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Summary

This thesis investigates computational methods for assessing tolerance spec

ifications of geometric features in a context of computer aided inspection. It is 

concerned with checking the sampled features for containment within tolerance 

zones specified at the design stage, not with explicit shape measurement. The 

significance of this difference is highlighted when two or more features are to be 

inspected in combination. The approach adopted is to express the tolerance in

formation as a set of inequality constraints and then to seek efficient methods for 

determining the feasibility of the set, that is whether all the constraints can be 

simultaneously satisfied.

Roundness inspection is used to introduce all the concepts of the new formula

tions. By linearisation of the constraints, a standard approximation in roundness 

measurement, a new algorithm is implemented which provides a “GO-NOGO” 

result of inspection by checking for feasibility in a highly efficient way. This algo

rithmic approach is then extended to other inspection situations where naturally 

linear constraints or valid linearisation occur.

Since there are many inspection cases where linearisation is not appropriate, 

non-linear optimisation techniques are then investigated for their effectiveness in 

feasibility testing. The inspection of arrays of circular features is used here as a 

typical test case. Genetic search methods are explored as a possible alternative 

to formal non-linear programming and guidelines for their efficient use for this 

problem are proposed. These methods are then compared and contrasted with 

formal methods, particularly generalised reduced gradient (GRG) and sequential 

quadratic programming (SQP).

The linear algorithm is shown to be the most efficient when it can be used, 

although all techniques were fast enough for on-line use with modest sized data 

sets. Currently all the non-linear methods are too expensive for routine use on 

large data sets. GRG is recommended as having the most favourable combination 

o f good and bad features, but there is some evidence that genetic search might 

be relatively more efficient for more complex inspection problems.
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Chapter 1

Introduction

1.1 Introduction

Tolerancing questions in mechanical design are of great importance in the move 

to improve quality in manufacturing products. At the design stage, a part is 

specified in terms of sizes and shapes which are in some sense ideal for its func

tional requirements. Due to variability inherent in the manufacturing process, the 

designer will also have to specify how far the manufactured product can depart 

from its ideal specification. This is done by specifying various tolerances associ

ated with the design, following standardised engineering practice. The width of 

the tolerance limits (or allowed error of any feature) defines the required precision 

in manufacturing. Since manufacturing to high precision is generally a costly ex

ercise, it is good practice to design for as large a tolerance as is possible without 

seriously affecting the quality and functionality of the part.

At the manufacturing stage, parts will need to be checked against their design 

specifications. On routine inspection, the information obtained at this stage will 

be used to reject parts which do not meet specifications, on a “pass-fail” basis. 

In a computer aided inspection setting, a part should ideally be inspected by
I

comparing a collection of digitised data points representing a part surface with

its design and tolerancing specification. Thus, the inspection process gives rise

to the question of how data points representing a part can be compared with its
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Figure 1.1: Geometric tolerance for circularity, 

tolerance specification in a efficient manner.

1.2 The Inspection Problem

Geometric tolerances are defined and classified in design standards [e.g. BSI, 

1990], including form, orientation and position tolerances. Common features are 

roundness, flatness, squareness, concentricity, amongst others. For example, the 

tolerance for out of roundness is defined as the annular space between two concen

tric circles lying in the same plane, figure 1.1. A component is within tolerance 

if its profile, or the profile of the cross section whose error is to be controlled, 

is enclosed by these two circles. Thus, the essential objective of inspection is to 

check for containment of a feature within its tolerance zone.

On the other hand, as, over the past forty years, form error measurement has 

become recognised as an important discipline in its own right, there has been 

a strong concentration in the literature on algorithms for form measurements, 

notably roundness and flatness errors. The measurement of out of roundness, for 

instance, is by measuring the peak to valley deviation of the actual profile from 

a reference circle fitted to that profile. Metrology standards for out of roundness 

measurement [e.g. BSI, 1987] recommend that an optimal reference figure be 

used, in the sense some measure of the interaction between the reference and the 

profile is maximised or minimised.

Algorithms for estimating reference figure fits for shape measurements use
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Figure 1.2: Inspection procedures: according to design standards (a)and normal 
practice (b).

either a least-squares approach or, based on metrological requirements, an opti

misation o f a geometric parameter of the figure. Thus in practice it is usual, since 

standard algorithms exist, first to find an optimal reference for form measurement 

and test the deviation o f the feature from it against the design specifications. The 

position and orientation of the feature, if they also are toleranced, are then tested 

by checking whether the parameters of the best-fit reference are adequately close 

to design specifications. This approach is illustrated in figure 1.2b, while figure 

1.2a illustrates the way suggested by standards that a toleranced feature should 

be assessed

This difference of approach is not significant when geometric tolerances of 

form only are being inspected, but it may lead to different results when geometric 

tolerances of orientation or position have also to be met. In order to illustrate this 

point, consider that a circular profile, illustrated in figure 1.3, has to be inspected 

for circularity and centre position. This is the case of a crank shaft for example, 

where in addition to the requirement of roundness of each individual bearing, they 

must be aligned axially. A concentricity tolerance is therefore specified, so as to 

limit the deviation of the position of the centre or axis of the toleranced feature 

from its true position, i. e. the centre or axis of the datum feature. However, 

when the section is not perfectly circular, the definition of centre becomes to 

some extent a matter of interpretation and in practice the reference centre is
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tol. o f roundness tol. o f  roundness

a. b.

Figure 1.3: Minimum circumscribing radius reference (a), against another cir
cumscribing reference (b).

used.

Considering figure 1.3a, the point c l  represents the centre position of the 

minimum radius circumscribing circle (MCC), a standard best-fit reference com

monly used for shaft measurement. Point c2, in figure 1.3b, represents the centre 

position of another reference circle circumscribing the profile but not with mini

mum radius. It can be assumed, for the sake of illustration, that using the MCC 

as the reference figure the out of roundness is within tolerance but its centre po

sition is eccentric in relation to the datum point by a distance over the allowed 

tolerance and so it fails inspection. On the contrary, the other reference, figure 

1.3b, as it is not minimum radius, has some room for moving around the feature, 

and so it can be “brought” closer to the datum point, within the tolerance zone. 

The resulting out of roundness, although larger than the error obtained using the 

MCC reference, is still lower than its tolerance limit and overall the features pass 

inspection.

Thus, an optimum reference figure originally defined for form measurement, 

as is the case of MCC for roundness, may not be appropriate when the position 

and/or orientation of the feature has also to be inspected.

In order to simulate the graphical procedure outlined above, the general toler-
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ance assessment problem can be formulated as a constrained optimisation prob

lem, as it is sometimes done for shape measurement, with the difference that form, 

position and orientation constraints of features imposed by design specifications 

are to be considered in the optimisation process. It is assumed that the ideal 

design (on a engineering drawing or computer-aided-design (C A D ) system, for 

example) can be represented as a union of geometric elements each represented 

as a parameterised curve or surface defined in a common reference system. For 

example, a circle in two dimensions is parameterised by its centre position and 

radius. The geometric tolerance assessment problem is thus to find a combination 

of such parameters which defines a reference that does not violate the parameter 

constraints imposed by dimensional, orientation or position tolerances and at the 

same time does not violate the form constraints imposed by form tolerances. A 

set of parameters satisfying these constraints will be a feasible solution, meaning 

in practical terms that the design tolerance specifications are satisfied and the 

component passes inspection.

A supplementary problem, derived from the assessment problem as posed 

above, is to give a measure of the extent to which the tolerance constraints have 

been met. This remains a different problem from finding optimum reference fig

ures for shape measurement, which does not consider in the optimisation process 

the parameter and form constraints derived from design specification. As a con

sequence, the solution of the latter may be outside the feasible region defined by 

the assessment problem, leading to the situation illustrated in figure 1.3.a.

This work advocates that most of the geometric tolerance inspection problems 

can be solved by examining the feasibility of an associated optimisation problem, 

with no need to consider its iteration towards optimality, and thereby simulating 

the action of a GO-NOGO inspection gauge.

Another inspection situation that well illustrates the point discussed here is 

the combination of flatness and squareness. This is the case o f a precise base 

and vertical slideway for instance. The slideway surface has to be enclosed by 

two parallel planes separated from each other by the squareness tolerance value, 

and perpendicular to the base, which is assumed as the datum surface. The
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tol. o f squareness
1

Figure 1.4: Tolerance zones of squareness and flatness.

flatness error of the slideway is implicitly controlled by the squareness tolerance. 

In addition to this, the base, which is assumed to be the datum, has also to be 

flat within a limit defined by its flatness tolerance. These geometric tolerance 

zones are pictured in figure 1.4.

Flatness measurement is usually done by measuring the peak to valley devia

tion of the measured data points from a best-fit reference, commonly defined by 

either least squares or a minimum zone approach. It is unclear how squareness 

measurement is done in practice and the same sort of comment made before ap

plies to this case: when the surfaces are not perfectly flat, the orientation of the 

surfaces is rather vague and in practice the orientation of the reference planes 

are used. Some commercial software for coordinate measuring machines (CMMs) 

fits least squares planes to the set of measured points representing the surfaces 

and then measures the angle between them. Although this gives a measure of the 

perpendicularism of the two surfaces, the result is not accurately comparable with 

the squareness tolerance specification in design. Moreover, this method gives no 

information about the flatness of the surfaces. It is also unclear how the datum 

should be defined.

Instead, it is better that the squareness and flatness errors should be inspected 

simultaneously for containment within a squareness and flatness frame. This pro

cedure can again be formulated as a constrained optimisation, where the objective 

is to find a combination of parameters for each reference such that the form, po-



sition and orientation constraints derived from the design specifications are not 

violated. In other words the inspection is successful if a feasible solution to the 

constrained problem is found.

The general inspection problem can be enunciated as: find the parameters of 

a geometric reference figure (or figures) C for a set of data points Y{,i =  1, ■ • •, N, 

where N  is the number of data points, such that they satisfy the form constraints

F ( * , C , t ) ~ 0  ( 1 .1 )

and the parameter constraints

P ( C , t ) ~ 0  (1.2)

where ~  is in { > ;  <  }, and t are the tolerance specifications from design.

The general behaviour of constrained optimisations is conveniently examined 

in terms of their geometrical structure in a multi-dimensional “parameter space” 

in which each parameter is plotted along an orthogonal axis (parameter space 

representation is further used in chapter 3). The constraints are hyper-surfaces 

in parameter space, each one dividing the parameter space in two open half 

spaces, with all the feasible parameter combinations lying to one side and the 

infeasible ones to the other side. The combination of all the constraints will or 

will not define a feasible region of solutions in parameter space. The absence of a 

feasible region indicates that the constraints cannot be satisfied simultaneously. 

Thus the tolerance assessment problem is to determine whether a feasible region 

exists. The discovery of any solution that lies in feasible region is sufficient to 

pass the inspection process.

Depending on the problem in consideration and how it is modelled, the in

equality constraints can be linear or non-linear functions of the parameters. If 

the constraints are linear in their parameters then the optimisation problem can 

be solved using linear programming techniques. Highly efficient techniques for 

measurements such as roundness, flatness and straightness have been known for 

some years in which a local parameter linearisation is used within an “exchange
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algorithm” (see section 2.4.4). The exchange algorithms ultimately derive from 

the theory of linear programming, which both guarantees their convergence onto 

a correct solution and demonstrates the source of their computational efficiency. 

The geometrical formulation of the fitting problems normally has many constrain

ing equations and few parameters. Optimisations of this “shape” can be solved 

rapidly by using their dual formulation and the exchange algorithms are also a 

type of dual programming even though they may be understood geometrically. 

However, their dual nature becomes a major disadvantage if we attempt to use the 

exchange algorithms in the simultaneous inspection of several geometric features 

in order to see whether they simultaneously meet acceptable tolerances.

This work starts by discussing a new approach for the inspection of geometric 

characteristics of features in which the ultimate position is to provide a set of 

constraints from which the required inspection information can be obtained by 

examining only the feasibility of the mathematical programme, with no need to 

consider its iteration towards optimality. Whenever linearisation of the geometric 

formulation is adequate, this may be achieved using an existing, though not all 

that widely known, algorithm to explore feasibility, so guiding the GO-NOGO 

decision. Methods of tuning the process to maximise computational efficiency 

are introduced.

Although linearising the constraints allows special algorithms of reasonable 

efficiency to be applied, this is not always possible or appropriate. For exam

ple, when the same approach is extended to the inspection of form, dimension 

and relative position of several circular features, as is the case of circular mating 

features, the gain in computer efficiency for using linear functions in the formu

lation of the inspection problem may not compensate the losses in accuracy of 

using such a model. In this case the trade-off is unclear between accepting an 

approximation in the formulation of the constraints or using accurate constraints 

but taking more effort to obtain a potentially more definitive result. A method 

that can cope with non-linear models has a much wider application and therefore, 

non-linear methods are sought that will perform well with the level of computer 

power likely to be dedicated to an individual measuring machine. Some form
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of non-linear optimisation will be needed but, since here we are concerned only 

with feasibility testing, it is not clear which approaches will be most effective. 

Non-formal methods may be advantageous in this context. Genetic Search meth

ods are explored for applicability to the determination of the feasibility of the 

inspection problem. Finally, the effectiveness o f such non-formal techniques is 

compared with that of conventional non-linear programming. Two non-linear 

programming methods are investigated, namely the generalised reduced gradient 

(GRG) and the Sequential Quadratic Programming (SQP) methods.

1.3 Organisation of the Thesis

Chapter two contains a review of computer aided precision metrology. It starts by 

presenting some background information about the most common and pertinent 

measuring equipment and some of the basic rules to be observed in designing 

software for metrology. Then, it presents a more detailed review of methods and 

algorithms in the literature for shape measurement as well as to the assessment 

of geometric tolerances. Finally, tolerancing techniques using solid modelling are 

briefly reviewed and discussed.

Chapter three introduces the concepts of the new formulations by discussing 

the problem of inspection of roundness error (in contrast with measurement of 

roundness error) in combination with position errors, and the idea of GO-NOGO 

inspection software. Roundness inspection also provides examples where local 

linearisation can be very effective. The primal and dual formulation of the in

spection problem are discussed and a new algorithm is implemented to explore 

the feasibility of the inspection problem in a more efficient way. The basis of the 

algorithm is given along with practical examples of how it works. The results of 

performance tests on these algorithms are presented and discussed.

Chapter four discusses the problem of inspection of combined form and atti

tude errors, such as squareness or parallelism and flatness. It formulates these 

inspection problems in a manner applicable to the algorithm discussed in chapter 

three. The results of tests on these formulations and algorithms are presented9



and discussed.

Chapter five further explores the approach discussed in the previous chapters 

to the inspection of dimensions and geometry of circular mating features. It 

discusses the limitation of linear methods and investigates the use of Genetic 

Search methods for assessing geometric tolerance errors in cases where a linear 

approximation is not an adequate model to the truly non-linear formulation of 

the inspection problem. A Genetic Search model is set up and suitable values 

for its control parameters are explored experimentally. Two model problems are 

used to  investigate its effectiveness and practicality.

Chapter six investigates the applicability of some formal non-linear program

ming methods for inspecting geometric tolerance errors. Two methods are con

sidered, the generalised reduced gradient (GRG) and the Sequential Quadratic 

Programming (SQP) methods. The inspection cases used in the previous chapter 

are used in this chapter as well, so as to provide a direct comparison in terms of 

effectiveness between formal and non-formal methods.

Chapter seven presents an overall discussion of the relative merits of the meth

ods considered in this work as well as suggestions for further work.

I
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Chapter 2

A Review of Computer Aided 
Precision Metrology

2.1 Introduction

Measurement methods and equipment can vary widely depending on the applica

tion. However they can be generally classified as: with or without contact; abso

lute or comparative measurement. Most measurements in mechanical metrology 

are performed through contact with the workpiece by means of a tip or probe. In

struments in this category have developed from the earliest ones such as vernier 

calipers, to the sophisticated present generation of Coordinate Measuring Ma

chines (CMMs). In contrast to this, non-contact measurement does not use any 

type of mechanical probe. All optical instruments are encompassed in this cate

gory, ranging from the most common ones such as Profile Projectors to modern 

Vision Machines and extremely precise instruments such as Laser Interferometers. 

Moreover, the measurement can be absolute, when the given information is the 

dimension itself or comparative, when the information is in terms of departure 

from some reference system. In this case, instruments are usually supported by 

some amplifying system; this is the case of mechanical comparators or more so

phisticated equipment such as roundness, flatness and surface texture measuring 

instruments.
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Every computer aided metrology system comprises a measuring equipment in

terfaced with computer hardware and software. The software assists the system 

in performing its operations, such as controlling the positioning of moving parts, 

data acquisition and evaluation of the measuring data. Evaluation of the measur

ing data is basically concerned with the mathematical modelling and numerical 

manipulation of the data. The speed and accuracy of the software in performing 

these operations affect very much the performance of an instrument and therefore 

are regarded as matters of great importance.

This chapter presents some background information about the most common 

and pertinent measuring equipment and some of the basic rules to be observed 

in designing software for metrology. Then it moves on to a thorough review 

of methods for shape measurement, with emphasis on roundness and flatness 

measurements. Finally, it gives some account of tolerancing techniques using solid 

modelling theory and optimisation techniques for geometric tolerance assessment 

problems.

2.2 Measuring Equipment

2.2.1 Coordinate Measuring Machines (CM M s)

Coordinate Measuring Machines have gained considerable importance in meeting 

the inspection requirements o f modern manufacturing technology. They bring 

to inspection advantages such as flexibility and higher throughput. Typically, 

the basic machine comprises a table with a bridge that traverses its length and 

a vertical spindle, with a probe holder located at the end of it, which traverses 

the bridge and in turn moves axially. Thus an orthogonal reference system is so 

defined by the table and movable components. Different configurations o f CMMs 

exist but they all follow the same principle.

Three-dimensional measurement data is provided by using a probe, usually

of the “touch trigger” type, attached to the probe holder, which is brought into

contact with the workpiece resting on the table. The probe has as stylus which,

12



when it touches the workpiece, is deflected to switch the probe on/off and a binary 

signal is sent to the computer control, which in turn records the position of the 

probe from the axial measuring system, usually by incremental gratings. Other 

types of probe include a scanning contact probe which senses the workpiece by 

moving across its surface remaining in contact with it [Jacoby and Lenz, 1980], 

and more recently, a non-contact optical probe [Treywin and Edwards, 1987].

Once the coordinates of the probe are recorded, the computer software will 

then manipulate the data. This possibly involves: transforming the data from 

the machine coordinate system into another system, e.g. a local system referred 

to the workpiece; compensating for systematic errors [e.g. Burdekin, et al, 1985]; 

and finally evaluating dimensions, deviations from shape and orientation.

2.2.2 Vision Technology

Machine Vision systems are currently being used in looking for defects in parts, 

ensuring correct configuration of parts in assembly lines and measurements o f di

mensions and shapes [Ventura, Chang and Klein, 1988]. Applications of machine 

vision in automated inspection cells have been demonstrated in the automotive 

industry [Pastorius, 1989 and Mullins, 1987]. It offers advantages such as high 

flexibility and high speed of measuring. In a typical arrangement, the camera 

viewing area is divided into a matrix of picture elemenls called pixels. Once the 

image of a part is sampled in each pixel, its signal is sent to the processor and 

treated by image analysis techniques.

The accuracy and precision of vision systems tends to he limited. The reso

lution of a machine vision system is defined by the size of one picture element, 

or pixel of image. As it is the image of a part that is measured, the higher the 

magnification used, the higher the basic accuracy of the measurement. However, 

there is a limit on the optical magnification. In addition to this, the correct loca

tion of the edges o f  a part feature is the main factor in determining the accuracy 

of a system. The influence of these accuracy related problems is quantified in a 

study presented by Ma et al [1988].

13



2.2.3 Surface Metrology Instruments Using Stylus Tech

niques

The assessment o f surface form and texture by stylus methods has been in use 

since the early forties and has gained world wide acceptance due to its advantages 

such as robustness and high accuracy.

Stylus types of instruments are characterised by the use of a sharply pointed 

stylus which is rested lightly on the surface of the part and is carefully traversed 

across it. The stylus, having a radius tip of typically about 1mm for roundness 

and straightness measurement, is connected via a bar to a transducer which 

measures the up and down movements of the stylus due to the variation of the 

distance between the workpiece surface and a datum surface during a relative 

movement of the gauge and workpiece. Short wavelength variations caused by 

surface roughness are filtered from the signed to leave the variations due to form 

errors only, such as straightness, flatness and roundness. For straightness and 

flatness measurements, the reference datum will be a line or plane nominally 

parallel to the direction of motion, usually defined by the slideway which carries 

the stylus and transducer (often called the pick-up unit). Thus, the recorded 

variations in height of the surface of the workpiece will be perpendicular to the 

reference datum.

Although the basic principle is the same, instruments for roundness measure

ment have a mechanical design quite different from the ones for surface texture 

and straightness assessment and therefore will be considered separately. Most 

instruments for precision roundness measurement operate by using a precision 

spindle to generate a relative rotational movement between the component being 

measured and the stylus and transducer mounted radially with respect to the 

axis of rotation. A typical configuration comprises a turntable and a column, 

which carries the pick-up unit. The workpiece is rested on the rotating table and 

the stylus brought into contact with the workpiece by adjusting its radial and 

axial position. The achievable accuracy of such instruments is normally limited 

by the circularity error of the spindle, although in some cases the application of
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error separation techniques can improve the accuracy to a factor of ten or more 

[Chetwynd and Siddall, 1976],

The transducer measures the variation of the distance between the workpiece 

surface and a circular reference datum centred at the instrument axis of rotation 

and generated in space by the rotational motion between the part and a fixed 

point in the pick-up. The signal from the transducer represents a combination 

o f the out-of-roundness of the part and the variation of the radial distance of 

the surface from the instrument axis of rotation caused by relative eccentricity 

between them.

Traditionally these variations are filtered, magnified and then superimposed 

on a convenient nominal radius which is totally unrelated to the actual dimensions 

o f the component. The output of the instrument in this form will be referred to 

as the polar chart. The combination of this radius suppression and magnification 

often leads to a visually disconcerting effect on the polar chart since the aspect 

ratio of radial variation to circumference length of the profile has been changed. 

For example, a cylindrical part slightly flatted at intervals could plot as a figure 

having convex sides at a low magnification, but appear to have flat sides or even 

appear star-shaped as the magnification is progressively increased [Reason, 1966]. 

However in the presence of eccentricity the radius suppression will cause not only 

a distortion of aspect ratio but a distortion of shape as well [Chetwynd and 

Phillipson, 1980]. Therefore, every effort must be made to reduce it by keeping 

the eccentricity small, with various guidelines being suggested [e. g. Reason, 1966, 

Chetwynd, 1979a].

The straightness of cylindrical parts can be assessed by traversing the stylus 

vertically up the workpiece, with the turntable held stationary; the reference 

datum in this case is defined by the slideways of the column which carries the 

pick-up unit.

The analogue data gathered in these ways by either of these instruments will 

then be digitised and stored on a computer for further geometric assessment. 

Methods for shape evaluation using data acquired by this type of instrument will 

be discussed in the following sections.
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2.3 Software for Metrology

The measurement accuracy of computer aided measurement systems is highly in

fluenced by two main factors: how representative is the set of points of the object; 

and how suitable is the mathematical modelling and numerical manipulation of 

the data. The rapid and widespread adoption of CMMs over the last decade has 

led to a great concern about the accuracy of software for metrology. Nowadays, 

some national and international laboratories and standard institutions are en

gaged in defining standard procedures for mathematical modelling and testing of 

software [Cox and Jackson, 1983; Anthony and Cox, 1984]. A British Standard 

has been published [BSI, 1989], providing information and guidance to software 

writers and users within the CMM industry.

For any particular measurement, the software implementation comprises the 

following steps:

• data acquisition;

• mathematical modelling;

• design of algorithm;

• coding in some language.

The strategy used to gather the data points should consider the number of data 

points to collect and their distribution on the workpiece surface. Clearly, the more 

data points that are collected, the more reliable the tolerance assessment is likely 

to be. However, economic considerations will limit the number of data points 

it is possible to gather and it will be necessary to balance the need for reliable 

information with these constraints. A British Standard [BSI, 1989] provides some 

recommendations about the distribution of points as well as the minimum number 

of points required for each geometric element.

Mathematical modelling is concerned with how basic geometric elements, e. g. 

lines, circles, planes, can be parameterised, that is represented in terms of a set 

of algebraic parameters. Reliable parametrisations are required when a computer
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is used to fit these basic geometries to data gathered using a measuring machine, 

in order to determine the position, orientation and size o f geometric features. 

It is possible to parametrise each of the geometric elements in more than one 

way. For example, a line in a specified plane can be defined by either one point 

on the line and information about its orientation, or two points on the line. The 

British Standard Institution [BSI, 1989] and a report from the Commission of the 

European Communities [G. T. Anthony et al., 1991] give some recommendations 

about ways of parametrising geometric elements elements as well as representing 

the distance of a point from each of the main geometric elements in terms of the 

recommended parameters.

Numerical calculations are employed to find the position and orientation of 

the geometric element that best fits the measured data points. The fit is repre

sented by the value o f the parameters of its mathematical model and form errors 

of the component are measured relative to this figure. Different criteria for spec

ify the best fit are possible. In general algorithms for estimating reference figure 

fits use either a least squares approach or, based on metrological requirements, 

an optimisation of a geometric parameter of the figure. The British Standard 

Institution [BSI, 1989] and the National Physical Laboratory [Forbes, 1989], for 

example, recommend the least squares technique for computing the best fit geo

metric element to data.

Important aspects of a software code are modularity and reliability. It is 

very desirable that software code be well structured, or modular, in the sense 

that natural divisions be reflected in it by keeping each in a separate module. 

Practical advantages follow from modularisation such as ease of error detection 

and flexibility in putting different pieces of code together [Cox and Jackson, 1983]. 

The reliability of a software is also a matter of greater concern and therefore a 

validation process should be carried out. Some guidance for metrology software 

validation is given in Cox and Jackson [1983].
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2.4 Linearised Exchange Algorithms for Refer

ence Fitting

2.4.1 Computing Reference Figures

The m ajor task of the computation process is to establish from the measured 

data the position of the ideal surface of which the true profile is taken to be 

an approximate realisation. This is the idea of computing a best fit reference 

figure relative to which profile deviations may be assessed. In this context the 

deviations are generally referred to as residuals.

Common criteria of fit are least squares and minimax. The Least squares best- 

fit reference is the one which minimises the sum of the squares of the residuals. 

The minimax reference is the one that generates the minimum value fof the 

maximum deviation.

The definition of the residuals is generally related to instrument geometry 

and this will influence the algorithmic approach to computing the reference. For 

example, in some cases, it is possible to define the residuals as a linear function 

of the reference parameters, and therefore linear optimisation techniques could 

be used to compute the reference. The implications of various definitions of 

residuals and fitting criteria for form measurement will be discussed in the next 

sections. Roundness measurement will be first considered since it well illustrates 

some further important points.

2.4.2 Roundness Assessment System
j

Four reference figures are internationally accepted for roundness measurement. 

They are, in order of preference given by BS 3730 [BSI, 1987a]:

• Least squares circle (LSC),

• Minimum radial zone circles (MZC),

• Minimum radius circumscribing circle (MCC) or ring gauge,
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Figure 2.1: Residual of point P,, (r,-, 0,) from reference (a, b), R, measured radially 
from the origin.

• Maximum radius inscribing circle (MIC) or plug gauge.

The minimum radius circumscribing circle and the maximum radius inscrib

ing circle are commonly used for evaluating the roundness of shafts and holes, 

respectively.

Usually the out-of-roundness information required is stated in terms of the 

maximum deviation of the profile from the reference figure. For data acquired 

using an independent spindle type of instrument, the residual can be accurately 

calculated as the radial separation, measured from the instrument coordinate sys

tem origin, figure 2 .1 , between the workpiece profile and a non-circular reference, 

the limaçon approximation discussed below. In this case, sound techniques exist 

for fitting data to the four reference criteria, based upon either linear least squares 

or linear exchange algorithms and using a limaçon figure as an approximation to 

the circle. However, the validity of this approach is closely related to the nature 

of the data set provided by this type of instrument.

In contrast, on a coordinate measuring machine the profile is represented by 

cartesian ordinate pairs to which a circle should be fitted with the residuals mea

sured radially from its centre, figure 2 .2 , and not from the instrument coordinate 

system origin. In this case, unless a coordinate system transformation is made
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Figure 2.2: Residual of point Pi, (x,, j/,) from reference (a, 6 ), R, measured radially 
from the reference centre.

to a suitable local origin, the limaçon reference is not a good approximation, and 

therefore a truly circular reference fitting will be required.

