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Summary

This thesis investigates computational methods for assessing tolerance spec-
ifications of geometric features in a context of computer aided inspection. It is
concerned with checking the sampled features for containment within tolerance
zones specified at the design stage, not with explicit shape measurement. The
significance of this difference is highlighted when two or more features are to be
inspected in combination. The approach adopted is to express the tolerance in-
formation as a set of inequality constraints and then to seek efficient methods for
determining the feasibility of the set, that is whether all the constraints can be

simultaneously satisfied.

Roundness inspection is used to introduce all the concepts of the new formula-
tions. By linearisation of the constraints, a standard approximation in roundness
measurement, a new algorithm is implemented which provides a “GO-NOGO”
result of inspection by checking for feasibility in a highly efficient way. This algo-
rithmic approach is then extended to other inspection situations where naturally

linear constraints or valid linearisation occur.

Since there are many inspection cases where linearisation is not appropriate,
non-linear optimisation techniques are then investigated for their effectiveness in
feasibility testing. The inspection of arrays of circular features is used here as a
typical test case. Genetic search methods are explored as a possible alternative
to formal non-linear programming and guidelines for their efficient use for this
problem are proposed. These methods are then compared and contrasted with
formal methods, particularly generalised reduced gradient (GRG) and sequential
quadratic programming (SQP).

The linear algorithm is shown to be the most efficient when it can be used,
although all techniques were fast enough for on-line use with modest sized data
sets. Currently all the non-linear methods are too expensive for routine use on
large data sets. GRG is recommended as having the most favourable combination
of good and bad features, but there is some evidence that genetic search might

be relatively more efficient for more complex inspection problems.
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Chapter 1

Introduction

1.1 Introduction

Tolerancing questions in mechanical design are of great importance in the move
to improve quality in manufacturing products. At the design stage, a part is
specified in terms of sizes and shapes which are in some sense ideal for its func-
tional requirements. Due to variability inherent in the manufacturing process, the
designer will also have to specify how far the manufactured product can depart
from its ideal specification. This is done by specifying various tolerances associ-
ated with the design, following standardised engineering practice. The width of
the tolerance limits (or allowed error of any feature) defines the required precision
in manufacturing. Since manufacturing to high precision is generally a costly ex-
ercise, it is good practice to design for as large a tolerance as is possible without

seriously affecting the quality and functionality of the part.

At the manufacturing stage, parts will need to be checked against their design
specifications. On routine inspection, the information obtained at this stage will
be used to reject parts which do not meet specifications, on a “pass-fail” basis.
In a computer aided inspection setting, a part should ideally be inspecteld by
comparing a collection of digitised data points representing a part surface with
its design and tolerancing specification. Thus, the inspection process gives rise

to the question of how data points representing a part can be compared with its



Figure 1.1: Geometric tolerance for circularity,

tolerance specification in a efficient manner.

1.2 The Inspection Problem

Geometric tolerances are defined and classified in design standards [e.g. BSI,
1990], including form, orientation and position tolerances. Common features are
roundness, flatness, squareness, concentricity, amongst others. For example, the
tolerance for out of roundness is defined as the annular space between two concen-
tric circles lying in the same plane, figure 1.1. A component is within tolerance
if its profile, or the profile of the cross section whose error is to be controlled,
is enclosed by these two circles. Thus, the essential objective of inspection is to

check for containment of a feature within its tolerance zone.

On the other hand, as, over the past forty years, form error measurement has
become recognised as an important discipline in its own right, there has been
a strong concentration in the literature on algorithms for form measurements,
notably roundness and flatness errors. The measurement of out of roundness, for
instance, is by measuring the peak to valley deviation of the actual profile from
a reference circle fitted to that profile. Metrology standards for out of roundness
measurement [e.g. BSI, 1987] recommend that an optimal reference figure be
used, in the sense some measure of the interaction between the reference and the

profile is maximised or minimised.

Algorithms for estimating reference figure fits for shape measurements use



Figure 1.2: Inspection procedures: according to design standards (a)and normal
practice (b).

either a least-squares approach or, based on metrological requirements, an opti-
misation of a geometric parameter of the figure. Thus in practice it is usual, since
standard algorithms exist, first to find an optimal reference for form measurement
and test the deviation of the feature from it against the design specifications. The
position and orientation of the feature, if they also are toleranced, are then tested
by checking whether the parameters of the best-fit reference are adequately close
to design specifications. This approach is illustrated in figure 1.2b, while figure
1.2a illustrates the way suggested by standards that a toleranced feature should

be assessed

This difference of approach is not significant when geometric tolerances of
form only are being inspected, but it may lead to different results when geometric
tolerances of orientation or position have also to be met. In order to illustrate this
point, consider that a circular profile, illustrated in figure 1.3, has to be inspected
for circularity and centre position. This is the case of a crank shaft for example,
where in addition to the requirement of roundness of each individual bearing, they
must be aligned axially. A concentricity tolerance is therefore specified, so as to
limit the deviation of the position of the centre or axis of the toleranced feature
from its true position, i. e. the centre or axis of the datum feature. However,
when the section is not perfectly circular, the definition of centre becomes to

some extent a matter of interpretation and in practice the reference centre is



tol. of roundness tol. of roundness

a b.

Figure 1.3: Minimum circumscribing radius reference (a), against another cir-
cumscribing reference (b).

used.

Considering figure 1.3a, the point cl represents the centre position of the
minimum radius circumscribing circle (MCC), a standard best-fit reference com-
monly used for shaft measurement. Point c2, in figure 1.3b, represents the centre
position of another reference circle circumscribing the profile but not with mini-
mum radius. It can be assumed, for the sake of illustration, that using the MCC
as the reference figure the out of roundness is within tolerance but its centre po-
sition is eccentric in relation to the datum point by a distance over the allowed
tolerance and so it fails inspection. On the contrary, the other reference, figure
1.3b, as it is not minimum radius, has some room for moving around the feature,
and so it can be “brought” closer to the datum point, within the tolerance zone.
The resulting out of roundness, although larger than the error obtained using the
MCC reference, is still lower than its tolerance limit and overall the features pass

inspection.

Thus, an optimum reference figure originally defined for form measurement,
as is the case of MCC for roundness, may not be appropriate when the position

and/or orientation of the feature has also to be inspected.

In order to simulate the graphical procedure outlined above, the general toler-
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ance assessment problem can be formulated as a constrained optimisation prob-
lem, as it is sometimes done for shape measurement, with the difference that form,
position and orientation constraints of features imposed by design specifications
are to be considered in the optimisation process. It is assumed that the ideal
design (on a engineering drawing or computer-aided-design (CAD) system, for
example) can be represented as a union of geometric elements each represented
as a parameterised curve or surface defined in a common reference system. For
example, a circle in two dimensions is parameterised by its centre position and
radius. The geometric tolerance assessment problem is thus to find a combination
of such parameters which defines a reference that does not violate the parameter
constraints imposed by dimensional, orientation or position tolerances and at the
same time does not violate the form constraints imposed by form tolerances. A
set of parameters satisfying these constraints will be a feasible solution, meaning
in practical terms that the design tolerance specifications are satisfied and the

component passes inspection.

A supplementary problem, derived from the assessment problem as posed
above, is to give a measure of the extent to which the tolerance constraints have
been met. This remains a different problem from finding optimum reference fig-
ures for shape measurement, which does not consider in the optimisation process
the parameter and form constraints derived from design specification. As a con-
sequence, the solution of the latter may be outside the feasible region defined by

the assessment problem, leading to the situation illustrated in figure 1.3.a.

This work advocates that most of the geometric tolerance inspection problems
can be solved by examining the feasibility of an associated optimisation problem,
with no need to consider its iteration towards optimality, and thereby simulating

the action of a GO-NOGO inspection gauge.

Another inspection situation that well illustrates the point discussed here is
the combination of flatness and squareness. This is the case of a precise base
and vertical slideway for instance. The slideway surface has to be enclosed by
two parallel planes separated from each other by the squareness tolerance value,

and perpendicular to the base, which is assumed as the datum surface. The



tol. of squareness

Figure 1.4: Tolerance zones of squareness and flatness.

flatness error of the slideway is implicitly controlled by the squareness tolerance.
In addition to this, the base, which is assumed to be the datum, has also to be
flat within a limit defined by its flatness tolerance. These geometric tolerance

zones are pictured in figure 1.4.

Flatness measurement is usually done by measuring the peak to valley devia-
tion of the measured data points from a best-fit reference, commonly defined by
either least squares or a minimum zone approach. It is unclear how squareness
measurement is done in practice and the same sort of comment made before ap-
plies to this case: when the surfaces are not perfectly flat, the orientation of the
surfaces is rather vague and in practice the orientation of the reference planes
are used. Some commercial software for coordinate measuring machines (CMMs)
fits least squares planes to the set of measured points representing the surfaces
and then measures the angle between them. Although this gives a measure of the
perpendicularism of the two surfaces, the result is not accurately comparable with
the squareness tolerance specification in design. Moreover, this method gives no
information about the flatness of the surfaces. It is also unclear how the datum

should be defined.

Instead, it is better that the squareness and flatness errors should be inspected
simultaneously for containment within a squareness and flatness frame. This pro-
cedure can again be formulated as a constrained optimisation, where the objective

is to find a combination of parameters for each reference such that the form, po-



sition and orientation constraints derived from the design specifications are not
violated. In other words the inspection is successful if a feasible solution to the

constrained problem is found.

The general inspection problem can be enunciated as: find the parameters of
a geometric reference figure (or figures) C for a set of data points Y{,i = 1, mee N,

where N is the number of data points, such that they satisfy the form constraints

F(*,C,t)~0 (1.1)

and the parameter constraints

P(C,t)~0 (1.2)

where ~ is in {>; < }, and t are the tolerance specifications from design.

The general behaviour of constrained optimisations is conveniently examined
in terms of their geometrical structure in a multi-dimensional “parameter space”
in which each parameter is plotted along an orthogonal axis (parameter space
representation is further used in chapter 3). The constraints are hyper-surfaces
in parameter space, each one dividing the parameter space in two open half
spaces, with all the feasible parameter combinations lying to one side and the
infeasible ones to the other side. The combination of all the constraints will or
will not define a feasible region of solutions in parameter space. The absence of a
feasible region indicates that the constraints cannot be satisfied simultaneously.
Thus the tolerance assessment problem is to determine whether a feasible region
exists. The discovery of any solution that lies in feasible region is sufficient to

pass the inspection process.

