transductive as well as inductive learning manners. The
labels of the training nodes, feature vectors, and input graph
are fed to GCN methods. We compared our proposed algo-
rithm with five GCN methods including GCN with fast local-
ized Spectral Filtering (GCN-SF) (Defferrard et al. (2016)),
Semi-Supervised classification with GCN (SSC-GCN) (Kipf
and Welling (2017)), GCN for web-scale Recommender Sys-
tems (GCN-RS) (Ying et al. (2018)), Deep Graph Infomax
(DGI) (Velickovi¢ et al. (2019)), and GCN with Arma filters
(GCN-AF) (Bianchi et al. (2019)). These methods are com-
pared with Euclidean distance-based graph as well as our pro-
posed cell features-based patch-level graph given by Eq. (3).
For Euclidean distance-based graph construction, the deep fea-
tures are extracted using the VGG-16 model. The features are
compressed using PCA and the resulting feature vector of di-
mension 128 is obtained for each patch, which is then used for
the distance computation as suggested by (Li et al. (2018)). The
implementations of compared GCN methods are taken from the
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original authors ? and training is performed by using the recom-
mended parameters in the relevant publications.

4.1.4. Proposed Algorithm Variants and Settings

Different steps of the proposed algorithm are evaluated by
designing six variants including TPCD-1, our previous study
referred as TPCD-2 (Javed et al. (2018)), TPCD-3, TPCD-Hist,
SVM-Cellfeatures, TPCD-4, and TPCD-CG. In TPCD-1 algo-
rithm, geodesic distance computation is skipped and the net-
work as given by Eq. (3) is directly used for further process-
ing. TPCD-2 and TPCD-3 algorithms are similar with the only
difference that cells at a relatively larger distance also commu-
nicate in TPCD-2 which results in increased heterogeneity. In
TPCD-3 algorithm, these cell-cell connections are removed us-
ing a threshold on the physical distance between different cellu-
lar components as previously described in Sec. 3.2. In TPCD-
Hist, the histogram of cell types is used as a feature vector while
the remaining processing is similar to TPCD-3. TPCD-4 is
similar to TPCD-3 except for the cell detection component in-
stead of using SC-CNN method proposed by Sirinukuwattana
et al. (Sirinukunwattana et al. (2016)), we have employed a
recently proposed cell detection method known as TSP-CNN
proposed by (Tofighi et al. (2019)). SVM-Cellfeatures consists
of SVM classifier using cell-cell connections features. In SVM-
CellFeatures, SVM-CNN, B5F-SVM, and B6F-SVM methods,
we train the SVM classifier and we used 10-fold cross valida-
tion. Both datasets were randomly divided in 10 parts, and 10
rounds of training and testing were performed. For each subdi-
vision a different 10% subset of the dataset was used for testing
while the other 90% was used for training.

In addition, we also implemented TPCD algorithm on each
Cell-level Graph (TPCD-CG) without exploiting cell classifica-
tion information. From each patch, we constructed cell-level
graph using Delaunay triangulation and then the feature vector
corresponding to three structural properties including average
degree, average clustering coefficient, and diameter (Dorogovt-
sev and Mendes (2002)) of the cell-level graph is computed.
TPCD algorithm is then used to compute the distinct tissue phe-
notypes.

In our experiments, we used a threshold of 45-pixel distance
to remove the distant edges in TPCD-3 algorithm. Performance
variation is investigated by varying this threshold from 10 to
60 in steps of 5 as shown in Fig. 4. The best performance is
observed for a threshold of 45. In Eq. 12, the cumulative drift
rr+1 18 bounded to be more than 0.003. For 7. < 0.003, further
iterations are stopped.

4.2. Datasets
4.2.1. Proposed Cell Detection and Classification Dataset
(CRC-CDC)

An earlier study of cell detection and classification was per-
formed on CRCHistoPhenotypes dataset® consisting of 100 H
& E stained histology images obtained from 9 patients (Sir-
inukunwattana et al. (2016)). This dataset had four cell classes

Zhttps://github.com/rusty 1s/pytorch_geometric
3https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/

including epithelial, inflammatory, miscellaneous, and fibrob-
last. The epithelial class contained both normal epithelial and
tumor-epithelial cells. Therefore, tissue phenotyping based on
these classes resulted in the same community label for the tu-
mor and the benign phenotypes which is an undesired result. In
order to differentiate tumor from benign tissue phenotype, we
have to re-label normal epithelial cells and tumor epithelial cells
separately. In the current study, we extend the CRCHistoPhe-
notypes dataset to 256 H & E stained images of CRC ob-
tained from 20 different patients and containing five distinct cell
classes including tumor epithelial, normal epithelial, spindle-
shaped, inflammatory cells, and necrotic. The extended version
is named as CRC-CDC dataset in which each visual field con-
tains 500 x 500 pixels extracted at 20x magnification level. For
the annotations purpose, the same protocol was used as reported
by the previous study (Sirinukunwattana et al. (2016)). Manual
annotations of cell nuclei are made by experienced pathologists
(YT and KH) and partly by a research fellow under the super-
vision of the same pathologists. After full annotations, each an-
notated nuclei was reviewed by both of the pathologists; there-
fore refining their own and each others annotations. Annotating
the data in this way ensured that minimal nuclei were missed
in the annotation process. However, we cannot avoid inevitable
few pixel difference between the annotation and the true nu-
clei centre. A total of 38,984 nuclei are marked at the centre
for detection purposes. Out of these, 30,531 nuclei have as-
sociated class labels. In total, there are 7,231 tumor epithelial
cells, 6, 545 normal epithelial cells, 5, 712 spindle-shaped cells,
6,971 inflammatory cells, and 4, 072 necrotic cells.

To test the generalization of the cell detection and classifi-
cation network SC-CNN (Sirinukunwattana et al. (2016)), two
experimental settings are used. In the first experiment, 70% nu-
clei are randomly selected for training and the remaining 30%
nuclei are used for testing. In the second experiment, patient-
level separation is maintained by keeping the images from 14
patients as training data while the images of the remaining 6
patients are used for testing data.

4.2.2. Colon Cancer Tissue (CCT) Dataset

The CCT dataset contains eight different types in human
CRC histology obtained from H&E stained slides of CRC sam-
ples (Kather et al. (2016)). The tissue categories are manually
annotated and overlapping patches of size 150 x 150 extracted
from these samples. The 8 categories are: tumor, stroma, com-
plex structured stroma, lymphocytes, debris, mucosa, adipose,
and background. Due to a lack of cellular structure, the back-
ground and adipose classes are not considered in our experi-
ments. Sample images from the remaining 6 tissue classes are
shown in Fig. 5. There are a total of 3,750 images in these 6
classes, with 625 images per class.