These different approaches for assessing out-of roundness and other form fea

tures are discussed in the following sections.

2.4.3 The Limaçon Reference

It is helpful to visualise the measurement process in terms of three frames of 

reference as follows [Chetwynd and Phillipson, 1980]. Initially the true compo

nent shape exists in what may be termed component coordinates, that is, all its 

points have a fixed relationship to each other independently of its orientation in 

space. However, to measure the component requires that it is presented to the 

instrument which effectively expresses its shape in instrument coordinates. As it 

is not possible to position a component perfectly relative to an external frame 

of reference, an error due to misalignment will be introduced at this stage. The 

normal instrument operates by first radius-suppressing and then magnifying the 

profile, so that its output represents a transformation of the instrument coordi

nate frame into a chart coordinate frame, which can be identified with the polar 

graph. In instrument polar coordinates an eccentric circle, centred at (E,<t>) and
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Figure 2.3: Roundness measurement using radius suppression and magnification, 

with radius Ra may be expressed [Whitehouse, 1973]

k(0) =  E  cos(0 -<!>) +  (R l — É 1 sin2(0 -  (2.1)

If this is then transformed into chart coordinates by applying radius suppression 

L, magnification M  and then adding the arbitrary chart radius S, (see figure 2.3) 

its polar chart representation will be

r(0) =  M (k(0) -  L) +  S (2.2)

Applying the binomial expansion to equation (2.1), gives

k(0) =  £ c o s (t f -< 6 ) +  / î 0 ( l - ( 7 a/ 2 )sina( ô - i 6 ) - ( 7 ‘' / 8 )sin4 ( i » - ^ ) - - - )  (2.3)
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and if this is expressed in chart coordinates

r(0) =  M E  cos(0 -  <t>) +  M (R a - L )  +  S +  M JR0 ( - ( 7 2 / 2) sin2(0 -  <f>)------ ) (2.4)

where 7  =  E/R0 is termed the eccentricity ratio. Since the ratios of the constant 

and harmonic terms of the expansions in equations (2.3) and (2.4) have been 

altered by radius suppression, the figure described by equation (2.4) is distorted 

from circularity. Therefore, a circle centred on the origin is transformed to another 

circle but an eccentric circle is transformed to a non-circular shape. The degree of 

distortion depends, for a given radius suppression, on the amount of eccentricity 

present. Thus to effectively fit reference circles in instrument coordinates requires 

that non-circular shapes be fitted on the chart. Ideally, the reference in chart 

coordinates should be the shape given by equation (2.4). In practice however, 

the degree of eccentricity present is quite small: an eccentricity of more than 

1 0 pm would seriously reduce the measurement range in most measurements and 

many components have radii exceeding 1 0  mm, so 7  is typically of the order 

of 10- 3  or smaller. Under such conditions, it is reasonable to approximate the 

radius suppressed eccentric circle by just the first two terms of the infinite series 

in equation (2.4), giving

r(0) =  R +  a cos 0 +  6 sin 0 (2-5)

where R  =  M (R 0 — L) +  S, a =  M E  cos <j> and b =  M E  sin <j>.

It was recognised [Whitehouse, 1973, Chetwynd, 1980] that this truncation 

describes a specific geometric figure, namely a limaçon and that its shape rep

resents more closely the radius suppressed form of a circle in chart coordinates 

than does a true circle. Chetwynd [1980, also Chetwynd and Phillipson, 1980] has 

brought to attention the fact that a limaçon figure in chart coordinates transforms 

to another limaçon, though with different parameter values, in instrument coor

dinate. Furthermore the relationship between a profile and a reference limaçon 

is unaltered by radius suppression.

Although the true reference shape in chart coordinates is usually better rep
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resented by a limaçon than a circle, in instrument coordinates the circle is correct 

and the limaçon an approximation to it. The “error” between limaçon and circle 

will be dominated by the second term of the expansion in equation (2.3) giving

Error ss ~ ~ ~  sin2(0 — </>) =  — °^ -[l — cos 2(0 — </>)] (2.6)

Thus the distortion is essentially elliptical, aligned with the eccentricity vector 

and the R parameter of the limaçon is a biased estimator of R0. However, in 

practice the eccentricity ratio rarely exceeds 0 .0 1 , so the radial variation between 

the limaçon and the circle is at most a fraction of a percent of the total eccentricity.

In his work, Chetwynd has also stressed the point that the limaçon approxi

mation can be understood as a linearisation by the truncation of the Taylor series 

expansion at the origin of the circle function in instrument coordinates, and not by 

the simple truncation o f the binomial series as shown in equation (2.3). Equiva

lent procedures are therefore general and not dependent upon specific geometrical 

features of an instrumental technique. The alternative formulation emphasizes 

that a choice is made to linearise the circle about a convenient point: the limaçon 

reference had known advantages over a circle on the chart and being linear in its 

parameters could be used conveniently for computation. The exploitation of this 

has led to the development of the exchange algorithms which are discussed next.

2,4.4 Exchange Algorithms for Bounding Limaçon Prob

lems

All the three bounding references (that is MCC, MIC and MZC) can be expressed 

as problems in the general class of constrained optimisation. That is they can 

be stated in the form: maximise (or minimise) a function subject to a set of 

constraints. Thus, for instance, the requirement for finding the plug gauge circle 

is to find the maximum radius for which a limaçon may be constructed such that 

the limaçon lies completely inside the data representing the nominal circle being 

measured (the “radius” of a limaçon is the value of its constant term). This may
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be expressed mathematically as, given a set of polar data points (r,-,0 ,), where 

i =  !,•••, N, the number of data points, maximise R subject to the constraints

R +  a cos 0, + b sin 0, <  r. (2.7)

Similarly, for the ring gauge limaçon the requirement will be to minimise R subject 

to the constraints

R +  a cos $i +  b sin 0, >  r,- (2.8)

For both of these problems there are three variables a, b and R and so a subset of 

the constraints consisting of three of them forming a consistent set of simultaneous 

equations must be exactly satisfied in the optimum solution: thus there will be 

at least three contact points between the reference and the data.

For the minimum zone limaçons case, a single reference limaçon is defined 

with a symmetrically placed zone of ± /i. The minimum zone problem is then 

stated as: minimise h subject to the constraints

R +  a cos 0; +  6  sin 0, +  h >  r,- 

R +  a cos 0,- +  6  sin 0,- — h <  r,
(2.9)

again for t =  1, • • •, N. For the minimum zone there are four parameters, a, 6 , R 

and h and so at least four contact points between data and reference zone ex

tremities will be expected. Note also that each data point gives rise to two 

constraints, indicating that finding the zone will need more work than finding the 

other bounding references.

A  consequence of using a limaçon as the reference is that in all three cases 

the constraints are linear in the parameters, as is the function to be optimised, 

which makes possible the use of linear programming optimisation techniques. 

Linear programming is an established technique in operations research with a 

well developed theory (see, for instance, Hadley [1962] and Wagner [1975]). It 

offers the advantage that a unique solution may always be found by a finite 

iterative search.
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The implications of the theory of linear programming to the solution of linear 

bounding references such as the limaçon, including the theoretical justification for 

exchange algorithms, has been exhaustively explored by Chetwynd [1980] (also 

[Chetwynd and Phillipson, 1980 and Chetwynd, 1985]) and the relevant points 

are reviewed below.

In his work, Chetwynd shows that the optimum solution to the minimum 

circumscribing limaçon problem obeys the following two geometric conditions:

1. All the data points must be circumscribed by the limaçon.

2. There will be at least three data points which lie on the limaçon such that 

they do not all lie within a subtended angle, at the origin, of less than 180°.

The second condition is called the 180° rule. Under the special condition that 

the three contact points have equal radial values the limaçon becomes a circle 

centred at the origin.

The optimisation process proceeds by selecting a limaçon that obeys one of the 

above conditions and iteratively adjusting it , while maintaining that condition, 

until the other condition is fulfilled. The optimum has then been reached.

The principle underlying an exchange algorithm is as follows. From a set of 

data points take a number just sufficient to solve the fitting problem exactly and 

obtain the solution from them. Generally, some other data points will violate 

some criterion of acceptability of this solution for the complete data set but, by 

definition, this solution will be optimal for the sub-set that do not cause violation. 

One of the violating points is then exchanged for one of the original points and a 

new solution computed. The process iterates until ail points satisfy the criteria. 

Such a process will always converge in a finite number of iterations providing the 

exchange is performed in a manner which causes the value of the quantity being 

optimised to vary monotonically throughout the iterations.

Thus, a complete algorithm for the minimum radius circumscribing limaçon 

is as follows [Chetwynd and Phillipson, 1980]:

1. Choose any three data points such that no two adjacent ones subtend an
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angle at the origin of more than 180°.

2. Construct a reference limaçon through these three points.

3. If no data points lie outside this limaçon the solution is found. Otherwise 

choose the point which violates the reference by the largest amount.

4. Replace one of the reference points by this new point such that the 180° 

is still obeyed and return to step number two. (Note: this exchange is 

unique.)

The maximum radius inscribed limaçon problem is solved by changing the sign 

of all radial data points and applying the ring limaçon algorithm as given above 

to the modified data. The parameters of the maximum inscribed limaçon are 

obtained by changing the sign of the parameters found in this way. This ability to 

use the same algorithm for two problems is a further consequence of the linearity 

of the limaçon in its parameters.

The conditions for the optimum solution to the minimum radial zone limaçons 

give rise to the following geometric interpretation [Chetwynd and Phillipson, 

1980]:

1. All data points must lie not more than a distance h, measured radially from 

the origin, from the limaçon.

2. There must be four data points all lying exactly h from the limaçon such 

that they lie with increasing angle 6, alternately inside and outside the 

limaçon.

As with the minimum circumscribing limaçon, these rules may be used to for

mulate an exchange algorithm, which is given below [Chetwynd and Phillipson, 

1980]:

1. Choose, arbitrarily, four data points.

2. Fit a limaçon to these points such that they lie equidistant, radially, from 

it and obey the alternating point rule with respect to it.
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3. If no other data point lies further radially from the limaçon, either inside 

or outside, the solution is found.

4. Otherwise, substitute the furthest lying point for one of the defining points 

such that the alternation rule is still obeyed and return to 2. (Again, this 

exchange is unique.)

The alternation principle has been widely recognised and used intuitively. Ex

change algorithms for fitting bounding circle references have been proposed by 

Anthony and Cox [1985] (see section 2.6.2). In a recent paper [Kaiser and Morin, 

1992], it is shown that the alternation property of the minimum zone exchange 

algorithm can also be derived from the linearised version of a theorem originally 

due to Bonnesen [1924].

2.4.5 Limaçon Cylindrical Reference

There is no standardisation on how variations of the surface of a cylindrical work- 

piece from a perfect cylinder should be measured and, therefore, errors of cylin- 

dricity are generally measured as an extension of roundness. The same analytical 

methods are to be expected.

On an independent spindle type of instrument, profiles representing sections of 

a cylindrical component are produced on planes perpendicular to the 2-axis of thel
instrument coordinate system. However, the axis of the cylindrical component 

will, in general, be misaligned in relation to the instrument axis due to tilt o f the 

component. The equation of a tilted cylinder in polar coordinates is [Chetwynd, 

1980]

R (0,z)
(a -(- a\Z 4- ab2 — a\bb\)cas0  +  (6 +  b2 +  ba\ — a«|6|)sin0 

1 +  (&i cos 0 — a( sin 0)2
(2.10)

R (l +  a] +  b2) ' ' 2
( 1  +  (bi cos 0 — a i sin 0 ) 2 ) 1/ 2

1 - ((a +  a\z) sin 0  — (b +  b\z) cos 0)2
R( 1 +  (bi cos 0 — ai sin 0)2)

1 /2

where (a, b) are the coordinates of the intersection of the cylinder axis with the
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2  =  0 plane and R the radius of the cylinder; at and b\ are the slopes from the 

2-axis of the projections of the cylinder axis into the xz- and yz-planes The cross 

section in a plane of constant 2  is an ellipse with minor semi-diameter R and 

major semi-diameter R( 1 +  a2 +  6 J)1/2.

The cylinder is clearly non-linear in its parameters and furthermore can be 

shown to exhibit non-unique solutions for all the reference conditions. Chetwynd 

[1980] proposed the linearisation by the Taylor expansion of the tilted cylinder 

equation in (2 .1 0 ) about the point of perfect alignment (a =  b =  aj =  61 =  0 ). 

This process generates a figure which he named skew limaçon cylindroid, given

by
R(0, 2 ) =  (a -|- a\z) cos 0 +  (b +  6 1 2 ) sin 0 +  R (2.11)

A comparison of equations (2.10) and (2.11) shows how much information is 

totally disregarded by the linearisation. In particular there is no remaining term 

concerned with the ellipticity of the cross-section (hence the term skew instead 

of tilt). The nature of the error terms in the linearisation process is emphasised 

if they are expressed as [Chetwynd, 1980]

Error «  a ^ (l +  cos 2(0 -  </>a)) — — cos 2(0 -  4̂ ( 2 ))) (2.12)
4 4 H

where a  is the angle of the cylinder axis to the 2-axis and <j)a and <f>E are the 

directions of tilt and total eccentricity in the ary-plane. The eccentricity terms E 

and <j>E depend upon 2  whereas the terms due to pure tilt do not. The accept

ability of the model depends on the maximum value of the eccentricity ratio and 

also on the magnitude of the tilt compared to absolute radius. As written above, 

the first term in the error can be identified with the representation of the tilted 

cylinder in terms of a skew circular cylindroid while the second term relates to 

the approximation of the circular cross-sections of that cylindroid by limaçons 

[Chetwynd, 1980]. The above discussion is naturally also of concern to the mea

surement of roundness profiles on cylindrical objects as it is quite common for 

tilt be the major cause of eccentricity in a reading.

The parameter linearisation brought about by the definition of the skew
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limaçon cylindroid made possible the application of the same techniques as used 

for roundness measurement. Its behaviour under radius suppression is the same 

as that of the limaçon since the radius suppression operates in directions perpen

dicular to the 2-axis. The magnification usually associated with the translation to 

chart coordinates has one extra effect on the cylindroid since generally it would 

be expected that different values of magnification would be applied in the radial 

and axial directions. Thus, the slope of the cylindroid axis from the measurement 

axis is multiplied by the ratio of the magnifications in these directions.

The solution of the boundary limaçon cylindroid is a direct extension of the 

methods used in two dimensions. However, the motivation for seeking exchange 

algorithms to replace the general method reduces as the geometrical complexity 

of the problem increases for the manipulations required to calculate the exchange 

become more involved. Therefore, the recommended method for solving all the 

three boundary limaçon cylindroid is by direct solution of the dual linear pro

gramme [Chetwynd, 1980].

Given the greater degree of complexity in cylinder formulations than in circle 

ones, it is to be expected that the shape difference between limaçon cylindroid and 

cylinder is subject to more sources of variations than is that between limaçon and 

circle and therefore, there will be less that can be said with certainty concerning 

bounds to cylinder fits from cylindroid fits. Chetwynd presents in his work a 

lengthy discussion on the limitations and problems of using the skew limaçon 

cylindroid model as a approximation to the tilted cylinder, though he ultimately 

reaches no firm conclusion concerning the limits of its applicability.

2.4.6 Minimum Zone Straight Lines and Planes

There are two definitions of residuals particularly relevant to straightness and 

flatness measurement: one places the residuals normal to the reference line or 

plane and the other normal to the instrument datum, figure 2.4. These defini

tions correspond to residuals aligned in the component and instrument frames 

respectively.
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a. b.

Figure 2.4: Residuals measured parallel to y-axis (a) and normal to fitted refer
ence line (b).

The residuals in instrument coordinates, e,-, of a set of three-dimensional data 

points (x,-, y „ Zi), from a best-fit plane are given by

e, =  Zi — (axi +  byi +  c) (2.13)

for i =  1, • • •, N  where N  is the number of points and (a, b) are the slopes of the 

intersections of the fitted plane with the xz- and ¡/2-planes and c the intercept 

of the plane with the 2-axis. This places the residuals normal to the xy-plane 

of the instrument coordinate system, thus the residuals are measured parallel to 

the 2-axis. It is this which forces the linearity of the formulae and so guarantees 

that there is a unique solution to the fit. This model however is only valid if it 

makes physical sense in terms of the geometry of the instrument to consider the 

residuals acting in this manner. This is indeed the case on a stylus-based form 

measurement instrument. The instrument gauge traverses parallel to the datum 

plane/line and measures the normal distance variation from the datum to the 

workpiece. Its operation depends on the instrument datum surface being aligned 

quite closely to the trend of the workpiece surface. Typically the traverse might 

be 1 0  mm or longer, while the vertical displacement might be some tens of pm or 

less. Thus the slope of the fitted line/plane relative to the instrument reference 

must be very small and only an insignificant approximation is involved in using 

equation (2.13).
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Now consider the use of a coordinate measuring machine to take a set of Carte

sian points along the surface of a nearly flat/straight feature. The orientation of 

the surface may be arbitrary and therefore the residuals are usually considered 

to be normal to the fitted plane/line: taking them parallel to an instrument 

axis would generally not be a good approximation. Thus the residuals should be 

considered as shown in figure 2.4.b. Calculating the residuals according to this 

definition, the form of equation (2.13) is replaced by

—Zi -(- axi +  by{ +  c 
(1 +  a 2 +  62)J/2 (2.14)

again for i =  1 ,•••,7V, where s, are the residuals measured normal to the fit

ted plane. This is clearly non-linear in its parameters and consequently fitting 

according to it involves more computation than does equation (2.13). It is impor

tant to note here that by parameterising the equation of a line in a different way, 

it is possible to express the residuals normal to the fitted line (figure 2.4.b) as a 

linear function of the parameters [Forbes, 1989]. This however will be discussed 

in the next sections.

The methods developed for deriving boundary references are not applicable 

only to the measurement of roundness but to any problem which can be ex

pressed in a similar way. Probably the most commonly applied measurements 

for straightness and flatness involve the minimum zone criterion. The minimum 

zone straight lines or planes are a pair of parallel lines/planes so placed that 

they enclose the profile between them and that their separation is a minimum. 

By defining the separation normal to the datum axis or plane (and so ensuring 

linearity) it is consequently possible to solve these by using linear programming 

techniques.

The solution for the minimum zone straight lines can be found by direct 

application of the Stiefel exchange algorithm [Osborne and Watson, 1968 and 

Chetwynd, 1985] for minimax polynomials fitting, that is curves having the small

est possible maximum divergence from the data. In terms of the minimum zone 

straight lines, there will be three contact points, two contacting one line, and
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Figure 2.5: Plan view of contact geometries for minimum zone planes. O and X 
represent contacts with different planes.

one the other in an alternate sequence. The algorithm proceeds by interchanging 

one of the contact points with the furthest point lying outside the zone, while 

maintaining the alternate condition, until all the data points are enclosed by the 

reference lines.

The minimum zone planes can be expressed, in instrument coordinates as: 

minimise Z =  h subject to the constraints

axi +  bt/i +  c +  h >  Zi 

axi +  byi +  c — h <  z,

for all (a:,-, j/¿, z,), i =  1 , • • •, IV, a, b and c sign unrestricted and h >  0.

The geometric interpretation of the dual feasibility of its linear programme led 

again to the definition of exchange rules [Chetwynd, 1985]. Four contact points 

are required; there can be two contacts with each of the minimum zone planes, 

figure 2.5a, or one contact point in one plane and the other three ones in the 

other minimum zone plane, but obeying a spatial configuration different from 

the first, figure 2.5b [Chetwynd, 1985], There is a unique exchange for any new 

point in order that these relationships are preserved and so a workable exchange 

algorithm may be based upon these patterns.

(2.15)
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2.5 Least Squares Reference Fitting

2.5.1 Computing Least Squares References

Fitting a least squares reference to data amounts to finding the values of the 

parameters which makes the sum of squares of the deviations d, of the data 

points to the reference take on its minimum value, hence the term least-squares 

fit. This is expressed by: minimise

I X  (2.16)
»=i

where N  is the number of data points. In general, modelling the problem of 

finding the least-squares best fit element to data involves choosing parameters 

to describe the geometric element and deriving a formula for the deviations of 

points to the geometric element in terms of these parameters.

Fitting a least square reference is simplified if the deviations di are given as a 

linear function of the parameters as, unlike non-linear least squares problems, it 

is certain to be directly solvable and the solution to be unique. Some measure

ment problems are naturally linear and others can be well-approximated. Other 

problems would involve quite large degrees of approximation and thus non-linear 

methods are unavoidable.

2.5.2 Least Squares Limaçon

In the case of circle fitting it is first necessary to define what is meant by devia

tions. The most logical form for the residuals is in terms of their radial distance 

from the circle centre, figure 2 .2 , given by

e,- =  Si — R , i =  1, • • •, IV (2.17)

where N  is the number of data points and a,- =  [(x< — a)2 +  (y; — 6 ) 2 ] 1/ 2 is the 

distance from the data point (xi,y .) to the centre of the circle (a ,b). Using
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equation (2.17), the required minimisation will be non-linear in its parameters 

a, b and R.

However, for data sets acquired using an independent spindle type of instru

ment, the variation measured, as mentioned in sections 2.2.3 and 2.4.3, is the 

distance between the workpiece surface and a circular reference datum, r,-, from 

the instrument axis of rotation, figure 2.1. Thus, the residuals are more appro

priately defined as

e, =  ri — k(0) , i =  (2.18)

where k(0) is the equation of an eccentric circle measured from the instrument 

origin (see equation (2.1)). By using the limaçon approximation (see section 

(2.4.3)), equation (2.18) becomes

ti =  r{ — (a co s0 +  ¿sin# +  R) , i =  !,••• ,N  (2.19)

and this least-squares minimisation will be linear in its parameters.

It is important to observe that when the instrument is of the independent 

spindle type, the residuals given by equation (2.19) defined radially from the 

instrument centre are not only more convenient than the ones defined in equation 

(2.17), but also they are more precisely correct [Chetwynd, 1979b],

A fully general derivation of the least squares limaçon is given by Chetwynd 

[1980]. The general solution is found by solving the normal equation given by

a £  cos26, £  sinOiCosOi £  cos0{
-1

£  r,cos0,

b = £  sinOiCosOi £  sin20i £  sinOi £  r,sm0,

R £  cosOi £  sinOi n E  r<

where n is the number of data points (in lower case to simplify notation) and all 

sums are over i =  1, • • •, n. Simplifications can be made by selection of specific 

angular positions 0,. All off-diagonal terms can be forced to zero simultaneously 

by choosing a four-fold symmetry of samples around the circle, that is for a sample 

at 0,- there should also be ones at 0; -f 7r /2 , 0, -(- 7r and 0, -I- 3n/2. For any four-fold
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scheme, equation (2 .2 0 ) reduces to the standard formulae

n n n ( 2 .21)

The first derivations of these formulae [see Reason, 1966] were through the in

tegration of continuous profiles using analytic results for the integrals of the 

trigonometric functions over one cycle. It was assumed that the integral could

used. In most Standards [e. g. BSI, 1987b] this has appeared as a “reasonably

try was found by Chetwynd, 1979b, when a true discrete least squares solution 

was undertaken.

2.5.3 Least Squares Circle

When using a more general measuring instrument, like a coordinate measuring 

machine, the profile is represented by Cartesian ordinate pairs to which a circle 

should be fitted (figure 2.2). In this case, the correct form for the residuals is in 

terms of their radial distance from the circle centre, as given by equation (2.17). 

This is non-linear in its parameters and therefore it requires an iterative type of 

algorithm to find the least squares solution, that is find parameters (a, b) and R 

so as to minimise

tern transformation was made to a suitable local origin, which would allow the

1989, which is based on the Gauss-Newton algorithm [see e. g. Gill, Murray and 

Wright, 1981].

be replaced by a summation providing a “reasonable” number of samples were

large even number” without further justification. The need for four-fold symme

N
-  R)2 ( 2.22)

where s, =  [(x  ̂— a)2 +  (y, -  6 )2]1/2.

Note that the limaçon figure would be a valid reference if a coordinate sys-

linearised form for the residuals (equation 2.19) to be used instead.

An algorithm for fitting circles in a specified plane is described by Forbes,

An estimate of the solution must be available to start the algorithm. The
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initial solution is then updated in each iteration until it has converged. The 

major step of this algorithm is to solve the linear least squares system given by

Pa
Pb
PR

(2.23)

where e is the matrix representation of the deviations given by equation (2.17) and 

J_ is the Jacobian matrix, whose elements are found from the partial derivatives 

o f e,- with respect to the parameters a, b and R and given by

da  _  - ( x j - x o )  dx0 r t
da  _  - ( i / . - i io) 
dt/o rj
Six -  _1
dr 1

(2.24)

The solution of the system given in (2.23) is used to update the parameters 

estimates as
a :=  a +  pa

b : = b  +  p b (2.25)

R :=  R  +  PR
This process is repeated until the algorithm has converged.

In order to find a good initial estimate of the circle parameters, Forbes suggests 

that the function to be minimised be replaced by .

N
£ ( s? - * 2)2 (2.26)
t=l

By expressing sf — R2 in terms of parameters (a,b) and p =  a2 +  b2 — R2, this 

function is made linear in its new parameters and therefore, in order to minimise 

(2.26), a linear least squares system is solved as

a

b

P

=  b (2.27)
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where the elements of the ith row of A are the coefficients (2x, , 2j/,-, —1) and the 

ith element of b is (x? +  yf).

It is worth to mention that a similar type of algorithm, based on the Gauss- 

Newton method, had been previously proposed, although not presented in detail, 

by Anthony and Cox [1985]. Similarly, the same linear approximation is suggested 

so as to find good initial estimates.

Least squares sphere fitting is also discussed by Forbes [1989]. An algorithm 

for least squares sphere fitting is presented which is the three dimensional version 

of the algorithm outlined above.

2.5.4 Least Squares Cylindroid and Cylinder

The skew limaçon cylindroid (see section 2.4.5) is linear in its parameters and so, 

following the same reasoning to use the definition of residuals given by equation 

(2.19) for the least squares limaçon, its residuals are expressed as

6 =  r,- — ((a -I- a\Z) cos 0; +  (6 +  b\z) sin 0, +  R) , t =  1, • • •, N  (2.28)

where a, 6, oi,6j and R are as defined in equation (2.10) and N  is the number of 

data points. Thus the least squares limaçon cylindroid is found by the solution of 

a linear least squares system [Chetwynd, 1980], which will not be repeated here. 

Patterns of measurement are also suggested by Chetwynd in order to simplify the 

least squares computation and make the estimates of the parameters independent 

of each other. However, there seems to be no convenient simple sampling scheme, 

as in the two-dimensional case, to justify the adoption of such schemes considering 

the computing power of present generation computer-aided-measureinent system.

Forbes [1989] presents an algorithm for fitting a cylinder to Cartesian data 

points (x, y, z). In this case, the residuals are defined as the deviations of the 

data points from the reference, measured radially from the axis o f the cylinder. 

This is expressed as

e, =  r, -  r (2.29)

37



where

with

_  yju} +  v? +  w? 
y/a2 +  hi1 +  c2 (2.30)

=  c(yi -  ya) -  b(zi -  z0)

Vi =  a(zi -  z0) — c(xi — x 0) (2.31)

W{ =  b(xi -  x„) -  a(yi -  ya)

for i =  1, • ■ •, N , where (a, b, c) represents a vector pointing along the axis of the 

cylinder and (x0,y 0, za) a point on its axis.

The algorithm to find the least squares best fit cylinder is based on the Gauss- 

Newton method mentioned in section 2.23. However an assumption is made that 

for nearly vertical lines, in three dimensions, its direction can be represented by 

a vector of the form (a, 6,1), and, given the latter, the 2-ordinate of a point on 

the line is specified by za =  —ax0 — by„. Therefore, equation (2.29) is reduced 

to a function of the five parameters x„, ya, a, b and r. In order to implement 

the Gauss-Newton algorithm, the partial derivatives of e, (equation (2.29)) with 

respect to these five parameters are needed. In order to simplify the derivative 

expressions, a second assumption is made that the axis is exactly vertical and 

passes through the origin.

Thus the algorithm iterates as usual, except that at the beginning of each iter

ation, a copy of the data is translated and rotated so that the trial best-fit element 

(i. e. the element corresponding to the current estimates of the parameters) has 

a vertical axis passing through the origin. The special orientation simplifies the 

calculation of the Jacobian matrix. At the end of an iteration, the inverse trans

lation and rotation transformations are used to update the parameter estimates 

and thus determine the new position and orientation of the axis.