Depending on the problem in consideration and how it is modelled, the in-
equality constraints can be linear or non-linear functions of the parameters. If
the constraints are linear in their parameters then the optimisation problem can
be solved using linear programming techniques. Highly efficient techniques for
measurements such as roundness, flatness and straightness have been known for

some years in which a local parameter linearisation is used within an “exchange



algorithm” (see section 2.4.4). The exchange algorithms ultimately derive from
the theory of linear programming, which both guarantees their convergence onto
a correct solution and demonstrates the source of their computational efficiency.
The geometrical formulation of the fitting problems normally has many constrain-
ing equations and few parameters. Optimisations of this “shape” can be solved
rapidly by using their dual formulation and the exchange algorithms are also a
type of dual programming even though they may be understood geometrically.
However, their dual nature becomes a major disadvantage if we attempt to use the
exchange algorithms in the simultaneous inspection of several geometric features

in order to see whether they simultaneously meet acceptable tolerances.

This work starts by discussing a new approach for the inspection of geometric
characteristics of features in which the ultimate position is to provide a set of
constraints from which the required inspection information can be obtained by
examining only the feasibility of the mathematical programme, with no need to
consider its iteration towards optimality. Whenever linearisation of the geometric
formulation is adequate, this may be achieved using an existing, though not all
that widely known, algorithm to explore feasibility, so guiding the GO-NOGO
decision. Methods of tuning the process to maximise computational efficiency

are introduced.

Although linearising the constraints allows special algorithms of reasonable
efficiency to be applied, this is not always possible or appropriate. For exam-
ple, when the same approach is extended to the inspection of form, dimension
and relative position of several circular features, as is the case of circular mating
features, the gain in computer efficiency for using linear functions in the formu-
lation of the inspection problem may not compensate the losses in accuracy of
using such a model. In this case the trade-off is unclear between accepting an
approximation in the formulation of the constraints or using accurate constraints
but taking more effort to obtain a potentially more definitive result. A method
that can cope with non-linear models has a much wider application and therefore,
non-linear methods are sought that will perform well with the level of computer

power likely to be dedicated to an individual measuring machine. Some form



of non-linear optimisation will be needed but, since here we are concerned only
with feasibility testing, it is not clear which approaches will be most effective.
Non-formal methods may be advantageous in this context. Genetic Search meth-
ods are explored for applicability to the determination of the feasibility of the
inspection problem. Finally, the effectiveness of such non-formal techniques is
compared with that of conventional non-linear programming. Two non-linear
programming methods are investigated, namely the generalised reduced gradient

(GRG) and the Sequential Quadratic Programming (SQP) methods.

1.3 Organisation of the Thesis

Chapter two contains a review of computer aided precision metrology. It starts by
presenting some background information about the most common and pertinent
measuring equipment and some of the basic rules to be observed in designing
software for metrology. Then, it presents a more detailed review of methods and
algorithms in the literature for shape measurement as well as to the assessment
of geometric tolerances. Finally, tolerancing techniques using solid modelling are

briefly reviewed and discussed.

Chapter three introduces the concepts of the new formulations by discussing
the problem of inspection of roundness error (in contrast with measurement of
roundness error) in combination with position errors, and the idea of GO-NOGO
inspection software. Roundness inspection also provides examples where local
linearisation can be very effective. The primal and dual formulation of the in-
spection problem are discussed and a new algorithm is implemented to explore
the feasibility of the inspection problem in a more efficient way. The basis of the
algorithm is given along with practical examples of how it works. The results of

performance tests on these algorithms are presented and discussed.

Chapter four discusses the problem of inspection of combined form and atti-
tude errors, such as squareness or parallelism and flatness. It formulates these
inspection problems in a manner applicable to the algorithm discussed in chapter

three. The results of tests on these formulations and algorithms are presented

9



and discussed.

Chapter five further explores the approach discussed in the previous chapters
to the inspection of dimensions and geometry of circular mating features. It
discusses the limitation of linear methods and investigates the use of Genetic
Search methods for assessing geometric tolerance errors in cases where a linear
approximation is not an adequate model to the truly non-linear formulation of
the inspection problem. A Genetic Search model is set up and suitable values
for its control parameters are explored experimentally. Two model problems are

used to investigate its effectiveness and practicality.

Chapter six investigates the applicability of some formal non-linear program-
ming methods for inspecting geometric tolerance errors. Two methods are con-
sidered, the generalised reduced gradient (GRG) and the Sequential Quadratic
Programming (SQP) methods. The inspection cases used in the previous chapter
are used in this chapter as well, so as to provide a direct comparison in terms of

effectiveness between formal and non-formal methods.

Chapter seven presents an overall discussion of the relative merits of the meth-

ods considered in this work as well as suggestions for further work.
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Chapter 2

A Review of Computer Aided

Precision Metrology

2.1 Introduction

Measurement methods and equipment can vary widely depending on the applica-
tion. However they can be generally classified as: with or without contact; abso-
lute or comparative measurement. Most measurements in mechanical metrology
are performed through contact with the workpiece by means of a tip or probe. In-
struments in this category have developed from the earliest ones such as vernier
calipers, to the sophisticated present generation of Coordinate Measuring Ma-
chines (CMMs). In contrast to this, non-contact measurement does not use any
type of mechanical probe. All optical instruments are encompassed in this cate-
gory, ranging from the most common ones such as Profile Projectors to modern
Vision Machines and extremely precise instruments such as Laser Interferometers.
Moreover, the measurement can be absolute, when the given information is the
dimension itself or comparative, when the information is in terms of departure
from some reference system. In this case, instruments are usually supported by
some amplifying system; this is the case of mechanical comparators or more so-
phisticated equipment such as roundness, flatness and surface texture measuring

instruments.
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Every computer aided metrology system comprises a measuring equipment in-
terfaced with computer hardware and software. The software assists the system
in performing its operations, such as controlling the positioning of moving parts,
data acquisition and evaluation of the measuring data. Evaluation of the measur-
ing data is basically concerned with the mathematical modelling and numerical
manipulation of the data. The speed and accuracy of the software in performing
these operations affect very much the performance of an instrument and therefore

are regarded as matters of great importance.

This chapter presents some background information about the most common
and pertinent measuring equipment and some of the basic rules to be observed
in designing software for metrology. Then it moves on to a thorough review
of methods for shape measurement, with emphasis on roundness and flatness
measurements. Finally, it gives some account of tolerancing techniques using solid
modelling theory and optimisation techniques for geometric tolerance assessment

problems.

2.2 Measuring Equipment

2.2.1 Coordinate Measuring Machines (CMMs)

Coordinate Measuring Machines have gained considerable importance in meeting
the inspection requirements of modern manufacturing technology. They bring
to inspection advantages such as flexibility and higher throughput. Typically,
the basic machine comprises a table with a bridge that traverses its length and
a vertical spindle, with a probe holder located at the end of it, which traverses
the bridge and in turn moves axially. Thus an orthogonal reference system is so
defined by the table and movable components. Different configurations of CMMs

exist but they all follow the same principle.

Three-dimensional measurement data is provided by using a probe, usually
of the “touch trigger” type, attached to the probe holder, which is brought into

contact with the workpiece resting on the table. The probe has as stylus which,
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when it touches the workpiece, is deflected to switch the probe on/off and a binary
signal is sent to the computer control, which in turn records the position of the
probe from the axial measuring system, usually by incremental gratings. Other
types of probe include a scanning contact probe which senses the workpiece by
moving across its surface remaining in contact with it [Jacoby and Lenz, 1980],

and more recently, a non-contact optical probe [Treywin and Edwards, 1987].

Once the coordinates of the probe are recorded, the computer software will
then manipulate the data. This possibly involves: transforming the data from
the machine coordinate system into another system, e.g. a local system referred
to the workpiece; compensating for systematic errors [e.g. Burdekin, et al, 1985];

and finally evaluating dimensions, deviations from shape and orientation.

2.2.2 Vision Technology

Machine Vision systems are currently being used in looking for defects in parts,
ensuring correct configuration of parts in assembly lines and measurements of di-
mensions and shapes [Ventura, Chang and Klein, 1988]. Applications of machine
vision in automated inspection cells have been demonstrated in the automotive
industry [Pastorius, 1989 and Mullins, 1987]. It offers advantages such as high
flexibility and high speed of measuring. In a typical arrangement, the camera
viewing area is divided into a matrix of picture elemenls called pixels. Once the
image of a part is sampled in each pixel, its signal is sent to the processor and

treated by image analysis techniques.

The accuracy and precision of vision systems tends to he limited. The reso-
lution of a machine vision system is defined by the size of one picture element,
or pixel of image. As it is the image of a part that is measured, the higher the
magnification used, the higher the basic accuracy of the measurement. However,
there is a limit on the optical magnification. In addition to this, the correct loca-
tion of the edges of a part feature is the main factor in determining the accuracy
of a system. The influence of these accuracy related problems is quantified in a

study presented by Ma et al [1988].
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2.2.3 Surface Metrology Instruments Using Stylus Tech-

niques

The assessment of surface form and texture by stylus methods has been in use
since the early forties and has gained world wide acceptance due to its advantages

such as robustness and high accuracy.

Stylus types of instruments are characterised by the use of a sharply pointed
stylus which is rested lightly on the surface of the part and is carefully traversed
across it. The stylus, having a radius tip of typically about 1mm for roundness
and straightness measurement, is connected via a bar to a transducer which
measures the up and down movements of the stylus due to the variation of the
distance between the workpiece surface and a datum surface during a relative
movement of the gauge and workpiece. Short wavelength variations caused by
surface roughness are filtered from the signed to leave the variations due to form
errors only, such as straightness, flatness and roundness. For straightness and
flatness measurements, the reference datum will be a line or plane nominally
parallel to the direction of motion, usually defined by the slideway which carries
the stylus and transducer (often called the pick-up unit). Thus, the recorded
variations in height of the surface of the workpiece will be perpendicular to the

reference datum.