4.2.3. Proposed CRC Tissue Phenotyping (CRC-TP) Dataset
This dataset consists of 280K patches extracted from 20
WSIs of CRC stained with H & E taken from our local Uni-
versity Hospitals Coventry and Warwickshire (UHCW) for tis-
sue phenotyping. The 20 WSIs are obtained from 20 different
patients. Each WSI is manually region-level annotated by ex-
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Fig. 5: Sample images of six and seven tissue phenotypes from CCT dataset (Kather et al. (2016)) and our newly proposed CRC-TP dataset. From left to right; (a)
Tumor, (b) Stroma, (c) Complex Stroma, (d) Debris, (e) Inflammatory or Lymphoytes, (f) Benign or Mucosa, and (g) Smooth muscle. The blue boundary line shows
the sample images of CRC-TP dataset while green boundary line shows the samples 1mages of CCT dataset.

Table 1: Comparative performance of nuclei detection and classification in terms of average F; score for detection and weighted average F score for classification
on CRCHistoPhenotypes and CRC-CDC datasets. The combined performance represents the performance of both nuclei detection and classification. The two best
results are shown in red and blue colors, respectively.

Detection Performance

Classification Performance

Combined Performance

Datasets Methods (F) score) (4 Nuclei Classes) (Nuclei Detection + 4 Nuclei Classes)
(Weighted Average F score) (Weighted Average F score)

SC-CNN (Sirinukunwattana et al. (2016)) 0.80 0.78 0.69

TSP-CNN(Tofighi et al. (2019)) 0.85 - -
TSP-CNN+SC-CNN - - 0.73

ResNet50 (He et al. (2016)) - 0.74 -

CRCHisto Dataset DenseNet (Huang et al. (2017a)) - 0.70 -
(Sirinukunwattana et al. (2016)) SC-CNN+ResNet50 - - 0.66
(4 Nuclei Classes) SC-CNN+DenseNet - - 0.61
(29,756 Annotated Nuclei) TSP-CNN+ResNet50 - - 0.69
TSP-CNN+DenseNet - - 0.67

Detection Performance

Classification Performance

Combined Performance

(F, score) (5 Nuclei Classes) (Nuclei Detection + 5 Nuclei Classes)
(Weighted Average F score) (Weighted Average F score)
SC-CNN (Sirinukunwattana et al. (2016)) 0.83 0.86 0.78
TSP-CNN(Tofighi et al. (2019)) 0.87 - -
TSP-CNN+SC-CNN - - 0.80
ResNet50 (He et al. (2016)) - 0.77 -
CRC-CDC Dataset DenseNet (Huang et al. (2017a)) - 0.76 -
(Proposed) SC-CNN+ResNet50 - - 0.71
(5 Nuclei Classes) SC-CNN+DenseNet - - 0.68
(38,984 Annotated Nuclei) TSP-CNN+ResNet50 - - 0.74
TSP-CNN+DenseNet - - 0.72

Detection Performance

Classification Performance

Combined Performance

(F) score) (5 Nuclei Classes) (Nuclei Detection + 5 Nuclei Classes)
(Weighted Average F score) (Weighted Average F score)
SC-CNN (Sirinukunwattana et al. (2016)) 0.82 0.83 0.75
TSP-CNN(Tofighi et al. (2019)) 0.86 - -
TSP-CNN+SC-CNN - - 0.79
ResNet50 (He et al. (2016)) - 0.71 -
CRC-CDC Dataset DenseNet (Huang et al. (2017a)) - 0.69 -
(Proposed) SC-CNN+ResNet50 - - 0.67
(5 Nuclei Classes) SC-CNN+DenseNet - - 0.65
(38,984 Annotated Nuclei) TSP-CNN+ResNet50 - - 0.70
(Patient-Level Separation) TSP-CNN+DenseNet - - 0.69

pert pathologists (KB and KH) for seven distinct tissue pheno-
types. Out of 20 WSIs, the tumor regions were marked from
five WSIs, stroma from three WSIs, complex stroma from four

WSIs, smooth muscle from two WSIs, Inflammatory from three
WSIs, Benign from four WSIs, while the Debris regions were
marked from four WSIs. Using these boundaries, patches were
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extracted and each patch was assigned a unique label based on
majority of its content. Each patch and its label were then in-
spected by the same pathologists and verified correctness of the
patch and its label. Patches containing significant pixels from
more than one phenotype were discarded. Therefore, in the re-
sulting dataset, patch of a particular phenotype mostly contains
one tissue phenotype however, we cannot avoid the presence of
small percentage of other phenotypes in addition to the identi-
fied label. Overal, the dataset consists of SOK patches each for
Tumor (Tu), Stroma (St), Complex Stroma (CS), and Smooth
Muscle (SM) phenotypes. Each of the Benign (Be) and Inflam-
matory (In) phenotypes consist of 30K patches while the Debris
(De) class consists of 20K patches. Following the Kather et al.
(2016), the patch size is fixed to 150 x 150 pixels extracted at
20x magnification level and the patches are non-overlapping.
Fig. 5 shows some sample tissue images from the proposed
dataset.

To test the generalization of the proposed tissue phenotyp-
ing algorithm and compared methods, two experimental set-
tings are used. In the first experiment, 70% patches of each
tissue phenotype are randomly selected for training and remain-
ing 30% are used for testing. In the second experiment, patient-
level separation is maintained by keeping 14 patients data for
training and remaining 6 patients data for testing. The number
of patches are kept same in both experiments.

4.3. Cell Detection and Classification Performance on CRC-
CDC Dataset

For cell detection and classification, we compare the
performance of the SC-CNN and TSP-CNN methods on
CRCHistoPhenotypes dataset and on our proposed CRC-CDC
dataset with nuclei-level separation and with patient-level sep-
aration. The SC-CNN has two different networks one for nu-
clei detection and one for nuclei classification as discussed in
Sec. 3.1 while, TSP-CNN has only detection network there-
fore, we also combined SC-CNN classification network with
TSP-CNN to get the combined detection and classification per-
formance. In addition to SC-CNN cell classification network,
we also evaluated the performance of ResNet50 and DenseNet
for cell classification. The SC-CNN detection network is re-
trained on CRC-CDC dataset while TSP-CNN # was pre-trained
on CRCHistoPhenotypes dataset. The classification networks
including SC-CNN, ResNet50, and DenseNet are trained on
CRC-CDC dataset for five distinct nuclei classes.

For SC-CNN networks, we use input patch size of 27x27 pix-
els containing a single cell, cropped by keeping the nuclei at the
centre position. We also use data augmentations in which we
rotate patches (0°, 90°, 180°, and 270°) and flip along vertical
and horizontal axis to make the networks orientation indepen-
dent. We also extracted multiple patches for the same nuclei at
shifted locations to make the networks shift invariant and to im-
prove the cell localization. For network training, we used cross
entropy loss function with stochastic gradient descent with mo-
mentum of 0.9, 120 epochs, and learning rate was set as 1073,

“http://php.scripts.psu.edu/mqt5352/SP-CNN/SP-CNN.php

For ResNet50 and DenseNet, the input patch size is enlarged as
required by the respective network.