Unfortunately, there appears to be no straightforward method for obtaining 

initial estimates of the parameters. If there are estimates of (a, 6, c), then we 

can rotate the data so that the trial axis is vertical and fit a circle to jv and 

^-coordinates of the rotated points to obtain estimates of (x 0,y 0,z 0) and r. In 

many measurement situations such estimates of (a, 6, c) are available from the
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approximately known orientation of the workpiece with respect to the coordinate 

system of the measuring machine.

Algorithms for circle fitting in three dimensions and cone fitting are also dis

cussed by Forbes [1989], and follow the same strategy as for cylinder fitting, 

although the expressions for the residuals are slightly different in each case.

2.5.5 Least Squares Lines and Planes

As discussed in section 2.4.6, when the residuals are defined normal to the in

strument datum, they are expressed as (in two dimensions)

U =  y% -  (mxi +  / )  , t =  1 ,  • • • ,  N (2.32)

where m is the slope of the line and l the intercept of the line with the y-axis. 

Thus, fitting a line to a set of data points (x j,y ,) that minimises the sum of 

the square of the deviations given by equation (2.13) is very straightforward and 

commonly given in statistics text books as linear regression. The same approach 

is valid for plane fitting under the same conditions (see equation 2.4).

This definition of residuals is only valid when the geometry of the instrument 

allows such an assumption be made. In measurements using a coordinate measur

ing machine for example the residuals are truly defined by the normal distances 

to the reference line, as given by

_  y, -  rnx, +  /
(1 +  ms)!/2 ’ » =  !,•••, JV (2.33)

where a,- is the Euclidian distance of the point (x<, y,) to the line of slope rn and 

intercept l. This is non-linear in its parameters and therefore requires non-linear 

methods.

Forbes [1989] presents an algorithm for fitting a least squares line through a 

set of points with the residuals measured normal to the fitted line. The residuals
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are re-expressed as

Si =  b(xi -  x 0) -  a(yi -  ya) , i =  (2.34)

where (a, b) are the direction cosines of the line [see e. g. Ayre and Stephens, 

1956] and (x 0,y0) a point on the line.

The algorithm works on the fact that the line passes through the centroid of 

the points which makes it possible to reduce the problem to a linear least squares 

system. The direction cosines of the line are defined by finding the Singular Value 

Decomposition of the matrix of coefficients (the normal equation matrix, see e. g. 

[Gill, Murray and Wright, 1991]): the direction cosines are given by the singular 

vector corresponding to the largest singular value.

The algorithm for normal least squares plane fitting is also based on the same 

assumption, viz that the plane passes through the centroid of the points.

2.6 Minimum Zone and Other Types of 

Approaches

2.6.1 Minimum Zone Reference Fitting

Minimum zone approaches do provide a smaller form error zone for a given set 

of data points than commonly used least squares methods (see section 2.5). The 

minimax reference has the property that the largest absolute residual | t, | is 

as small as possible. The minimum zone methodology is also attractive in the 

sense that when it is shown diagrammatically it appears similar to a geometrical 

tolerance zone [e. g. BSI, 1990]. Therefore, there has been interest regarding the 

evaluation of form tolerances based upon the minimum zone by which features 

can be described.

Apart from the exchange algorithms, other comprehensive methods have been 

proposed for fitting a minimax reference to data. Shunmugam [1986] presents a
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heuristic procedure he calls median technique, in which the deviations are mea

sured from a median reference. In the case of straightness for example, the pro

cedure starts by fitting a triad line passing through the end points. To fix the 

crest line, the point corresponding to the maximum positive deviation is selected 

as one of the reference points and the process repeated until the deviations are 

negative or zero. A similar approach is used to fix the valley line. The median 

line is then determined by three points selected from the crest and valley points 

so that the straight zone is minimum. However, the deviation is measured normal 

to the datum system and not normal to the reference figure. Similar procedures, 

based on the same technique, are outlined in the paper for finding minimax plane, 

circular, cylindrical and spherical references and again the deviations are mea

sured from the linearised approximation of the true references. Although this is 

a simple method, there is no evidence to judge that the reference determined in 

this way for a given data set is the one that will have the minimum zone.

Murthy and Abdin [1980] present the use of three different methods, namely 

Monte-Carlo, Simplex and Spiral search techniques, for finding the minimum 

zone lines, planes, circles and spheres. In the case of Monte-Carlo technique the 

minimum zone surface is assumed to lie within the zone of deviations obtained 

by the least squares method. To determine the actual minimum zone reference 

the parameters are selected randomly. For each randomly selected solution the 

minimum deviation is calculated. If a value less than the least squares value is 

found in these trials the reference is shifted to this and the process is repeated. 

This process continues until the minimum value does not change appreciably. In 

this method, because of random selection of variables, there is a possibility of 

missing the actual minimum. A more convenient method, the authors suggest, is 

the Simplex search technique.

The Simplex search (due to Nelder and Mead [1965] not to be confused with 

the simplex method of linear programming) gets its name from the regular ge

ometric figure used in the search process. This is a formal sequential gradient 

search designed to climb up and down non-linear mathematical functions. The 

basic idea is to compare the values of the objective function at the n +  1 vertices
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of a general simplex and move this simplex gradually towards the optimum point. 

In the case of circle fitting, for example, the function to be minimised is

/  =  [max{r,- — r }  — m in{ri — r}] (2.35)

where r,- =  [(x,- — a )2 +  (j/j — 6)2]1/ 2, i =  1, • • •, N , (a, 6) and r are the reference 

parameters and (x<, y,) the data set. The least squares solution (see section 2.5.2) 

is considered a good starting point so as to reduce the number of iterations. A 

third search technique suggested by the authors, when there are only two or three 

variables, is the Spiral technique in which a complete scanning for the absolute 

minimum could be tried in a spiral manner around the least squares solution. It 

is suggested that a combination of spiral and simplex search techniques would 

yield good results.

It is claimed in the paper that the Simplex search consistently gave the least 

minimum zone of the methods considered for straightness, flatness, circularity and 

sphericity and that the results are in the range of 80 % of the least squares zone. 

One advantage of this method is that the deviations are clearly measured normal 

to the reference figure (e. g. in the case of circle fitting normal to the centre of 

the reference). However, no information about the computational efficiency of 

this method is given in the paper.

Dhanish and Shunmugam [1991] present an algorithm for evaluation of form 

errors such as straightness, flatness, roundness based on the theory of discrete and 

linear Chebyshev approximation. The deviations are defined as linearly depen

dents of their parameters, as in equations (2.32) and (2.13) for deviations from 

lines and planes respectively, or as in equation (2.5) for deviations from circles. 

This algorithm is a type of exchange algorithm, in which the Stiefel Exchange 

Algorithm [Osborne and Watson, 1968] is used for the straightness case. For the 

flatness case it seems no rule is defined and trial exchanges are made replacing 

the points in the reference set one by one. Although it is not mentioned, this 

algorithm is based on the same theory as the exchange algorithms of Chetwynd 

[Chetwynd, 1985]. In this case however there is no geometric interpretation of
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the steps to follow and therefore strict mathematical rules are obeyed.

Other minimum zone algorithms are proposed to fit specific reference figures, 

which will be considered separately.

2.6.2 Minimax Circular References and Other Approaches

The general non-linear minimax circular reference fitting problem is to find a 

reference (a, b), R  so as to minimise

max | ti | (2.36)

for i =  1 ,N ,  where N  is the number of data points and is as in equation

(2.17). Equivalently, this is formulated as: minimise h subject to

- h < t i < h ,  i =  1, • • •, A  (2.37)

Anthony and Cox, 1985, proposed an exchange algorithm for finding minimum 

zone circles based on a interlacing property [Rivlin, 1979] that there are four 

points in S, the set of data points, so disposed that, if they are ordered according 

to the angle the line joining them to the common centre makes with a fixed 

radius, they lie alternately on the outer and inner circles. The algorithm consists 

in finding four such points. As initial estimate, it is suggested that the linear least 

squares system given in (2.27) be used to minimise the approximated function 

given in (2.26), linear in its parameters. It is argued that the success of the 

iteration process depends on a good choice for two points in S “close to” and two 

points in S “far from” the centre coordinates of the current estimate. However, 

no detail is given about the strategy employed.

Ventura, Chang and Klein [1988] present an algorithm for minimax circle fit

ting based on the misleading premise that the minimax circle is defined by finding 

the centre of a circle of constant radius which minimises the zone of deviations. 

So the number of parameters is reduced to three, the centre coordinates and the 

maximum deviation. Presumably, the radius is assumed as its nominal value. An

43



exchange algorithm is then proposed based on the statement that there are seven 

possible solutions for each combination of three points, thus it iterates through 

the possible combinations of points in order to find the one which does not violate 

any of the data points and has the minimum value for the deviations. It seems 

however that the zone so defined is minimum for a circle with a particular radius 

and not the minimax zone as it is commonly understood, that is when the radius 

is also allowed to vary. Moreover, for a large data set this algorithm seems to be 

computationally very expensive.

A different approach, using techniques developed in computational geometry 

is used by Le and Lee [1991] and Lai and Wang [1988], to define similar algorithms 

for fitting minimax reference circles to data. The algorithms are based on the 

concepts of medial axis and farthest neighbour Voronoi edges of a polygon. The 

medial axis of a polygon G is the set of points q internal to G such that there 

are at least two points on the boundary of the polygon that are equidistant from 

q and are closest to q [Lee, 1982]. The set of points q is the collection of the 

centres of the inscribed circles of polygon G. Associated with each vertex u, of 

G there is a convex polygonal region V, such that u, is the farthest neighbour of 

every point in the region. This diagram is denoted as the farthest point Voronoi 

diagram and its line segments are the farthest point Voronoi edges. Any point 

on these edges is the centre of a circumscribed circle of the polygon G [Shamos 

and Hoey, 1975 and Preparata and Shamos, 1985]. The algorithms are based on 

the statement that the intersection of the medial axis and the farthest neighbour 

Voronoi edges o f the polygon are the centres of concentric circles enclosing the 

polygon, and the circles with minimum radial separation are the minimum zone 

circles enclosing the profile. Le and Lee [1991] claim that the time complexity 

of their algorithm is of the order of n log n +  k, where n is the total number of 

vertices of the polygon, and k is the number of intersections between the medial 

axis and the farthest neighbour Voronoi diagram.

Exchange algorithms for the minimum circumscribed and maximum inscribed 

circle references [BSI, 1987a] have also been proposed by Anthony and Cox [1985]. 

It is stated that the minimum circumscribed circle (MCC) has the property that
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there is at least one triad of points in the set of data points (S) that lie on the 

MCC and form the vertices of an acute-angled triangle [Hearn and Vijav, 1982]. It 

is pointed out that a single exception is when two points in S define a diameter of 

MCC. The same property is claimed for the maximum inscribed circles, although 

it is argued there may be a number of locally best solutions. This characterisation 

is the basis of the proposed algorithms. In order to find an initial estimate, a 

second algorithm is proposed, which in turn starts from the least squares solution 

of the linear system given in (2.27). However, no information is given about the 

performance of these algorithms.

2.6.3 Minimax Cylindrical References and Other 

Approaches

Goto and Iizuka [1977] attempted to discover the minimum zone cylinders from 

the least squares solution. A search method is given but considered to be too 

inefficient and an alternative is proposed which uses a weighted least squares 

approach in which the weights relate to the residuals of an unweighted least 

squares solution so that the major peaks and valleys are emphasised. This method 

is of course an estimation of the minimum zone cylinders rather than a solution.

One proposed method for defining cylindricity which does not rely on the 

usual reference figures is due to Goto and Iizuka [1977] when a deformed cylinder 

is described in terms of an axis consisting of orthogonal polynomials in z and 

cross-sections of constant z are described as Fourier series using r and 0 (r, 0 and 

z being a cylindrical coordinate systerti). It seems that this method was first 

adopted more to demonstrate the use of least squares by which the parameters 

can be found than for metrological reasons but it is a method of describing the 

surface that can well be used.

Other methods for cylindricity measurement are considered in a paper pre

sented by Murthy [1982] include the spiral tracing method [Tsukada et al, 1977], 

the multi stylus method [Kakino and Kitazawa, 1978], the surface development 

method and the method of the orthographic projections of the axis of the cylinder
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[Murthy, 1982].

2.6.4 Minimax Planes and Lines

A computational approach to the evaluation of straightness is presented by Lai 

and Wang, 1988. This procedure is based on the concept of building a convex 

polygon in a stepwise manner (see e. g. [Preparata and Shamos, 1985]). Using 

this method, the authors claim that the minimum zone can be determined.

Traband et al [1989] present an algorithm for finding the minimum zone lines 

and planes based on the theory of convex hulls [Preparata and Hong, 1977]. The 

convex hull H (S) of S is defined as the smallest convex set containing S , a set 

of points in E 2, the two-dimensional space. A supporting line of H (S ) is a line 

passing through a vertex of H (S) such that the interior of the convex region lies to 

one side of the half-plane defined by this line; thus, two supporting parallel lines 

will define a zone enclosing S and different zones can be defined. The algorithm is 

then proposed on the grounds that the minimum zone can be defined by searching 

for such two supporting parallel lines with minimum separation. The effectiveness 

of the algorithms is tested by using several data sets and comparing the results 

with the linear least squares method, and some results show that the least zone 

is obtained by the proposed method. One minor criticism is that the data sets 

used were well aligned with the x-axis or xy-plane and therefore no information is 

given about the performance of these algorithms with data sets not aligned with 

the appropriate axes.

Another approach for finding the minimax lines and planes is presented by 

Huang, Fan and Wu [1993]. The minimax method proposed uses the concept of 

the rotations of enclosing planes (the so called control plane rotation scheme) with 

respect to a particular contact point at each data exchange step. The procedure 

starts by defining a trial zone parallel to the least squares best-fit plane and 

containing the extreme points (in the opposite half-spaces defined by the least 

squares plane). Then a rule of search is proposed based on the rotation of planes 

so as to get to the condition where four points are in contact with the enclosing
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planes. The procedure terminates when one of the following two conditions is 

satisfied: there are two contact points in each plane such that, when projected 

onto the lower plane, the line linking the two contact points of the upper plane 

must intersect the line linking the two contact points of the lower plane; or there 

are three points on one plane and one point on the other plane such that, when 

projected onto the lower or upper plane, that single contact point must be on 

the inside of the triangle formed by the other three points. These conditions 

are also applied by Chetwynd in the exchange algorithm (see section 2.4.6 and 

figure 2.5) for minimax plane fitting. It seems that while the exchange algorithm 

iterates from an optimum but unfeasible solution (it starts with a solution that 

obey one of the two conditions above but does not enclose all the data points), 

this algorithm starts with a feasible (all the points enclosed by the trial zone) 

but not optimum minimax plane and then iterates until the optimum solution is 

found (one of the two conditions above is satisfied).

2.7 Geometric Tolerance Assessment

The National Physical Laboratory (NPL), UK, has recently released a report 

addressing the problem of assessment of geometric tolerances [Forbes, 1992]. The 

approach proposed for tolerance assessment is somewhat in line with the work 

reported in this thesis.

The general tolerance assessment problem is stated as a constrained problem, 

in which an optimisation procedure is used to find the parameters of the geo

metric element that do not violate the form and parameter constraints imposed 

by tolerance specifications. Few examples are considered, such as circularity and 

tolerance on radius; the case of template matching is also considered.

It recommends the decomposition of multi-component problems, so that it is 

possible to solve a sequence of optimisation problems and consequently to reduce 

the complexity of the original problem. This is illustrated by considering the 

case of two holes with a specified minimum radius and separated from each other 

by a toleranced distance. It is advocated that first be found the two maximum
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inscribed circles and then it be checked whether the centre of the circles lie within 

tolerance. It is observed however that this decomposition changes the original 

problem.

Another point considered is the use of approximate methods for simplifying 

the solution of the original problem. Methods considered include: reduction of the 

number of parameters; substitution of constrained by unconstrained optimisation; 

and the replacement of non-linear problems by linear problems.

No algorithm is presented for solving the problem as stated, although it is 

possible to understand that there is a preference for adopting a Chebyshev ap

proximation type of method [Osborne and Watson, 1969].

2.8 Towards Automated Inspection in a Com

puter Integrated Enviroment

2.8.1 Comparison of Measured Data Points with CAD  

Data Files

Manual drafting has been replaced, over the past ten years, by modern, comput

erised systems for defining the geometry of mechanical parts. A great variety 

of computer-aided-design (CAD) systems are available nowadays, embodying a 

number of geometric representation schemes. In CAD systems, the nominal ge

ometry of the object is constructed and stored in a file. Once the part geometry 

has been defined, computer-aided-manufacturing (CAM ) systems can be used in 

order to generate the machining part programme which will generate the actual 

part. After machining, the part is inspected for conformity with design specifica

tions.

Research work reported by Schneeberger [Schneeberger et al, 1983], presents 

a technique for the determination of errors in part geometry by comparison of a 

measured part database with a part nominal database. The nominal database 

represents the desired part geometry generated by the CAD system and trans
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ferred into the machining part programme processor. The measured database is 

obtained by coordinate measurement of surfaces on a manufactured part. A least 

squares best fit technique is used to calculate surface parameters from measured 

data, and the parameters of the fitted surface are used to transform the database 

from the machine coordinate system to a workpiece coordinate system. The nom

inal part database is also transformed into the same workpiece coordinate system. 

The errors are calculated by computing the distance from the measured points 

to the nominal part surface. It is reported that this technique was tested for 

cone, cylinders and plane fits. However, there is no discussion about the errors 

introduced by the rotation and translation matrices, in the process of coordinate 

transformation, which obviously has to be considered, nor about the computa

tional cost involved.

A commercially available software package, Perceval [Sediscad, 1993], appar

ently works in line with the technique presented above. As described in its ad

vertising leaflet, the error is obtained by projecting the measured point on the 

theoretical surface stored in the database.

This technique can achieve little more unless used in conjunction with error 

compensation techniques. A technique for modifying the manufacturing process 

based on the error information is presented by Duffie [Duffie et al, 1984]. In this 

paper, the work is concentrated on automated modification of surface geometries 

using parametric surface patches (see e. g. [Faux and Pratt, 1979]), which are 

commonly used for sculptured surfaces. A compensation strategy is applied in 

which a modified surface patch database is created using patch fitting techniques.

2.8.2 Geometric Tolerancing in Solid Modeling Based 

CAD Data Files

The most powerful computer-aided-design systems are based on solid-geometric 

modelling systems (solid modellers for short) for geometry definition [Requicha 

and Volker, 1982]. Solid-geometric modelling systems are expected to be the 

future medium of communication for geometrical specifications of mechanical
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product designs. But the solid modellers available today are for the most capable 

only of representing the nominal geometry of parts. In general, two dimensional 

projections are derived from a solid model, and these views are annotated with 

dimensions and tolerances (see [Roy, Liu and Woo, 1991] for a review of automatic 

dimensioning systems).

Tolerancing annotations contain a great deal of implicit information, which is 

obvious to the intelligent and experienced production engineer, but is not good 

for computer implementation. Ideally, the geometric meaning of tolerancing in

formation should be defined mathematically and incorporated in solid modellers 

for automatic planning and analysis. This would make it possible, for instance, to 

inspect whether features meet their design specifications by checking whether the 

data acquired using a measuring machine (after suitable frame transformations) 

lie within tolerance zones in the solid model, which might be defined as regions 

of space surrounding the object’s nominal geometry.

Several research workers have explored the field of Dimensioning and Toler

ancing (D & T) and studied several aspects of its implications for the successful 

integration of computer-aided design and manufacturing (see e. g. [Roy, Liu 

and Woo, 1991]). This review concentrates on aspects of the representation of 

tolerances in solid modelling.

The lack of a formal theory for the representation of tolerances in solid mod

elling was first identified by Requicha, who developed a theory based on the 

variational class concept [Requicha, 1983, 1984]. Variational classes are families 

of objects that are similar to a nominal object, are interchangeable in assembly, 

and are functionally equivalent. By his definition, a variational class is to be 

represented as a nominal object together with a collection of assertions about the 

object’s features. These assertions define geometric constraints that specify the 

allowable variations from the nominal object’s shape. He proposed the concept 

of nonparametric zones [Requicha, 1984], as opposed to the parametric approach, 

defined as the set of points that are within a given distance of the nominal fea

tures. A tolerance zone is created by the Boolean set difference between two 

offset objects with specified maximum and minimum offset values.
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For parameterised objects, the maximal and minimal objects are defined 

by the maximum and minimum values of the defining dimensions. For non- 

parameterised objects, the tolerance zone is created by offsetting the object by 

equal amounts on either side of the nominal. Unlike parameterised objects, the 

maximal and minimal objects may not be of the same shape. Requicha considers 

this to be an advantage because this class does not force objects to have perfect 

shape (same as nominal). The tolerance information is specified as a set of ge

ometric attributes of the surface features of an object boundary, and it dictates 

the offsetting criteria for the boundary surfaces. A formal theory for offsetting 

operations is discussed by Rossignac [1986].

The parametric approach was first proposed by Hillyard and Braid [1978] and 

further refined by Lin, Gossard and Light [1981] and Light and Gossard [1982]. 

In this approach, an object is treated as a parameterised shape where either the 

parameters are explicitly specified by the user or determined from a set of con

straint equations involving geometric relationships. Tolerances are considered to 

be small changes in the defining dimension parameters. The approach has typ

ically been applied to objects built from planar faces and straight line edges or 

right circular arcs. Since tolerances can only be supported as attributes of para

metric dimensions, the classes of tolerances that can be supported is very limited. 

Tolerances such as circularity and cylindricity cannot be supported because of the 

restrictions on geometry. Position tolerances based on resolved entities (axis, mid

plane) cannot be supported as well because the vertices of these entities are not 

available.

Using his theory of tolerancing, Requicha and Chan [1986] have implemented 

the representation of geometric features, tolerances and attributes in a CSG-based 

(Constructive Solid Geometry) modeller, PADL-2 [Brown, 1982]. The basic struc

ture proposed for representing features and attributes is a graph called a varia

tional graph or simply VGraph, which associates the variational information with 

the solid model. It utilises what is called 2D intersection set operators that allow 

one to reference only a portion of a face (called VFace) by intersecting the object 

with a virtual object. Attributes, such as tolerances, can be attached to VFaces.
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Attribute nodes are provided for classes of tolerances. In this respect, Requicha 

proposed to replace various special-case tolerances used in current practice (e. 

g. roundness, flatness) with a single form tolerance that applies to all features. 

In the same way, single surface-orientation tolerance and position tolerance were 

proposed, with the difference that these two require datum specifications. It also 

introduced the concepts of master datum system and extended and symmetric 

features.

One criticism [Roy, Liu and Woo, 1991] is that, as the handling of dimensions 

and tolerances in the general case requires the ability to access the bounded 

entities of objects, the tolerance theory of Requicha raises some manipulation 

problems during implementation; moreover, this kind of representation differs 

in some respects from the ISO system [e. g. BSI, 1990] for dimensioning and 

tolerancing. According to Roy, Liu and Woo [1991], this VGraph system has a 

limited ability to describe design tolerances.

A conceptual framework for tolerance representation and analysis based on 

CSG solid modellers is presented by Elgabry [1986] somewhat along the lines 

of Requicha, but without a mechanism to refer to partial faces. Tolerances are 

attached to whole faces of primitives, which are defined by size, location and 

orientation vectors with tolerance values. Therefore, users must place appropriate 

primitives at places where tolerances are to be specified.

Jayaraman and Srinivasan [1989] have examined the issues of representing 

the geometric tolerances in solid models from the perspective of functional re

quirements related to the geometry of mechanical parts. Their research is mainly 

concerned with the positioning of parts with respect to each other in assembly, 

and with maintaining material bulk in critical portions of parts. They have ex

tended the concept of offset boundaries to adjoining parts in an assembly by 

means of a virtual boundary used as a divider between them. They developed 

specific virtual boundary requirements (VBRs) to reflect the required functional 

conditions of the assembly, and then discussed the theoretical basis of the in

terpretation of those virtual boundary requirements with the help of the theory 

of solid-model-based offsetting, as proposed by Rossignac and Requicha [1986].
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However, virtual boundaries have the same limitations as offset boundaries.

A different representation scheme is presented by Johnson [1985] for solid 

modellers based on boundary representation (B-rep, see e. g. [Requicha, 1982]). 

However, this representation scheme is applicable only for location and size tol

erances, and it is limited to geometric entities such as planar faces, cylindrical 

faces, conical faces and spherical faces. Roy and Liu [1988] showed the necessity 

of having a hybrid CSG/B-rep data structure for the tolerance representation so 

that the advantages of both CSG and B-rep models can be exploited.

Another representation model is proposed by Turner and Wozny [1988], mainly 

for tolerance analysis problems. A conceptual framework is presented, based on 

constructive variational geometry, which is intended to be used for evaluation of 

tolerance variables and design variables as function of the model variables.

Other representation schemes are also reported [Roy, Liu and Woo, 1991]. 

As this is new field of research, further research is still being carried out and 

therefore no conclusive and comprehensive theory and software implementation 

has yet been established. It may turn out that changes in the ISO-tolerance 

system are necessary in order to accommodate a more comprehensive tolerancing 

theory. It is also worth noting that a proposed has been put forward for adopting 

Vectorial tolerancing in place of the present ISO-tolerance system [Wirtz, 1992].

I
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Chapter 3

Inspection of Roundness 
Features

3.1 Introduction

Circularly shaped components are one of the commonest industrial forms, from 

aerospace and automobile to electro-electronic and white goods industries. As a 

consequence, inspection of out of roundness of a cross section of a nearly circular 

component is an economically important area. Also, being a closed figure, circu

larity is relatively easily expressed mathematically. This combination has often 

led to it being used to develop and illustrate metrological techniques, a tradition 

that will be followed here in introducing a novel strategy. This chapter discusses 

the idea of a GO-NOGO inspection software and presents the implementation 

of an algorithm for the inspection of combined roundness and centre position 

or eccentricity errors of nominal circular components [Carpinetti and Chetwynd, 

1992]. The extension of this approach to other figures will be covered in later 

chapters.

The numerical assessment of out of roundness is by measuring the peak to val

ley deviation of the actual profile from a reference circle fitted to that profile (see 

chapter 2 for a review of methods and algorithms for roundness measurement).
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The centre position and the radius of the reference may themselves be impor

tant parameters, for example in measuring the distance between two holes or the 

eccentricity of two related shafts. In this case a separate concentricity or position 

tolerance would be required.

Partly for historical reasons and partly because efficient processes have been 

developed, there is commonly a difference of approach between the specification of 

tolerances in design standards and the assessment methods specified in metrology 

standards. This has caused little practiced difficulty on simple measurements. 

However, there may be conflicts when several tolerances are used in combination, 

for example circularity, centre position and absolute radius.

A highly effective approach to the solution of best-fit roundness references 

has been used for many years in which radial coordinate data representing the 

workpiece profile is expressed relative to an origin that lies not far from the 

best fit centre, a condition that arises naturally from the action of specialised 

roundness measuring instruments. The circle is substituted by a limaçon having 

the same parameters, with the errors of so doing normally less than the resolution 

of the measurement instruments, providing the ratio of eccentricity to radius is 

kept below about 0.01, [Chetwynd, 1979a] (see chapter 2 for more details). This 

parameter linearisation offers great computational benefits and will be followed 

here.

3.2 Boundary Value Roundness References

Standards define three alternatives to least squares as criteria for reference fitting 

in roundness measurement. These are the minimum radius circumscribing circle 

(MCC or ring gauge circle), the maximum radius inscribing circle (MIC or plug 

gauge circle) and the minimum radial zone circles. These fitting problems are 

identified mathematically with problems of constrained optimisation. Thus, the 

ring gauge circle fitting problem for instance can be formulated as: find the centre 

(a, b) o f the circle that has minimum radius R while maintaining the condition 

that the profile, represented by the data points (rj,0 ,),t =  1, • • •, N, where N is
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the number of data points (here given in polar coordinates), is enclosed by the 

reference. That is to say, minimise R such that each data point be subject to the 

constraint

a cos Oi +  6sin 0, +  [f?2 — (a sin <?,• — 6cos fl,)2]1̂ 2 >  r; (3-1)

which is based on the equation of a eccentric circle [Whitehouse, 1973], This op

timisation process can be well represented using the concept of parameter space. 

A parameter space, or solution space, is a conceptual frame in which each pa

rameter is plotted along an orthogonal axis. This provides a geometrical view of 

the problem which is intuitively useful when there are three or fewer parameters 

and mathematically useful in any number of parameters. The total n-dimensional 

space described by those axes contains one point for each conceivable combina

tion of parameter values. In such a space both the objective function (that is the 

function being optimised) and any constraints appear as hyper-surfaces. Each 

constraint divides the parameter space in two open half spaces, with all the feasi

ble parameter combinations lying to one side and the infeasible ones to the other 

side. Only the feasible region contains valid combination of parameters.