Although the basic principle is the same, instruments for roundness measure-
ment have a mechanical design quite different from the ones for surface texture
and straightness assessment and therefore will be considered separately. Most
instruments for precision roundness measurement operate by using a precision
spindle to generate a relative rotational movement between the component being
measured and the stylus and transducer mounted radially with respect to the
axis of rotation. A typical configuration comprises a turntable and a column,
which carries the pick-up unit. The workpiece is rested on the rotating table and
the stylus brought into contact with the workpiece by adjusting its radial and
axial position. The achievable accuracy of such instruments is normally limited

by the circularity error of the spindle, although in some cases the application of
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error separation techniques can improve the accuracy to a factor of ten or more

[Chetwynd and Siddall, 1976],

The transducer measures the variation of the distance between the workpiece
surface and a circular reference datum centred at the instrument axis of rotation
and generated in space by the rotational motion between the part and a fixed
point in the pick-up. The signal from the transducer represents a combination
of the out-of-roundness of the part and the variation of the radial distance of
the surface from the instrument axis of rotation caused by relative eccentricity

between them.

Traditionally these variations are filtered, magnified and then superimposed
on a convenient nominal radius which is totally unrelated to the actual dimensions
of the component. The output of the instrument in this form will be referred to
as the polar chart. The combination of this radius suppression and magnification
often leads to a visually disconcerting effect on the polar chart since the aspect
ratio of radial variation to circumference length of the profile has been changed.
For example, a cylindrical part slightly flatted at intervals could plot as a figure
having convex sides at a low magnification, but appear to have flat sides or even
appear star-shaped as the magnification is progressively increased [Reason, 1966].
However in the presence of eccentricity the radius suppression will cause not only
a distortion of aspect ratio but a distortion of shape as well [Chetwynd and
Phillipson, 1980]. Therefore, every effort must be made to reduce it by keeping
the eccentricity small, with various guidelines being suggested [e. g. Reason, 1966,

Chetwynd, 1979a].

The straightness of cylindrical parts can be assessed by traversing the stylus
vertically up the workpiece, with the turntable held stationary; the reference
datum in this case is defined by the slideways of the column which carries the
pick-up unit.

The analogue data gathered in these ways by either of these instruments will
then be digitised and stored on a computer for further geometric assessment.
Methods for shape evaluation using data acquired by this type of instrument will

be discussed in the following sections.
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2.3 Software for Metrology

The measurement accuracy of computer aided measurement systems is highly in-
fluenced by two main factors: how representative is the set of points of the object;
and how suitable is the mathematical modelling and numerical manipulation of
the data. The rapid and widespread adoption of CMMs over the last decade has
led to a great concern about the accuracy of software for metrology. Nowadays,
some national and international laboratories and standard institutions are en-
gaged in defining standard procedures for mathematical modelling and testing of
software [Cox and Jackson, 1983; Anthony and Cox, 1984]. A British Standard
has been published [BSI, 1989], providing information and guidance to software

writers and users within the CMM industry.

For any particular measurement, the software implementation comprises the

following steps:

data acquisition;

mathematical modelling;
« design of algorithm;

« coding in some language.

The strategy used to gather the data points should consider the number of data
points to collect and their distribution on the workpiece surface. Clearly, the more
data points that are collected, the more reliable the tolerance assessment is likely
to be. However, economic considerations will limit the number of data points
it is possible to gather and it will be necessary to balance the need for reliable
information with these constraints. A British Standard [BSI, 1989] provides some
recommendations about the distribution of points as well as the minimum number

of points required for each geometric element.

Mathematical modelling is concerned with how basic geometric elements, e. g.
lines, circles, planes, can be parameterised, that is represented in terms of a set

of algebraic parameters. Reliable parametrisations are required when a computer
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is used to fit these basic geometries to data gathered using a measuring machine,
in order to determine the position, orientation and size of geometric features.
It is possible to parametrise each of the geometric elements in more than one
way. For example, a line in a specified plane can be defined by either one point
on the line and information about its orientation, or two points on the line. The
British Standard Institution [BSI, 1989] and a report from the Commission of the
European Communities [G. T. Anthony et al., 1991] give some recommendations
about ways of parametrising geometric elements elements as well as representing
the distance of a point from each of the main geometric elements in terms of the

recommended parameters.

Numerical calculations are employed to find the position and orientation of
the geometric element that best fits the measured data points. The fit is repre-
sented by the value of the parameters of its mathematical model and form errors
of the component are measured relative to this figure. Different criteria for spec-
ify the best fit are possible. In general algorithms for estimating reference figure
fits use either a least squares approach or, based on metrological requirements,
an optimisation of a geometric parameter of the figure. The British Standard
Institution [BSI, 1989] and the National Physical Laboratory [Forbes, 1989], for
example, recommend the least squares technique for computing the best fit geo-

metric element to data.

Important aspects of a software code are modularity and reliability. It is
very desirable that software code be well structured, or modular, in the sense
that natural divisions be reflected in it by keeping each in a separate module.
Practical advantages follow from modularisation such as ease of error detection
and flexibility in putting different pieces of code together [Cox and Jackson, 1983].
The reliability of a software is also a matter of greater concern and therefore a
validation process should be carried out. Some guidance for metrology software

validation is given in Cox and Jackson [1983].
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2.4  Linearised Exchange Algorithms for Refer-

ence Fitting

2.4.1 Computing Reference Figures

The major task of the computation process is to establish from the measured
data the position of the ideal surface of which the true profile is taken to be
an approximate realisation. This is the idea of computing a best fit reference
figure relative to which profile deviations may be assessed. In this context the

deviations are generally referred to as residuals.

Common criteriaof fit are least squares and minimax. The Least squares best-
fit reference is the one which minimises the sum of the squares of the residuals.
The minimax reference is the one that generates the minimum value fof the

maximum deviation.

The definition of the residuals is generally related to instrument geometry
and this will influence the algorithmic approach to computing the reference. For
example, in some cases, it is possible to define the residuals as a linear function
of the reference parameters, and therefore linear optimisation techniques could
be used to compute the reference. The implications of various definitions of
residuals and fitting criteria for form measurement will be discussed in the next
sections. Roundness measurement will be first considered since it well illustrates

some further important points.

2.4.2 Roundness Assessment System

. . . J
Four reference figures are internationally accepted for roundness measurement.

They are, in order of preference given by BS 3730 [BSI, 1987a]:

« Least squares circle (LSC),
e Minimum radial zone circles (MZC),
e Minimum radius circumscribing circle (MCC) or ring gauge,
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Figure 2.1: Residual of point P,, (r,-,0,) from reference (a, b), R, measured radially
from the origin.

e Maximum radius inscribing circle (MIC) or plug gauge.

The minimum radius circumscribing circle and the maximum radius inscrib-
ing circle are commonly used for evaluating the roundness of shafts and holes,

respectively.

Usually the out-of-roundness information required is stated in terms of the
maximum deviation of the profile from the reference figure. For data acquired
using an independent spindle type of instrument, the residual can be accurately
calculated as the radial separation, measured from the instrument coordinate sys-
tem origin, figure 2.1, between the workpiece profile and a non-circular reference,
the limagon approximation discussed below. In this case, sound techniques exist
for fitting data to the four reference criteria, based upon either linear least squares
or linear exchange algorithms and using a limagon figure as an approximation to
the circle. However, the validity of this approach is closely related to the nature

of the data set provided by this type of instrument.

In contrast, on a coordinate measuring machine the profile is represented by
cartesian ordinate pairs to which a circle should be fitted with the residuals mea-
sured radially from its centre, figure 2.2, and not from the instrument coordinate

system origin. In this case, unless a coordinate system transformation is made
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Figure 2.2: Residual of point Pi, (x,, j/,) from reference (a, 6), R, measured radially
from the reference centre.
to a suitable local origin, the limacon reference is not a good approximation, and

therefore a truly circular reference fitting will be required.

These different approaches for assessing out-of roundness and other form fea-

tures are discussed in the following sections.

2.4.3 The Limacon Reference

It is helpful to visualise the measurement process in terms of three frames of
reference as follows [Chetwynd and Phillipson, 1980]. Initially the true compo-
nent shape exists in what may be termed component coordinates, that is, all its
points have a fixed relationship to each other independently of its orientation in
space. However, to measure the component requires that it is presented to the
instrument which effectively expresses its shape in instrument coordinates. As it
is not possible to position a component perfectly relative to an external frame
of reference, an error due to misalignment will be introduced at this stage. The
normal instrument operates by first radius-suppressing and then magnifying the
profile, so that its output represents a transformation of the instrument coordi-
nate frame into a chart coordinate frame, which can be identified with the polar

graph. In instrument polar coordinates an eccentric circle, centred at (E,<t>) and
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Figure 2.3: Roundness measurement using radius suppression and magnification,

with radius Ra may be expressed [Whitehouse, 1973]

k(0) = E cos(0 <I>) + (Rl —E 1sin2(0 - (2.1)

If this is then transformed into chart coordinates by applying radius suppression
L, magnification M and then adding the arbitrary chart radius S, (see figure 2.3)

its polar chart representation will be

r0) = M(k(0) - L)+ S (2.2)

Applying the binomial expansion to equation (2.1), gives

k(0) = £cos(tf-<6)+ /T0(1-(Ta/2)sina(6 -i6) - (7°/8)sind(i»-~)---) (2.3)
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and if this is expressed in chart coordinates

r(0) = MEcos(0- 9+ M(Ra-L )+ S+ MRI(-(72/2)sin2(0- <) (2.4)

where 7 = E/RO is termed the eccentricity ratio. Since the ratios of the constant
and harmonic terms of the expansions in equations (2.3) and (2.4) have been
altered by radius suppression, the figure described by equation (2.4) is distorted
from circularity. Therefore, a circle centred on the origin is transformed to another
circle but an eccentric circle is transformed to a non-circular shape. The degree of
distortion depends, for a given radius suppression, on the amount of eccentricity
present. Thus to effectively fit reference circles in instrument coordinates requires
that non-circular shapes be fitted on the chart. Ideally, the reference in chart
coordinates should be the shape given by equation (2.4). In practice however,
the degree of eccentricity present is quite small: an eccentricity of more than
10pm would seriously reduce the measurement range in most measurements and
many components have radii exceeding 10 mm, so 7 is typically of the order
of 10-3 or smaller. Under such conditions, it is reasonable to approximate the
radius suppressed eccentric circle by just the first two terms of the infinite series

in equation (2.4), giving

r(0) = R+ acos0+ 6sin0 (2-5)

where R = M(RO—L) + S, a= ME cos $and b= ME sin §>

It was recognised [Whitehouse, 1973, Chetwynd, 1980] that this truncation
describes a specific geometric figure, namely a limagon and that its shape rep-
resents more closely the radius suppressed form of a circle in chart coordinates
than does a true circle. Chetwynd [1980, also Chetwynd and Phillipson, 1980] has
brought to attention the fact that a limacon figure in chart coordinates transforms
to another limagon, though with different parameter values, in instrument coor-
dinate. Furthermore the relationship between a profile and a reference limagon

is unaltered by radius suppression.