We followed the same two-fold cross validation procedure
for performance evaluation as suggested by (Sirinukunwattana
et al. (2016)). The nuclei detected within 6-pixel distance from
the ground truth locations are considered as True Positives (TP).
The nuclei detection performance is evaluated using F; mea-
sure score as:

Precision X Recal

Fi=2x h
! Precision + Recall’ ere (14)
Precisi TP Recall TP
r = -
o= rp i Ep YT TPY N

and False Positives (FP) are incorrectly detected nuclei, while
False Negatives (FN) are miss-detected nuclei. The aim is to
maximize F| measure so that its value is close to one.

Table 1 shows the performance of nuclei detection in terms
of Fy score averaged over all test images. For CRCHistoPhe-
notypes dataset, TSP-CNN has obtained the highest F; score of
0.85 while SC-SNN has obtained 0.80 F score. On CRC-CDC
dataset with nuclei-level separation experiment, TSP-CNN has
obtained 0.87 while SC-CNN has obtained 0.83 average F
score. For the CRC-CDC dataset with patient-level separa-
tion, TSP-CNN has obtained 0.86 while SC-CNN has obtained
0.82 average F score. As compared to nuclei-level separa-
tion CRC-CDC, the performance is 1% less for both methods
which demonstrates that the patient-level separation has posed
an equal challenge for both methods.

To evaluate the cell classification performance, the weighted
average F score is used as follows:

= Y niF

F (15)

n
where ¢; is the number of cell classes, n; is the number of test
samples in i-th class, and 7 is the total number of test samples.
Table 1 shows the comparison of cell classification performance
using ground truth cell detection as well as combined detection
and classification performed by compared methods.

On CRCHistoPhenotypes dataset for 4 nuclei classes, SC-
CNN has obtained 0.78 while ResNet50 has obtained 0.74
weighted average F score using ground truth nuclei annota-
tions. The combined performance of TSP-CNN+SC-CNN is
0.73 while SC-CNN has obtained 0.69 weighted average F
score. The combined performance is reduced because the nu-
clei detection by respective networks is performed instead of
using ground truth annotations.

On CRC-CDC dataset with nuclei-level separation for five
nuclei classes including Tumor epithelial (T), Normal epithe-
lial (N), Inflammatory (I), Spindle-shaped (S), and Debris (D),
the SC-CNN has obtained 0.86 and ResNet50 has obtained 0.77
weighted average F score using ground truth nuclei annota-
tions. However, the combined performance of TSP-CNN+SC-
CNN has remained 0.80 while the second best performing
method is SC-CNN by obtaining weighted average F score of
0.78.

For the CRC-CDC dataset with patient-level separation,
SC-CNN has obtained 0.83 and ResNet50 has obtained 0.71
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weighted average F score using ground truth nuclei annota-
tions. In case of combined performance, TSP-CNN+SC-CNN
has obtained 0.79 while SC-CNN has obtained 0.75 weighted
average F score. For patient-level separation, the performance
of SC-CNN has reduced by 3% while TSP-CNN+SC-CNN is
reduced by 1% compared to nuclei-level separation combined
performance results.

The combined performance of cell detection and classifica-
tion has remained best for TSP-CNN+SC-CNN while SC-CNN
has remained the second best performing method. Both of these
methods are used as a pre-processing steps for the proposed tis-
sue phenotyping algorithm.

4.4. Clustering Performance

The clustering performance of the proposed algorithm is
evaluated using three different clustering measures including
Normalized Mutual Information (NMI) Schiitze et al. (2008),
Adjust Rand Index (ARI) Zhao and Karypis (2004), and Purity
Zhao and Karypis (2004) on CCT and CRC-TP with patch-level
separation datasets. The NMI is computed as follows:

P Z;Ll m jlog(nm; j/m;m)
NMI = — — )
iy milog(mi/n) 37,0, mjlog(m;/n)

where ¢; are the number of classes in the ground truth, ¢y are the
number of found classes, m; ; is the two dimensional joint prob-
ability of ground truth and the found classes, m; is the marginal
probability of ground truth, and m; is the marginal probability
of found classes. A higher value of NMI shows better cluster-
ing performance of an algorithm. The ARI represents the per-
centage of TP and True Negative (TN) decisions over testing
samples as defined below:

1 <~ TP+ TN,
ARIerep) = 30— =, (17)

i=l1 n

The ARI value is in the range of [0,1] and higher values rep-
resent better clustering performance. Similarly, the Purity mea-
sure represents the percentage of the total number of nodes clus-
tered correctly. Let Q = {wy, - - -, wy} be the computed clustered
labels and C = {cy, -+, ¢} be ground truth class labels, the purity
is defined as below:

1
Purity(Q,C) = — > maxiwg N ¢, (18)
n T J

where [wiNc | represents the number of nodes in the intersection
of wy and c;.

Table 2 shows the performance comparison of our proposed
tissue phenotyping algorithms with other state-of-the-art meth-
ods on CCT dataset having six tissue phenotypes. On the aver-
age, TPCD-4 has remained the best performer for all the three
clustering measures NMI, ARI, and Purity, while TPCD-3 has
remained the second best performer. It is because of the better
performance of TSP-CNN for cell detection in TPCD-4 algo-
rithm compared to SC-CNN in TPCD-3. By considering the
tissue phenotype-wise performance, TPCD-4 has remained the

best performer for the Tumor, Stroma, and Debris tissue com-
ponents on all three measures. For the complex stroma tissue
phenotype, TPCD-4 obtained the best performance for NMI and
ARI while for Purity measure SPM has remained the best per-
former. For Mucosa, TPCD-4 performed best for ARI and Pu-
rity measures while for NMI, B6F-SVM has remained the best
performer. For the Lymphocytes tissue phenotype, TPCD-3 and
TPCD-4 both remained the best performers for ARI and Purity
while for NMI, B6F-SVM performed best.

Table 3 shows the performance comparison of different clus-
tering methods on CRC-TP dataset having seven distinct tissue
phenotypes. On the average, TPCD-4 obtained the best per-
formance while TPCD-3 remained the second best performer
on all three measures. In terms of tissue phenotype-wise per-
formance, TPCD-4 has remained best performer for Tumor and
Complex Stroma phenotypes for all three measures. For Stroma
tissue phenotype, TPCD-4 has remained best for NMI and ARI
measures while for Purity, ResNet achieved the best perfor-
mance. For the Benign class, TPCD-4 performed best for NMI
and ARI, while TPCD-2 performed best in terms of Purity. For
Debris class, TPCD-4 remained best for NMI and ARI while
for Purity the TPCD-2 remained the best performer. For in-
flammatory class, the TPCD-4 performed best in terms of NMI
while TPCD-2 remained best in terms of ARI and Purity. For
the Smooth Muscle tissue phenotype, TPCD-4 performed best
in terms of NMI and Purity while TPCD-2 performed best in
terms of ARI and Purity.