For the simplest illustration, consider the set of constraints represented in 

equation (3.1) for the case when 6 =  0. Each data point will generate a constraint 

whose equality condition produces a boundary line in an (a, R) space that plots 

as shown in figure 3.1 for an arbitrary number of constraints, dividing the space 

in feasible and infeasible regions. The feasible region for circumscribing circles 

lies above the boundary line which, since the boundary is parabolic, will be 

convex. The objective function is linear and the contours of constant value are 

lines parallel to the a-axis. Thus it is seen that a convex feasible region is defined, 

that is any two points within it or on its boundary may be connected by a straight 

line lying wholy within the region, and therefore a unique solution to the ring 

gauge exists, corresponding in figure 3.1 to point j.

The equivalent plug gauge circle fit will be equation (3.1) with the direction 

of optimisation and inequality reversed, so the constraint curves will be identical
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Figure 3.1: Parameter space representation of circumscribing and inscribing circle 
constraints.

to those of the ring gauge circle, but the feasible region will now lie below the 

line. This region is non-convex, as is the intersection of the region from all the 

constraints. The contours of the objective function are, as before, lines parallel 

to the a-axis. In this case the non-convexity may cause multiple local maxima, 

illustrated in figure 3.1 by points k and 1. If these have to be found by an optimi

sation algorithm, different alternative maxima can be obtained by alteration of 

the starting point of the iterative process. There is, however, no guarantee that 

the local maxima so discovered will include the global maximum.

The minimum zone circle problem has four parameters and hence a four di

mensional space, which makes visualisation impossible. However, it can be shown 

that the feasible region is not necessarily convex and profiles having two distinct 

solutions have been invented [Chetwynd, 1979a].

On the contrary, all the equivalent limaçon approximations generate linear 

constraints. For example, the ring gauge limaçon reference to a set of N  data 

points (rj, Of), i =  1, • • •, N  is expressible as: minimise Z =  R subject to

a cos $i +  6 sin Oi +  R >  r< (3.2)

where (a, b) and R are the reference parameters. It is a geometric consequence
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Figure 3.2: Parameter space representation of circumscribing and inscribing 
limaçon constraints.

of the constraints being linear in the parameters that the feasible region will be 

convex and that the single best point will always be at an intersection. This 

can be seen from the two dimensional parameter space representation of the 

circumscribing and inscribing limaçon references, figure 3.2, where points j and 1, 

represent the optimum for the circumscribing and inscribing limaçon respectively.

Non-linear constraints do not generate plane figures in parameter space and so 

the search must be over a surface or, worse, if the region is non-convex, over the 

whole feasible region. This is essentially why it is both more expensive to compute 

non-linear problems and problematic to guarantee globally optimal solutions.

The limaçon approximation makes possible the use of linear programming 

techniques, the relevant theory of which is reviewed in the next section.

3.3 Basic Concepts in Linear Programming

A linear programme is an optimisation in which the objective function and all 

the constraints are linear in the parameters. Using vector notation, it can be
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expressed as: maximise z =  cTx subject to

Ax <  b (3.3)

where for m positive parameters, x , and n constraints, c is an m-vector, b an 

n-vector and A  an mxn matrix.

Linear programmes are one of the fews classes of constrained optimisation 

that have guaranteed convergence onto a unique solution. Theorems of linear 

programming indicate that the optimum solution occurs when each of the con

straints which is actively limiting that optimum is satisfied to its limit by one 

of the parameters (see e. g. [Hadley, 1962]). Hence, only certain combinations 

of parameter values need be examined. An orderly search through these may be 

obtained by using the simplex method in which iterations involve only elemen

tary row operations on the matrix-vector representation given by equation (3.3). 

Simplex organises these vectors as a partitioned matrix (a tableau)

K k
y  ^

where K_ is A  augmented by an run identity matrix and c is correspondingly 

extended by n zero elements. This appends n “slack variables” to the original 

parameters. If the ith parameter is limiting a particular constraint, the column 

K :. in K_, will have value +1 in the row corresponding to that constraint and 

zero in all other elements. The set of defining parameters so identified form 

the “basis” . Initially the basis is the n slack variables. Iterations attempt to 

match parameters to constraints in such a way that Z  is rapidly maximised. The 

feasibility of the current iteration is maintained by ensuring that no constraint 

is ever violated, that is, that no element of b' becomes negative. The prime 

indicates the vector which currently occupies the position originally occupied by 

b. At each iteration the largest positive element of ¿ r  is chosen and its column 

brought actively into the solution. When no positive elements remain in , 

optimality has been achieved and the solution values are readily interpreted from

(3.4)
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the tableau. Equality constraints, which must be always exactly satisfied, do not 

take slack variables but equivalent “artificial variables” are used as a device for 

starting the iterative procedure in an orderly manner. By definition, artificial 

variables cannot remain present in any feasible solution of the tableau.

At any iteration, the columns which originally consisted of the identity matrix 

carry a complete and interpretable record of the row transformations carried 

out on the tableau. Likewise, the columns of the current basis carry the same 

information in the inverse of their original form. The computationally efficient 

method of Revised Simplex does not update the full tableau but merely notes 

what would have been done at each iteration. Elements are only updated when 

specifically required for calculations.

While the total computation required rises with both m and n, it is partic

ularly sensitive to n, the number of constraints, as the work required relates to 

that of inverting nxn matrices. It may, therefore, be advantageous to use a dual 

programme. For any mxn linear programme (termed the primal), an nxrn dual 

may be defined as:

K c
bT z

(3.5)

where K_ is now the augmented form of A 1 and the optimisation has changed 

from minimisation to maximisation or vice versa. It contains exactly the same 

information as the primed, subject to the correct relative interpretation of specific 

elements.

Normal simplex methods require sign-definite parameters in order to ensure 

the sign-definiteness of elements of b1 in the feasible region. This cannot be guar

anteed with metrological data and so each parameter is replaced by an ordered 

pair having equal magnitude but opposite sign. Even so, the number of con

straints usually dominates the number of parameters. Thus a ring gauge limaçon 

fit involves six parameters and the minimum zone seven. Typical measurements 

on specialised roundness measurement instrument involve several hundred profile
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Figure 3.3: Geometric interpretation of primed feasibility (a) and dual feasibility
(b).

points each generating a constraint, two in the case of minimum zone. CMM data 

sets are generally much smaller, but still usually exceed the number o f constraints 

when good measurement practice is followed. Since each constraint generates a 

slack variable while the variables generate no extra terms in the tableau (each 

primal variable causes a dual constraint and vice versa), an increase in efficiency 

can be obtained by solving the dual form of the boundary limaçon problems.

In moving from the primal to the dual, the roles of vectors b and c are in

terchanged. At each iteration, any state which is feasible in the dual (that is 

all elements of ç  positive) corresponds to an optimal condition in the primal but 

since the dual is not optimum the primal is infeasible. For the ring limaçon case, 

for example, the geometric interpretation of an optimal, infeasible condition is a 

limaçon which does not enclose all the points but which is the smallest one that 

can enclose those within it. The primal feasibility condition amounts to starting 

with a figure which is too large but which certainly encloses the profile and then 

shrinking it to the smallest radius which still encloses the profile (figure 3.3a). 

Dual feasibility would entail choosing initially a figure which is the smallest to 

enclose some, but not necessarily all, of the data points (in the primal, optimal 

but infeasible) and then expanding it as little as possible so as to include all the 

data (figure 3.3b).

The geometric interpretation of the requirements for dual feasibility lead to the
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definition of the rules that govern the exchange algorithms for the three boundary 

references presented in chapter 2 [Chetwynd, 1980 and 1985]. In following such 

rules, the exchange of data points is unique at each iteration since it is identical 

with that chosen by the simplex method on the dual linear programme, which 

is known to converge monotonically. This guarantees that cyclical exchanges do 

not occur and that iterations move monotonically towards an optimum solution.

3.4 Formulation of the Inspection Problem

Inspection of geometric features of components in the context of a manufactur

ing process requires only that it be established that the measured features are 

contained within an acceptable tolerance zone. It does not require necessarily 

that any form of “best fit” be found. However in practice it has been usual, 

since standard algorithms exist, first to find an optimal reference and then to 

test its parameters and the deviation of the features from it against the design 

specification, as discussed in section 1.2 (illustrated in figure 1.2) and in chapter 

2.
Considering again the ring limaçon reference, common practice seeks to min

imise the reference radius R while maintaining the condition that the profile is 

enclosed, that is subject to the mathematical constraints represented in (3.2). 

The design specification for out o f roundness actually imposes another set of con

straints: the deviation of any data point rt- from the limaçon reference must be 

less than the tolerance value specified in design, say tT. This can be written as

(a cos 0i +  6sin 0i +  R) — ri <  tT (3-6)

The combination of this set of constraints with the set in (3.2) may or may not 

define a region of feasible solutions, that is combinations of parameter values that 

simultaneously satisfy all the constraints. This situation can again be illustrated 

graphically using the concept of parameter space.

Consider again the case when 6 = 0 .  Including the extra constraints of (3.6),
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Figure 3.4: Representation of feasible region in parameter space

each data point will generate a constraint pair which produces boundary lines in 

an (a, R) space as

R >  ri — a cos Oi (3.7)

R <  r,- +  tT — a cos Oi (3.8)

that plots as shown in figure 3.4. The inequality direction of the constraint

represented in (3.7) (represented as a solid line in figure 3.4 dictates that the

feasible region must lie above the lines. The set of boundary lines represented in 

(3.8), imposed by the form tolerance specification, will be parallel to the boundary 

line defined by the corresponding constraint (that is, generated by the same data 

point) and separated from it by the tolerance value. In this case, examination of 

the inequality directions of the constraints shows that the feasible region must lie 

below the lines (dashed line in figure 3.4). The combination of the two feasible 

regions defined by the two set of constraints may define a set of valid parameter 

values, a single solution (a feasible point) or it may be empty, meaning that no 

feasible solution exists. For the three-dimensional case, the region, when defined, 

will be a polyhedron.

Any feasible solution provides an acceptable solution to the problem, since it 

implies that there are two circles centred at (a, 6) and with radius R and R — tT
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enclosing the data. In this case the constraints must not be violated, that is 

to say the profile must be enclosed, but the radius need not be minimal. If 

there is at least one feasible solution the out of roundness is within tolerance and 

the workpiece passes inspection without any need to optimise the parameters. 

Otherwise, the out of roundness is larger than that specified in design and the 

workpiece fails inspection. This situation is directly comparable to the manual 

use of an annular template trying to enclose the profile.

The same sort of reasoning may be applied to the other two boundary refer

ences. For the plug limaçon reference, because of a change in the inequality, the 

feasible region is shifted in relation to that of the ring limaçon problem but is 

otherwise essentially the same. The formulation of the minimum zone problem 

is: find the limaçon parameters (a, b) and R  and separation h such that

a cos 0i +  b sin Oi +  R +  h >  ri

a cos Oi +  b sin 0{ +  R — h <  (3.9)

2 h <  tT

where again tT is the roundness tolerance value. This requires a four dimensional 

space and makes visualisation impossible. However, if the parameter b is assumed 

to be zero for example, these constraints will plot as planes in an (a, R , h) space. 

Each pair of boundary planes will define a feasible “zone” between them, and the 

intersection of all o f them, if not empty, will define a region of feasible solutions 

to the simplified problem. Mathematically, the full four-dimensional situation is 

no more complex. For inspection, it is not necessary for h to be minimum but 

only for it to be adequately small. Thus, assuming that h =  tr/2 and removing h 

from the constraints and from the parameters set, it yields constraints essentially 

the same as those of (3.2) and (3.6).

In addition to the inclusion of the form specifications in the assessment prob

lem, there are many situations where not only the out of roundness but also the 

centre position of the cross section of a circular component is to be controlled. 

This would be specified by a geometric tolerance of concentricity besides the 

roundness tolerance. The concentricity tolerance provides a limited zone for the
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deviation of the position of the centre or axis of the toleranced feature about 

its ideal position. As shown in chapter 1, there can be difficulties in using the 

centre of a best-fit reference for this purpose. It is better, therefore, to extend 

the previous approach with yet a further set of constraints.

To satisfy the geometric tolerance this set should place a circular boundary 

central on the nominal position within which the trial centre must lie. Here, 

in keeping with the strategy adopted, we seek an approximation to the circular 

zone that corresponds to it adequately for practical purposes but which generates 

only linear constraints in the problem formulation. One alternative could be to 

approximate the circle piecewise by a series of straight lines, that is the circle is 

represented as a regular, even-sided polygon. Chetwynd [1980] considers briefly 

the use of polygons as alternatives to limaçons for approximating the ring and 

plug circle fits, but not their use in the present context.

Each side of a polygon is a section from a straight line in the measurement 

pleine and so can be described by parameters in which it is linear. So providing 

that all the sides can be handled together in a simple way the polygon reference is 

capable of a linear parameterisation and consequently should be relatively easily 

optimised.

The constraint set then relates to a set of lines of pre-defined slopes each hav

ing the same perpendicular distance from an origin corresponding to the nominal 

position of the feature. The simplest reference polygon consists of a square in 

which the sides lie parallel to the coordinate axes. The larger the number of sides 

taken, the closer the representation will become, but at the expense of increased 

computing since each side generates a constraint.

According to the degree of concern about marginal violations (alternatively, 

o f the relative importance of false positive and false negative decisions in the 

inspection), the polygon may be chosen to be inscribing to, an average of, or 

even circumscribing to the true circular tolerance. With the polygon set to give 

equal interior and exterior deviation from the circle, an octagon would give a 

maximum error of 4 % of the tolerance value, while figures of 6 and 12 sides 

would give errors of 7 % and 1.7 % respectively. Table 3.1 presents the errors of
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Maximum Error (  e) of Polygons ( % )

Sides
0

Circumscribing
r  __  1 —COS0

cos 6

Inscribing 
e =  1 — cos 9

Average
,  __ 1 —cos 6

i+ cos  e
4 41 29 17
6 15 13 7
8 8 8 4

1 2 3.5 3.4 1.7
16 2 .0 1.9 1.0
2 0 1 .2 1 .2 0 .6

32 0.5 0.5 0.25

Table 3.1: Maximum error of approximation of a circle by a polygon.

inscribed, circumscribed and averaged polygons for increasing number of sides. 

It can be seen that the error of an average polygon with number o f sides over 16 

is less than 1 % of the tolerance value.

For ease of illustration, a circumscribing square is used here, which has an 

excessive maximum error of about 41 % at its diagonal. This simplifies discus

sion without seriously affecting conclusions about the efficiency o f the approach 

since the extra constraints of moving to an octagonal figure, say, will not greatly 

increase the size of the overall constraint set. In addition, moving to inscribing 

or averaging fit, so as to reduce the approximation error, has no effect in terms 

of computational efficiency as it merely requires extra scaling factors.

Thus, assuming that the nominal position is at the origin of the coordinate 

system used as reference, the square boundary region will be generated by the 

constraints
- t c/2 <  a <  tc/2 

- t c/2 < b <  t j 2

where tc is the concentricity or centre position tolerance value specified in design 

and it is assumed that the

Going back to the parameter space representation, a polygon boundary region 

will define a prismatic figure in a three-dimensional space, with its faces parallel 

to the R  axis. For a square boundary region, the two dimensional representation 

shows two boundary lines, limiting the maximum and minimum value for the66
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Figure 3.5: Representation of feasible region of a inspection problem: (a) fail 
inspection and (b) pass inspection.

parameter a.

A further set of constraints is thus added to the original problem, which 

express the allowed error of the feature position from design specification. There

fore, using the ring limaçon reference, the simultaneous inspection of roundness 

and centre position against design specification is formulated as: find any set of 

parameters (a, b) and R  such that

a cos Oi +  b sin 0, +  R >  r,

(a cos +  6sin Oi +  R) — r; <  tT 

—tc/2 < a <  t j 2 

- t c/ 2 <  b <  tc/2

for i =  1, • • •, N, where N  is the number of data points and tT and tc are the design 

tolerances of roundness and centre position (nominally at origin) respectively. 

This will be referred to as the inspection problem.

If the combination of constraints (3.11) results in infeasibility, there is no 

reference figure with centre limited within the pre-defined position and out of 

roundness within tolerance. Consequently, the workpiece fails inspection.

It is worth repeating the observation that when the centre coordinate o f the 

optimum reference lies outside the feasible region for the centre position, that 

is the centre position tolerance zone, two possibilities exist: either no feasible

(3.11)
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point is defined, in which case there is no reference figure with roundness error 

and centre position within specifications (represented in figure 3.5a) or, although 

the optimum reference lies outside the boundaries for centre position, a feasible 

region is defined (represented in figure 3.5b), in which case at least one reference 

figure can be found which defines roundness and centre position errors less than 

the tolerance (as illustrated in figure 1.3). Consequently, the workpiece passes 

inspection. In this case the component would fail inspection when measured using 

a conventional best-fit algorithm. This situation is illustrated in figure 1.3.

3.5 The Search for a Feasible Solution

It is frequently necessary to compute an initial feasible solution in order to solve a 

problem in linear programming. When the solution is by the Simplex Method this 

is done by adding artificial variables to the set of constraints, and then iterating 

them out of the solution basis (see, for example, the “two phase method” [Hadley, 

1962).

The number of artificial variables depends on the number of equality and >  

constraints and may be as high as the number of constraints. The geometrical 

formulation of the fitting problems normally has many constraining equations: 

each data point generates at least one constraint and there may be up to several 

hundred points in a data set.

The use of dual techniques to solve the inspection problem, as it is done for 

boundary reference best-fitting for instance, is not appropriate. This is due the 

fact that all dual based methods relate directly to the real geometry only at 

the optimal solution (a dual feasible solution is geometrically interpreted as a 

reference with minimum radius but not enclosing all the data points). The real 

geometry is described by the primal formulation only. Therefore, only by using 

primed techniques it is possible to stop an iteractive procedure part-way through 

on the basis of a geometric condition.

In the revised simplex method, the number of iterations required to elimi-
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nate the artificial variables from the basis at least equals the number of artificial 

variables. If N  is the number of constraints, the basis matrix is of order N +  2, 

the solution vector has N  +  2 elements and the total number of arithmetic op

erations required to move from one iteration to another will be approximately 

(N  +  2)2 -1- 9(TV +  2) +  N. So, it will be required approximately N  sets of 

(N  +  2)2 +  9(N  +  2) +  JV operations to iterate the artificial variables out of 

the solution basis and get a basic feasible solution, if one exists [Hadley, 1962]. 

This technique thus seems unsuitable for our purpose: it requires too many com

putationally intense iterations.

Fletcher [1970a] addressing such difficulties, introduced a relatively straight

forward algorithm for obtaining an initial feasible solution that provides a starting 

point for linearly constrained optimisation problems. This method does not de

pend on the addition of artificial variables and so is computationally attractive 

for our purpose. Fletcher’s algorithm does not seem to be widely known, nor 

often used. The reason may be that it requires a different iterative procedure 

to that used to drive linear programmes to optimality and that on balance im

plementations based on only one procedure are preferred for most applications. 

Since we do not seek optimality, this criticism is not relevant: only the Fletcher 

algorithm iterations will be executed.

If we consider a multi-dimensioned parameter space, then every linear con

straint will form a hyper-plane in that space, with all the feasible parameter 

combinations lying to one side and the infeasible ones to the other side. The 

intersection of a set of such planes equal in number to the number of parameters 

will define a point, called in this context a vertex. If the parameter values asso

ciated with a particular vertex violate any other constraints, then that vertex is 

non-feasible. Otherwise, by definition, it must lie on the very edge of the feasible 

region, that is a continuous region of the parameter space that corresponds to 

values of the parameters that do not violate any of the constraints. The feasible 

vertices define the points of a convex (hyper-) polyhedron.

The simplex algorithm of linear programming is an iterative procedure for 

scanning the feasible vertices in an orderly progressive manner so as to move
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rapidly to the best. The artificial variables approaches set up additional con

straints so that there is a chain of vertices from the origin (from where the search 

can start automatically) to the vertices of the recil problem. The expansion of 

the computational effort arises because the reformulated problem contains many 

more parameters which generate many additional feasible vertices that may be 

used in the iterative procedure. Both the work in each iteration and the number 

of iterations required are increased thereby.

Fletcher’s algorithm also seeks vertices, but it can work with non-feasible ver

tices in the original problem in a way not open to more conventional methods. 

It requires more computation with the variables defining the current vertex to 

decide on each move but in problems of the type we have this is more than com 

pensated by the smaller total number of variables involved in that computation. 

It starts at an arbitrary vertex, which is tested for feasibility. Assuming that this 

is infeasible, then the search moves to an adjacent vertex. Only moves in direc

tions along the “edges” that define the current vertex need be examined and the 

method of Lagrange multipliers (well known in other optimisation contexts) pro

vides in effect a measure of how likely it is that the situation would be improved 

by moving in each direction through the parameter space. The steepest position 

gradient o f the degree of constraint violation with distance indicates the favoured 

search direction. If the gradient of the sum of violated constraints is negative 

or zero in all directions then it is proved that no feasible point exists [Fletcher, 

1970a], that is the problem as formulated is infeasible. Otherwise the constraint 

violated in the plane of steepest gradient is removed from the vertex-defining set 

(called the basis). The reduced set defines the hyper-line in the parameter space 

which is searched. At some point along this line the constraint will cease to be vi

olated and a new vertex is then defined. However, before this position is reached, 

another constraint plane may be encountered. If this happens the new constraint 

is brought into the basis. In either case we obtain a new vertex which is closer 

(in a numeric sense) to feasibility than the previous one. This forms the starting 

point for the next iteration, which follows the scheme just described. Iterations 

continue until either a feasible vertex is reached or the gradient test indicates that
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the problem is infeasible. One feature of the algorithm of particular interest to 

the current application is that it provides definitive indications of infeasibility in a 

small number of iterations. Many methods that optimise efficiently are inefficient 

at identifying infeasibility.

To prevent a search wandering off across parameter space if a constraint set 

defines an open polyhedron, all variables should be subjected to upper and lower 

bound values. Technically, this introduces two extra constraints per parameter 

compared to the minimal linear programme. However, just as the non-negativity 

of parameters does not magnify the size of classical linear programming formula

tions, the bounds make little practiced difference to most problems.

The next section provides a brief review in mathematical formulation of the 

steps in the iteration since the method is not widely documented.

3.6 Algorithm for Calculating Feasible Points 

for Linearly Constrained Optimisation Prob

lems [Fletcher, 1970a]

We wish to find a feasible solution for the set of m linear constraints in n variables 

x  that can be expressed generally as

[ I , - I , C ] Tx >

L

—u

d

(3.12)

where / and u are the lower and upper bounds respectively, C  the coefficients 

of the general constraints (each column of C  corresponds to the coefficients of 

one constraint), and I  the unit matrix. In the present context, £  corresponds 

to the set of geometric parameters and each row of the sub-problem C Tx >  d 

corresponds to one constraint of the set of constraints expressed in (3.11). Let x 

be a trial vertex which is not feasible. Each iteration is described by the following

71



steps.

step 1. find V <j> =  YlQji the gradient of the sum of the constraints which are 

violated at x, where c} is the j th column of [7, —I,C]). Note the sum is only over 

those columns that are violated.

step 2. determine A,-, i =  !,••• ,n , the Lagrange multiplier corresponding to V<p

A, = ® ( x ) (3.13)

where 6, is the ilh row of 7J_1, where B  (called the basis) is the matrix whose 

columns are the coefficients of the constraints which define the vertex x  of the 

current iteration. If all the A, are zero or negative, it is proved that no feasible 

point exists. Otherwise, the direction of search is determined by the vector u, =  

b,, where i is the index of the largest positive A,. The vector represents in fact 

the line generated when the inequality constraint corresponding to the ith column 

of the matrix B  is removed.

step 3. now search along direction u, for intersection with other constraints 

by examining the columns Cj of [7, —7, C\. If u,Tc, >  0 and the constraint 

corresponding to Cj is violated at the vertex, then that constraint will become 

non-violated at a point along u, distant by

D  = d j  —  c j x

U , T Cj
(3.14)

where dj in the present context corresponds to r,-,» =  j ,  the radial ordinate of 

the ith data point. The maximum value of D, a  say, over the set satisfying this 

condition gives the furthest point at which a violated constraint intersects u,.

If usTc, <  0 and the corresponding constraint is neither violated nor in the 

basis then that constraint intersects u, at a distance given by equation

3.14 and moving further in that direction will cause it to become violated. 

The smallest such distance in the set we denote 0.

step 4. the new vertex is defined by:
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x  +  m in(a , 0)u, (3.15)

that is, we move either as far as possible without violating any currently satisfied 

constraints or to the most distant intersection with a violated constraint, if that 

be closer.

If the new vertex is feasible the process terminates. Otherwise, go back to 

step 1 The new basis B  is obtained by using the constraint corresponding to 

min(a, ¡3) to replace the constraint which was dropped from the previous basis 

and the inverse of the new basis, B~l , is computed from its previous inverse 

matrix by using the Simplex product formulae [Hadley, 1962, pp. 48].

If the new vertex is feasible the process has ended successfully.

3.7 Algorithm Implementation and Tests

3.7.1 Objectives

The objective of the work discussed here is to test the efficiency of the algorithmic 

approach described above [Fletcher, 1970a] for inspecting roundness and centre 

position tolerances for data acquired using conventional roundness measuring 

machine, as well as to check the result of inspection (in terms of pass/fail) in 

comparison to the exchange algorithms. This algorithm has been implemented 

in a customised form (from now on called the gauge algorithm) for two different 

reference figures, the ring gauge limaçon and the radial zone limaçon. In order 

to do the tests, the following sequence was obeyed: •

• collect data from a set of testpieces using a roundness measuring machine 

interfaced with a computer by an analogue to digital converter;

• measure their out of roundness and reference centre position using the ex

change algorithm for the ring and minimum zone limaçon cases. Estimate 

the efficiency of the algorithm;
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• based on the previous results, define examples of lower and upper limits 

for the centre position and maximum out of roundness in order to simulate 

tolerance limits imposed by design;

• feed this tolerance information to the gauge algorithm to check whether the 

data were contained within tolerance and to measure its efficiency.

Details about data acquisition, algorithm implementations and test proce

dures are described in the following sections.

The implementation and tests described in the following sections only consid

ered large data sets acquired using a spindle-based roundness measuring machine. 

Nevertheless, the same method, with some minor modifications, is valid for data 

acquired using a coordinate measuring machine (or other type of instrument, like 

a vision system, in which the data points are represented by a set of Cartesian 

coordinates), provided an origin shift is performed to conform with some condi

tions discussed in section 2.4.3. However, there remains the question of whether 

this method remains efficient for relatively small data sets, as is the case for a 

CMM. This question is addressed in section 3.8.

3.7.2 Algorithm Design and Implementation

This implementation considers only profiles obtained from conventional, spindle 

based, roundness measuring instruments in which the transducer measures only 

the radial variation between the surface of the workpiece and a nominal circle 

represented by a known point in the transducer (see chapter 2 for a brief de

scription of this type of instrument). A fundamentally important feature is that 

information about the absolute radius of the part is lost, at least at the precision 

to which the profile is measured. However, by choosing a limaçon reference and 

making all measurements with respect to it radial from the origin, the analytical 

difficulties concerning radius suppression may be overcome. As the position of the 

co-ordinate system origin is unaffected by the radius suppression transformation, 

the parameter linearity ensures that the geometrical properties of a limaçon are 

preserved under radius suppression (see. section 2.4.3).
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In the algorithm proposed by Fletcher [1970a], an initial vertex is usually 

defined by the lower or upper variable bounds. For the variables correspond

ing to the centre position, the obvious lower and upper bounds are obtained 

by interpreting design specifications regarding centre position. However, in the 

absence of information about the workpiece nominal radius, there is no way of 

defining bounds around the nominal value for the radius. Consequently, here no 

specific tolerance band is imposed on the radius of a circular workpiece. Note 

that a slightly different approach might be taken for data (not radius suppressed) 

obtained from a coordinate measuring machine for example.

Still considering the same algorithm, it is suggested that an initial trial vertex 

be found from the variable lower or upper boundaries. However, the geometry 

of our problem allows a more suitable starting point to be defined by applying 

a few rules derived from the geometric configuration of the convex region in the 

parameter space.

In order to accelerate the iteration process, the initial vertex should be chosen 

as close as possible to the feasible region. Considering the ring limaçon case 

first, the parameter space is three dimensional, and each constraint is a plane 

which divides the space in two open half spaces, feasible and infeasible, and the 

boundaries of the feasible region are formed by the intersection of the equality 

conditions of all the constraints.