Although the true reference shape in chart coordinates is usually better rep-
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resented by a limagon than a circle, in instrument coordinates the circle is correct
and the limagon an approximation to it. The “error” between limagon and circle

will be dominated by the second term of the expansion in equation (2.3) giving
Error ss ~~~ sin2(0 —< = —~-[l —cos 2(0 — A (2.6)

Thus the distortion is essentially elliptical, aligned with the eccentricity vector
and the R parameter of the limacon is a biased estimator of RO. However, in
practice the eccentricity ratio rarely exceeds 0.01, so the radial variation between

the limagon and the circle is at most a fraction of a percent of the total eccentricity.

In his work, Chetwynd has also stressed the point that the limagon approxi-
mation can be understood as a linearisation by the truncation of the Taylor series
expansion at the origin of the circle function in instrument coordinates, and not by
the simple truncation of the binomial series as shown in equation (2.3). Equiva-
lent procedures are therefore general and not dependent upon specific geometrical
features of an instrumental technique. The alternative formulation emphasizes
that a choice is made to linearise the circle about a convenient point: the limacon
reference had known advantages over a circle on the chart and being linear in its
parameters could be used conveniently for computation. The exploitation of this

has led to the development of the exchange algorithms which are discussed next.

2,4.4 Exchange Algorithms for Bounding Limacon Prob-

lems

All the three bounding references (that is MCC, MIC and MZC) can be expressed
as problems in the general class of constrained optimisation. That is they can
be stated in the form: maximise (or minimise) a function subject to a set of
constraints. Thus, for instance, the requirement for finding the plug gauge circle
is to find the maximum radius for which a limagon may be constructed such that
the limagon lies completely inside the data representing the nominal circle being

measured (the “radius” of a limacgon is the value of its constant term). This may
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be expressed mathematically as, given a set of polar data points (r,-,0,), where

i = l,eee N, the number of data points, maximise R subject to the constraints

R + acosO, + bsin0, < r. 2.7)

Similarly, for the ring gauge limacon the requirement will be to minimise R subject
to the constraints

R + acos $i + bsin0, > r- (2.8)

For both of these problems there are three variables a, band R and so a subset of
the constraints consisting of three of them forming a consistent set of simultaneous
equations must be exactly satisfied in the optimum solution: thus there will be

at least three contact points between the reference and the data.

For the minimum zone limacgons case, a single reference limacon is defined
with a symmetrically placed zone of */i. The minimum zone problem is then

stated as: minimise h subject to the constraints

R + acosOQ; + 6sin0, + h > r-
(2.9)

R + acos0O-+ 6sin0-—h < r,

again for t = 1, ee=, N. For the minimum zone there are four parameters, a, 6, R
and h and so at least four contact points between data and reference zone ex-
tremities will be expected. Note also that each data point gives rise to two
constraints, indicating that finding the zone will need more work than finding the

other bounding references.

A consequence of using a limagon as the reference is that in all three cases
the constraints are linear in the parameters, as is the function to be optimised,
which makes possible the use of linear programming optimisation techniques.
Linear programming is an established technique in operations research with a
well developed theory (see, for instance, Hadley [1962] and Wagner [1975]). It
offers the advantage that a unique solution may always be found by a finite

iterative search.
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The implications of the theory of linear programming to the solution of linear
bounding references such as the limagon, including the theoretical justification for
exchange algorithms, has been exhaustively explored by Chetwynd [1980] (also
[Chetwynd and Phillipson, 1980 and Chetwynd, 1985]) and the relevant points

are reviewed below.

In his work, Chetwynd shows that the optimum solution to the minimum

circumscribing limacon problem obeys the following two geometric conditions:

1. All the data points must be circumscribed by the limagon.

2. There will be at least three data points which lie on the limagon such that

they do not all lie within a subtended angle, at the origin, of less than 180°.

The second condition is called the 180° rule. Under the special condition that
the three contact points have equal radial values the limacon becomes a circle

centred at the origin.

The optimisation process proceeds by selecting a limagon that obeys one of the
above conditions and iteratively adjusting it , while maintaining that condition,

until the other condition is fulfilled. The optimum has then been reached.

The principle underlying an exchange algorithm is as follows. From a set of
data points take a number just sufficient to solve the fitting problem exactly and
obtain the solution from them. Generally, some other data points will violate
some criterion of acceptability of this solution for the complete data set but, by
definition, this solution will be optimal for the sub-set that do not cause violation.
One of the violating points is then exchanged for one of the original points and a
new solution computed. The process iterates until ail points satisfy the criteria.
Such a process will always converge in a finite number of iterations providing the
exchange is performed in a manner which causes the value of the quantity being

optimised to vary monotonically throughout the iterations.

Thus, a complete algorithm for the minimum radius circumscribing limagon

is as follows [Chetwynd and Phillipson, 1980]:

1. Choose any three data points such that no two adjacent ones subtend an
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angle at the origin of more than 180°.
2. Construct a reference limagon through these three points.

3. If no data points lie outside this limagon the solution is found. Otherwise

choose the point which violates the reference by the largest amount.

4. Replace one of the reference points by this new point such that the 180°
is still obeyed and return to step number two. (Note: this exchange is

unique.)

The maximum radius inscribed limacon problem is solved by changing the sign
of all radial data points and applying the ring limacon algorithm as given above
to the modified data. The parameters of the maximum inscribed limagon are
obtained by changing the sign of the parameters found in this way. This ability to
use the same algorithm for two problems is a further consequence of the linearity

of the limagon in its parameters.

The conditions for the optimum solution to the minimum radial zone limagons
give rise to the following geometric interpretation [Chetwynd and Phillipson,

1980]:

1. All data points must lie not more than a distance h, measured radially from

the origin, from the limacon.

2. There must be four data points all lying exactly h from the limagon such
that they lie with increasing angle 6, alternately inside and outside the

limagon.

As with the minimum circumscribing limacon, these rules may be used to for-
mulate an exchange algorithm, which is given below [Chetwynd and Phillipson,

1980]:

1. Choose, arbitrarily, four data points.

2. Fit a limagon to these points such that they lie equidistant, radially, from

it and obey the alternating point rule with respect to it.
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3. If no other data point lies further radially from the limacon, either inside

or outside, the solution is found.

4. Otherwise, substitute the furthest lying point for one of the defining points
such that the alternation rule is still obeyed and return to 2. (Again, this

exchange is unique.)

The alternation principle has been widely recognised and used intuitively. Ex-
change algorithms for fitting bounding circle references have been proposed by
Anthony and Cox [1985] (see section 2.6.2). In a recent paper [Kaiser and Morin,
1992], it is shown that the alternation property of the minimum zone exchange
algorithm can also be derived from the linearised version of a theorem originally

due to Bonnesen [1924].

2.4.5 Limacon Cylindrical Reference

There is no standardisation on how variations of the surface of a cylindrical work-
piece from a perfect cylinder should be measured and, therefore, errors of cylin-
dricity are generally measured as an extension of roundness. The same analytical

methods are to be expected.

On an independent spindle type of instrument, profiles representing sections of
a cylindrical component are produced on planes perpendicular to the 2-axis qf the
instrument coordinate system. However, the axis of the cylindrical component
will, in general, be misaligned in relation to the instrument axis due to tilt of the

component. The equation of a tilted cylinder in polar coordinates is [Chetwynd,

1980]
2o (a{-a\Z 4 ah2—a\bb\)cas0 + (6+ b2+ hal —a«|6])sin0
(0.2) 1+ (& cos 0 —a(sin0)2
(2.10y
R(I +a]+ b2)'2 ((a + a\z)sin0 — (b + b\z) cos 0)2 12
(1 + (bicos0—aisin0)2)1/2 i R(1+ (bicos 0 —ai sin0)2)

where (a, b) are the coordinates of the intersection of the cylinder axis with the
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2 = 0 plane and R the radius of the cylinder; at and b\ are the slopes from the
2-axis of the projections of the cylinder axis into the xz- and yz-planes The cross
section in a plane of constant 2 is an ellipse with minor semi-diameter R and

major semi-diameter R(1+ a2 + 6J)V2.

The cylinder is clearly non-linear in its parameters and furthermore can be
shown to exhibit non-unique solutions for all the reference conditions. Chetwynd
[1980] proposed the linearisation by the Taylor expansion of the tilted cylinder
equation in (2.10) about the point of perfect alignment (a = b= aj = 61 = 0).
This process generates a figure which he named skew limagon cylindroid, given
by

R(0,2) = (a-}Fa\z)cos 0+ (b+ 612)sin0+ R (2.11)

A comparison of equations (2.10) and (2.11) shows how much information is
totally disregarded by the linearisation. In particular there is no remaining term
concerned with the ellipticity of the cross-section (hence the term skew instead
of tilt). The nature of the error terms in the linearisation process is emphasised

if they are expressed as [Chetwynd, 1980]

Error « 4a" (I + cos2(0 - #A)) — AH —cos 2(0 - /N (2)) (2.12)

where a is the angle of the cylinder axis to the 2-axis and @ and <k are the
directions of tilt and total eccentricity in the ary-plane. The eccentricity terms E
and $°E depend upon 2 whereas the terms due to pure tilt do not. The accept-
ability of the model depends on the maximum value of the eccentricity ratio and
also on the magnitude of the tilt compared to absolute radius. As written above,
the first term in the error can be identified with the representation of the tilted
cylinder in terms of a skew circular cylindroid while the second term relates to
the approximation of the circular cross-sections of that cylindroid by limacgons
[Chetwynd, 1980]. The above discussion is naturally also of concern to the mea-
surement of roundness profiles on cylindrical objects as it is quite common for

tilt be the major cause of eccentricity in a reading.