4.5. Performance Comparison on CCT Dataset

We compare the performance of the proposed algorithms
with the current state-of-the-art methods in terms of F; score
for tissue phenotyping. In CCT dataset, all tissue classes have
an equal number of instances therefore, the average F and
weighted average F' scores remain the same. Since, this dataset
has only tissue phenotype labels at patch-level therefore, the
cell detection and classification is performed by using SC-CNN
network trained on CRC-CDC dataset. In order to remove
the stain differences between CRC-CDC and CCT datasets, we
have used the Macenko method for stain normalization as a pre-
processing step Macenko et al. (2009).

Table 4 shows the comparative performance in terms of av-
erage I score of six tissue phenotypes on CCT dataset. The
proposed algorithms TPCD-4 and TPCD-3 have remained the
best performers by achieving 94.5% and 94.0% average F,
score. The TPCD-2 has obtained average F score of 92.5%
while the nearest competitors are DenseNet and B6F-SVM
which obtained 89.5% and 89.7%. For tumor phenotype, the
GCN method, GCN-AF, has obtained 0.86 F| score using deep
features-based Euclidean distance graph and using our pro-
posed cell features-based graph (Eq. 3), the GCN-AF has ob-
tained 0.88 F score. All the compared methods have obtained
less than 0.90 F; score except for DenseNet and ResNet101
both obtaining 0.91 F; score. The proposed variants TPCD-2,
TPCD-3, and TPCD-4 have obtained 0.92, 0.95, and 0.95 F,
score, respectively.

For Stroma phenotype, majority of the compared methods
have obtained less than 0.90 F; score except KM-CD (0.92).
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Table 2: Clustering performance of the proposed algorithm in terms of NMI, ARI, and Purity measures on CCT dataset (Kather et al. (2016)) and its comparison
with state-of-the-art methods. The best performer is shown in red and the best second best performer is shown in blue color, respectively.

Methods Clustering Measures | Tumor | Stroma | Complex Stroma | Mucosa | Debris | Lymphocytes | Average
NMI 0.67 0.79 0.69 0.68 0.74 0.70 0.71
ResNet ARI 0.91 0.93 0.96 0.95 0.90 0.94 0.93
Purity 0.88 0.95 0.79 0.80 0.88 0.92 0.87
NMI 0.70 0.68 0.74 0.66 0.68 0.62 0.68
DL-KLdiv ARI 0.85 0.82 0.84 0.82 0.87 0.86 0.84
Purity 0.77 0.80 0.61 0.58 0.77 0.78 0.71
NMI 0.71 0.65 0.59 0.61 0.78 0.67 0.66
MobileNet ARI 0.88 0.90 0.93 0.90 0.89 0.92 0.90
Purity 0.77 0.65 0.63 0.67 0.69 0.63 0.67
NMI 0.66 0.56 0.57 0.65 0.69 0.68 0.63
SCD ARI 0.85 0.86 0.87 0.90 0.88 0.86 0.87
Purity 0.48 0.77 0.50 0.62 0.60 0.64 0.60
NMI 0.70 0.74 0.67 0.69 0.75 0.77 0.72
BSF-SVM ARI 0.90 0.93 0.92 0.95 0.94 0.93 0.92
Purity 0.88 0.82 0.80 0.88 0.82 091 0.85
NMI 0.71 0.70 0.79 0.82 0.74 0.87 0.77
B6F-SVM ARI 0.93 0.96 0.95 0.97 0.96 0.95 0.95
Purity 0.88 0.82 0.80 0.89 0.81 091 0.85
NMI 0.68 0.75 0.72 0.64 0.71 0.76 0.71
SDLs ARI 0.85 0.87 0.89 0.90 0.92 0.91 0.89
Purity 0.72 0.80 0.70 0.74 091 0.87 0.79
NMI 0.73 0.67 0.64 0.71 0.78 0.80 0.72
DFOD ARI 0.89 091 0.94 0.90 0.92 0.94 091
Purity 0.81 0.90 0.81 0.87 0.97 0.73 0.84
NMI 0.69 0.70 0.62 0.66 0.68 0.65 0.66
SPM ARI 0.79 0.82 0.77 0.83 0.81 0.80 0.80
Purity 0.89 0.94 0.90 0.76 0.82 0.83 0.85
NMI 0.54 0.59 0.69 0.54 0.52 0.60 0.58
SRC ARI 0.82 0.80 0.78 0.83 0.80 0.86 0.81
Purity 0.76 0.88 0.57 0.65 0.70 0.83 0.73
NMI 0.77 0.72 0.75 0.72 0.78 0.82 0.76
KM-CD ARI 0.87 0.90 0.92 0.95 0.94 0.97 0.92
Purity 0.90 0.93 0.67 0.82 0.87 0.97 0.86
NMI 0.62 0.51 0.69 0.51 0.49 0.52 0.55
Subspace Clustering ARI 0.80 0.83 0.81 0.85 0.80 0.87 0.82
Purity 0.70 0.45 0.61 0.71 0.60 0.67 0.62
NMI 0.69 0.71 0.77 0.80 0.79 0.78 0.75
SHIRC ARI 0.84 0.87 0.85 0.82 0.88 0.90 0.86
Purity 0.83 0.76 0.75 0.88 0.78 0.84 0.80
NMI 0.71 0.73 0.81 0.76 0.84 0.80 0.77
TPCD-2 ARI 0.92 091 0.95 0.94 0.96 0.97 0.94
Purity 0.95 0.96 0.78 0.91 0.96 0.98 0.92
NMI 0.76 0.78 0.85 0.80 0.87 0.84 0.81
Proposed TPCD-3 ARI 0.98 0.98 0.96 0.97 0.99 0.99 0.97
Purity 0.98 0.97 0.83 0.94 0.98 0.99 0.94
NMI 0.78 0.80 0.86 0.81 0.89 0.85 0.83
Proposed TPCD-4 ARI 0.98 0.99 0.97 0.99 0.99 0.99 0.98
Purity 0.98 0.98 0.85 0.94 0.98 0.99 0.95

The proposed algorithms TPCD-1, TPCD-2, TPCD-3, and
TPCD-4 have obtained 0.92, 0.94, 0.95, and 0.96 F| score,
respectively. The Complex Stroma is one of the difficult tis-
sue phenotypes for discriminating it from the tumor class. The
DenseNet has produced the best F; score of 0.89 while our
proposed algorithm variants SVM-CellFeatures, TPCD-3, and
TPCD-4 have obtained 0.87, 0.87, and 0.88 F; score, respec-
tively. The proposed algorithms TPCD-3 and TPCD-4 are suc-
cessful in obtaining comparative performance by leveraging
the potential cell-cell connections between cellular components
while most existing methods are suffered from performance
degradation due to texture features which are not able to handle
rich tissue heterogeneity.