Considering the first set of constraints in (3.11), the equality condition of each 

constraint defines a plane intersecting the axes of a solution space corresponding 

to parameters a, b and R. The point of intersection on each axis for each plane 

will depend on the sign of the sine and cosine functions as well as on the sign of 

the profile radial data point r,- (considering radius suppressed data [Chetwynd, 

1979a]).

Assuming r\ is positive, the points will always intersect the positive section 

of the R  axis. For points in the data array whose angular ordinate is within the 

first quadrant o f  the instrument coordinate system, the cosine and sine functions 

are positive and therefore they define planes intersecting the positive section of 

the three axes o f  the parameter space; for points within the second quadrant, the
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planes will intersect the negative section of the a axis and the positive part of 

the b and R axes; for points within the third quadrant, the planes will intersect 

the negative section of the a and b axes and the positive section of the R axis; 

and for points in the fourth quadrant the planes will intersect the negative part 

of the b axis and the positive section of the other two axes. For points in the 

border between two quadrants, the plane will be parallel to the a axis if the point 

is between the first and the second or the third and the fourth quadrants, and 

it will intersect the positive section of the b axis if it is between the first and 

second quadrants. Similarly, the plane will be parallel to axis b if the point is 

between the second and the third or the fourth and the first quadrants and it will 

intersect the positive section of the a axis if it is between the fourth and the first 

quadrants.

When r,- is negative, the signs are inverted and the planes are shifted to the 

other sections o f the axes, having their direction and slope shifted by 180°, that 

is unaltered in practical terms. However, as the >  sign defines the upper half 

space as the feasible region for each constraint, the constraints with positive r, 

will be the relevant ones in order to define the feasible region. In addition to 

this, and as a consequence of the geometric configuration of the planes defined 

by these constraints, the optimum point, that is the intersection of three such 

planes, will be in the quadrant which contains the plane of largest slope. This 

is derived from the geometric verification that, for the optimum point to be in 

a quadrant not the same as the one of the plane of largest slope, at least one of 

the other two planes would have to intersect the plane of assumed largest slope 

before it intersects the R axis, which would make the latter be the one of largest 

slope, and therefore in the same quadrant as the optimum point.

The second set of constraints in (3.11) will be shifted by tT on the R  axis, 

and the feasible region, because of the <  sign, will be an open convex set on 

the lower half space. The combination of constraints (3.11) may define a feasible 

region which, in this case, will be a polyhedron. Taking the variable R on the 

vertical axis, at least one feasible point (the optimum) will be defined on the 

quadrant which contains the plane of largest slope (largest r,). Therefore, when
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a feasible region exists, the sign of the cosine and sine functions of the constraint 

with largest slope (and r,- positive) will define in which quadrant the optimum 

point will be. Based on this information, an initial vertex may be chosen on the 

same quadrant the optimum point is located, so as to reduce the total number 

of iterations to approach the feasible region from the initial vertex. This can be 

structured as the following set of rules:

1. select amongst the data points the one with the largest positive value. The 

index of this point in the data array will define the index of the (hyper-) 

plane with largest slope;

2. if this point lies in the first quadrant of the data points array or in the 

border between the first and the second quadrants, then the planes defined 

by the upper bounds of variables a and b are used to define the initial vertex. 

Else, if the point lies in the second quadrant or in the border between the 

second and the third quadrants, the planes defined by the upper bound of 

variable b and the lower bound of variable a are used instead. Else, if the 

point lies in the third quadrant or in the border between the third and the 

fourth quadrants, the planes defined by the lower bounds of variables a and 

b are used instead. Finally, if the point lies in the fourth quadrant or in 

the border between the fourth and the first quadrants , the planes defined 

by the upper bound of variable a and lower bound of variable b are used to 

define the initial vertex;

3. define the initial vertex as the intersection of the plane whose index was 

defined in 1, and the planes corresponding to the lower or upper variable 

boundaries specified in 2.

For the radial zone limaçon case, although it is four-dimensional parameter 

space, rules 1 and 2 apply in the same way, that is if the angular ordinate of 

the point of largest positive radial ordinate, r,-, is within the first quadrant for 

instance, it will define a hyper-plane crossing the positive sections of axes a and 

b and therefore the hyper-planes defined by the upper bounds of variables a and
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b will be used to define the initial vertex, and so forth. The difference is that in 

step 3, the initial vertex is defined by the intersection of the plane whose index 

was defined in step 1, the planes corresponding to the lower or upper variable 

boundaries specified in step 2 and the plane defined by the upper boundary of the 

zone variable h, that is half of the roundness tolerance zone. The plane defined 

by the upper boundary of h is chosen in this case because it is more likely that 

the vertex so defined is close to the feasible region than the one defined by using 

the plane corresponding to the lower boundary to h.

These rules will bring the initial vertex close to the feasible region and form 

the starting point for the implementation of the Fletcher’s algorithm described 

in section 3.6. The routines were written in C language, using single precision 

floating point. The main function is reproduced in appendix B.

3.7.3 Data Acquisition

A set of 10 profiles were data-logged, and stored in disc files, from nominally 

circular components which were readily to hand. The parts included ground and 

turned shafts, in carbon steel and aluminium, with radii between 15 and 40 mm. 

Measurements were made on a Rank Taylor Hobson Talyrond 200 instrument 

under typical operating conditions, that is:

• standard hatchet stylus with hatchet radius of 6.3 mm, hatchet width of 

1.6 mm and tip transverse radius o f 0.38 to 0.51 mm;

• signal magnification of 1000;

• eccentricity of the component within the limits of the instrument chart.

The profile was taken from the instrument amplifier output as a signal of H—  1 

volt, after amplification, representing a displacement of 25.4 mm. This was passed 

to a standard MINC 12-bit successive approximation analogue to digital converter 

and then to MINC 11 computer. Although the MINC technology is obsolete 

it provided a well characterised logging system used solely for data collection. 

Analysis of the data was performed off-line.
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The analogue to digital conversion was controlled by a MINC Basic function. 

It was programmed to collect 513 data points, with a time interval of T  =  10/512 

s, which corresponds to one complete revolution of the testpiece. The data collec

tion process was triggered by a signed from the Talyrond onto a Schmitt trigger 

provided by a MINC Clock module.

The data points were placed in a ASCII file and sent to a SUN computer 

workstation where the tests were actually performed. The data files all consisted 

o f  a sequence of 513 sixteen bit words, each containing one twelve bit profile 

deviation from a reference circle. The angular position of each point is implicitly 

given as 2xi/512 where i is the point index in the data array. The data sets are 

listed in appendix A .l. Linear plots of the profiles are reproduced in figures 3.6 

to  3.15, and their roundness errors given in tables 3.2 and 3.3.

Figure 3.6: Linear plot of circular profile (top/bottom : air/metal): Data set 1.

Figure 3.7: Linear plot of circular profile (top/bottom : air/metal): Data set 2.
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Figure 3.8: Linear plot of circular profile (top/bottom : air/metal): Data set 3.

Figure 3.9: Linear plot of circular profile (top/bottom : air/metal): Data set 4.

Figure 3.10: Linear plot of circular profile (top/bottom : air/metal): Data set 5.
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Figure 3.11: Linear plot of circular profile (top/bottom : air/metal): Data set 6.

Figure 3.12: Linear plot of circular profile (top/bottom : air/metal): Data set 7.

Figure 3.13: Linear plot of circular profile (top/bottom : air/metal): Data set 8.
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Figure 3.14: Linear plot of circular profile (top/bottom : air/metal): Data set 9.

Figure 3.15: Linear plot o f circular profile (top/bottom : air/metal): Data set 10.
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Data
Set

Ring Limaçon
Cent Posit Out of 

Roundness
Num

Itérât.a b
1 2.54 -4.03 10.53 2
2 4.4 -2.67 15.74 3
3 -.73 9.38 65.83 3
4 3.42 -13.35 47.4 2
5 -5.24 -19.99 60.27 2
6 -1.87 -7.97 57.83 3
7 -11.03 -9.04 3.24 2
8 -6.43 -9.12 51.84 4
9 -1.35 -2.82 17.71 2
10 -.63 -7.37 13.98 4

Table 3.2: Centre position and out of roundness (in microns {fim)) of ring limaçon 
using the exchange algorithm

3.7.4 Test Procedures and Results

The ring and minimum zone exchange algorithms were implemented as a directed 

version of the algorithms designed by Chetwynd [1985]. The routines were written 

in C language, single precision floating point. The main routines are reproduced 

in appendix B. Tables 3.2 and 3.3 present the centre position of the ring and 

minimum zone limaçons for each data set, the error of roundness according to 

these references and the number of iterations to get the references.

In order to test the efficiency of the gauge algorithm to get to a pass/fail 

result of inspection, simulated tolerance values for the out of roundness and centre 

position were fed to the gauge algorithm. For each data set and for each fitting, 

examples of tolerance values for the out of roundness were defined as fractions 

over and under the measured error o f roundness. The centre position tolerance 

was defined as a maximum deviation from the origin of the instrument coordinate 

system, assumed for simplicity as the nominal centre position.

Therefore, for each data set, two major sets of tests were performed: first, 

using the implementation of the gauge algorithm based on the ring limaçon and 

feeding to it simulated tolerance values based on the results obtained by running 

the ring gauge exchange algorithm, as indicated in table 3.2; second, following the
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Data
Set

Minimum Zone Limaçon
Cent Posit Out of 

Roundness
Num
Itérâta b

1 1.46 -3.57 10.15 4
2 1.35 -4.72 13.23 4
3 -.70 9.46 65.74 8
4 -2.06 -6.59 42.25 6
5 -5.16 -19.92 60.22 6
6 -1.2 -5.55 56.79 5
7 -10.96 -9.3 3.10 4
8 -4.01 -5.82 49.73 4
9 -1.63 -3.53 17.33 4
10 -1.45 -5.31 12.27 4

Table 3.3: Centre position and out of roundness (in microns (pm )) of minimum 
zone limaçon using the exchange algorithm

same procedure but this time using the implementation of the gauge algorithm 

based on the zone limaçon reference and calculating tolerance values based on 

the results obtained by running the minimum zone exchange algorithm, again 

indicated in table 3.3.

For each data set, a number of examples of tolerance values were defined so as 

as to consider a range o f likely practical situations. Different possible situations 

were tested, as follows: •

• the centre position tolerance and the roundness tolerance are both less than 

the actual errors (region C in figure 3.16a or b);

• the centre position tolerance is less than the actual error and the roundness 

tolerance is equal to or greater than the actual out of roundness (region A);

• the centre position tolerance is equal to or greater than the eccentricity 

error and the roundness tolerance is less than the out of roundness error 

(region D);

• the centre position tolerance is equal to or greater than the eccentricity 

error and the roundness tolerance is equal to or greater than actual out of 
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Centre Position 
Tot < Er Toi = Er Toi > Er

Centre Position 
Toi < Er Tot * Er Toi > Er

A1 B+
c ___ D

b.

Figure 3.16: Result of inspection (+ /- :  pass/fail) based on (a) exchange algorithm 
methods and (b) the gauge algorithm.

Thus, talcing Z  as the out of roundness, values of 0.7, 0.8,0.9,1.0,1.1,1.2,1.3 

times Z  were used as roundness tolerances. In the case o f the centre position 

tolerance, a square zone equally spaced around the instrument coordinate system 

origin was defined. Values of 0.7,0.3,0.9,1.0,1.1,1.2,1.3 times the maximum 

reference centre coordinate, max(a, 6), were used to define the perpendicular 

distance from the origin to the upper and lower bounds.

Overall, for each testpiece, and for each reference figure (either ring or zone 

limaçon), a set of 49 different tolerance zone combinations were fed to the algo

rithm, which in each case returned with a pass/fail flag.

The routines were run under Unix, on a SUN 4/330, with 48 Mbytes of RAM 

(Random Access Memory) and speed of 16 MIPS (Million of Instructions Per 

Second). The efficiency of the algorithms was measured in terms of number of 

iterations, arithmetic operations and computation time. The execution time was 

estimated by running the programme under the “time” Unix command, which 

returns the CPU user time.

The number of iterations of the gauge algorithm was tabulated as shown in 

tables 3.5 to 3.24 for the ring and zone limaçon references, for each data set. 

The result of inspection was signaled by appending a minus sign to the number 

of iterations if it was a fail. Figures 3.17 and 3.18 show graphically the average 

number of iterations taken, over the whole set of test profiles, for the ring and 

zone limaçon cases respectively.
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The general pattern of results is consistent over all data sets tested and there 

is no significant increase in the number of iterations for the zone limaçon case 

over the ring limaçon case, although this formulation generates a slightly larger 

problem. The number of iterations is generally small but it takes a little longer to 

evaluate cases of easy acceptance (tolerance greater than error by a large amount) 

than easy rejection. For data set seven, the number of iterations is distinctly high 

through the bottom half of the table, that is in cases of acceptance, or rejection 

because of roundness error exceeding its tolerance zone. This data set has the 

least roundness error (tables 3.2 and 3.3), and over three times less than the 

error of any other profile, which means that the examples of tolerance values 

used for testing this data set were of the same order. Considering that the “size” 

of the feasible region is affected by the magnitude of the tolerance zone, this 

may explain why it takes a relatively large number of iterations, although this 

relation is not clear for the other data sets. Comparing figures 3.9 and 3.12 

with tables 3.12 and 3.18, there is no support for claiming that the iterative 

procedure is sensitive to “spiky” profiles; the same can be said about “rough” 

profiles, by comparing figures 3.8 and 3.6, 3.10 or 3.11 with tables 3.10 and 3.6, 

3.14 or 3.16. Also, in general, the number of iterations rises when the tolerance 

is close to the actual error. As this condition is approached, the feasible region 

effectively shrinks towards a point and at the limit the algorithm is required to 

make an equality decision rather than one based on an inequality. Typically, a 

floating point comparison will be uncertain at the least significant digit and a 

further iteration to the next vertex confirms whether the equality comparison 

failed for this reason. Thus this condition commonly requires one or two extra 

iterations to establish which side of the boundary the solution lies. Note that this 

is not the same effect as found in some non-linear optimisation methods (e.g. the 

Sequential Quadratic Programming method) where an infeasible problem iterates 

forever because there always remains an infinity o f points not searched.

Table 3.4 presents the number of arithmetic operations and the computation 

time for the gauge and exchange algorithms for typical data sets. The gauge 

algorithm takes on average approximately 17A arithmetic operations per iteration
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data
set

fit
(m cc/m zc)

number itérât. arith. operations comp, time (sec)
gauge exchange gauge exchange gauge exchange

1 mcc 2 2 17206 10576 0.8 0.5
2 mcc 1 3 9751 13167 0.6 0.5
3 mzc 1 8 10933 33192 0.7 0.6
6 mzc 2 5 19741 25362 0.7 0.6
7 mcc 5 2 42191 10576 1.4 0.5
10 mzc 1 4 10889 22752 0.6 0.5

Table 3.4: Number o f arithmetic operations and computation time for the ex
change and gauge algorithms, for some data sets.

to get to a solution, while the exchange algorithms take approximately lOJV, where 

N  is the number of data points. The computation time represents the user time 

spent by the CPU to run the programme, accurate to within about one tenth of 

a second. However, due to variable time-share overheads, these times are more 

a comparative than an absolute measure of performance. Thus, it is reasonable 

to assume that a present generation computer dedicated to a measuring machine 

will perform these computations faster than indicated above. Therefore, although 

the exchange algorithms are moderately faster than the gauge algorithms, the 

difference is not very significant as the computation time for both is well within 

the range normally expected of a computer-aided instrument suitable for on-line 

applications.
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Figure 3.17: Average number of iterations of the gauge algorithm for the ring 
limaçon over the whole set of profiles.

Figure 3.18: Average number o f iterations of the gauge algorithm for the zone 
limaçon over the whole set of profiles.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -1 -2 -0 0 0 0
0.8 -1 -1 -1 -1 0 0 0
0.9 -1 -1 -1 -1 0 0 0
1.0 -1 -1 -4 2 1 1 1
1.1 -1 -2 -3 3 1 1 1
1.2 -2 -3 -5 2 2 2 2
1.3 -2 -5 -4 2 2 2 2

Table 3.5: Ring limaçon search for feasible solution: number of iterations to pass 
inspection (positive) or to fail inspection (negative), data set 1.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 -0 -0
0.8 -0 -0 -0 -0 -0 -0 1
0.9 -0 -0 -0 -0 -0 0 0
1.0 -1 -1 -0 1 1 4 1
1.1 -1 -1 -1 2 1 1 1
1.2 -2 -2 -2 2 1 1 1
1.3 -2 -2 -2 2 1 1 1

Table 3.6: Zone limaçon search for feasible solution: number of iterations to pass
inspection (positive) or to fail inspection (negative), data set 1.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 0 0
0.8 -0 -0 -0 -0 0 0 0
0.9 -0 -0 -0 -0 0 0 0
1.0 -0 -0 -1 1 1 1 1
1.1 -2 -1 1 1 1 1 1
1.2 -1 -2 1 1 1 1 1
1.3 -1 -2 1 1 1 1 1

Table 3.7: Ring limaçon search for feasible solution: number of iterations to pass 
inspection (positive) or to fail inspection (negative), data set 2.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 1 1
0.8 -0 -0 -0 -0 -0 1 1
0.9 -0 -0 -0 -0 -0 1 1
1.0 -1 -1 -0 0 1 1 1
1.1 -1 -1 -1 2 1 1 1
1.2 -1 -1 -1 2 1 1 1
1.3 -1 -1 -1 2 1 1 1

Table 3.8: Zone limaçon search for feasible solution: number of iterations to pass 
inspection (positive) or to fail inspection (negative), data set 2.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -2 1 1 1
0.8 -0 -0 -0 -1 1 1 1
0.9 -0 -0 -0 -1 1 1 1
1.0 -0 -0 -0 2 2 2 2
1.1 -0 -0 -3 3 1 1 1
1.2 -1 -1 -2 3 1 1 1
1.3 -1 -1 -1 3 1 1 1

Table 3.9: Ring limaçon search for feasible solution: number of iterations to pass 
inspection (positive) or to fail inspection (negative), data set 3.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 1 1 1
0.8 -0 -0 -0 -0 1 1 1
0.9 -0 -0 -0 -0 1 1 1
1.0 -0 -0 -0 3 3 3 3
1.1 -0 -0 -3 1 1 1 1 '
1.2 -1 -1 -4 4 1 1 1
1.3 -1 -1 -1 4 1 1 1

Table 3.10: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 3.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 0 1 1 1 1
0.8 -0 -2 1 1 1 1 1
0.9 -0 -1 1 1 1 1 1
1.0 -0 -1 1 1 1 1 1
1.1 -1 -2 1 1 1 1 1
1.2 -1 -2 1 1 1 1 1
1.3 -2 -2 1 1 1 1 1

Table 3.11: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 4.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 0 0 0
0.8 -0 -0 -0 -1 0 0 0
0.9 -0 -0 -0 -1 1 1 1
1.0 -0 -0 -0 1 1 1 1
1.1 -0 -0 -1 1 1 1 1
1.2 -0 -0 -0 2 1 1 1
1.3 -0 -0 -0 2 1 1 1

Table 3.12: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 4.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -1 -1 -1 1 1 1
0.8 -1 -1 -1 -1 1 1 1
0.9 -1 -1 -1 -1 1 1 1
1.0 -1 -1 -1 3 2 2 1
1.1 -2 -3 -2 4 2 2 1
1.2 -2 -2 -2 4 2 2 1
1.3 -2 -2 -2 4 2 2 1

Table 3.13: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 5.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -1 -1 -1 -1 1 1
0.8 -1 -1 -1 -1 -1 1 1
0.9 -1 -1 -1 -1 1 1 1
1.0 -1 -1 -1 1 1 1 1
1.1 -1 -2 -2 4 2 2 1
1.2 -2 -2 -2 4 2 2 1
1.3 -4 -2 -2 4 2 2 1

Table 3.14: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 5.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -1 -2 2 2 2
0.8 -0 -0 -1 -2 2 2 2
0.9 -0 -0 -2 -3 3 3 3
1.0 -0 -0 -2 3 3 3 3
1.1 -0 -2 -2 3 3 3 3
1.2 -0 -1 -2 3 3 3 3
1.3 -0 -2 -2 4 4 4 4

Table 3.15: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 6.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -2 2 2 2
0.8 -0 -0 -0 -2 2 2 2
0.9 -0 -0 -0 -2 2 2 2
1.0 -0 -0 -0 2 2 2 2
1.1 -0 -0 -0 4 2 2 2
1.2 -0 -0 -1 5 2 2 2
1.3 -0 -0 -1 5 2 2 2

Table 3.16: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 6.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 -0 -0
0.8 -0 -0 -0 -0 -0 -0 -0
0.9 -0 -0 -0 -0 -0 -0 -0
1.0 -0 -0 -1 1 1 1 1
1.1 -7 -6 -8 8 7 7 7
1.2 -10 -7 -7 6 7 7 4
1.3 -6 -6 -7 7 11 7 9

Table 3.17: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative),dat set 7.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 -0 -0
0.8 -0 -0 -0 -0 -0 -0 -0
0.9 -0 -0 -0 -0 -0 -0 -0
1.0 -0 -1 -1 1 1 1 1
1.1 -4 -7 -7 9 9 8 8
1.2 -10 -8 -8 8 9 8 8
1.3 -8 -10 -8 8 9 7 7

Table 3.18: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 7.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -2 -1 -1 1 1 1
0.8 -2 -2 -2 -1 1 1 1
0.9 -2 -2 -2 -2 2 2 2
1.0 -2 -2 -2 1 1 1 1
1.1 -2 -3 -2 2 2 2 2
1.2 -3 -2 -2 2 2 2 2
1.3 -2 -2 -2 2 3 3 3

Table 3.19: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 8.

Roundness 
(tolerance /  error ) 0.7 0.8 0.9 1.0 1.1 1.2 1.3
centre position 

(tolerance/error)
0.7 -1 -1 -1 -1 1 1 1
0.8 -1 -1 -1 -1 1 1 1
0.9 -1 -1 -1 -1 1 1 1
1.0 -1 -1 -1 1 1 1 1
1-1 -1 -1 -2 2 2 2 2
1.2 -1 -2 -2 2 2 2 2

1 1.3 -1 -2 -2 2 2 2 2

Table 3.20: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 8.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -1 -1 -1 1 1 1
0.8 -1 -1 -1 -1 1 1 1
0.9 -1 -1 -1 -1 1 1 1
1.0 -1 -1 -1 -2 2 2 1
1.1 -1 -2 -3 3 2 2 2
1.2 -1 -2 -3 3 2 2 2
1.3 -1 -2 -3 3 2 2 2

Table 3.21: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 9.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -1 -1 -1 -1 -1 1 1
0.8 -1 -1 -1 -2 2 2 1
0.9 -1 -1 -1 -3 2 2 1
1.0 -1 -1 -1 3 2 2 1
1.1 -1 -2 -5 3 2 2 2
1.2 -1 -2 -5 3 2 2 2
1.3 -1 -2 -5 3 2 2 2

Table 3.22: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 9.
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Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 0 0 0
0.8 -0 -0 -0 0 0 0 0
0.9 -0 -0 0 0 0 0 0
1.0 -0 -0 1 1 1 1 1
1.1 -1 -1 3 2 2 1 1
1.2 -1 -1 3 3 2 1 1
1.3 -1 -1 3 3 2 1 1

Table 3.23: Ring limaçon search for feasible solution: number of iterations to 
pass inspection (positive) or to fail inspection (negative), data set 10.

Roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

centre position 
(tolerance /error)

0.7 -0 -0 -0 -0 -0 0 0
0.8 -0 -0 -0 -0 -0 0 0
0.9 -0 -0 -0 -0 0 0 0
1.0 -0 -0 -0 0 0 0 0
1.1 -0 -0 -1 2 1 1 1
1.2 -0 -1 -1 2 1 1 1
1.3 -1 -1 -1 2 1 1 1

Table 3.24: Zone limaçon search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data set 10.
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3.8 Gauge Algorithm Applied to CM M  Data

3.8.1 Objectives

It has been stressed that the limaçon approximation can be applied to data from 

a coordinate measuring machine (or Cartesian data from a vision machine) as 

long as the data set is re-expressed relative to an origin that lies not far from the 

best fit centre. Providing the ratio of the centre eccentricity to the radius is kept 

below about 0.01, the radial variation between the limaçon and the circle will be 

at most 5.0xl0_s times the reference radius (see section 2.4.3). So, for a radius 

of say 50 mm, this represent an error of at most 2.5/zm, which is in most cases 

less than the repeatibility of measurement of the machine.

Whenever the linear approximation is a valid resource, the gauge algorithm 

can be equally applied to the data. Thus, some tests were carried out in or

der to check experimentally the efficiency of the gauge algorithm for inspecting 

roundness and centre position tolerance for data acquired using a coordinate mea

suring machine (CMM) type of instrument as opposed to data acquired using an 

specialised roundness instrument.

Therefore, the following procedure was obeyed:

• collect data from a set of testpieces using a coordinate measuring machine;

• compute the centroid (arithmetic mean) of the data points, given in Carte

sian coordinates;

• define a new Cartesian coordinate system with its origin at the centroid of 

the points. Re-express the data points in this new coordinate system;

• transform the data points from Cartesian to polar coordinates;

• measure their out o f roundness and reference centre position using the min

imum zone exchange algorithm;

• define examples o f tolerance values and feed this information to the gauge 

algorithm to check whether the data are contained within tolerance and to
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measure its efficiency.

Details about these steps are given in the next sections.

3.8.2 Data Acquisition

A set o f 5 profiles were data-logged, and stored in disc files, from nominally 

circular features of non-circular components which were readily to hand. The 

parts included bored, milled and drilled holes in aluminium, with radii between 

5 and 14 mm.

Measurements were made on a computer controlled coordinate measuring ma

chine, L K  Micro Four, cantilever type of structure, with a measuring travel of 

600,280 and 450 mm on the x, y and z axes respectively. The specified resolution 

of the Inductosyn reading system was of 2/zm, and the accuracy of measurement 

claimed to be ±5/rm on x-, y- and 2-axes. The machine was fitted with a touch 

trigger probe and operated under manual mode. A set-up procedure was exe

cuted in order to identify the probe and to establish a coordinate system local 

to the components being measured. Following this procedure, for each profile, a 

set of 30 data points evenly, but not exactly equal, spaced around the circumfer

ence were sampled. The decision on the number of data points for each profile 

was based on the argument that the minimum number of points recommended 

by standards(that is seven, to detect up to six lobes [e. g. BSI, 1989]) leads to 

higher uncertainty about the location of the reference and the radial separation 

than does larger data sets [Odayappan et al, 1992]. In addition to this, here the 

strategy was not first to define a reference and then measure the deviation of 

sampled data points from that, as it would normally be the case.

The data points were placed in a ASCII file and sent to a SUN computer 

workstation where the tests were actually performed. The data files all consisted 

of a two-dimensional array containing the i-y-cordinates of the data points in 

relation to a local coordinate system. Figures 3.19 to 3.23 present a linear plot 

of each profile expressed in polar coordinates and shifted to the centroid of the 

points. For completeness, the actual data sets are reproduced in appendix A .2.

1 0 0



data
set

least squares parameters (mm) round, error A — —______ A ~  R______
a b R (mm) lstsq centroid

1 1 52.946 60.375 13.692 0.031 0.0008 0.047
1 2 152.120 61.680 13.518 0.244 0.0025 0.024
13 92.604 62.628 5.000 0 . 1 0 0 0.0007 0.039
14 67.846 21.093 8.813 0 . 0 2 1 0 . 0 0 1 1 0.0066
15 76.605 41.796 6.485 0 . 1 1 2 0.0033 0.051

Table 3.25: Circle parameters of the least squares lit and respective out of round
ness and eccentricity ratios for least squares (lstsq) and centroid centres.

Figure 3.19: Linear plot of circular profile (top/bottom : air/metal): Data set 11.

Table 3.25 presents the parameters of the least-square best fit and out of round

ness for each file. The least squares parameters were computed by implementing 

the algorithm suggested by Forbes [1989] (see section 2.5.3 for details about this 

algorithm). It was implemented in C language, single precision floating point. 

The main fragment of the source code is reproduced in appendix B. Table 3.25 

also shows for each file the eccentricity ratios based on the eccentricity of the 

minimum zone circle reference from the least squares centre parameters and from 

the centroid of the points, each in turn assumed as the origin of the system. The 

minimum zone circle reference was computed by using the Sequential Quadratic 

Programming method, implemented by NAG (E04VDF [NAG, 1990]) in order to 

minimise the zone parameter h subject to the non-linear constraints of 5.11 (as 

discussed in section 5.5.5).
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Figure 3.20: Linear plot of circular profile (top/bottom : air/metal): Data set 12.