The parameter linearisation brought about by the definition of the skew
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limagon cylindroid made possible the application of the same techniques as used
for roundness measurement. Its behaviour under radius suppression is the same
as that of the limacon since the radius suppression operates in directions perpen-
dicular to the 2-axis. The magnification usually associated with the translation to
chart coordinates has one extra effect on the cylindroid since generally it would
be expected that different values of magnification would be applied in the radial
and axial directions. Thus, the slope of the cylindroid axis from the measurement

axis is multiplied by the ratio of the magnifications in these directions.

The solution of the boundary limagon cylindroid is a direct extension of the
methods used in two dimensions. However, the motivation for seeking exchange
algorithms to replace the general method reduces as the geometrical complexity
of the problem increases for the manipulations required to calculate the exchange
become more involved. Therefore, the recommended method for solving all the
three boundary limacon cylindroid is by direct solution of the dual linear pro-

gramme [Chetwynd, 1980].

Given the greater degree of complexity in cylinder formulations than in circle
ones, it is to be expected that the shape difference between limacon cylindroid and
cylinder is subject to more sources of variations than is that between limagon and
circle and therefore, there will be less that can be said with certainty concerning
bounds to cylinder fits from cylindroid fits. Chetwynd presents in his work a
lengthy discussion on the limitations and problems of using the skew limagon
cylindroid model as a approximation to the tilted cylinder, though he ultimately

reaches no firm conclusion concerning the limits of its applicability.

2.4.6 Minimum Zone Straight Lines and Planes

There are two definitions of residuals particularly relevant to straightness and
flatness measurement: one places the residuals normal to the reference line or
plane and the other normal to the instrument datum, figure 2.4. These defini-
tions correspond to residuals aligned in the component and instrument frames

respectively.
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a b.

Figure 2.4: Residuals measured parallel to y-axis (a) and normal to fitted refer-
ence line (b).

The residuals in instrument coordinates, e-, of a set of three-dimensional data

points (x,-, v, Zi), from a best-fit plane are given by

e, = 4 —(axi + byi + ¢) (2.13)

for i = 1, ===, N where N is the number of points and (a, b) are the slopes of the
intersections of the fitted plane with the xz- and i/2-planes and c the intercept
of the plane with the 2-axis. This places the residuals normal to the xy-plane
of the instrument coordinate system, thus the residuals are measured parallel to
the 2-axis. It is this which forces the linearity of the formulae and so guarantees
that there is a unique solution to the fit. This model however is only valid if it
makes physical sense in terms of the geometry of the instrument to consider the
residuals acting in this manner. This is indeed the case on a stylus-based form
measurement instrument. The instrument gauge traverses parallel to the datum
plane/line and measures the normal distance variation from the datum to the
workpiece. Its operation depends on the instrument datum surface being aligned
quite closely to the trend of the workpiece surface. Typically the traverse might
be 10 mm or longer, while the vertical displacement might be some tens of pm or
less. Thus the slope of the fitted line/plane relative to the instrument reference
must be very small and only an insignificant approximation is involved in using

equation (2.13).
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Now consider the use of a coordinate measuring machine to take a set of Carte-
sian points along the surface of a nearly flat/straight feature. The orientation of
the surface may be arbitrary and therefore the residuals are usually considered
to be normal to the fitted plane/line: taking them parallel to an instrument
axis would generally not be a good approximation. Thus the residuals should be
considered as shown in figure 2.4.b. Calculating the residuals according to this
definition, the form of equation (2.13) is replaced by

—2Z -(-axi + by{ + c

(1+ a2+ 622 (2.14)

again for i = 1,===7V, where s, are the residuals measured normal to the fit-
ted plane. This is clearly non-linear in its parameters and consequently fitting
according to it involves more computation than does equation (2.13). It is impor-
tant to note here that by parameterising the equation of a line in a different way,
it is possible to express the residuals normal to the fitted line (figure 2.4.b) as a
linear function of the parameters [Forbes, 1989]. This however will be discussed

in the next sections.

The methods developed for deriving boundary references are not applicable
only to the measurement of roundness but to any problem which can be ex-
pressed in a similar way. Probably the most commonly applied measurements
for straightness and flatness involve the minimum zone criterion. The minimum
zone straight lines or planes are a pair of parallel lines/planes so placed that
they enclose the profile between them and that their separation is a minimum.
By defining the separation normal to the datum axis or plane (and so ensuring
linearity) it is consequently possible to solve these by using linear programming

techniques.

The solution for the minimum zone straight lines can be found by direct
application of the Stiefel exchange algorithm [Osborne and Watson, 1968 and
Chetwynd, 1985] for minimax polynomials fitting, that is curves having the small-
est possible maximum divergence from the data. In terms of the minimum zone

straight lines, there will be three contact points, two contacting one line, and
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Figure 2.5: Plan view of contact geometries for minimum zone planes. O and X
represent contacts with different planes.

one the other in an alternate sequence. The algorithm proceeds by interchanging
one of the contact points with the furthest point lying outside the zone, while
maintaining the alternate condition, until all the data points are enclosed by the

reference lines.

The minimum zone planes can be expressed, in instrument coordinates as:
minimise Z = h subject to the constraints
axi+ b/i+c+ h> 4

(2.15)
axi + byi+ ¢c —h < z,

for all @, jl,z,), i = 1,*== 1V, a, band c sign unrestricted and h > 0.

The geometric interpretation of the dual feasibility of its linear programme led
again to the definition of exchange rules [Chetwynd, 1985]. Four contact points
are required; there can be two contacts with each of the minimum zone planes,
figure 2.5a, or one contact point in one plane and the other three ones in the
other minimum zone plane, but obeying a spatial configuration different from
the first, figure 2.5b [Chetwynd, 1985], There is a unique exchange for any new
point in order that these relationships are preserved and so a workable exchange

algorithm may be based upon these patterns.
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2.5 Least Squares Reference Fitting

2.5.1 Computing Least Squares References

Fitting a least squares reference to data amounts to finding the values of the
parameters which makes the sum of squares of the deviations d, of the data
points to the reference take on its minimum value, hence the term least-squares

fit. This is expressed by: minimise

I X (2.16)

»=l

where N is the number of data points. In general, modelling the problem of
finding the least-squares best fit element to data involves choosing parameters
to describe the geometric element and deriving a formula for the deviations of

points to the geometric element in terms of these parameters.

Fitting a least square reference is simplified if the deviations di are given as a
linear function of the parameters as, unlike non-linear least squares problems, it
is certain to be directly solvable and the solution to be unique. Some measure-
ment problems are naturally linear and others can be well-approximated. Other
problems would involve quite large degrees of approximation and thus non-linear

methods are unavoidable.

2.5.2 Least Squares Limacon

In the case of circle fitting it is first necessary to define what is meant by devia-
tions. The most logical form for the residuals is in terms of their radial distance

from the circle centre, figure 2.2, given by
&= S —R, i= 1 eIV (2.17)

where N is the number of data points and a- = [(x<x —a)2+ (y; —6)2]1/2 is the

distance from the data point (xi,y.) to the centre of the circle (a,b). Using
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equation (2.17), the required minimisation will be non-linear in its parameters

a, band R.

However, for data sets acquired using an independent spindle type of instru-
ment, the variation measured, as mentioned in sections 2.2.3 and 2.4.3, is the
distance between the workpiece surface and a circular reference datum, r,-, from
the instrument axis of rotation, figure 2.1. Thus, the residuals are more appro-
priately defined as

e, = ri—k(0), i= (2.18)

where k(0) is the equation of an eccentric circle measured from the instrument
origin (see equation (2.1)). By using the limagon approximation (see section

(2.4.3)), equation (2.18) becomes

ti= r{ —(acos0+ ¢sint+ R), i= leee N (2.19)

and this least-squares minimisation will be linear in its parameters.

It is important to observe that when the instrument is of the independent
spindle type, the residuals given by equation (2.19) defined radially from the
instrument centre are not only more convenient than the ones defined in equation

(2.17), but also they are more precisely correct [Chetwynd, 1979b],

A fully general derivation of the least squares limacgon is given by Chetwynd

[1980]. The general solution is found by solving the normal equation given by

-1
a £ c0s26, £ sinOiCosOi £ cos0{ £ r,cos0,
b = £ sinOiCosOi £ sin20i £ sinOi £ r,smo,
R £ cosQOi £ sinOi n E <

where n is the number of data points (in lower case to simplify notation) and all
sums are over i = 1, e= n. Simplifications can be made by selection of specific
angular positions 0,. All off-diagonal terms can be forced to zero simultaneously
by choosing a four-fold symmetry of samples around the circle, that is for a sample

at O- there should also be ones at O; -fr/2,0, -(- Ir and O, -I-3n/2. For any four-fold
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scheme, equation (2.20) reduces to the standard formulae

(2.21)

The first derivations of these formulae [see Reason, 1966] were through the in-
tegration of continuous profiles using analytic results for the integrals of the
trigonometric functions over one cycle. It was assumed that the integral could
be replaced by a summation providing a “reasonable” number of samples were
used. In most Standards [e. g. BSI, 1987b] this has appeared as a “reasonably
large even number” without further justification. The need for four-fold symme-
try was found by Chetwynd, 1979b, when a true discrete least squares solution

was undertaken.

2.5.3 Least Squares Circle

When using a more general measuring instrument, like a coordinate measuring
machine, the profile is represented by Cartesian ordinate pairs to which a circle
should be fitted (figure 2.2). In this case, the correct form for the residuals is in
terms of their radial distance from the circle centre, as given by equation (2.17).
This is non-linear in its parameters and therefore it requires an iterative type of
algorithm to find the least squares solution, that is find parameters (a, b) and R

so as to minimise

N
- R)2 (2.22)

where s, = [(xX» —a)2+ (y, - 6)2]1/2.

Note that the limagon figure would be a valid reference if a coordinate sys-
tern transformation was made to a suitable local origin, which would allow the

linearised form for the residuals (equation 2.19) to be used instead.

An algorithm for fitting circles in a specified plane is described by Forbes,
1989, which is based on the Gauss-Newton algorithm [see e. g. Gill, Murray and

Wright, 1981].

An estimate of the solution must be available to start the algorithm. The
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initial solution is then updated in each iteration until it has converged. The

major step of this algorithm is to solve the linear least squares system given by

Pa
Pb (2.23)

PR

where e is the matrix representation of the deviations given by equation (2.17) and
J is the Jacobian matrix, whose elements are found from the partial derivatives

of e- with respect to the parameters a, band R and given by

dxo- U

a -(il,-iio

da (rj ) (2.24)
A

The solution of the system given in (2.23) is used to update the parameters

estimates as

a:= a+ pa
b:=b + pb (2.25)
R:= R+ PR

This process is repeated until the algorithm has converged.