In the case of Mucosa tissue, B6F-SVM has obtained the best
performance of 0.94 while our proposed algorithms TPCD-2,
TPCD-3, and TPCD-4 have obtained 0.90, 0.92, and 0.93 F;
sore, respectively. Most of the existing methods have achieved

less than 0.90 F; score for Mucosa tissue which shows that
Mucosa tissue pose a significant challenge to all the compared
methods. The Debris and Lymphocytes are well differenti-
ated phenotypes therefore; these classes do not pose a signif-
icant challenge for the majority of the compared methods. The
TPCD-2, TPCD-3, and TPCD-4 algorithms have obtained the
best F; scores of 0.96, 0.97, and 0.97, respectively, for De-
bris and 0.97, 0.98, and 0.98, respectively, for Lymphocytes.
In Debris, the nearest competitor is ResNet101 obtaining 0.92
while in case of Lymphocytes KM-CD obtained 0.95 compared
to 0.98 obtained by TPCD-3 and TPCD-4.

The proposed variant TPCD-Hist which uses number of cell-
types as a feature vector is also not able to obtain the compara-
tive performance. The better performance achieved by our pro-
posed algorithm variants is mainly leveraged by proposed cell-
cell connections features.
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Table 3: Clustering performance of the proposed algorithm in terms of NMI, ARI, and Purity measures on CRC-TP dataset and its comparison with state-of-the-art
methods. The best performer is shown in red and the best second best performer is shown in blue color, respectively.

Methods Clustering Measures | Tumor | Stroma | Complex Stroma | Benign | Debris | Inflammatory | Smooth Muscle | Average
NMI 0.71 0.82 0.73 0.82 0.78 0.72 0.73 0.75
ResNet ARI 0.93 0.94 0.97 0.96 0.92 0.96 0.94 0.94
Purity 0.90 0.96 0.82 0.81 0.90 0.93 0.95 0.89
NMI 0.72 0.69 0.76 0.69 0.71 0.64 0.67 0.69
DL-KLdiv ARI 0.88 0.84 0.85 0.84 0.89 0.89 0.93 0.87
Purity 0.79 0.82 0.63 0.61 0.79 0.81 0.83 0.75
NMI 0.75 0.68 0.62 0.65 0.81 0.71 0.75 0.71
MobileNet ARI 0.90 0.92 0.95 091 0.92 0.93 0.95 0.81
Purity 0.79 0.68 0.66 0.72 0.75 0.67 0.67 0.70
NMI 0.68 0.59 0.59 0.68 0.72 0.72 0.74 0.67
SCD ARI 0.88 0.89 0.91 0.93 0.92 0.90 0.90 0.90
Purity 0.51 0.79 0.53 0.64 0.62 0.67 0.69 0.63
NMI 0.72 0.75 0.69 0.72 0.77 0.79 0.82 0.74
B5F-SVM ARI 0.92 0.94 0.95 0.95 0.96 0.94 0.94 0.94
Purity 0.90 0.84 0.82 0.90 0.86 0.93 0.95 0.88
NMI 0.73 0.69 0.76 0.80 0.71 0.84 0.85 0.76
B6F-SVM ARI 0.90 091 0.94 0.94 091 0.89 0.91 091
Purity 0.89 0.84 0.82 0.85 0.78 0.87 0.89 0.84
NMI 0.67 0.70 0.68 0.61 0.68 0.71 0.73 0.68
SDLs ARI 0.81 0.85 0.87 0.86 0.84 0.89 0.90 0.86
Purity 0.74 0.82 0.69 0.72 0.86 0.83 0.85 0.78
NMI 0.74 0.65 0.66 0.69 0.74 0.78 0.80 0.72
DFOD ARI 0.85 0.87 0.91 0.86 0.87 091 0.93 0.88
Purity 0.80 0.89 0.79 0.84 0.92 0.71 0.73 0.81
NMI 0.64 0.67 0.59 0.62 0.66 0.62 0.63 0.63
SPM ARI 0.77 0.80 0.74 0.79 0.78 0.78 0.80 0.78
Purity 0.86 0.90 0.87 0.74 0.79 0.80 0.82 0.82
NMI 0.56 0.57 0.71 0.52 0.50 0.57 0.61 0.57
SRC ARI 0.80 0.79 0.80 0.85 0.82 0.83 0.84 0.81
Purity 0.78 0.85 0.59 0.68 0.73 0.85 0.87 0.76
NMI 0.81 0.74 0.77 0.74 0.80 0.84 0.85 0.79
KM-CD ARI 0.90 0.92 0.94 0.94 0.96 0.95 0.96 0.93
Purity 0.89 0.88 0:69 0.84 0.86 0.93 0.95 0.86
NMI 0.59 0.48 0.64 0.49 0.50 0.50 0.53 0.53
Subspace Clustering ARI 0.77 0.79 0.75 0.74 0.77 0.78 0.80 0.77
Purity 0.68 0.48 0.59 0.68 0.56 0.64 0.63 0.60
NMI 0.71 0.72 0.76 0.78 0.75 0.74 0.74 0.74
SHIRC ARI 0.81 0.84 0.80 0.80 0.86 0.87 0.90 0.84
Purity 0.85 0.79 0.77 0.90 0.82 0.86 0.90 0.84
NMI 0:75 0.74 0.85 0.79 0.85 0.82 0.84 0.80
TPCD-2 ARI 0.94 0.92 0.96 0.95 0.97 0.97 0.98 0.95
Purity 0.96 0.95 0.81 0.93 0.97 0.95 0.96 0.93
NMI 0.78 0.80 0.86 0.84 0.89 0.85 0.87 0.84
Proposed TPCD-3 ARI 0.98 0.97 0.95 0.97 0.98 0.96 0.94 0.96
Purity 0.95 0.93 0.91 0.91 0.89 091 0.95 0.92
NMI 0.83 0.84 0.89 0.85 0.91 0.88 0.89 0.87
Proposed TPCD-4 ARI 0.99 0.99 0.98 0.99 0.98 0.96 0.95 0.97
Purity 0.98 0.94 0.92 0.91 0.90 0.92 0.96 0.93

4.6. Performance Comparison on CRC-TP Dataset

The evaluations on this dataset are performed in two differ-
ent settings including patch-level separation and patient-level
separation as discussed in section 4.2.3.

4.6.1. Evaluation with Patch-Level Separation

Table 5 shows the performance comparison in terms of F-
score (F) for seven distinct tissue phenotypes and weighted
average F-score (F) over all classes with other state-of-the-
art methods. The proposed algorithms TPCD-3 and TPCD-4
have performed best on CRC-TP dataset with F of 0.91 and
0.89. The removal of distant cell-cell connections in TPCD-3
has reduced heterogeneity and therefore improved the accuracy
by 1.0% as compared to TPCD-2. TPCD-1 has obtained 0.834
F which is still competitive with compared methods. The in-
clusion of Geodesic distance in TPCD-4 algorithm has caused

upto 7.0% increase in accuracy as compared to TPCD-1, there-
fore Geodesic distance is an important step in our proposed
algorithm. Among the compared methods, ResNetl01 and
DenseNet have achieved an F of 0.87 and 0.86 F close to
TPCD-2.