Figure 3.21: Linear plot of circular profile (top/bottom : air/metal): Data set 13.

Figure 3.22: Linear plot of circular profile (top/bottom : air/metal): Data set 14.
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Figure 3.23: Linear plot of circular profile (top/bottom : air/metal): Data set 15. 

3.8.3 Test Procedures and Results

The gauge algorithm as implemented in section 3.7.2, using the ring limaçon type 

of formulation (defined by the set constraints in 3.2 and 3.6) was used for this set 

of tests. In this case, tolerance on radius might be defined as well, as information 

on radius is present (differently of the radius suppressed data of spindle based 

roundness instruments). This represents a small change of the original algorithm, 

so as to include lower and upper boundaries on the radius parameter. Although it 

was possible to inspect tolerance on radius, the tests performed here were limited 

to inspect roundness and centre position, as it simplifies the matrix of results 

without affecting the efficiency of the gauge algorithm.

The decision on using the centroid as the origin of the local system was also 

made on the grounds that it simplifies computation without affecting the effi

ciency of the gauge algorithm. The consequences of such an approximation are 

discussed in the next section.

After these transformations the data sets were ready for feasibility checking 

by the gauge algorithm. Simulated tolerance values were calculated based on 

the out of roundness and centre position of the minimum zone limaçon reference, 

defined by running the exchange algorithm [Chetwynd, 1985], implemented as 

described in section 3.7.4. In this case, only the minimum zone reference was 

used. Examples of tolerance zones for the out of roundness and centre position 

were defined as described in section 3.7.4. Therefore, for each profile, a set of 

49 different tolerance zone combinations were fed to the gauge algorithm, which
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data a b R Z
set (mm) (mm) (mm) (mm)
1 1 -3.236 -2.536 13.32 0.57
1 2 0.0654 -0.0987 13.506 0.191
13 0.184 0.2510 4.982 0.0912
14 0.0350 0.0450 8.810 0.02170
15 0.0718 0.3213 6.4729 0.1030

Table 3.26: Minimum zone limaçon centre position (a, b) (given from the centroid 
of the points), radius ( R ) and out of roundness (Z ), units in millimeters (mm).

returned with a pass/fail inspection flag.

The tests were run under the same conditions as before, that is, under Unix, 

on a SUN 4/330, with 48 Mbytes of RAM and speed of 16 MIPS (Million of 

Instructions Per Second). The efficiency of the gauge algorithm was measured in 

terms of number of iterations, arithmetic operations and computation time. The 

computation time was estimated by running the programme under the “time” 

Unix command, which returns the CPU user time.

The number of iterations of the gauge algorithm was tabulated as shown in 

tables 3.28 to 3.32, for each data set. The average number of iterations taken over 

the whole set of profiles is shown graphically in figure 3.24. Table 3.27 shows the 

number of arithmetic operations and the computation time for some examples of 

tolerance values for each file.

As in the previous case, the number of iterations is generally small but it takes 

longer to evaluate cases of easy acceptance than easy rejection; also the number 

of iterations rises when the tolerance is close to the actual error, for the same 

reason as discussed before.

A comparison of figures 3.17 or 3.18 and figure 3.24 shows that, although 

in this case the number of constraints has been drastically reduced, the number 

of iterations has not been affected by this change. However, the computation 

time and the number of arithmetic operations per iterations are reduced and 

therefore the total computation time is sensibly reduced, as shown in table 3.27. 

An interesting conclusion regarding the number of constraints is that the use of
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data number arithmetic computation
set iterations operations time (sec)
1 1 1 727 0 .1
1 2 1 628 0 .1
13 4 1958 0.3
14 3 1533 0 . 2
15 2 1018 0 .1

Table 3.27: Number of arithmetic operations and computation time for the gauge 
algorithms, for some examples of tolerance values.

Figure 3.24: Average number of iterations of the gauge algorithm for CMM data 
over the whole set of profiles.

this method for relatively large data sets for CMM does improve the correctness 

of the inspection process without bringing any significant additional cost in terms 

of computation time.
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Roundness 
(tolerance /error) 0.7 0 . 8 0.9 1 . 0 1 .1 1 . 2 1.3

centre position 
(tolerance /error)

0.7 - 0 - 0 - 0 - 0 - 0 - 0 - 0
0 . 8 - 0 - 0 - 0 - 0 - 0 - 0 0
0.9 - 0 -1 - 1 - 1 - 1 0 0
1 . 0 - 0 - 0 - 0 - 0 2 2 2
1 . 1 - 1 -1 - 1 1 1 1 1
1 . 2 -3 -3 -3 3 1 1 1
1.3 -4 -4 -3 3 3 2 2

Table 3.28: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative),data set 1 1 .

Roundness 
(tolerance /error) 0.7 0 . 8 0.9 1 . 0 1 .1 1 . 2 1.3

centre position 
(tolerance /error)

0.7 - 0 - 0 - 1 1 1 1 1
0 . 8 - 1 -1 - 1 1 1 1 1
0.9 -1 -1 - 1 1 1 1 1
1 . 0 - 2 - 2 - 2 2 1 1 1
1 . 1 - 2 - 2 - 2 2 2 2 1
1 . 2 - 2 - 2 - 2 2 2 2 1
1.3 - 2 - 2 - 2 2 2 2 2

Table 3.29: Search for feasible solution: number of iterations to pass inspection
(positive) or to fail inspection (negative),data set 12.
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Roundness 
(tolerance /error) 0.7 0 . 8 0.9 1 . 0 1 .1 1 . 2 1.3

centre position 
(tolerance /error)

0.7 - 0 - 1 - 1 -1 -1 - 1 -1
0 . 8 - 0 - 1 - 1 -1 -1 - 1 - 1
0.9 - 2 - 1 - 1 1 1 1 1
1 . 0 - 2 -3 -3 3 3 3 3
1 .1 -3 -3 -3 4 3 2 2
1 . 2 -3 -3 -3 4 4 4 2
1.3 -3 -3 -3 4 4 4 2

Table 3.30: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative),data set 13.

Roundness 
(tolerance /error) 0.7 0 . 8 0.9 1 . 0 1 .1 1 . 2 1.3

centre position 
(tolerance /error)

0.7 - 0 - 0 - 0 - 0 - 0 - 0 0
0 . 8 - 0 - 0 - 0 - 0 - 0 1 1
0.9 -3 -3 -4 - 1 1 1 1
1 . 0 - 2 -4 -3 5 4 4 4
1 .1 -3 -3 -3 4 3 3 3
1 . 2 -3 -3 -3 4 3 3 3
1.3 -4 -4 -3 4 3 3 3

Table 3.31: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative),data set 14.
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Roundness 
(tolerance /error) 0.7 0 . 8 0.9 1 . 0 1 .1 1 . 2 1.3

centre position 
(tolerance /error)

0.7 - 0 - 0 - 0 - 0 - 0 - 0 - 0
0 . 8 - 0 - 0 - 0 - 0 - 0 - 0 0
0.9 - 0 - 0 - 0 - 0 -1 1 1
1 . 0 -1 - 1 - 2 3 2 2 2
1 .1 -1 - 1 - 2 3 2 2 2
1 . 2 -1 - 1 - 2 3 2 2 2
1.3 -1 - 1 - 2 3 2 2 2

Table 3.32: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative),data set 15.

3.9 Discussion

Figures 3.16a and 3.16b present a graphical illustration of the pass/fail regions 

according to the exchange and gauge algorithms, where the plus/minus signs 

indicate pass/fail inspection. In order to check whether the roundness error and 

centre position are satisfactory by directly using the ring and minimum zone 

references, tolerance values for both would have to be compared with the reference 

parameters. Note however that if the inspection fails because the reference centre 

position eccentricity is larger than the tolerance, there is no routine means to 

evaluate whether it is possible to define a new reference with its centre and out 

of roundness within tolerance. This can be seen in figure 3.16a, where the pass 

status to an inspection procedure using the exchange algorithms is confined to 

region B only. This reveals a major disadvantage of the exchange algorithms if 

it is attempted to use them in the inspection of form and position of geometric 

features.

The formulation of the inspection problem as an extended linear programming 

problem with a test for feasibility overcomes this limitation. Referring to figure 

3.16b, when the eccentricity of the best-fit reference (defined by the exchange 

algorithm) exceeds the design tolerance, it is possible to find a new reference 

such that the out of roundness as well as the reference centre position are within
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tolerance provided that the out of roundness is sufficiently less than the allowed 

out of roundness, therefore avoiding good components been rejected. This is 

illustrated by the change in sign in region A, figure 3.16b and confirmed by the 

results of inspection tabulated in tables 3.5 to 3.24.

The comparison between the roundness error obtained using the ring and the 

minimum zone limaçon (tables 3.2 and 3.3) shows that, for for the data sets num

bered 2, 4 and 10, the error defined is considerably less when using the minimum 

zone reference. As a consequence, the results o f inspection for these data sets, for 

the ring limaçon reference, tables 3.7, 3.11 and 3.23 respectively, revealed that al

though the roundness tolerance value is less than the actual error measured using 

the ring best-fit reference (tolerance/error =  0.9), it is still possible to enclose the 

profile within the tolerance limits. Therefore, this confirms the general argument 

that the the ring limaçon best-fit criterion does not define the least deviation.

An eight or sixteen sided polygon, as mentioned before, could be used to define 

the centre position or concentricity tolerance zone, either inscribing or averaging 

the tolerance zone. This would give a good approximation to the circular tolerance 

zone and it is not likely to affect significantly the computational efficiency of the 

algorithm.

It is clear from the results of inspection that there is no difference in formu

lating the problem by using the set of constraints in (3.2) and (3.6), that is using 

a ring limaçon reference as the lower limit, or using the set of constraints in (3.9), 

that is borrowing it from the minimum zone formulation. The advantage of using 

the ring limaçon type of formulation is that it results in a smaller problem, with 

three parameters instead of four which means less computation (although not a 

great deal). However, as long as the number of parameters is limited to three, it 

does not matter whether the reference is a circumscribing, inscribing or central to 

the feasible zone, it will result in a better implementation of the gauge algorithm.

The use of the centroid of the points as the origin to the local system does 

not result in a good limaçon approximation to the original data set, as it can be 

seen from the eccentricity ratio A in table 3.25. However, the approximation is 

very much improved if the origin of the system is defined by the centre of a least
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squares reference fitted to the profile. Thus, from table 3.25, the eccentricity 

ratios for this case are well within the limits considered satisfactory. Therefore, 

the use o f this strategy allows the use of the limaçon reference, which in turn 

makes possible the use of the gauge algorithm.

It must be stressed that the comparison between the computational cost of 

the gauge algorithm and the exchange algorithms is only valid because of the 

special conditions that arise in the problem discussed. The simple exchanges 

relevant to roundness reference fitting are extremely fast and so provide a target 

for other approaches to aim at. However they apply only to references that can 

be linearised and their efficiency, while remaining better than other optimisation 

techniques, reduces as the geometric complexity increases. The gauge algorithm 

presented here also requires a linear parameterisation since Fletcher’s algorithm 

is based on linear programming. Nevertheless, for inspection problems that are 

naturally linear and some others that can be well-approximated, the approach 

implemented by the gauge algorithm is both usable and useful.
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Chapter 4

Inspection of Squareness 
Features

4.1 Introduction

This chapter extends the algorithmic approach presented in the previous chapter 

to the inspection of form and orientation of related features of prismatic compo

nents. Amongst the geometric errors of orientation classified in design standards 

[e. g. BSI, 1990], perpendicularity is representative of the typical requirements im

posed by this type of geometric tolerancing. Therefore, although the algorithmic 

approach here presented is generally valid for any class of geometric orientation 

inspection, the discussion is based on a specific case of perpendicularity of two 

related planar surfaces. Specifically, an algorithm is proposed for the combined 

inspection of squareness and flatness of two related surfaces.

Although prismatic workpieces are as common and important in manufactur

ing industry as circularly shaped ones, the inspection of orientation of geometric 

features such as squareness, parallelism and angularity has received relatively 

little attention from standards committees over the past decades.

Standards exist [e. g. BSI, 1989] that bring recommendations for the as

sessment of geometric features. The general idea of best-fit geometric element
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[Forbes, 1989] is used in order to evaluate position, size and form of geometric 

features. Following this approach, a perpendicularism (or angularity) assessment 

would be carried out by measuring the relative angular position between reference 

lines or planes fitted to the feature and datum.

On the other hand, according to design specifications, a feature has an accept

able error of perpendicularism (squareness) for instance, if its axis or surface is 

within a tolerance zone in general defined by two parallel planes perpendicular to 

the datum feature, which in turn may be a plane or an axis. The tolerance value 

defines the width of the zone. Figure 4.1 illustrates the squareness tolerance zone 

for surfaces. Alternatively, the tolerance zone may be the space within a cylinder, 

when the squareness of a cylinder axis to a datum plane is to be controlled.

As the tolerance of squareness of two related surfaces requires the surface to 

lie between two parallel planes, errors of flatness of the feature are implicitly 

controlled. Consequently, what is suggested by design standards is that inspec

tion of squareness should proceed by checking whether the data set representing 

the feature is contained within a square template or framework defined by the 

squareness tolerance zone and datum.
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4.2 Flatness and Squareness Inspection

Of the many possible ways a plane can be parameterised, for metrology it is 

recommended that it be parameterised by the direction cosines (a, 6 , c) of a line 

normal to it and a point (x a, y0, za) on the plane [Anthony et al, 1991]. So, it can 

be written as

ax +  by +  cz +  d =  0  (4 .1 )

where d =  —ax0 — by0 — cz0 is the normal distance of the origin from the 

plane. Following this parameterisation, the Euclidian (normal) deviation of a 

point (X{,yi,Zi) from the plane is given by

ti =  axi +  byt +  czi +  d (4.2)

which is linear in its parameters. Fundamentally, this definition of residual places 

it normal to the reference plane, making it suitable for measuring residuals of data 

points acquired using a CMM.

Based on this parameterisation, it is possible to enclose data points repre

senting a plane surface within a planar zone using only linear constraints in its 

formulation. Note that on using the general equation of the plane or the slope 

intercept form of equation, the residual is defined as a non-linear function of its 

parameters (see section 2.4.6), which would result in non-linear constraints in the 

formulation of the planar zone problem.

Thus, in case of inspection of flatness, a set of N  sampled data points 

(X i,y,,z , ), i =  1 ,N  representing a plane surface is within a planar zone of 

width t j , that is the tolerance of flatness, if there are parameters a, b, c and d 

such that
aii •+■ by, +  CZ{ +  d >  0  

ax, +  by; +  czi +  d — t j  <  0
(4.3)

This formulation does not put the reference plane at the centre of the reference 

zone (although alternatively, the reference could be placed at the centre of the 

zone and the constraints be defined by shifting the reference a distance equivalent
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to tj/2). If a feasible region is defined from the combination of the constraints 

in (4.3), the flatness error is less than the tolerance specification. This is the 

same type o f formulation as for roundness inspection, namely of finding a feasible 

point for a linearly constrained problem. It involves inequality constraints only, as 

before, and the upper and lower variable limits can be easily defined. Therefore, 

the same algorithmic approach [Fletcher, 1970a] can be used.

In the case of perpendicularity of two related surfaces, one of the surfaces may 

be a general, functional datum of a particular component, defined at the design 

stage for both machining and inspection purposes. Otherwise, it is usual to take 

one of the surfaces as a local datum, just for inspection purposes.

First of all, it is assumed that one of the surfaces is a general datum and 

that the quality of the datum surface is so good (in comparison to the quality 

of the other surface to be inspected for squareness) that any best-fit plane has 

no appreciable possibility of deviating from the design orientation. Then, the 

surface to be inspected for squareness will be within tolerance if it is possible to 

enclose the data points between two parallel planes that are exactly perpendicular 

to the datum plane (a best fit to the points representing it) and separated from 

each other by no more than the squareness tolerance value. Thus, the proposed 

procedure for inspecting squareness features in such situations is:

1. find a best-fit plane to the set of points representing the datum. The refer

ence plane so computed has orientation parameters (ad, bd, cd), the direction 

cosines of the line normal to the plane;

2 . find a feasible point [a, b, c, d\ to the constraints

ax{ -f byi +  czi + d > 0

axi -f byi -f czi +  d — t , <  0

and

aad +  bbd +  ccd =  0

(4.4)

(4.5)

for i =  1 , • • •, N, where (a, 6 , c) are the direction cosines of the planes and t , the 

value of the tolerance of squareness. The perpendicularity of the planar zone
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Figure 4.2: Planar frame perpendicular to the best-fit reference to datum feature.

enclosing the data points is imposed by the equality constraint in (4.5). Note 

that the datum feature might be an axis, in which case the equation given in 4 . 5  

would be replaced by (see e. g. [Ayre and Stephens, 1956])

aad +  bbd +  ccd =  1 (4.6)

The set of constraints defined in (4.4) and (4.5) tests whether it is possible to 

contain the data points in a frame defined by parallel planes perpendicular to an

other plane of known orientation, as depicted in figure 4.2 for the two-dimensional 

case.

This problem involves only linear constraints and therefore the algorithm pre

sented by Fletcher [1970a] can still be used. However, in this case one equality 

constraint exists. Equality constraints must be satisfied by any solution through

out iterations and therefore are always active. The initial vertex is defined by 

the intersection, in parameter space, of the hyper-plane defined by the equality 

constraint given in (4.5) with three other hyper-planes defined by lower or upper 

variable bounds. Fletcher [1970a] presents a way of defining the bounds so as 

the constraints in the initial vertex are independent and the basis matrix is non

singular. In this case, one column of the initial basis matrix is B =  [ad bd cd 0]r , 

that is the normal vector o f the plane defined by the equality constraint. The
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other three columns (the sequence of the columns in the basis matrix is irrelevant) 

will be vectors ±e< of the unit matrix (i =  1, • • • ,4 ), that is the normal vectors 

of the planes defined by the bound constraints. As in this case there is only one 

equality constraint, the method presented by Fletcher [1970a] can be simplified 

to the following rule: the vector e,- not to enter the basis will be the ith corre

sponding to the largest element (ith) of the vector [ad bd cd 0]T. Apart from the 

way in which the initial vertex is defined, the basic algorithm has already been 

discussed in section 3.6 and its C code implementation is given in appendix B for 

the roundness and centre position inspection case.

It is important to observe that if the datum is not officially toleranced, and 

not very smooth, the orientation of the least squares or minimax best fits plane 

may deviate considerably from the required datum orientation. To illustrate this 

case, consider the situation when, in order to inspect squareness of a surface in 

relation to a datum, the datum face is placed onto another (flat) basal surface 

and the squareness is measured in relation to that base. This does not require 

the datum be flat, merely that the contact points define a suitable plane. Thus, 

the way in which the orientation of the datum is defined depends on functional 

requirements. However, in most cases the least squares or minimax best fit will be 

an adequate way of defining the datum orientation, provided the datum surface 

is adequately smooth. Therefore, it is important that a datum feature be fully 

specified.

Another case to be considered is the inspection of squareness of two related 

surfaces, where one of the surfaces is assumed as a local datum for convenience 

at inspection In this case, it is also important that the flatness o f the surface 

assumed as a datum be specified. In this case, the inspection should test whether 

it is possible to contain the data points in a frame defined by two planar zones 

with widths equivalent to the value of the flatness and squareness tolerances, as 

depicted in figure 4.3 for the two-dimensional case.

One advantageous consequence of imposing a flatness tolerance zone on the 

local datum surface is that, when the squareness error is over the limit imposed 

by a zone defined as in figure 4.2, it may be possible to contain the data points
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within the frame defined by the squareness and flatness tolerance zones, provided 

that the flatness error is less than the maximum allowed error, as in figure 4 .3 . 

Therefore, when considering the combination of the errors, a reduction in the error 

o f flatness allows an increase in the affordable limit for the error of squareness.

This inspection problem can then be formulated as: test whether there is a 

feasible solution to the constraints

a,Xi +  b,yi +  c ,Z i  +  d, >  0

a,Xi +  b,yi +  c,Zi +  d„ — t, <  0
t , (4-7)

adXi +  bdyi +  cdZi +  dd >  0

adXi +  bdyt +  cdZi +  dd -  t j  <  0

and

asad +  b,bd +  c , c d =  0 (4.8)

again for i =  1, • • •, TV, where (a ,,b3,c ,)  and (ad,bd,cd) are the orientation pa

rameters of the planes enclosing the surface to be measured for squareness and 

the local datum respectively, and t , and t j  the tolerance values for squareness 

and flatness respectively.

This problem, as it is formulated, involves an equality constraint which is 

not linear in its parameters and therefore, non-linear programming techniques
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Figure 4.4: Local coordinate systems.

would be required. However, it is possible, by a change of coordinate systems, to 

reformulate the problems using only linear constraints. This is discussed in the 

next section.

4.3 An Algorithm for Combined Squareness 

and Flatness Inspection

The problem of inspecting the squareness of two related surfaces and the com

bined flatness of the other surface, assumed as a local datum, as formulated in 

(4.7) and (4.8), can be expressed by a linear model by using coordinates system 

transformations in the representation of the data points.

The data points representing the datum surface can be re-written in a local 

coordinate system, which has one axial plane nominally parallel to the datum 

surface. In the same way, the data points representing the surface to be inspected 

for squareness can be transformed into another coordinate system, orthogonal to 

the first local coordinate system. These transformations are illustrated in figure 

4.4, for the two-dimensional case. The data points, originally expressed in the 

(x ,y )  coordinate system are split and rotated to two local coordinate systems,
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Figure 4.5: Two parallel planar zones plotted on two aligned coordinate systems 
(p,q) and ( w , u ) .

(p,q) and (w ,u ). The system (p, q) is parallel to a reference line through the 

datum, and the (w ,u ) system is perpendicular in relation to the (p,q) coordinate 

system.

Then, if the two local coordinate systems are aligned and combined together, 

the inspection problem becomes one of finding whether there exist two parallel 

planar zones, of widths defined by the tolerance values, enclosing the data points. 

This strategy is illustrated in figure 4.5. The relative positions of the two zones 

in the space is arbitrary and unimportant.

For the three-dimensional case, the two original sets o f data points, each 

one representing a surface, are re-expressed in two orthogonal local coordinate 

systems, say (p,-, r,), t =  1, —  , JV, and (w j,U j,V j),j =  1 , •••,JVa. Therefore,

the formulation of the inspection problem given in (4.7) and (4.8) becomes: find 

parameters [a, 6 , c, d, e], if they exist, to satisfy

api +  bqt +  crt +  d >0 
api +  bqi +  cri +  d -  tr <  0

, (4.9)
awj +  bvj +  c i t j  +  e >  0

awj +  bvj +  cuj +  e — t, <  0
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where (a, b, c) are the orientation parameters of the two parallel planar zones, and 

d and e the distances from the origin of the reference planes (the other parameters 

are the same as before).

This formulation involves fewer parameters than the formulation in (4.7) and 

(4.8) (five against eight parameters), and, most important, the set of constraints 

in (4.9) contains only linear inequalities. Consequently the problem of finding a 

feasible point to this set of constraints can be solved as before, using the algorithm 

presented by Fletcher [1970a].

Since the algorithm proposed by Fletcher is more sensitive, in terms of com

puting time, to an increase in the number of parameters (the amount of compu

tation increases at a rate of mn2, where n is the number of variables and m of 

constraints), it is better to re-formulate this problem so as to reduce the number 

of variables. This is possible by using the slope-intercept form of the equation of 

a plane.

Thus, the inspection problem formulated in (4.9) is re-expressed as: find a 

solution [A, B, C, D] such that

Api +  Bq, +  C  >  ri 

Apt +  Bq, +  C  — tf <  ri 

Awj +  Bvj +  D >  Uj 

Awj +  Bvj +  D — t, <  Uj

(4.10)

again for i =  1, • • •, TVi and j  =  1, • • •, N2 (where N\ and N2 are the number 

of data points of each data set). The parameters (A , B) are the slope of the 

intersections of the planes with the p-r- and g-r-planes for one coordinate system 

and w-\> and u-t>-planes for the other, and C  and D  are the intercepts with axes 

r and u respectively.

Note that, with the problem reformulated in this way, the separation between 

the planes is now measured parallel to one of the axes of the coordinate systems, 

and not normal to the planes as before. However, since the planes are nearly 

parallel to the equivalent r-y-planes of the local coordinate systems used, this
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approximation, while reducing the computation effort, brings no practical losses 

in terms of accuracy.

Therefore, the following algorithm is proposed:

1 . find a best-fit reference plane through the points representing the datum 

plane;

2 . define a coordinate system, say (p, q, r), such that the p-^-plane is aligned 

with the reference plane defined in 1 and re-write the data points represent

ing the datum surface in this local coordinate system;

3. define another local coordinate system, say (w, u, v), by rotating the system 

defined in 2 by 90° (degrees) in such a way that the second local coordinate 

system is parallel (nearly) to the surface (as illustrated in figure 4.6). Re

write the data points representing the surface in this local system;

4. apply Fletcher’s algorithm to the set of linear constraints in (4.10) in order 

to find out whether a feasible point is defined or not.

This algorithm is discussed in detail in the next section.
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4.4 Algorithm Implementation and Test

4.4.1 Objectives

The objective of the work described here is to test the practicability o f the pro

posed algorithm for use in on-line inspection as well as to check its correctness in 

terms of pass/fail result of inspection. Therefore, the algorithm described above, 

for inspecting squareness and flatness of two related surfaces, (from now on called 

the squareness gauge algorithm), has been implemented and tested experimen

tally.

In order to do this, the following sequence was undertaken:

• collect data from a set of testpieces using a coordinate measuring machine 

(CMM);

• measure their squareness errors and the flatness errors of the datum sur

faces;

• based on the previous results, define examples of squareness and flatness 

tolerance values under and over the calculated errors so as to simulate 

tolerance limits from design.
I

• input the tolerance information to the squareness gauge algorithm to  check 

whether the data is contained within tolerance and to measure its efficiency.

The efficiency of the squareness gauge algorithm was compared with a NAG 

[NAG, 1990] implementation of the two-phase method of linear programming 

[see Hadley, 1962)] (see sections 3.3 and 3.5) by feeding to it the same tolerance 

information.

As there was no available algorithm in the open literature to compute the 

squareness error in terms of the planar zones enclosing the surface, as pictured 

in figure 4.1, this was computed by linear programming, as described in section 

4.4.4.
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Figure 4.7: Axis of rotation normal to the projection onto x-y of the normal to 
plane tj.

Details about data acquisition, algorithm implementations and test proce

dures are given in the following sections.

4.4 .2  Algorithm Design and Implementation

The first step is to compute a best-fit reference plane through the data points rep

resenting the datum surface. A least squares plane fitting algorithm, as proposed 

by Forbes [1989] (see section 2.5.5), was implemented to determine the best-fit 

plane (the main fragment of the source code of this algorithm is reproduced in 

appendix B). This plane, named r/ for further reference, has its orientation given 

in terms of the direction cosines of a line normal to the plane, (av, 6 ,,<^,). Thus, 

the angle between the z-axis and normal to the plane r) is given by the inverse 

cosine of c^, that ¡ 3 7  =  cos- 1  cv.

Therefore, in order to define a coordinate system which has one axial plane 

nominally aligned with the datum surface, the original coordinate system is ro

tated by an angle 7  around a line normal to the projection, onto the x-¡/-plane, 

of a line passing through the origin and with direction cosines (an, 6 ,,c^ ), that
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Figure 4.8: Rotation of (p, q, r) around an axis parallel to intersection line 1.

is, normal to the plane p. This rotation is represented in figure 4.7, and the new 

coordinate system, (p, q, r), will have one of its planes, the p-p-plane, parallel to 

the least squares plane.

All the data points are then re-written in this new coordinate system. Note 

that in this local coordinate system, the points representing the datum surface 

will define a plane (p' as illustrated in figure 4.8) nearly parallel (though exactly 

parallel in the case of least squares fitting) to the p-p-plane, while the other data 

points, representing the nearly perpendicular surface will define a nearly vertical 

plane, say x  (figure 4.8), with direction cosines (a ,, &*, c*). The intersection of 

the plane x  with the p-p-plane will define a line, named A in figure 4.8.

The second local coordinate system, named (w ,u ,v ), is defined by rotating 

the (p, q, r) system by 90° around a line passing through the origin and parallel 

to A, represented in figure 4.8. Note that the orientation of line A is given by the 

normal to the projection onto p-p-plane of a line with direction cosines (a„, bw, c*.), 

that is normal to the plane x.