In order to find a good initial estimate of the circle parameters, Forbes suggests

that the function to be minimised be replaced by

N
£(s7-22 (2.26)

By expressing sf —R2 in terms of parameters (a,b) and p = a2 + b2 —R2, this
function is made linear in its new parameters and therefore, in order to minimise

(2.26), a linear least squares system is solved as

= b (2.27)
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where the elements of the ith row of A are the coefficients (2x,, 2j/,-, —1) and the

ith element of bis (x? + yf).

It is worth to mention that a similar type of algorithm, based on the Gauss-
Newton method, had been previously proposed, although not presented in detail,
by Anthony and Cox [1985]. Similarly, the same linear approximation is suggested

so as to find good initial estimates.

Least squares sphere fitting is also discussed by Forbes [1989]. An algorithm
for least squares sphere fitting is presented which is the three dimensional version

of the algorithm outlined above.

2.5.4 Least Squares Cylindroid and Cylinder

The skew limacon cylindroid (see section 2.4.5) is linear in its parameters and so,
following the same reasoning to use the definition of residuals given by equation

(2.19) for the least squares limacon, its residuals are expressed as

6=r-—((a--a\2)cos0; + (6+ b\z)sin0, + R) , t= 1, ee= N (2.28)

where a, 6,0i,6j and R are as defined in equation (2.10) and N is the number of
data points. Thus the least squares limagon cylindroid is found by the solution of
a linear least squares system [Chetwynd, 1980], which will not be repeated here.
Patterns of measurement are also suggested by Chetwynd in order to simplify the
least squares computation and make the estimates of the parameters independent
of each other. However, there seems to be no convenient simple sampling scheme,
as in the two-dimensional case, to justify the adoption of such schemes considering

the computing power of present generation computer-aided-measureinent system.

Forbes [1989] presents an algorithm for fitting a cylinder to Cartesian data
points (x,y, z). In this case, the residuals are defined as the deviations of the
data points from the reference, measured radially from the axis of the cylinder.
This is expressed as

e=1r-r (2.29)
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where
_ yjul + v?2 + w?

y/a2 + HlL+ c2 (2.30)
with
= c(yi - ya) - b(zi - z0)
Vi = a(zi - z0) —c(xi —x0) (2.31)
W = b(xi- x,)- a(yi- ya)
for i = 1, m=, N, where (a, b, ¢) represents a vector pointing along the axis of the

cylinder and (x0,y0, za) a point on its axis.

The algorithm to find the least squares best fit cylinder is based on the Gauss-
Newton method mentioned in section 2.23. However an assumption is made that
for nearly vertical lines, in three dimensions, its direction can be represented by
a vector of the form (a, 6,1), and, given the latter, the 2-ordinate of a point on
the line is specified by za = —ax0—by,. Therefore, equation (2.29) is reduced
to a function of the five parameters x,, ya,a,b and r. In order to implement
the Gauss-Newton algorithm, the partial derivatives of e, (equation (2.29)) with
respect to these five parameters are needed. In order to simplify the derivative
expressions, a second assumption is made that the axis is exactly vertical and

passes through the origin.

Thus the algorithm iterates as usual, except that at the beginning of each iter-
ation, a copy of the data is translated and rotated so that the trial best-fit element
(i. e. the element corresponding to the current estimates of the parameters) has
a vertical axis passing through the origin. The special orientation simplifies the
calculation of the Jacobian matrix. At the end of an iteration, the inverse trans-
lation and rotation transformations are used to update the parameter estimates

and thus determine the new position and orientation of the axis.

Unfortunately, there appears to be no straightforward method for obtaining
initial estimates of the parameters. If there are estimates of (a, 6,¢), then we
can rotate the data so that the trial axis is vertical and fit a circle to jv and
~-coordinates of the rotated points to obtain estimates of (x0,y0,z0) and r. In

many measurement situations such estimates of (a, 6,c) are available from the
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approximately known orientation of the workpiece with respect to the coordinate

system of the measuring machine.

Algorithms for circle fitting in three dimensions and cone fitting are also dis-
cussed by Forbes [1989], and follow the same strategy as for cylinder fitting,

although the expressions for the residuals are slightly different in each case.

2.5.5 Least Squares Lines and Planes

As discussed in section 2.4.6, when the residuals are defined normal to the in-

strument datum, they are expressed as (in two dimensions)

U= o- (mxit+ /), t= 1 e N (2.32)

where m is the slope of the line and | the intercept of the line with the y-axis.
Thus, fitting a line to a set of data points (xj,y,) that minimises the sum of
the square of the deviations given by equation (2.13) is very straightforward and
commonly given in statistics text books as linear regression. The same approach

is valid for plane fitting under the same conditions (see equation 2.4).

This definition of residuals is only valid when the geometry of the instrument
allows such an assumption be made. In measurements using a coordinate measur-
ing machine for example the residuals are truly defined by the normal distances

to the reference line, as given by

Y, - rnx, + /

1+ ms)2 »= leee (2.33)

where a- is the Euclidian distance of the point (x<,y,) to the line of slope rm and
intercept I. This is non-linear in its parameters and therefore requires non-linear

methods.

Forbes [1989] presents an algorithm for fitting a least squares line through a

set of points with the residuals measured normal to the fitted line. The residuals
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are re-expressed as
Si= bXxi- x0) - a(yi- ya, i= (2.34)

where (a, b) are the direction cosines of the line [see e. g. Ayre and Stephens,

1956] and (x0,y0) a point on the line.

The algorithm works on the fact that the line passes through the centroid of
the points which makes it possible to reduce the problem to a linear least squares
system. The direction cosines of the line are defined by finding the Singular Value
Decomposition of the matrix of coefficients (the normal equation matrix, see e. g.
[Gill, Murray and Wright, 1991]): the direction cosines are given by the singular

vector corresponding to the largest singular value.

The algorithm for normal least squares plane fitting is also based on the same

assumption, viz that the plane passes through the centroid of the points.

2.6 Minimum Zone and Other Types of
Approaches

2.6.1 Minimum Zone Reference Fitting

Minimum zone approaches do provide a smaller form error zone for a given set
of data points than commonly used least squares methods (see section 2.5). The
minimax reference has the property that the largest absolute residual |t, |is
as small as possible. The minimum zone methodology is also attractive in the
sense that when it is shown diagrammatically it appears similar to a geometrical
tolerance zone [e. g. BSI, 1990]. Therefore, there has been interest regarding the
evaluation of form tolerances based upon the minimum zone by which features

can be described.

Apart from the exchange algorithms, other comprehensive methods have been

proposed for fitting a minimax reference to data. Shunmugam [1986] presents a
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heuristic procedure he calls median technique, in which the deviations are mea-
sured from a median reference. In the case of straightness for example, the pro-
cedure starts by fitting a triad line passing through the end points. To fix the
crest line, the point corresponding to the maximum positive deviation is selected
as one of the reference points and the process repeated until the deviations are
negative or zero. A similar approach is used to fix the valley line. The median
line is then determined by three points selected from the crest and valley points
so that the straight zone is minimum. However, the deviation is measured normal
to the datum system and not normal to the reference figure. Similar procedures,
based on the same technique, are outlined in the paper for finding minimax plane,
circular, cylindrical and spherical references and again the deviations are mea-
sured from the linearised approximation of the true references. Although this is
a simple method, there is no evidence to judge that the reference determined in

this way for a given data set is the one that will have the minimum zone.

Murthy and Abdin [1980] present the use of three different methods, namely
Monte-Carlo, Simplex and Spiral search techniques, for finding the minimum
zone lines, planes, circles and spheres. In the case of Monte-Carlo technique the
minimum zone surface is assumed to lie within the zone of deviations obtained
by the least squares method. To determine the actual minimum zone reference
the parameters are selected randomly. For each randomly selected solution the
minimum deviation is calculated. If a value less than the least squares value is
found in these trials the reference is shifted to this and the process is repeated.
This process continues until the minimum value does not change appreciably. In
this method, because of random selection of variables, there is a possibility of
missing the actual minimum. A more convenient method, the authors suggest, is

the Simplex search technique.

The Simplex search (due to Nelder and Mead [1965] not to be confused with
the simplex method of linear programming) gets its name from the regular ge-
ometric figure used in the search process. This is a formal sequential gradient
search designed to climb up and down non-linear mathematical functions. The

basic idea is to compare the values of the objective function at the n + 1 vertices
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of a general simplex and move this simplex gradually towards the optimum point.

In the case of circle fitting, for example, the function to be minimised is

[/ = [max{r,- —r} —min{ri —r}] (2.35)

where r- = [(x- —a)2+ (j/j —6)2]U/2, i = 1, == N, (a, 6) and r are the reference
parameters and (x<,y,) the data set. The least squares solution (see section 2.5.2)
is considered a good starting point so as to reduce the number of iterations. A
third search technique suggested by the authors, when there are only two or three
variables, is the Spiral technique in which a complete scanning for the absolute
minimum could be tried in a spiral manner around the least squares solution. It
is suggested that a combination of spiral and simplex search techniques would

yield good results.

It is claimed in the paper that the Simplex search consistently gave the least
minimum zone of the methods considered for straightness, flatness, circularity and
sphericity and that the results are in the range of 80 % of the least squares zone.
One advantage of this method is that the deviations are clearly measured normal
to the reference figure (e. g. in the case of circle fitting normal to the centre of
the reference). However, no information about the computational efficiency of

this method is given in the paper.

Dhanish and Shunmugam [1991] present an algorithm for evaluation of form
errors such as straightness, flatness, roundness based on the theory of discrete and
linear Chebyshev approximation. The deviations are defined as linearly depen-
dents of their parameters, as in equations (2.32) and (2.13) for deviations from
lines and planes respectively, or as in equation (2.5) for deviations from circles.
This algorithm is a type of exchange algorithm, in which the Stiefel Exchange
Algorithm [Osborne and Watson, 1968] is used for the straightness case. For the
flatness case it seems no rule is defined and trial exchanges are made replacing
the points in the reference set one by one. Although it is not mentioned, this
algorithm is based on the same theory as the exchange algorithms of Chetwynd

[Chetwynd, 1985]. In this case however there is no geometric interpretation of
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the steps to follow and therefore strict mathematical rules are obeyed.