In tumor phenotype, our proposed algorithm TPCD-4 has ob-
tained 0.96 and TPCD-3 has obtained 0.95 which are signif-
icantly larger than the compared methods. The nearest com-
petitors are TPCD-2 and ResNet101 both obtaining 0.93 F. In
stroma phenotype, TPCD-4 and TPCD-3 are the best perform-
ing algorithms obtaining a F' of 0.94 and 0.93 while our pro-
posed TPCD-2 has obtained 0.90 :If . The nearest competitor is
TPCD-1 which has obtained 0.89 F while among the compared
methods ResNet101 obtained 0.87 F. In complex stroma phe-
notype, both TPCD-4 and TPCD-3 algorithms have obtained
0.87 F. Tt is because of the cell detection performance of SC-
CNN in TPCD-3 algorithm approached to the performance of
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Table 4: Comparative performance of multi-class tissue classification on Colon Cancer Tissue (CCT) dataset (Kather et al. (2016)). Performance is presented in
terms of F| score for each tissue phenotype and average F' score in (%) for all tissue components. The two best results are shown in red and blue fonts respectively.

Classical Methods Tumor | Stroma | Complex | Mucosa | Debris | Lympho | F)
KM-CD (Sirinukunwattana et al. (2018)) 0.85 0.92 0.71 0.81 0.91 0.95 85.1
Subspace Clustering (Elhamifar and Vidal (2013)) | 0.62 0.68 0.50 0.56 0.68 0.70 62.5
DL-KLdiv (Mairal et al. (2012)) 0.80 0.83 0.64 0.76 0.86 0.70 76.4
SCD (Guha and Ward (2014)) 0.59 0.63 0.71 0.69 0.65 0.78 67.4
SRC (Wright et al. (2009)) 0.63 0.70 0.73 0.76 0.80 0.79 73.5
BSF-SVM (Kather et al. (2016)) 0.86 0.85 0.84 0.86 0.84 0.86 85.2
B6F-SVM (Kather et al. (2016)) 0.87 0.88 0.85 0.94 0.90 0.90 89.7
DFOD (Vu et al. (2016)) 0.81 0.88 0.79 0.80 0.84 0.78 81.3
SHIRC (Srinivas et al. (2014)) 0.79 0.81 0.80 0.82 0.80 0.81 80.3
SPM (Lazebnik et al. (2006)) 0.85 0.83 0.87 0.80 0.85 0.79 83.6
SDLs (Sarkar and Acton (2018)) 0.76 0.80 0.67 0.71 0.91 0.91 79.3
Deep Learning Methods Tumor | Stroma | Complex | Mucosa | Debris | Lympho | F;
DenseNet (Huang et al. (2017a)) 0.91 0.88 0.89 0.87 0.91 0.92 89.5
SVM-CNN (Xu et al. (2017)) 0.81 0.78 0.80 0.79 0.82 0.80 80.0
ResNet50 (He et al. (2016)) 0.83 0.82 0.84 0.82 0.85 0.84 83.7
ResNet101 (He et al. (2016)) 0.91 0.88 0.88 0.86 0.92 0.91 89.2
MobileNet (Howard et al. (2017)) 0.73 0.72 0.71 0.71 0.80 0.75 73.2
Euclidean distance-based Deep GCN Methods Tumor | Stroma | Complex | Mucosa | Debris | Lympho | F;
GCN-RS (Ying et al. (2018)) 0.82 0.80 0.78 0.73 0.82 0.84 79.8
DGI (Velickovic et al. (2019)) 0.84 0.82 0.80 0.78 0.84 0.83 81.8
GCN-SF (Defferrard et al. (2016)) 0.72 0.70 0.68 0.75 0.78 0.80 73.8
SSC-GCN (Kipf and Welling (2017)) 0.62 0.59 0.64 0.65 0.72 0.70 65.3
GCN-AF (Bianchi et al. (2019)) 0.86 0.85 0.83 0.80 0.85 0.84 83.8
Cell features-based Deep GCN Methods Tumor | Stroma | Complex | Mucosa | Debris | Lympho | F)
GCN-RS(Ying et al. (2018)) 0.85 0.83 0.82 0.78 0.85 0.86 83.1
DGI (Velickovié et al. (2019)) 0.86 0.84 0.84 0.80 0.86 0.85 84.1
GCN-SF (Defferrard et al. (2016)) 0.75 0.72 0.71 0.77 0.81 0.83 76.5
SSC-GCN (Kipf and Welling (2017)) 0.66 0.61 0.66 0.68 0.74 0.73 68.0
GCN-AF (Bianchi et al. (2019)) 0.88 0.87 0.86 0.82 0.87 0.85 85.8
Proposed Algorithms Tumor | Stroma | Complex | Mucosa | Debris | Lympho | F
TPCD-CG 0.69 0.66 0.64 0.68 0.72 0.74 68.8
SVM-CellFeatures 0.85 0.83 0.87 0.80 0.85 0.79 83.1
TPCD-1 0.85 0.92 0.71 0.81 0.91 0.95 85.2
TPCD-2 (Javed et al. (2018)) 0.92 0.94 0.83 0.90 0.96 0.97 92.5
TPCD-Hist 0.86 0.82 0.85 0.82 0.90 0.92 86.1
TPCD-3 0.95 0.95 0.87 0.92 0.97 0.98 94.0
TPCD-4 0.95 0.96 0.88 0.93 0.97 0.98 9.5

TSP-CNN in TPCD-4 algorithm for complex stroma pheno-
type. The nearest competitors are TPCD-2, ResNet101, and
DenseNet each obtaining 0.84 F.

In Benign tissue phenotype, TPCD-4 and TPCD-3 algo-
rithms have obtained 0.90 and 0.89 F while TPCD-2 has ob-
tained 0.86 F. In this case, normal epithelial to normal ep-
ithelial cell-cell connections are observed quite higher on the
micro-vessels, therefore the removal of distant edges was not
helpful in this case. The nearest competitor is ResNet101 which
obtained 0.86 F. In Debris tissue, the DenseNet and BSF-SVM
have achieved the best performance of 0.91 F, while TPCD-

4 has obtained 0.90 F. The nearest competitors are TPCD-
2 and ResNet50 both obtaining 0.88 F. In Inflammatory tis-
sue type, ResNet101 obtained the best performance of 0.95 F,
while DenseNet and BSF-SVM methods obtained 0.92 F. Our
proposed algorithm TPCD-4 obtained F of 0.88 for inflamma-
tory tissue. In the case of Smooth Muscle phenotype, TPCD-4
and TPCD-2 obtained 0.88 and 0.87 F while TPCD-3 obtained
0.86 F. The removal of distant cellular edges has shown per-
formance degradation in this tissue component. An improved
cell detection performance with TPCD-2 would have resulted
in further performance improvement like TPCD-4.
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Table 5: Comparative performance of multi-class tissue phenotyping on CRC-TP dataset using patch-level separation between training and testing splits. Perfor-
mance is presented in terms of F score for each tissue phenotype and weighted average F score for all tissue components. The two best results are shown in red

and blue fonts respectively.