Consequently, the two transformations involve rotation of a coordinate system 

around a general axis. This transformation is given by the following rotation
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i f  (ao bo >= 0 ) then
0 = arctan ao/bo ; 
a = cos (71 -  0 ) ;

else
0 = arctan (1  - ao) /  bo ; 
a = cos0 ; 

b = cos (ti/  2 -  0 ) ;  
c = 0;

Figure 4.9: Algorithm for computing the orientation parameters (a ,b ,c) of the 
axis of rotation.

matrix [Faux and Pratt, 1979, pp. 70]

a2 +  cos 7 (1  — a2) a h (l — COS7) +  c s in 7  ca(l — C0S7) — 6 s in 7  

a 6(l — cos 7 )  — c s in 7  b2 +  c o s7 ( l — 62) 6c(l — cos 7 ) +  c s in 7  

ca(l — cos 7 )  +  6 s in  7  6c (l — COS7) — a s in 7  c2 +  c o s7 ( l — c2)

(4.11)
where (a, 6 , c) are the direction cosines of the axis and 7  the rotation angle. The 

new coordinate system is given by r’ =  A  . r, where A  is the rotation matrix 

and r and r ’ are vectors whose elements are the coordinates o f the original and 

transformed systems respectively.

In both cases the rotation axis is normal to the projection onto a plane con

taining the rotation axis of a line passing through the origin and normal to a given 

plane. Therefore, a procedure was implemented in order to define the orientation 

of the axis of rotation.

Assuming that (ac, b0, c0) are the orientation parameters of a line normal to 

a given plane and that ca >  0 , the orientation (a, b, c) of the rotation axis is 

computed as described in the algorithm in figure 4.9.

Thus, the complete procedure is as follows:

1 . compute the least squares best-fit reference plane 7  to the data points rep

resenting the datum surface. The direction cosines of the normal to r\ are 

(a ,, bv,Cr,). If Cj, <  0 then multiply the three parameters by —1.

2 . a local coordinate system (p, q, r) is defined by rotating the original sys-

125



tern by an angle 7  =  cos- 1  c , around an axis whose orientation is defined 

as described in the algorithm in figure 4.9 (given that (a „ ,6 ,,,c^) are the 

orientation parameters of the normal to the plane);

3. Re-write all data points in this new coordinate system and compute a best- 

fit reference plane through the data points representing the surface to be 

measured for squareness (represented in figure 4.8 by plane n). The least 

squares algorithm used in 1 is used here as well. The direction cosines of 

the normal to tt is (a*, &IMcx). Again, If <v <  0 then multiply the three 

parameters by —1 .

4. a second local coordinate system, (w, u, v), is defined by rotating the (p, q, r) 

system by 90° (positive angle) around an axis whose orientation is defined as 

described in the algorithm above (where now (a r , bw, cv) are the orientation 

parameters of the normal to the plane);

5. re-write the data points corresponding to the surface to be measured for 

squareness in the (w ,u ,v ) coordinate system.
I

6 . apply Fletcher’s algorithm to the set of constraints given in (4.10). If, 

for given values o f t, and t/  the tolerances o f squareness and flatness, a 

feasible point is defined, then the feature passes inspection. Otherwise, it 

fails inspection.

The set of constraints defines no limits for the variables [A, B, C, D\. However, 

as bounds on the variables are required by the method, very large positive and 

negative values can be chosen for the variable bounds, as this will not aiTect the 

number of floating point operations or the number o f  iterations. Alternatively, 

limits can be easily estimated from the geometry o f  the problem. The planes 

will be nearly parallel to the p-q- and w-u- axial planes, thus slope parameters 

(A, B)  will be close to zero. The intercepts C and D  can also be estimated from 

the r and v ordinates, as they will be nearly the same for all data points o f each 

set. In this implementation, conservative limits of [—0.1,0.1] were chosen for the 

parameters (A, B), while for the parameters C  and D  limits of [—1.5,1.5] times
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2 , where z is the average of the r and v ordinates, respectively for the parameters 

C  and D.

It is suggested here that the initial vertex be defined by the the upper pa

rameter bounds and that, during data acquisition, the original coordinate system, 

local to the testpiece, be defined in a way that the planes be described by positive 

(x, y, z) coordinate points. This will ensure that, in parameter space, the hyper- 

planes defined by the constraints intersect the parameter axes in their positive 

segment, bringing the feasible region (or at least part of it) to the positive region 

of the parameter space and, therefore closer to the initial vertex so proposed. 

Otherwise, no strict rule is proposed to choose an initial vertex apart from that 

proposed by Fletcher [1970a].

The procedure described above was implemented in C language, single preci

sion floating point.

4.4.3 Data Acquisition

A set of 7 prismatic testpieces, presenting squareness and flatness features, were 

used for these tests. The testpieces included ground and milled surfaces in carbon 

steel and aluminium, with varying sizes in the order of tens of millimeters.

The relevant surfaces of each testpiece were sampled by using a coordinate 

measuring machine, LK Micro Four (whose characteristics have been described 

in section 3.8.2), fitted with a touch trigger probe and operated under manual 

mode. A set-up procedure was executed in order to identify the probe and to 

establish a coordinate system local to the components being measured. Following 

this procedure, each surface of each testpiece was evenly sampled by a number 

of three-dimensional (x, y, z) points recorded by the CMM computer. In order to 

avoid any processing of the data by the software of the CMM dedicated computer, 

the data points were transferred by hand to ASCII data files. The data files all 

consisted of a three-dimensional array containing the x-y-2-coordinates of the data 

points in relation to a local coordinate system. Table 4.1 presents the number of 

sampled data points for each data set and their measured flatness and squareness
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errors. The data sets are listed in appendix A.2.

4.4.4 Test Procedures

The error of squareness of the testpieces was measured as the planar zone en

closing the surface and perpendicular to a minimax reference plane fitted to the 

points representing the datum feature. Hence, the flatness error of the datum 

was given by the minimax zone enclosing it. These errors were then computed 

by solving the following linear programming problem: minimise Z  =  hj subject 

to the constraints
Api +  Bqi + C  +  hj >  r,- 

Api +  Bqi + C  — hj <  n 
Aw, +  Bvj +  D  +  hs >  Uj

(4.12)
Awj +  Bvj +  D  — h, <  Uj 

hf >  0 

h, >  0

for i =  1, - - •, TVi and j  =  1, • • •, N2, where N\ and N2 are the number of sam

pled data points for the datum and surface. A NAG implementation (function 

E04M BF, [NAG, 1990]) of the Simplex method of linear programming was used 

for solving this problem. In order to call this function, define constraints, objec

tive function and input the data sets to it, a piece of code as written in Fortran 

77 language. The error of flatness was given by 2hj and the error of squareness 

by 2hs. Table 4.1 presents the flatness and squareness error measured for each 

data set.

In order to test the efficiency of the squareness gauge algorithm to get to a 

pass/fail result of inspection, simulated tolerance values were defined, for each 

testpiece, as fractions over and under the measured errors of flatness and square

ness.

Following the same strategy adopted in chapter 3, a number of examples 

of tolerance values were defined so as as to consider a range of likely practical 

situations, as follows:
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data set 
(datum)

sampled
points

flatness
(mm)

data set 
(surface)

sampled
points

surf, squareness 
(mm)

square-1-1 12 0.0476 square-1-2 25 0.08
square-2-1 12 0.19 square-2-2 25 1.036
square-3-1 6 0.017 square-3-2 6 0.075
square-4-1 6 0.0069 square-4-2 6 0.0212
square-5-1 6 0.0086 square-5-2 6 0.0514
square-6-1 6 0.00694 square-6-2 6 0.0132
square-7-1 6 0.012 square-7-2 6 0.0156

Table 4.1: Error of flatness of the datum and squareness of the related surface 
for each data set.

• the flatness tolerance and the squareness tolerance are equal to or greater 

than the actual errors (region B in figure 4.10, compare to figure 3.16a);

• the flatness tolerance and the squareness tolerance are less than the actual 
errors (region C);

• the flatness tolerance is equal to or greater than the actual error and the 

squareness tolerance is less than actual error (region A);

• the flatness tolerance is less than the actual error and the squareness toler

ance is equal to or greater than the actual error (region D).

Thus, values of 0.7, 0.8, 0.9,1.0,1.1,1.2,1.3 times the actual errors of flatness 

and squareness were used as tolerances of flatness and squareness respectively.

In addition to this, in order to compare the efficiency and result of inspection 

of the squareness gauge algorithm with that of the two-phase method of linear 

programming [Hadley, 1962], the same NAG function used for calculating the 

errors was used. This time however a different piece of code was written so as to 

input to the function the inspection problem as given by the set of constraints in 

(4.10).

Therefore, overall, for each testpiece, a set of 49 different tolerance zone com 

binations were fed to the squareness algorithm, as well as to the NAG two-phase 

implementation, which in each case returned with a pass/fail flag.
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The routines were run under Unix, on a SUN 4/330, with 48 Mbytes of RAM 

(Random Access Memory) and speed of 16 MIPS (Million of Instructions Per 

Second). The efficiency of the algorithms was measured in terms of number of 

iterations, arithmetic operations and computation time. The computation time 

was estimated by running the programme under the “time” Unix command, which 

returns the CPU user time.

4.5 Results and Discussion

Tables 4.3 to 4.16 present the number of iterations to get to a solution for each 

testpiece, respectively for the gauge algorithm and for the NAG implementation 

of the two-phase method. The result of inspection was signaled by appending 

a minus sign to the number of iterations if it was a fail. The average number 

of iterations taken, over the whole set o f testpieces, for the gauge and NAG 

algorithms are shown graphically in figures 4.11 and 4.12 respectively. Table 4.2 

presents a comparison between the number of iterations and computation time 

of the squareness gauge algorithm and the NAG two-phase algorithm.

Considering the squareness gauge algorithm, the pattern of results is typical 

of the behaviour seen in all the tests carried out, including the ones shown in 

chapter 3, for roundness and centre position inspection. Again, it takes a little 

longer to evaluate cases of easy acceptance (tolerance greater than error by a 

large amount) than easy rejection. Also the number of iterations rises when the 

tolerance is close to the actual error. The reason for this, as discussed in chapter 

3, is that when this condition is approached, the feasible region effectively shrinks 

towards a point and the algorithm is required to make an equality decision rather 

than one based on an inequality. Thus, one or two extra iterations arc required 

to establish which side of the boundary the solution lies.

The average number of iterations is however higher in this case than for the 

ring or zone gauge algorithms, although it has the same size in terms of number 

of variables as the zone gauge. The reason for this could be that the special 

start procedure devised for circularity cases is more effective than that used for
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squareness cases.

The squareness gauge algorithm took an average of 8 iterations, with a com

putation time of approximately 0.1 seconds, running under the conditions already 

mentioned. The use of a larger data set, as expected, made no no appreciable 

difference in terms o f number of iterations, as can be seen from tables 4.3 and 

4.5, for two larger data sets.

The NAG implementation of the two phase method of solution took an average 

of 13 iterations, with a computation time of approximately 0.3 seconds. In this 

case however, an increase in the number of data points does reduce the efficiency 

of the algorithm, making it less appropriate for cases in which larger data sets 

are required, as it can be seen from tables 4.4 and 4.6.

This approach brings to evidence the importance of specifying the tolerance 

of flatness of a local datum, in the case of inspection of squareness of two related 

surfaces. When the flatness error of the datum is less than the allowed value, the 

effect o f an angular error from perpendicularity of the related surface over the 

allowed limit (when expressed the squareness tolerance from design as a maxi

mum angular error from perpendicularity), is compensated by the fact that the 

datum surface is smother than expected. Therefore, when the flatness error is 

sufficiently less than the allowed error, the result of inspection will be positive 

even when the squareness tolerance is slightly smaller than the actual error. This 

is demonstrated by the results of inspection, in tables 4.3 to 4.16, and illustrated 

in figure 4.10, region A.

On the other hand, in cases where the datum is not only for the purpose 

o f squareness specification of one surface related to another, but a more general 

datum, used for specifying other features as well (e. g. the squareness or flatness 

of other surfaces of the same component), then the situation may be not quite 

the same as discussed in the previous paragraph, as the squareness constraint 

may be required in relation to a very well defined orientation. In such cases, the 

squareness inspection problem may be formulated as discussed in section 4.2.

Finally, the formulation of the inspection problem as in (4.9) further explores
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data iterations arith. operations comp. time (sec)
set gauge two-phase gauge gauge two-phase

square-1 8 23 14028 0.2 0.6
square-2 8 14 7683 0.2 0.4
square-3 8 9 3357 0.1 0.2
square-4 9 13 3619 0.1 0.3
square-5 10 10 4147 0.1 0.2
square-6 9 10 3757 0.1 0.2
square-7 9 12 3766 0.1 0.3

Table 4.2: Number of arithmetic operations and computation time for the square
ness gauge algorithm and the NAG two-phase method implementation, for some 
examples of tolerance zones.

Squareness
Toi < Er Toi = Er Tol > Er

+
A  Î

r

CO

+

C ____ D

Figure 4.10: Result of inspection (+ /- :  pass/fail) based on the squareness gauge 
algorithm.

the linear parameterisation of lines and planes as presented by Forbes [1989]. 

Transformation of this formulation as in (4.10) reduces the number of parameters 

but approximates the non-linear deviation, of this type of parameterisation, given 

by e =  h\/A2 +  B2 +  1 to h. However, as the parameters A  and B , the slopes, 

are very close to zero, the error will be, in general, negligible.
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Figure 4.11: Average number of iterations of the squareness gauge algorithm over 
the whole set of profiles.

Figure 4.12: Average number of iterations of the NAG two-phase implementation 
over the whole set of profiles.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -7 -7 -7 -8 7 6 6
0.8 -7 -7 -7 -8 7 6 6
0.9 -7 -7 -8 -8 7 6 6
1.0 -8 -8 -10 12 8 6 6
1.1 -8 -9 -8 10 8 6 6
1.2 -8 -8 -8 9 8 6 6
1.3 -8 -8 -8 9 8 6 6

Table 4.3: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-1-1 and square-1-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -18 -22 -22 -22 22 23 23
0.8 -22 -22 -22 -22 22 23 23
0.9 -23 -23 -23 -23 23 23 23
1.0 -25 -25 -23 23 23 23 23
1.1 -24 -25 -23 23 23 23 23
1.2 -24 -25 -23 23 23 23 23
1.3 -24 -24 -23 23 23 23 23

Table 4.4: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-1-1
and square-1-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -6 -7 -7 -7 7 6 6
0.8 -6 -7 -7 -8 7 7 5
0.9 -5 -5 -7 -8 7 7 6
1.0 -5 -6 -8 14 7 6 6
1.1 -5 -5 -8 14 7 6 6
1.2 -5 -6 -8 14 7 6 6
1.3 -5 -6 -8 14 7 6 6

Table 4.5: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-2-1 and square-2-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -18 -18 -17 -17 14 14 14
0.8 -18 -18 -17 -17 14 14 14
0.9 -18 -17 -17 -17 14 14 14
1.0 -18 -17 -15 14 14 14 14
1.1 -15 -14 -14 14 14 14 14
1.2 -15 -14 -14 14 14 14 14
1.3 -15 -14 -14 14 14 14 14

Table 4.6: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-2-1
and square-2-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -7 -8 -9 -9 9 8 8
0.8 -8 -8 -9 -9 9 8 8
0.9 -8 -8 -9 -9 9 8 8
1.0 -8 -8 -9 9 9 8 8
1.1 -8 -8 -9 9 9 8 8
1.2 -8 -8 -9 9 9 8 8
1.3 -8 -8 -9 9 9 8 8

Table 4.7: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-3-1 and square-3-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -11 -9 -9 -9 9 9 9
0.8 -9 -9 -9 -9 9 9 9

| 0.9 -9 -9 -9 -9 9 9 9
1.0 -9 -9 -9 9 9 9 9

I 1.1 -9 -9 -9 9 9 9 9
[ 1.2 -9 -9 -9 9 9 9 9

1.3 -9 -9 -9 9 9 9 9

Table 4.8: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-3-1
and square-3-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -8 -8 -8 -9 -9 -8 -10
0.8 -8 -8 -8 -9 -9 -8 -10
0.9 -8 -8 -8 -9 -9 -8 10
1.0 -8 -8 -8 9 8 8 8
1.1 -8 -8 -8 9 8 8 8
1.2 -8 -8 -8 9 8 8 8
1.3 -8 -8 -8 9 8 8 8

Table 4.9: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-4-1 and square-4-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -14 -13 -13 -13 -11 -11 -11
0.8 -14 -13 -13 -13 -11 -11 -11
0.9 -14 -13 -13 -13 -11 -11 11
1.0 -12 -11 -11 11 11 11 11
1.1 -12 -10 -10 10 10 10 10
1.2 -10 -10 -10 10 10 10 10
1.3 -10 -10 -10 10 10 10 10

Table 4.10: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-4-1
and square-4-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -8 -8 -8 -8 -8 -8 -8
0.8 -8 -8 -8 -8 -8 -8 -8
0.9 -8 -8 -8 -8 -9 -9 9
1.0 -12 -12 -12 11 11 11 9
1.1 -11 -11 -11 10 10 10 9
1.2 -11 -11 -11 10 10 10 9
1.3 -11 -11 -11 10 10 10 9

Table 4.11: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-5-1 and square-5-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -11 -11 -11 -10 -10 -10 -10
0.8 -11 -11 -11 -10 -10 -10 -10
0.9 -11 -11 -11 -10 -10 -10 9
1.0 -11 -11 -11 10 10 10 9
1.1 -11 -11 -11 10 10 10 9
1.2 -11 -11 -11 10 10 10 9
1.3 -11 -11 -11 10 10 10 9

Table 4.12: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-5-1
and square-5-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -9 -9 -9 -9 -9 -9 -9
0.8 -9 -9 -9 -9 -10 -10 -11
0.9 -9 -9 -9 -9 -11 -11 11
1.0 -9 -9 -9 11 10 10 10
1.1 -9 -9 -9 11 10 10 10
1.2 -10 -10 -9 11 10 10 10
1.3 -10 -10 -9 11 10 10 10

Table 4.13: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-6-1 and square-6-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -12 -12 -12 -10 -10 -10 -10
0.8 -12 -12 -12 -10 -10 -10 -10
0.9 -12 -12 -12 -10 -10 -10 10
1.0 -12 -12 -12 10 10 10 10
1.1 -12 -12 -11 10 10 10 10
1.2 -12 -12 -11 10 10 10 10
1.3 -11 -11 -10 10 10 10 10

Table 4.14: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-6-1
and square-6-2.
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datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -8 -8 -10 -11 -9 -9 -9
0.8 -8 -8 -10 -11 -11 -12 12
0.9 -8 -8 -10 -11 11 11 9
1.0 -8 -8 -10 10 11 9 9
1.1 -9 -9 -9 10 9 9 9
1.2 -9 -9 -9 9 9 9 9
1.3 -9 -9 -9 9 9 9 9

Table 4.15: Squareness gauge algorithm search for feasible solution: number of 
iterations to pass inspection (positive) or to fail inspection (negative), data sets 
square-7-1 and square-7-2.

datum flatness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

squareness 
(tolerance /error)

0.7 -12 -12 -10 -10 -10 -10 -9
0.8 -12 -12 -10 -10 -10 -10 9
0.9 -12 -12 -10 -10 9 9 9
1.0 -12 -12 -10 10 9 9 9
1.1 -12 -12 -10 9 9 9 9
1.2 -12 -10 -10 9 9 9 9
1.3 -12 -10 -10 9 9 9 9

Table 4.16: NAG two-phase search for feasible solution: number of iterations to
pass inspection (positive) or to fail inspection (negative), data sets square-7-1
and square-7-2.
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Chapter 5

Genetic Search Methods for 
Inspecting Geometric Tolerances

5.1 Introduction

In this chapter, the approach to formulate inspection problems discussed so far 

is extended to the inspection o f mating features. One of the most important 

tolerance assessment problems is to decide whether two parts will fit together. 

For example a hole plate with two holes and corresponding plug plate with two 

corresponding circular plugs. In practice, separated tolerances are specified for 

each part so that any part satisfying these tolerances will mate. Tolerances of 

position of the holes and plugs are specified in this case, using the principle of 

maximum material condition, that is the tolerance dependent on the size of the 

feature [e. g. BSI, 1990]. During inspection, the main concern is to test whether 

the features are within tolerance. This inspection problem is addressed here.

The formulation of the equivalent constrained problem involves non-linear 

constraints in its parameters and therefore, in order to find a feasible point, two 

possible ways exist: either a linear model is used as an approximation to the 

problem and linear methods are used for that or non-linear methods are directly 

applied to the truly non-linear geometrical model.
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+ 0.2 
2 x 0  8 + 0.1

Figure 5.1: Dimension and positional tolerances of two holes.

Although linearising the constraints allows a special algorithm of reasonable 

efficiency to be applied, as discussed in chapter 3 and 4, the reward for accepting 

an approximation in the formulation of the constraints is smaller in this case, as 

the relation between gain in computer efficiency and losses in accuracy is not so 

favourable.

This chapter discusses the use of some non-linear optimisation methods for 

assessing geometric tolerance errors as an alternative to linearisation. Specifically, 

the application of Genetic Search methods to the determination of the feasibility 

of the inspection problem is explored experimentally as an alternative to for

mal methods [Carpinetti and Chetwynd, 1993]. Genetic Search methods have 

been applied successfully in many engineering problems and may have practical 

relevance to our problem.

5.2 Inspection of Related Circular Features

Consider the inspection of mating features, as is the case of holes on a plate 

having to match studs on another plate in assembly (the fixed fastener case). 

Separated tolerances are specified for each part so that any part satisfying these 

tolerances will mate. Usually, position tolerances are specified using the principle 

of maximum material condition (M M C) [BSI, 1990], as illustrated in figure 5.1 

for a plate with 2 holes.

For the case illustrated, the MMC principle means that the maximum allow-
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stud diam.

Figure 5.2: Clearance between hole and stud.

able deviation of the theoretically exact position of the hole is calculated based on 

the minimum clearance between the stud and hole when assembled, which occurs 

when both stud and hole are at their maximum material limits of size (minimum 

diameter for the hole and maximum diameter for the stud), figure 5.2. The set 

of tolerances and nominal dimensions defines, for each mating part, a template 

or frame, as illustrated in figure 5.3.

Therefore, the inspection of mating features may be done by checking, on 

each part separately, whether the data points representing the surface of the 

features may be contained in the frame of figure 5.3. That is, it is checked 

whether it is possible to fit reference circles with radius within lower and upper 

limits and respective centres separated from each other by a distance within the 

limits defined by the nominal distance and position tolerances. Thus, for each 

part, a constrained problem is defined in which the centre of the reference circles, 

(a*, bk), k =  1,2 (if any of them exists), must be such that

&min <  (« , -  a*)2 +  (y, -  bk)2 <  R2max i

( L  — top)2 <  (aj — (¡2)* + (6i — b j)2 < (L  + tcp)2
for t =  I,-* - ,N klk =  1,2, where Nk is the number of data points representing 

each profile, Rmin and Rmax are the radius lower and upper limits, L is the 

nominal distance between centres and tcp is the centre position tolerance.

It is important to note that if the conventional approach of first finding a 

best-fit reference to data and then measuring the distance between centres is used 

(as suggested in standards, e. g. [BSI, 1989]), the benefit brought to inspection
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0

Figure 5.3: Annular template containing data points and reference centres within 
position tolerance.

and assembly of designing using the principle of maximum material condition is 
missed.

If the dimension of either the hole or the stud is less than that of MMC, the 

clearance between them will be larger and hence, even if one of the holes or studs 

is out of position tolerance, they will fit together. This is the same as saying that 

if the radius of a hole, measured using a best-fit technique, is found to be larger 

than the minimum radius but eccentric by more than the position tolerance, it 

may be possible to fit another circle such that its radius and centre position are 

within tolerance.

Thus, for the case in consideration, the actual maximum tolerance of position 

for each feature, say a hole of the hole plate, is defined by the tolerance of position 

plus the difference between the actual and the MMC diameter of the hole, if the 

diameter is larger than its minimum. Therefore, even if the centre position of 

one of the holes is eccentric by more than its maximum tolerance, it may still be 

possible to fit the two parts together. This is in fact considered by testing the 

data points for containment within the tolerance template of figure 5.3.

Forbes [1992] also discusses the problem of inspecting mating circular features. 

The problem is initially formulated as: find a separating surface of parameters a 

such that each of the surfaces of the mating parts lies on one side of the separating 

surface. This information is encoded by separation constraints of the form

D (X \a) >  0 >  D (Y ;a )  (5.2)

where X  and Y  represent measurements on the surfaces o f the parts. The general 

part mating problem is then formulated by considering parameter and form (if
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any) constraints in addition to the constraint in (5.2).

This problem requires one or two frame transformations to relate X  and Y 

to the same frame of reference. It is then pointed out that by setting separate 

tolerances for the parts (so that any part satisfying the tolerances will mate) the 

original assessment problem is decomposed into two template matching problems. 

Forbes’ report docs not consider methods of solving this problem, although it 

suggests that in general geometric assessment problems of this type can be solved 

by using a type of minimax Chebyshev approximation [Osborne and Watson, 

1968 and 1969].

Turner [1990] discusses the problem of relative positioning of parts in assembly, 

particularly the hole and stud problem. By describing each part position in terms 

of relationships between various features of the part and mating features of its 

neighbouring parts, it is possible for a solid modelling system to compute the 

modelling transformations needed to simulate the desired assembly configuration.

In this context, non-interference constraints are specified such that each clear

ance be non-negative. Optimum alignment is achieved if the two parts are po

sitioned so that the minimum clearance will be maximised over all the mating 

sites. So the objective is to maximise the minimum clearance. Mathematical 

programming is then used to establish an optimum position.

This approach is particularly relevant in cases where the nominal part posi

tions are known, and where the aim is to determine the effect of small variations 

applied to each o f the parts on the positions of the other parts. Further details as 

to the application of this method to tolerancing problems are discussed by Turner 

and Wozny [1987] and Turner, Wozny and Hoh [1987].

5.3 The Search of Feasible Solutions to Non- 

Linearly Constrained Problems

There are situations where a linear model is not only convenient in terms of 

computation effort, but it is a more precise description of the geometrical prob
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lem. This is the case for instance of the limaçon approximation for describing 

circular profiles obtained from conventional, spindle based, roundness measuring 

instruments (see section 2.4.3). On the other hand, when a coordinate measuring 

machine is used for sampling a circular feature (of a non-circular component for 

instance), the data points are given originally by Cartesian ordinate pairs (see 

section 2.2.1) and the residuals expressed as non-linear functions of the circle 

parameters (see figures 2.1 and 2.2, chapter 2), as formulated in (5.1).

The set of constraints in (5.1) are distinctly non-linear and therefore, in order 

to find whether this set of constraints define a feasible point, either the constraints 

axe replaced by those of a linear approximation model of the geometric problem 

so as to use linear methods or non-linear methods of solution are directly applied. 

As discussed in section 3.8, in case of circular features, linearisation is possible 

by transforming the coordinate system from Cartesian to polar after translating 

the origin of the coordinate system to a point close to the reference centre. The 

new origin may be, for example, simply the centroid (arithmetic mean) of the 

points, or, generally better (as discussed in section 3.9), the centre of the least 

squares best-fit circle to the set of points. This transformation is likely to enable 

the limaçon reference to be used instead as a good approximation to the circle 

reference.

Considering the case illustrated in figure 5.1 and formulated in (5.1), lineari

sation is possible by defining two local polar coordinate systems. The centre 

position tolerance zone is as before approximated by a series of straight lines 

defining a regular, even-sided polygon. In this case however, for one of the holes, 

the polygon is not centred at the origin of the local coordinate system but at the 

nominal centre position.

However, when such a linear model for two related circular features is com

pared with the equivalent linear model of a single circular feature, as far as the 

centre position tolerance is concerned, the inaccuracy o f the approximation in

volved in this linearisation process is doubled, as there are two related features 

in consideration, and the computer efficiency has dropped to half as two different 

successive problems will have to be solved. This relation between accuracy of
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approximation and efficiency of computation becomes even less attractive if more 

features have to be considered simultaneously, as it would be the case of three, 

four or more holes on a plate, for instance. Therefore, as the computational gain 

of linear approximations reduces with problem size, the additional computational 

effort for handling accurate non-linear constraints may be compensated by the 

improved accuracy of the model and generality o f application.

As has been said, non-linear constraints do not generate plane figures in pa

rameter space and so the search must be over a surface or, worse, if the region is 

non-convex, over the whole feasible region. This is essentially why it is both more 

expensive to compute non-linear problems and problematic to guarantee globally 

optimal solutions.