Other minimum zone algorithms are proposed to fit specific reference figures,

which will be considered separately.

2.6.2 Minimax Circular References and Other Approaches

The general non-linear minimax circular reference fitting problem is to find a

reference (a, b), R so as to minimise

max |ti | (2.36)

fori=1 ,N, where N is the number of data points and is as in equation

(2.17). Equivalently, this is formulated as: minimise h subject to

-h<ti<h, i=1 e A (2.37)

Anthony and Cox, 1985, proposed an exchange algorithm for finding minimum
zone circles based on a interlacing property [Rivlin, 1979] that there are four
points in S, the set of data points, so disposed that, if they are ordered according
to the angle the line joining them to the common centre makes with a fixed
radius, they lie alternately on the outer and inner circles. The algorithm consists
in finding four such points. As initial estimate, it is suggested that the linear least
squares system given in (2.27) be used to minimise the approximated function
given in (2.26), linear in its parameters. It is argued that the success of the
iteration process depends on a good choice for two points in S “close to” and two
points in S “far from” the centre coordinates of the current estimate. However,

no detail is given about the strategy employed.

Ventura, Chang and Klein [1988] present an algorithm for minimax circle fit-
ting based on the misleading premise that the minimax circle is defined by finding
the centre of a circle of constant radius which minimises the zone of deviations.
So the number of parameters is reduced to three, the centre coordinates and the

maximum deviation. Presumably, the radius is assumed as its nominal value. An
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exchange algorithm is then proposed based on the statement that there are seven
possible solutions for each combination of three points, thus it iterates through
the possible combinations of points in order to find the one which does not violate
any of the data points and has the minimum value for the deviations. It seems
however that the zone so defined is minimum for a circle with a particular radius
and not the minimax zone as it is commonly understood, that is when the radius
is also allowed to vary. Moreover, for a large data set this algorithm seems to be

computationally very expensive.

A different approach, using techniques developed in computational geometry
isused by Le and Lee [1991] and Lai and Wang [1988], to define similar algorithms
for fitting minimax reference circles to data. The algorithms are based on the
concepts of medial axis and farthest neighbour Voronoi edges of a polygon. The
medial axis of a polygon G is the set of points q internal to G such that there
are at least two points on the boundary of the polygon that are equidistant from
g and are closest to q [Lee, 1982]. The set of points q is the collection of the
centres of the inscribed circles of polygon G. Associated with each vertex u, of
G there is a convex polygonal region V, such that u, is the farthest neighbour of
every point in the region. This diagram is denoted as the farthest point Voronoi
diagram and its line segments are the farthest point Voronoi edges. Any point
on these edges is the centre of a circumscribed circle of the polygon G [Shamos
and Hoey, 1975 and Preparata and Shamos, 1985]. The algorithms are based on
the statement that the intersection of the medial axis and the farthest neighbour
Voronoi edges of the polygon are the centres of concentric circles enclosing the
polygon, and the circles with minimum radial separation are the minimum zone
circles enclosing the profile. Le and Lee [1991] claim that the time complexity
of their algorithm is of the order of n log n + k, where n is the total number of
vertices of the polygon, and k is the number of intersections between the medial

axis and the farthest neighbour Voronoi diagram.

Exchange algorithms for the minimum circumscribed and maximum inscribed
circle references [BSI, 1987a] have also been proposed by Anthony and Cox [1985].

It is stated that the minimum circumscribed circle (MCC) has the property that



there is at least one triad of points in the set of data points (S) that lie on the
MCC and form the vertices of an acute-angled triangle [Hearn and Vijav, 1982]. It
is pointed out that a single exception is when two points in S define a diameter of
MCC. The same property is claimed for the maximum inscribed circles, although
it is argued there may be a number of locally best solutions. This characterisation
is the basis of the proposed algorithms. In order to find an initial estimate, a
second algorithm is proposed, which in turn starts from the least squares solution
of the linear system given in (2.27). However, no information is given about the

performance of these algorithms.

2.6.3 Minimax Cylindrical References and Other

Approaches

Goto and lizuka [1977] attempted to discover the minimum zone cylinders from
the least squares solution. A search method is given but considered to be too
inefficient and an alternative is proposed which uses a weighted least squares
approach in which the weights relate to the residuals of an unweighted least
squares solution so that the major peaks and valleys are emphasised. This method

is of course an estimation of the minimum zone cylinders rather than a solution.

One proposed method for defining cylindricity which does not rely on the
usual reference figures is due to Goto and lizuka [1977] when a deformed cylinder
is described in terms of an axis consisting of orthogonal polynomials in z and
cross-sections of constant z are described as Fourier series using r and 0 (r, 0 and
z being a cylindrical coordinate systerti). It seems that this method was first
adopted more to demonstrate the use of least squares by which the parameters
can be found than for metrological reasons but it is a method of describing the

surface that can well be used.

Other methods for cylindricity measurement are considered in a paper pre-
sented by Murthy [1982] include the spiral tracing method [Tsukada et al, 1977],
the multi stylus method [Kakino and Kitazawa, 1978], the surface development

method and the method of the orthographic projections of the axis of the cylinder
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[Murthy, 1982].

2.6.4 Minimax Planes and Lines

A computational approach to the evaluation of straightness is presented by Lai
and Wang, 1988. This procedure is based on the concept of building a convex
polygon in a stepwise manner (see e. g. [Preparata and Shamos, 1985]). Using

this method, the authors claim that the minimum zone can be determined.

Traband et al [1989] present an algorithm for finding the minimum zone lines
and planes based on the theory of convex hulls [Preparata and Hong, 1977]. The
convex hull H(S) of S is defined as the smallest convex set containing S, a set
of points in E2, the two-dimensional space. A supporting line of H(S) is a line
passing through a vertex of H(S) such that the interior of the convex region lies to
one side of the half-plane defined by this line; thus, two supporting parallel lines
will define a zone enclosing S and different zones can be defined. The algorithm is
then proposed on the grounds that the minimum zone can be defined by searching
for such two supporting parallel lines with minimum separation. The effectiveness
of the algorithms is tested by using several data sets and comparing the results
with the linear least squares method, and some results show that the least zone
is obtained by the proposed method. One minor criticism is that the data sets
used were well aligned with the x-axis or xy-plane and therefore no information is
given about the performance of these algorithms with data sets not aligned with

the appropriate axes.

Another approach for finding the minimax lines and planes is presented by
Huang, Fan and Wu [1993]. The minimax method proposed uses the concept of
the rotations of enclosing planes (the so called control plane rotation scheme) with
respect to a particular contact point at each data exchange step. The procedure
starts by defining a trial zone parallel to the least squares best-fit plane and
containing the extreme points (in the opposite half-spaces defined by the least
squares plane). Then a rule of search is proposed based on the rotation of planes

so as to get to the condition where four points are in contact with the enclosing
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planes. The procedure terminates when one of the following two conditions is
satisfied: there are two contact points in each plane such that, when projected
onto the lower plane, the line linking the two contact points of the upper plane
must intersect the line linking the two contact points of the lower plane; or there
are three points on one plane and one point on the other plane such that, when
projected onto the lower or upper plane, that single contact point must be on
the inside of the triangle formed by the other three points. These conditions
are also applied by Chetwynd in the exchange algorithm (see section 2.4.6 and
figure 2.5) for minimax plane fitting. It seems that while the exchange algorithm
iterates from an optimum but unfeasible solution (it starts with a solution that
obey one of the two conditions above but does not enclose all the data points),
this algorithm starts with a feasible (all the points enclosed by the trial zone)
but not optimum minimax plane and then iterates until the optimum solution is

found (one of the two conditions above is satisfied).

2.7 Geometric Tolerance Assessment

The National Physical Laboratory (NPL), UK, has recently released a report
addressing the problem of assessment of geometric tolerances [Forbes, 1992]. The
approach proposed for tolerance assessment is somewhat in line with the work

reported in this thesis.

The general tolerance assessment problem is stated as a constrained problem,
in which an optimisation procedure is used to find the parameters of the geo-
metric element that do not violate the form and parameter constraints imposed
by tolerance specifications. Few examples are considered, such as circularity and

tolerance on radius; the case of template matching is also considered.

It recommends the decomposition of multi-component problems, so that it is
possible to solve a sequence of optimisation problems and consequently to reduce
the complexity of the original problem. This is illustrated by considering the
case of two holes with a specified minimum radius and separated from each other

by a toleranced distance. It is advocated that first be found the two maximum
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inscribed circles and then it be checked whether the centre of the circles lie within
tolerance. It is observed however that this decomposition changes the original

problem.

Another point considered is the use of approximate methods for simplifying
the solution of the original problem. Methods considered include: reduction of the
number of parameters; substitution of constrained by unconstrained optimisation;

and the replacement of non-linear problems by linear problems.

No algorithm is presented for solving the problem as stated, although it is
possible to understand that there is a preference for adopting a Chebyshev ap-

proximation type of method [Osborne and Watson, 1969].

2.8 Towards Automated Inspection in a Com-

puter Integrated Enviroment

2.8.1 Comparison of Measured Data Points with CAD

Data Files

Manual drafting has been replaced, over the past ten years, by modern, comput-
erised systems for defining the geometry of mechanical parts. A great variety
of computer-aided-design (CAD) systems are available nowadays, embodying a
number of geometric representation schemes. In CAD systems, the nominal ge-
ometry of the object is constructed and stored in a file. Once the part geometry
has been defined, computer-aided-manufacturing (CAM) systems can be used in
order to generate the machining part programme which will generate the actual
part. After machining, the part is inspected for conformity with design specifica-

tions.

Research work reported by Schneeberger [Schneeberger et al, 1983], presents
a technique for the determination of errors in part geometry by comparison of a
measured part database with a part nominal database. The nominal database

represents the desired part geometry generated by the CAD system and trans-
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ferred into the machining part programme processor. The measured database is
obtained by coordinate measurement of surfaces on a manufactured part. A least
squares best fit technique is used to calculate surface parameters from measured
data, and the parameters of the fitted surface are used to transform the database
from the machine coordinate system to a workpiece coordinate system. The nom-
inal part database is also transformed into the same workpiece coordinate system.
The errors are calculated by computing the distance from the measured points
to the nominal part surface. It is reported that this technique was tested for
cone, cylinders and plane fits. However, there is no discussion about the errors
introduced by the rotation and translation matrices, in the process of coordinate
transformation, which obviously has to be considered, nor about the computa-

tional cost involved.