Methods Tu St CS Be De In SM | F score
KM-CD (Sirinukunwattana et al. (2018)) 0.72 | 0.79 | 0.62 | 0.73 | 0.80 | 0.78 | 0.79 0.73
Subspace Clustering (Elhamifar and Vidal (2013)) | 0.48 | 0.62 | 0.45 | 0.46 | 0.64 | 0.65 | 0.63 0.55
DL-KLdiv (Mairal et al. (2012)) 0.62 | 0.65 | 0.60 | 0.79 | 0.73 | 0.76 | 0.70 0.68
SCD (Guha and Ward (2014)) 0.60 | 0.61 | 0.55 | 0.69 | 0.81 | 0.79 | 0.69 0.65
B5F-SVM (Kather et al. (2016)) 0.86 | 0.77 | 0.73 | 0.75 | 0.91 | 0.92 | 0.78 0.80
SRC (Wright et al. (2009)) 0.73 | 0.75 | 0.65 | 0.60 | 0.85 | 0.66 | 0.64 0.69
DFOD (Vu et al. (2016)) 0.84 | 0.81 | 0.73 | 0.71 | 0.78 | 0.74 | 0.74 0.77
SHIRC (Srinivas et al. (2014)) 0.78 | 0.75 | 0.61 | 0.65 | 0.68 | 0.78 | 0.69 0.71
SPM (Lazebnik et al. (2006)) 0.82 | 0.80 | 0.70 | 0.85 | 0.83 | 0.84 | 0.74 0.79
SDLs (Sarkar and Acton (2018)) 0.86 | 0.83 | 0.70 | 0.72 | 0.81 | 0.80 | 0.70 0.77
Deep Learning Methods Tu St CS Be De In SM | F score
ResNet50 (He et al. (2016)) 0.81 | 0.81 | 0.78 | 0.81 | 0.88 | 0.87 | 0.85 0.82
ResNet101 (He et al. (2016)) 093 | 0.87 | 0.84 | 0.86 | 0.86 | 0.95 | 0.80 0.87
DenseNet (Huang et al. (2017a)) 0.84 | 0.86 | 0.84 | 0.82 | 0.91 | 0.92 | 0.85 0.86
SVM-CNN (Xu et al. (2017)) 0.80 | 0.78.1°0.80 | 0.73 | 0.84 | 0.86 | 0.79 0.80
MobileNet (Howard et al. (2017) 0.79 | 0.79 | 0.68 | 0.81 | 0.76 | 0.82 | 0.76 0.77
Euclidean distance-based Deep GCN Methods Tu St CS Be De In SM | F score
GCN-RS (Ying et al. (2018)) 0.71 | 0.69 | 0.65 | 0.68 | 0.73 | 0.76 | 0.75 0.71
DGI (Velickovi¢ et al. (2019)) 0741 0.70 | 0.64 | 0.70 | 0.72 | 0.78 | 0.77 0.72
GCN-SF(Defferrard et al. (2016)) 059 | 0.60 | 0.54 | 0.64 | 0.68 | 0.66 | 0.61 0.60
SSC-GCN (Kipf and Welling (2017)) 0.60 | 0.63 | 0.58 | 0.60 | 0.65 | 0.63 | 0.60 0.61
GCN-AF (Bianchi et al. (2019)) 0.78 | 0.80 | 0.76 | 0.75 | 0.81 | 0.80 | 0.77 0.78
Cell features-based Deep GCN Methods Tu St CS Be De In SM | F score
GCN-RS (Ying et al. (2018)) 0.74 | 0.72 | 0.69 | 0.73 | 0.77 | 0.75 | 0.79 0.74
DGI (Velickovi¢ et al. (2019)) 0.77 | 0.72 | 0.69 | 0.74 | 0.75 | 0.81 | 0.82 0.75
GCN-SF (Defferrard et al. (2016)) 0.66 | 0.63 | 0.60 | 0.66 | 0.71 | 0.69 | 0.64 0.65
SSC-GCN (Kipf and Welling (2017)) 0.63 | 0.64 | 0.62 | 0.65 | 0.69 | 0.68 | 0.63 0.64
GCN-AF (Bianchi et al. (2019)) 0.79 | 0.83 | 0.78 | 0.78 | 0.83 | 0.84 | 0.80 0.80
Deep Learning Methods Tu St CS Be De In SM | F score
SVM-CellFeatures 0.80 | 0.74 | 0.82 | 0.72 | 0.81 | 0.80 | 0.78 0.78
TPCD-1 0.90 | 0.89 | 0.80 | 0.80 | 0.85 | 0.82 | 0.80 0.84
TPCD-2 (Javed et al. (2018)) 093 | 090 | 0.84 | 0.86 | 0.88 | 0.84 | 0.87 0.88
TPCD-Hist 0.85 | 0.83 | 0.82 | 0.78 | 0.81 | 0.82 | 0.79 0.82
TPCD-3 095 | 093 | 0.87 | 0.89 | 0.87 | 0.85 | 0.86 0.89
TPCD-4 0.96 | 0.94 | 0.87 | 0.90 | 0.90 | 0.88 | 0.88 0.91

4.6.2. Evaluation with Patient-Level Separation

Table 6 shows the tissue phenotyping performance compari-
son on CRC-TP dataset with patient-level separation. Overall,
TPCD-4 and TPCD-3 obtained 0.84 and 0.83 F. Compared
to patch-level separation results on Table 5, the performance
of all the compared methods is significantly reduced. It is be-
cause the testing dataset is completely unseen by the cell de-
tection and classification networks in the proposed TPCD algo-
rithms which caused accuracy degradation of 6.0% for TPCD-
2, TPCD-3, and TPCD-4. Compared to ResNet101, DenseNet,
and GCN-AF with cell features-based graph construction, the
accuracies are reduced by 6.0%, 7.0%, and 4.0%, respectively

which are also in the same range as compared to proposed al-
gorithms. Moreover, the TPCD-3 and TPCD-4 algorithms have
performed better than the other compared methods on Tu, St,
CS, Be, and De tissue phenotypes, respectively. Overall, the
patient-level separation is more challenging compared to the
patch-level separation across training and testing data.

4.7. Visual Evaluation

The qualitative classification results are thoroughly examined
by experienced pathologist (KB) and found to match with man-
ual assessment. The results of the proposed algorithm are over-
laid on the WSI taken from CRC-TP dataset as shown in Figs.
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Table 6: Comparative performance of multi-class tissue phenotyping on CRC-TP dataset using patient-level separation between training and testing splits. Perfor-
mance is presented in terms of F score for each tissue phenotype and weighted average F score for all tissue components. The two best results are shown in red

and blue fonts respectively.