A commercially available software package, Perceval [Sediscad, 1993], appar-
ently works in line with the technique presented above. As described in its ad-
vertising leaflet, the error is obtained by projecting the measured point on the

theoretical surface stored in the database.

This technique can achieve little more unless used in conjunction with error
compensation techniques. A technique for modifying the manufacturing process
based on the error information is presented by Duffie [Duffie et al, 1984]. In this
paper, the work is concentrated on automated modification of surface geometries
using parametric surface patches (see e. g. [Faux and Pratt, 1979]), which are
commonly used for sculptured surfaces. A compensation strategy is applied in

which a modified surface patch database is created using patch fitting techniques.

2.8.2 Geometric Tolerancing in Solid Modeling Based
CAD Data Files

The most powerful computer-aided-design systems are based on solid-geometric

modelling systems (solid modellers for short) for geometry definition [Requicha

and Volker, 1982]. Solid-geometric modelling systems are expected to be the

future medium of communication for geometrical specifications of mechanical
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product designs. But the solid modellers available today are for the most capable
only of representing the nominal geometry of parts. In general, two dimensional
projections are derived from a solid model, and these views are annotated with
dimensions and tolerances (see [Roy, Liu and Woo, 1991] for a review of automatic

dimensioning systems).

Tolerancing annotations contain a great deal of implicit information, which is
obvious to the intelligent and experienced production engineer, but is not good
for computer implementation. Ideally, the geometric meaning of tolerancing in-
formation should be defined mathematically and incorporated in solid modellers
for automatic planning and analysis. This would make it possible, for instance, to
inspect whether features meet their design specifications by checking whether the
data acquired using a measuring machine (after suitable frame transformations)
lie within tolerance zones in the solid model, which might be defined as regions

of space surrounding the object’s nominal geometry.

Several research workers have explored the field of Dimensioning and Toler-
ancing (D & T) and studied several aspects of its implications for the successful
integration of computer-aided design and manufacturing (see e. g. [Roy, Liu
and Woo, 1991]). This review concentrates on aspects of the representation of

tolerances in solid modelling.

The lack of a formal theory for the representation of tolerances in solid mod-
elling was first identified by Requicha, who developed a theory based on the
variational class concept [Requicha, 1983, 1984]. Variational classes are families
of objects that are similar to a nominal object, are interchangeable in assembly,
and are functionally equivalent. By his definition, a variational class is to be
represented as a nominal object together with a collection of assertions about the
object’'s features. These assertions define geometric constraints that specify the
allowable variations from the nominal object’s shape. He proposed the concept
of nonparametric zones [Requicha, 1984], as opposed to the parametric approach,
defined as the set of points that are within a given distance of the nominal fea-
tures. A tolerance zone is created by the Boolean set difference between two

offset objects with specified maximum and minimum offset values.
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For parameterised objects, the maximal and minimal objects are defined
by the maximum and minimum values of the defining dimensions. For non-
parameterised objects, the tolerance zone is created by offsetting the object by
equal amounts on either side of the nominal. Unlike parameterised objects, the
maximal and minimal objects may not be of the same shape. Requicha considers
this to be an advantage because this class does not force objects to have perfect
shape (same as nominal). The tolerance information is specified as a set of ge-
ometric attributes of the surface features of an object boundary, and it dictates
the offsetting criteria for the boundary surfaces. A formal theory for offsetting

operations is discussed by Rossignac [1986].

The parametric approach was first proposed by Hillyard and Braid [1978] and
further refined by Lin, Gossard and Light [1981] and Light and Gossard [1982].
In this approach, an object is treated as a parameterised shape where either the
parameters are explicitly specified by the user or determined from a set of con-
straint equations involving geometric relationships. Tolerances are considered to
be small changes in the defining dimension parameters. The approach has typ-
ically been applied to objects built from planar faces and straight line edges or
right circular arcs. Since tolerances can only be supported as attributes of para-
metric dimensions, the classes of tolerances that can be supported is very limited.
Tolerances such as circularity and cylindricity cannot be supported because of the
restrictions on geometry. Position tolerances based on resolved entities (axis, mid-
plane) cannot be supported as well because the vertices of these entities are not

available.

Using his theory of tolerancing, Requicha and Chan [1986] have implemented
the representation of geometric features, tolerances and attributes in a CSG-based
(Constructive Solid Geometry) modeller, PADL-2 [Brown, 1982]. The basic struc-
ture proposed for representing features and attributes is a graph called a varia-
tional graph or simply VGraph, which associates the variational information with
the solid model. It utilises what is called 2D intersection set operators that allow
one to reference only a portion of a face (called VFace) by intersecting the object

with a virtual object. Attributes, such as tolerances, can be attached to VFaces.
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Attribute nodes are provided for classes of tolerances. In this respect, Requicha
proposed to replace various special-case tolerances used in current practice (e.
g. roundness, flatness) with a single form tolerance that applies to all features.
In the same way, single surface-orientation tolerance and position tolerance were
proposed, with the difference that these two require datum specifications. It also
introduced the concepts of master datum system and extended and symmetric

features.

One criticism [Roy, Liu and Woo, 1991] is that, as the handling of dimensions
and tolerances in the general case requires the ability to access the bounded
entities of objects, the tolerance theory of Requicha raises some manipulation
problems during implementation; moreover, this kind of representation differs
in some respects from the 1SO system [e. g. BSI, 1990] for dimensioning and
tolerancing. According to Roy, Liu and Woo [1991], this VGraph system has a

limited ability to describe design tolerances.

A conceptual framework for tolerance representation and analysis based on
CSG solid modellers is presented by Elgabry [1986] somewhat along the lines
of Requicha, but without a mechanism to refer to partial faces. Tolerances are
attached to whole faces of primitives, which are defined by size, location and
orientation vectors with tolerance values. Therefore, users must place appropriate

primitives at places where tolerances are to be specified.

Jayaraman and Srinivasan [1989] have examined the issues of representing
the geometric tolerances in solid models from the perspective of functional re-
guirements related to the geometry of mechanical parts. Their research is mainly
concerned with the positioning of parts with respect to each other in assembly,
and with maintaining material bulk in critical portions of parts. They have ex-
tended the concept of offset boundaries to adjoining parts in an assembly by
means of a virtual boundary used as a divider between them. They developed
specific virtual boundary requirements (VBRs) to reflect the required functional
conditions of the assembly, and then discussed the theoretical basis of the in-
terpretation of those virtual boundary requirements with the help of the theory

of solid-model-based offsetting, as proposed by Rossignac and Requicha [1986].
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However, virtual boundaries have the same limitations as offset boundaries.

A different representation scheme is presented by Johnson [1985] for solid
modellers based on boundary representation (B-rep, see e. g. [Requicha, 1982]).
However, this representation scheme is applicable only for location and size tol-
erances, and it is limited to geometric entities such as planar faces, cylindrical
faces, conical faces and spherical faces. Roy and Liu [1988] showed the necessity
of having a hybrid CSG/B-rep data structure for the tolerance representation so

that the advantages of both CSG and B-rep models can be exploited.

Another representation model is proposed by Turner and Wozny [1988], mainly
for tolerance analysis problems. A conceptual framework is presented, based on
constructive variational geometry, which is intended to be used for evaluation of

tolerance variables and design variables as function of the model variables.

Other representation schemes are also reported [Roy, Liu and Woo, 1991].
As this is new field of research, further research is still being carried out and
therefore no conclusive and comprehensive theory and software implementation
has yet been established. It may turn out that changes in the ISO-tolerance
system are necessary in order to accommodate a more comprehensive tolerancing
theory. It is also worth noting that a proposed has been put forward for adopting

Vectorial tolerancing in place of the present 1SO-tolerance system [Wirtz, 1992].
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Chapter 3

Inspection of Roundness

Features

3.1 Introduction

Circularly shaped components are one of the commonest industrial forms, from
aerospace and automobile to electro-electronic and white goods industries. As a
consequence, inspection of out of roundness of a cross section of a nearly circular
component is an economically important area. Also, being a closed figure, circu-
larity is relatively easily expressed mathematically. This combination has often
led to it being used to develop and illustrate metrological techniques, a tradition
that will be followed here in introducing a novel strategy. This chapter discusses
the idea of a GO-NOGO inspection software and presents the implementation
of an algorithm for the inspection of combined roundness and centre position
or eccentricity errors of nominal circular components [Carpinetti and Chetwynd,
1992]. The extension of this approach to other figures will be covered in later

chapters.

The numerical assessment of out of roundness is by measuring the peak to val-
ley deviation of the actual profile from a reference circle fitted to that profile (see

chapter 2 for a review of methods and algorithms for roundness measurement).
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The centre position and the radius of the reference may themselves be impor-
tant parameters, for example in measuring the distance between two holes or the
eccentricity of two related shafts. In this case a separate concentricity or position

tolerance would be required.

Partly for historical reasons and partly because efficient processes have been
developed, there is commonly a difference of approach between the specification of
tolerances in design standards and the assessment methods specified in metrology
standards. This has caused little practiced difficulty on simple measurements.
However, there may be conflicts when several tolerances are used in combination,

for example circularity, centre position and absolute radius.

A highly effective approach to the solution of best-fit roundness references
has been used for many years in which radial coordinate data representing the
workpiece profile is expressed relative to an origin that lies not far from the
best fit centre, a condition that arises naturally from the action of specialised
roundness measuring instruments. The circle is substituted by a limagon having
the same parameters, with the errors of so doing normally less than the resolution
of the measurement instruments, providing the ratio of eccentricity to radius is
kept below about 0.01, [Chetwynd, 1979a] (see chapter 2 for more details). This
parameter linearisation offers great computational benefits and will be followed

here.

3.2 Boundary Value Roundness References

Standards define three alternatives to least squares as criteria for reference fitting
in roundness measurement. These are the minimum radius circumscribing circle
(MCC or ring gauge circle), the maximum radius inscribing circle (MIC or plug
gauge circle) and the minimum radial zone circles. These fitting problems are
identified mathematically with problems of constrained optimisation. Thus, the
ring gauge circle fitting problem for instance can be formulated as: find the centre
(a, b) of the circle that has minimum radius R while maintaining the condition

that the profile, r