Methods Tu St CS Be De In SM | F score
KM-CD (Sirinukunwattana et al. (2018)) 0.66 | 0.75 | 0.58 | 0.68 | 0.76 | 0.82 | 0.82 0.72
B5F-SVM (Kather et al. (2016)) 0.78 | 0.71 | 0.69 | 0.75 | 0.81 | 0.80 | 0.73 0.74
DFOD (Vu et al. (2016)) 0.78 | 0.77 | 0.68 | 0.65 | 0.71 | 0.69 | 0.64 0.71
SHIRC (Srinivas et al. (2014)) 0.70 | 0.71 | 0.57 | 0.59 | 0.62 | 0.72 | 0.62 0.66
SDLs (Sarkar and Acton (2018)) 080 | 0.75 | 0.64 | 0.67 | 0.77 | 0.73 | 0.62 0.71
Deep Learning Methods Tu St CS Be De In SM | F score
ResNet101 (He et al. (2016)) 0.86 | 0.82 | 0.79 | 0.78 | 0.81 | 0.84 | 0.77 0.81
DenseNet (Huang et al. (2017a)) 0.80 | 0.79 | 0.77 | 0.76 | 0.82 | 0.82 | 0.79 0.79
Euclidean distance-based Deep GCN Methods | Tu St CS Be De In SM | F score
GCN-RS (Ying et al. (2018)) 0.63 | 0.59 | 0.58 | 0.62 | 0.66 | 0.70 | 0.70 0.63
DGI (Velickovié et al. (2019)) 0.65 | 0.63 | 0.59 | 0.66 | 0.67 | 0.72 | 0.70 0.64
GCN-SF (Defferrard et al. (2016)) 0.52 | 0.54 | 0.49 | 0.58 | 0.60 | 0.59 | 0.55 0.54
SSC-GCN (Kipf and Welling (2017)) 0.52 | 0.57 | 0.51 | 0.54 | 0.55 | 0.56 | 0.53 0.54
GCN-AF (Bianchi et al. (2019)) 0.72 | 0.73 | 0.68 | 0.64 | 0.76 | 0.75 | 0.72 0.71
Cell features-based Deep GCN Methods Tu St CS Be De In SM | F score
GCN-RS (Ying et al. (2018)) 0.66 | 0.64 | 0.60 | 0.65 | 0.70 | 0.67 | 0.71 0.66
DGI (Veli¢kovié et al. (2019)) 0.721 0.66 | 0.64 | 0.66 | 0.68 | 0.75 | 0.76 0.70
GCN-SF Defferrard et al. (2016)) 0.60 | 0.54 | 0.55 | 0.59 | 0.64 | 0.60 | 0.57 0.58
SSC-GCN (Kipf and Welling (2017)) 0.55 | 056 | 0.54 | 0.58 | 0.60 | 0.60 | 0.57 0.56
GCN-AF (Bianchi et al. (2019)) 0.72 1 075 |1 0.74 | 0.71 | 0.79 | 0.78 | 0.72 0.74
Deep Learning Methods Tu St CS Be De In SM | F score
SVM-CellFeatures 0.76 | 0.69 | 0.77 | 0.66 | 0.75 | 0.77 | 0.72 0.73
TPCD-1 0.85 | 083 | 0.76 | 0.77 | 0.80 | 0.78 | 0.76 0.80
TPCD-2 (Javed et al. (2018)) 0.85 | 084 | 0.79 | 0.81 | 0.80 | 0.79 | 0.82 0.82
TPCD-Hist 0.81 | 0.77 | 0.77 | 0.73 | 0.76 | 0.75 | 0.72 0.76
TPCD-3 0.88 | 0.85 | 0.82 | 0.85 | 0.82 | 0.80 | 0.79 0.83
TPCD-4 0.87 | 0.87 | 0.85 | 0.83 | 0.83 | 0.82 | 0.83 0.84

6 and 7. Non-overlapping patches of 150 x 150 pixels from the
test WSI with patient-level separation are extracted and pheno-
typed by the TPCD-4 algorithm. The predicted labels are shown
by a distinct colors which are overlaid on the original WSI (Fig.
6 (b) and Fig. 7 (b)). The resulting color-coded classification
maps are smoothed by a median filter to remove the blocky ef-
fects from patch-level classification.

4.8. Computational Complexity

Execution times are compared on a machine with Intel core
19 processor and 128GB RAM. The average cell detection time
is 0.21 sec for 150x 150 patch and classification time is 0.08 sec.
On a same patch size, the Delaunay triangulation takes 0.2 sec
while the feature vector extraction takes 0.04 seconds. Com-
plexity of 2-D Delaunay triangulation is O(clog(c)), where c is
the number of cells detected in a patch. Complexity of graph
construction is O(mn?), where n is the number of patches and

m is the size of feature vector. Since the chi-square distance
is symmetric, each patch pair distance computation is required
only once reducing the overall computation to half. An all pair
shortest distance algorithm proposed by Pettie and Ramachan-
dran (2005) has time complexity of O(mnlog(a(n, s))), where s
is the number of edges in the patch graph and a(n, ) is a slowly
growing function. Jiang et al. (2011) have proposed a relatively
faster algorithm which takes O(u(n)loglog(n)) time on a random
scale free network with n vertices. Our implementation of the
algorithm used in this step takes O(mtn?) where ¢ is the number
of iterations. We observe that the algorithm converges in less
than 5 iterations.

5. Conclusions

In this work, a novel semi-supervised cellular community de-
tection algorithm is proposed for tissue phenotyping based on
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cell detection and classification, and clustering of image patches
into biologically meaningful communities. First deep neural
networks are used for cell detection and classification and then
based on potential cell-cell connections between these cells,
feature vectors are computed at the patch level. These feature
vectors are then used to construct a patch level network using
chi-square distance such that each node is a patch in WSI and
edges have weights inversely proportional to the distance be-
tween the feature vectors. In this network, geodesic distances
are computed which are then used to compute node clusters
such that each cluster corresponds to a particular tissue pheno-
type. The proposed algorithm has exhibited better performance
than end-to-end deep learning methods as well as several exist-
ing algorithms based on handcrafted features.

We showed that the proposed approach was able to achieve
better performance mainly because it uses both deep learning
and handcrafted features which complement each other. Also
the proposed potential cell-cell connections features are biolog-
ically more meaningful than the texture-based features used in
most existing methods. The concept of constructing a graph
and then using geodesic distance for community detection has
also significantly contributed to the performance. It is because
the graph based approaches work well even if the underlying
classes are not linearly separable. The geodesic distance has
also performed similar to kernels projecting data to higher di-
mensional spaces such that the classes become linearly separa-
ble. Owing to all these novel steps, the proposed algorithm was
able to achieve superior classification accuracy on an existing as
well as newly proposed large scale tissue phenotyping dataset.

This new dataset will soon be made publicly available with
two experimental settings including patch-level separation and
patient-level separation between training and testing splits.
Currently, we have used five distinct cell classes including tu-
mor epithelial, normal epithelial, spindle-shaped, necrotic, and
inflammatory. Addition of further cellular components such as
blood cells may result in performance improvements and also
reveal more micro-level tissue communities. The proposed al-
gorithm can potentially be used on large number of WSIs of dif-
ferent cohorts for separating tissue communities. Tissue pheno-
typing in a WSI can aid with understanding the contents of the
WSI and form the basis of comprehensive digital profiling of
spatial patterns in the tumor microenvironment associated with
cancer subtypes in terms of survival and clinical outcomes.
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