There is no general agreement on the best approach for solving non-linearly 

constrained problems and much research is still to be done (see e. g. [Fletcher, 

1987] and [Gill, Murray and Wright, 1981]). In general this type of problem 

is solved either by transforming the constrained problem to an unconstrained 

problem or by locally linearising the constraints. Typical of the former group 

are the penalty or barrier methods or the augmented Lagrangian methods [Gill, 

Murray and Wright, 1981]. These methods however suffer from some computa

tional disadvantages and are not entirely efficient [Fletcher, 1987]. In the latter 

group, is found the projected Lagrangian methods in which the original problem 

is transformed into a sequence of linearly constrained subproblems. When the 

subproblem is a quadratic programme, such methods are called QP-based meth

ods or sequential quadratic programming methods (SQP). The SQP methods are 

implemented by NAG [NAG, 1990] and further discussed in chapter 6.

An attractive approach to the non-linear inspection problem is the use of 

feasible direction methods. These methods attempt to maintain feasibility by 

searching from one feasible point to another along feasible arcs. One of the great 

advantages of these methods is that it is possible to determine an initial feasible 

solution (if one exists) by the introduction of artificial variables in a manner quite 

similar to that used for the simplex calculations [Hadley, 1964]. The application 

of these methods in geometric tolerance inspection problems is also investigated
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in chapter 6.

In a totally different approach, non-formal optimisation techniques have 

gained acceptance over recent years and have been applied successfully in many 

engineering problems. The following sections introduce the idea of genetic search 

methods in' optimisation and investigate the viability of using genetic search al

gorithms in inspecting geometric tolerances.

5.4 Genetic Search Methods

5.4.1 Genetic Search in Optimisation

Genetic search algorithms were developed by John Holland at the University of 

Michigan [Holland, 1975]. These methods have since been adapted for a large 

number of applications in game theory, induction systems, and other aspects of 

human cognition, such as pattern recognition and natural language processing. 

The potential of genetic algorithms as function optimisers has been demonstrated 

in quite a number of different fields. Current applications include, neural net

works, machine learning, structural design, gas pipeline control, electronic filter 

design and job  shop scheduling. The use of genetic search in non-convex, non

linear constrained optimisation problems is reported by Hajela [1990].

Genetic search methods have their philosophical basis in Darwin’s theory of 

survival of the fittest [Sinnott, Dunn and Dobhansky, 1950]. A set of design 

alternatives representing a population in a given generation (that is at a given 

iteration) is allowed to reproduce and cross among the alternatives, with bias 

allocated to the most fit members of the population. Combination of the most 

desirable characteristics of mating members of the population results in progeny 

that are more fit than the parents. Hence, if a measure that indicates the fitness 

of a generation is also the desired goal of a design process, successive generations 

produce better values of the objective function.

Genetic algorithms are different from typical search methods in three ways 

[Goldberg, 1989]:
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• they work with an encoding of the parameter set rather than with the actual 

parameters;

• they search from a population of points, not a single point;

• they use probabilistic transition rules, not deterministic rules.

An obvious advantage in this approach is that the search is not based on 

gradient information, and has, therefore, no requirements on the continuity or 

convexity of the design space. The corresponding disadvantage is that many 

iterations may be required as special features o f the decision surface are not 

exploited. Since the inspection problem requires only to find a feasible, and not 

an optimal, solution they may be relatively efficient for them. There appear to be 

no clear-cut ways of checking whether this is so other than by experimentation.

5.4.2 Elements of Genetic Search

There are three basic components necessary for the implementation of a genetic 

algorithm. At the outset, there must be a code or scheme that allows for a 

bit string representation of possible solutions to the problem. Next, a suitable 

function must be devised that allows for a ranking or fitness assessment of any 

solution. The final and most significant component is the development of trans

formation functions that mimic the biological evolution process when applied to 

a population of (chromosomal representations of) solutions to the problem.

The design variables are represented by a fixed length string of 0’s and l ’s that 

comprise components of a binary coded number. Other representation codes are 

possible. For the purposes of discussion, let us choose a 10 bit binary number with 

the maximum and minimum of the design variable corresponding to the maximum 

and minimum of the binary number. As many binary strings as the number 

of variables to a defined problem are then placed end to end. This enlarged 

string represents one solution. A sequence of such strings can be introduced 

to construct a population of solutions (designs), with each solution having a 

corresponding fitness factor. This fitness factor is defined according to the value
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of the objective function to be optimised. In case of constrained optimisation a 

penalty is associated with any constraint violation in the solution.

Once a population of designs is generated the genetic search can proceed to 

produce new designs with a higher level of fitness than members of the current 

population. The first concept in this process is the one of reproduction, which is 

meant to bias the population to contain more fit members and to eradicate the 

less fit ones. Let the fitness associated with the ith solution string be denoted 

by / , .  We can obtain a sum of these fitness values as f 3um =  51 fi- The ratio 

of individual fitness to the fitness sum denotes a ranking of that string in the 

population. This ratio is used to construct a weighted roulette wheel, with each 

string occupying an area on the wheel in proportion to this ratio. The wheel is 

then employed to determine the strings that participate in the reproduction. A 

random number generator that determines a pseudorandom number between 0 

and 1 is invoked to determine the location of the spin on the roulette wheel. Pairs 

of strings selected in this manner (mating pairs) are then subjected to operations 

of crossover and mutation to produce pairs of offsprings. Other selection schemes 

are examined by Brindle [1981].

The second component of genetic search is referred to as crossover, and corre

sponds to allowing select members of the population to exchange characteristics 

of the design among themselves. Crossover entails selecting a start and end po

sition on a pair of mating strings at random, and simply exchanging the string 

of 0’s and l ’s between these positions on one string with that from the mating 

string.

Mutation is the third concept in the genetic refinement process, and is one 

that safeguards the process from a complete premature loss of valuable genetic 

material during the reproduction and crossover. This corresponds to selecting a 

few members of the population, determining at random a location on the strings, 

and switching the 0 or 1 at that location.

The steps described above are repeated for successive generations of the pop

ulation, until no further improvement in the fitness is attainable. The member in 

this generation with the highest level of fitness is the nearest to optimal design.
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Central to these components are questions related to optimal population sizes, 

lengths of strings (chromosome), and frequency with which the transformation 

functions are invoked, that is probabilities of crossover and mutation, pc and 

pm, in the evolution process. Some aspects of these problems are presented in 

Goldberg [1989]. These issues are best discussed in section 5.5.3, by relating them 

to the physical problems o f concern here.

5.4.3 Genetic Search in Constrained Problems

The previous section describes only the process for unconstrained optimisation 

and must be modified to account for constraints. At first, it would appear that 

inequality constraints pose no particular problem. A genetic algorithm generates 

a sequence of parameters to be tested using the system model, objective function, 

and the constraints. The model is simply run, the objective function evaluated, 

and the constraints are checked to see if there is any violation. If not, the pa

rameter set is assigned the fitness value corresponding to the objective function 

evaluation. If constraints are violated, the solution is infeasible and thus has no 

fitness. However many practical problems are highly constrained and finding any 

feasible point is almost as difficult as finding the best. As a result, we usually 

want to get some information out of infeasible solutions, by degrading their fit

ness ranking in relation to the degree of constraint violation. Penalty function 

methods have been used successfully in this case in a number of problems (see e. 

g. [Hajela, 1990] and [Goldberg, 1987]).

In a penalty method, a constrained optimisation problem is transformed to 

an unconstrained problem by associating a cost or penalty with all constraint 

violations. This cost is included in the objective function evaluation.

Let the basic optimisation problem be of the form: find X  which minimises 

f ( X )  subject to

9i(X)  <  0 , i e l  (5.3)

This problem is converted into an unconstrained minimisation problem by con
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structing a function of the form:

<!>=<t>(X,r)=f(X) + rY;[Gi(X)Y (5.4)
* — 1

where r is a positive penalty parameter, the exponent q is a non-negative constant, 
and the bracketed function is defined as

[Gi(X)] =  max(gi(X),  0) =
9 i { X )  g i ( X ) >  0 

0 gi(X)  <  0
(5.5)

The second term on the right of equation (5.4) is called the penalty term. 

A number of alternatives exist for the penalty function [Gj(-Y)]’ . It is common 

to square the violation of the constraints for all violated constraints i, that is 

to set q =  2. Under certain conditions, the unconstrained solution converges to 

the constrained solution as the penalty coefficient r approaches infinity (see e. g. 

[Fletcher, 1987]).

5.4.4 Reproduction, Crossover and Mutation

The three operators of the genetic search method are implemented in straight

forward code segments presented by Goldberg [1987]. Each operator depends on 

random choice. In the explanation that follows, the existence is assumed of three 

random choice routines: •

• random: returns a real pseudorandom number between zero and one (a 

uniform random variable on the real interval [0, 1]).

• flip: returns a boolean true value according to specified probability. That 

is successive calls generate a random sequence of true and false values with 

an average of true values proportional to the specified probability.

• md: returns a random integer value between specified lower and upper 

limits (a uniform random variable over a subset of adjacent integers).
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begin
p a r ts u m  := 0
j :=0
ra n d  :=  ran d o m  * sumfimess
repea t j  := j  +  1

p a rtsu m  :=  p a r ts u m  +  fitness[j] 
until (partsum  > =  rand) or ( j :=  popsize) 
re tu rn  j  

end

Figure 5.4: Algorithm for wheel selection procedure.

Selection of the fittest individuals in a population is implemented as a linear 

search through a roulette wheel with each individual (solution) occupying an area 

on the wheel in proportion to the ratio of its fitness value to the sum of the fitness 

values of all the other individuals (solutions). This is done by the algorithm shown 

in figure 5.4. The location where the ball has landed after a random spin of the 

wheel is determine by

rand :=  random * sum fitness

where sumfitness, the sum of the population fitness, is multiplied by the nor

malised pseudorandom number generated by random. In order to find the solu

tion that occupy the slot where the ball has landed, the repeat-until loop searches 

through the weighted roulette wheel until the partial sum (partsum in figure 5.4) 

is greater than or equal to the stopping point rand. In the algorithm shown in 

figure 5.4, the function returns the population index value corresponding to the 

selected individual.

The basic algorithm for the crossover routine is given in figure 5.5. It takes 

two parent strings and generates two new ones called childl and child!?. The 

probabilities of crossover and mutation, pcross and pmutation are passed to the 

routine along with the string length Ichrom, a crossover count accumulator across, 

and a mutation count accumulator nmutation.

At the beginning of the routine, it is determined whether crossover is per

formed on the current pair of parent chromosomes, that is solutions. A biased
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begin
i f  flip (pc ross) th en

jc ro ss  := m d ( l  , lc h ro m  - 1) 
ncross := ncross +  1

else
jc ro ss  := lchrom

end
( f irs t  e x c h a n g e , 1 to  1 an d  2 to  2}

fo r  j  :=  1 to  jc ro ss  do
c h ild lI j]  := m u ta tio n (p a re n tl( j] )  
ch ild2 [j] := m u ta tio n (p a ren t2 (j])

end
(se c o n d  e x c h a n g e , 1 to  2  and  2  to  1)

fo r  j : =  j c r o s s + 1  to  lch ro m  do  
c h ild l[ j]  := m u ta tio n (p a ren t2 [j])  
ch ild2 (j] := m u ta tio n (p a re n tl[ j] )

end
end

Figure 5.5: Algorithm for crossover procedure.

coin is tossed that comes up heads (true) with probability pcross. The coin toss 

is simulated in the boolean function flip, where flip in turn calls on the pseudo

random number routine random. If a cross is called for, a crossing site is selected 

between 1 and the last cross site. The crossing site is selected in the function 

rnd, which returns a pseudorandom integer between specified lower and upper 

limits (between 1 and Ichrom — 1). If no cross is to be performed, the cross site is 

selected as Ichrom (the full string length) so a bit-by-bit mutation will take place, 

despite the absence of a cross. Finally, the partial exchange of crossover is carried 

out in the two for-do loops at the end of the algorithm. The first for-do handles 

the partial transfer of bits between parentl and childl and between parents and 

childS. The second for-do loop handles the transfer and partial exchange of ma

terial between parentl and childS and between parents and childl. In all cases, a 

bit-by-bit mutation is carried out by the boolean function mutation.

Mutation at a point is carried out by an implementation of the algorithm 

shown in figure 5.6. The function flip is used to determine whether or not to 

change a true to a false (a 1 to a 0) or vice versa. The function flip will only 

come up heads (true) pmutation percent of the time as a result of the call to the
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begin
m u ta te  :=  flipC pm utattion) (flip  th e  b iased  co in ) 
i f  m u ta te  then

n m u ta tio n  := n m u ta tio n  + 1 
m u ta tio n  := ch an g e_ b it_ v a lu e

else
m u ta tio n  :=  n o _ ch an g e

end
end

Figure 5.6: Algorithm for mutation procedure.

pseudorandom number generator within flip itself. The number of mutations is 

counted in nmutation. It is possible to avoid much random number generation if 

it is decided when the next mutation should occur rather than calling flip each 
time.

These three algorithms form the main part of the genetic algorithm. The 

other segments of the algorithm are discussed in the following section.

5.5 Genetic Search Model Implementation and 
Tests

5.5.1 Objectives

Although software implementations of the genetic algorithm are available, there 

is no obvious theoretical way of predicting its efficiency in different situations. 

Hence a Genetic Search model was set up and suitable values for its control 

parameters were checked experimentally.

In order to evaluate the efficiency of this model under practical conditions, 

two inspection problems were considered, as follows:

1. inspection of roundness and centre position of a circular feature, formulated
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as: find (a , b) and R  such that

(x,- -  a)2 +  (yt -  6 ) 2 <  (R  +  tT)2
(xi -  a)2 +  (y{ -  b)2 >  R2 (5.6)

(x0 -  a)2 +  (ya -  b)2 <

for i =  1, • • •, N, where N  is the number of data points and (x0,y 0) the 

nominal position. This is similar to that examined by local linearisation 

methods in sections 3.4 and 3.7.

2. template matching: inspection of position and dimension of four circular 

features (holes or studs), of the same dimensions and tolerances, on a plate 

forming a square frame. This can be formulated as: find reference centres 

(ak, bk), k =  1, • • • ,4  such that

R L n < ^ i - a k)2 +  (y i- b k)2 <  R2m i =  l , . . . , N k , k =  l , - . . , 4  (5.7) 

and
(L -  t c )2 <  (a, -  a2)2 +  (6, -  b2)2 <  (L +  t^)2
(L -  tcp)2 <  (a: -  a3)2 +  (6, -  6a)2 <  (L +  t^)2
(L — tcp)2 <  (a2 — a i ) 2 +  ( ¿ 2  -  ̂ 4 ) 2 <  {L  +  tcj,)2

(L -  tcp)2 <  (03 -  a4)2 +  ( 6 3  -  6 4 ) 2 < ( L  +  tcp)2

where Nk axe the number of data points representing each circular feature, 

Rmin and Rmax are the radius lower and upper limits, L is the nominal 

distance between centres and tcr is the centre position tolerance. The refer

ences are numbered such that k =  1,2 are the bottom, respectively left and 

right, and k =  3,4 are the top, respectively left and right ones, as illustrated 

in figure 5.7. This is an extended version of the problem introduced in sec

tion 5.2, for which no local linearisation appears to be satisfactory and the 

algorithmic choice lies between the method examined here and non-linear 

optimisation methods such as those explored further in chapter 6.

These problems were implemented by adapting a-version of GENESIS, a public 

domain software implementation of genetic search techniques.
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+ toi 4 x 0  R - toi

Figure 5.7: Specifications of four circular features on a plate.

In order to do the tests the following sequence was obeyed:

• collect data from a coordinate measuring machine. Simulated data is also 

used;

• measure the characteristics of the features, that is dimensions, form and 

location by a Fortran implementation of the sequential quadratic program

ming (SQP) method (routine E04VDF [NAG, 1990], see sections 6.4 and 

6.5.3);

• based on the previous results, define examples of tolerance values so as to 

simulate tolerance limits from design;

• feed the tolerance information to the genetic search model and perform pre

liminary tests so as to define best values for a number of control parameters 

such as population size, crossover and mutation rates and then using such 

values to perform more definitive tests.

Details about the GENESIS software and the modifications to it, data acqui

sition and test procedures are described in the next sections.
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5.5.2 Genesis Software

Genesis (Genetic search implementation system, version 5.0) is a public domain 

software for function optimisation developed by Grefenstette [1990], The system 

is written in C language. Being a public domain software, it is possible to alter 

it so as to customise it to any particular need.

Genesis has three levels of representation for the structures it is evolving. The 

lowest level, or “packed” representation, is used to maximise both space and time 

efficiency in manipulating structures. In general, this level of representation is 

transparent to the user. The next level, or “string” representation, represents 

structures as null-terminated arrays of character variables. This level is provided 

for users who wish to provide an arbitrary interpretation on the genetic struc

tures, for example, non-numeric concepts. The third level, or “floating point” 

representation, is the appropriate level for many numeric optimisation problems. 

In this case, a number of values in a range are automatically translated to binary 

representation by the programme. The user specifies the floating point represen

tation by interacting with the “setup” programme. For each parameter the user 

specifies its range in floating point representation and the length of the binary 

string representing the parameter. So, for example, for a string of 4 bits and a 

range of floating point values between 20 and 22, the number 20 will be repre

sented by the binary number “0000” and the number 22 by “1111” , that is the 

minimum and maximum binary numbers. In between these two limits, 14 values 

can be represented, with a step length of 0.125 in floating point representation. 

If the string length is increased, for the same interval, the number of values that 

can be represented is increased and therefore the “resolution” or “granularity” of 

the floating point representation is improved.

By default, the initial population is chosen at random. Alternatively, the 

initial population may contain heuristically chosen initial points. If the chosen 

initial points are fewer than the population needs, the remaining structures will 

be initialised randomly.

One generation comprises the following procedures: selection, crossover, mu
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tation and evaluation. The three main procedures are variations of the basic 

algorithms described in section 5.4.4. The selection procedure is based on an 

algorithm by Baker [1987], and is a variation of the wheel roulette procedure 

described before. In addition to this, the user may opt for the “elitist” selection 

strategy. The elitist selection strategy stipulates that the best performing struc

ture always survives intact from one generation to the next. In the absence of 

this strategy, it is possible that the best structure disappears, due to crossover 

and mutation transformations. The crossover procedure also differs from the al

gorithm described before, as it chooses randomly two crossover points (instead 

of one point). The segments between the crossover points are then exchanged, 

provided that the parents differ somewhere outside of the crossed segment.

The evaluation procedure computes the fitness value of each structure or so

lution based on the objective function to be optimised. To use GENESIS, the 

user must write an evaluation procedure, which takes one structure as input and 

returns a double precision value. In the case of the inspection problems, the 

objective function is the penalty term of equations (5.4) and (5.5), so that the 

fitness of a solution is a function of its degree of constraint violation or infeasibil

ity. The functions implemented were based on the algorithm described in figure 

5.8. The genetic algorithm searchs through infeasible solutions in an attempt 

to minimise (minimisation process is the default option) the penalty term. The 

iteration process terminates when the penalty term is reduced to zero, meaning 

that a feasible solution has been found. However, in cases where no feasible point 

exists the penalty term is never reduced to zero and hence the iteration process 

never terminates. Even though there is no formal proof of infeasibility in such 

cases, the method may still be of practical use since if no feasible point is found 

within a specified number of generations, the probability of a false negative by 

terminating as a failure will be acceptably low.

In order to adapt GENESIS to our problems, a few modifications were intro

duced. These are: •

• read data set and store it in a two-dimensional array variable. Use this 

variable to construct the set of constraints, as described in (5.6) for the
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I

{ N : number of constraints }
{ r : penalty parameter }
{ x : structure (solution) }
{ gi(x) : ith constraint }
{ [gi(x)]q : penalty function }

G(x) := 0; 
fo r  i := 1 to N do 

if gi(x) > 0 then
G(x) :=G(x) + [gi(x)f; 

end 
end
G(x) := [G(x)J* r; 
return G(x)

Figure 5.8: Algorithm for evaluation procedure, 

first inspection problem and (5.7) for the second problem;

• input the inspection parameters. Tolerance of roundness, tolerance of po

sition and nominal centre position for the first problem, and tolerance on 

radius, nominal radius, tolerance of position and nominal distance between 

features for the second problem;

• set the penalty parameter, r, and the exponent q of the penalty function;

• interrupt the process if the evaluation function returns a null penalty term.

These modifications were made by altering some parts of the original source 

programme and introducing new pieces of code.

Before starting the search, the “setup” programme is executed, which prompts 

the user for a number of input parameters relevant to the genetic search itself 

and how the evaluation is made. All of this information is stored in a file for 

future use, so it is run only once. Pressing the return key to any prompt gets the 

default value shown in brackets. The prompts are as follows: •

• floating point representation [y]: unless this is declined the user is asked 

to specify the number of genes (parameters). Each gene takes on a range 

of floating point values, with a user-defined granularity and output format. 

The user is asked to specify, for each gene, its maximum and minimum
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value, the number of values (that is the string length) and the desired 
output format.

• the number of experiments [1]: this is the number o f independent optimi
sations of the same function.

• the number of trials per experiment [1000]: this is the number of generations 

multiplied by the population size.

• the population size [50].

• the length of the structures in bits [30]: when the floating point representa

tion is selected, this number is computed automatically from the informa

tion collected above (number of values).

• the crossover rate [0.60].

• the mutation rate [0.001].

• the generation gap [1.0]: the generation gap indicates the fraction of the 

population which is replaced in each generation.

• the scaling window [5]: when minimising a numerical function with a genetic 

algorithm, it is common to define the fitness value, / ( x )  of a structure x  as 

u(x)  =  /max — f ( x ) ,  where f max is the maximum value that f ( x )  can assume 

in the given search space. This transformation guarantees that the value 

u(x)  is positive, regardless of the characteristics of / ( x ) .  Often, f max is not 

available a priori, in which case u(x) is define as u ( x )  =  / ( x mox) — f ( x ) ,  

where f ( x max) is the maximum value o f any structure evaluated so far. 

Either definition of u(x) has the unfortunate effect o f making good values 

of x  hard to distinguish. For example, suppose f max =  100. After several 

generations, the current population might contain only structures x for 

which 5 <  / ( x )  <  10. At this point, no structure in the population has 

a performance which deviates much from the average. This reduces the 

selection pressure toward the better structures, and the search stagnates. 

One solution is to define a new parameter Fmax with a value of. say, 15, and
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rate each structure against this standard. For example, if J(xi) =  5 and 

/ ( ^ j )  — 10) then u(x,*) =  F mar =  10) and u(xj) — Fmax f^Xj") =  5;

the performance of x,- now appears to be twice as good as the performance 

of X j .  The scaling window W allows the user to control how often the 

baseline performance is updated. If W  >  0 then the system sets Fmax to 

the greatest value of / ( x )  which has occurred in the last W  generations. A 

value of W  =  0 indicates an infinite window (i. e. u(x) =  f ( x max) — f (x )) .

• the seed for the random number generator [123456789].

• the options [cefgl]: GENESIS allows a number of options which control the 

kinds of output produced, as well as certain strategies employed during the 

search. Each option is associated with a single character. The default op

tions are: c: collect statistics concerning the convergence of the algorithm; 

e: use the “elitist” selection strategy; f. use the floating point representa

tion; g: use Gray code. A Gray code is sometimes useful in representing 

integers in genetic algorithms. Gray codes have the property that adjacent 

integer values differ at exactly one bit position. The use of Gray codes avoid 

unfortunate effects of “Hamming cliffs” in which adjacent values, say 31 and 

32, differ in every position of their fixed point binary representations (01111 

and 10000, respectively). This option has no effect unless option /  is also 

set; l: log activity (starts and restarts) in the “log” file. Other options are 

available, as the M option, for maximisation processes. These are described 

in the software user guide [Grefenstette, 1990].

In addition to these input parameters, the user is prompted for information on 

how to  output results, which are described in the software’s user guide [Grefen

stette, 1990] and not repeated here. Also in the user guide is how to install, 

compile and run the software, under either DOS or Unix operating systems.

The definition of the control parameters described above is discussed in the 

next section.
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5.5.3 GS Control Parameters

A number of the input parameters mentioned in the last section influence the 

number of generations that is likely to be needed to solve particular types of 

problems. These are as follows:

• population size: a larger population increases the chance of “good” solu

tions among the population and therefore reduces the total number of gen

erations. However, it increases the computation time for each generation. 

There is a region in which an increase in the population leads to a decrease 

in the number of generations, with a relatively insignificant increase in the 

computation time. However, beyond that region no significant reduction in 

the number of generations is obtained, due probably to an increase in the 

number of repeated solutions in the population.

• structure length: larger strings increase the number of real values that 

can be represented within a defined interval, which increases the chance 

of “good” solutions in the population and consequently reduces the total 

number of generations. However, the length of each variable string is limited 

by the length of the binary word that a particular computer can handle.

• probabilities of crossover, pc, and mutation, pm: the frequency with which 

the genetic transformations are performed also alters the total number of 

generations. Studies by DeJong [1975] show that values of pc and pm of 

0.6-0.8 and 0.01-0.02, respectively, perform adequately for most problems.

• range over which a variable is defined: as mentioned before, when work

ing with floating point representation, each variable is considered over a 

range of real values. By reducing the range over which a variable is con

sidered, for the same string length, the gap between two consecutive values 

(resolution or granularity) is narrowed, and consequently the chance of a 

“good” solution being missed in between two sampled values is reduced, 

thus reducing the total number of generations to get a feaisible solution. 

The ranges should be chosen around the expected solution. The problem
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Figure 5.9: Penalty functions f ( x )  =  x 2 ( - )  and f ( x )  =  x (-).

of narrowing too much the range of candidate solutions is that the solution 

may be missed out of the chosen range. For the problems in consideration, 

a good estimate o f the solution is given by the least squares method. The 

“width” of the range of candidate solutions should be reduced to a mini

mum, without further reducing or even eliminating the feasible region by 

the upper and lower variable bounds so defined.

• penalty function and parameter: with constrained optimisation processes, 

the penalty function used and the penalty parameter also affects the total 

number of generations. The penalty parameter has to magnify the penalty 

term so as to “penalise” the objective of the original problem. Recom

mended parameters values are from 100 onwards [Hajela, 1990]. Regarding 

the penalty function, it is common to square the violation of the constraints 

for all violated constraints i, that is setting q =  2 in equation (5.4). How

ever, although this rapidly eliminates from the population of solutions those 

with high infeasibility, for small violations (less than 1), the resulting contri

bution to the penalty term of a infeasible solution is less than the amount 

by which the solution violates any constraint and the violation. This is 

illustrated in figure 5.9. One alternative is to set q =  2 if the constraint 

violation is greater than one, ( i f  gi(x) >  1 in figure 5.8), and otherwise, 

i f  0 <  gi(x) <  1, then q =  1.

Although recommended values for some of these parameters were available 

(the default options), tests were performed so as to identify the best values (or
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range of values) for the population size, probabilities of crossover and mutation 

and penalty function and parameter. The string length and the range over which 

the variables were defined were set on theoretical grounds, since there was a clear 

trend for these for which the efficiency of the genetic search was improved. In 

pre-fixing these, tests were simplified without compromising its validity. Thus, 

the string length was set to the maximum that the computer used could operate 

upon. The way in which the variable ranges were defined and details about the 

procedures followed for the tests are described in section 5.5.5.

5.5.4 Data Acquisition and Generation

Three circular profiles, originally data-logged for the tests described in section 

3.8, were used again for this set of tests. The data points were acquired by 

a coordinate measuring machine, L K 4, as described in section 3.8.2. Each set 

consisted of 30 points evenly but not exactly spread along the circular features. 

The data sets were numbered as 11, 12 and 13 in section 3.8 and the same 

numbering will be used here. Linear plots of these profiles, expressed in polar 

coordinates and shifted to the centroid of the points, are shown in figures 3.19 to 

3.21. These data sets are listed in appendix A .2.

In addition to real data, simulated data were generated as well. A roundness 

profile can be represented by a general periodic wave of the form [Damir, 1979]

r(0) =  A sin NO +  ra (5.9)

where N  is the number of lobes, A  the amplitude and r0 the nominal radius. 

In order to generate data sets, a function was written in MATLAB [The Math- 

Works, 1992] to implement equation (5.9). An element of noise was introduced 

by adding to the signal a random number (uniformly distributed in the interval 

[0.0, 1.0]) multiplied by a amplitude parameter. This was obtained by using a 

random generator function, implemented in MATLAB and described in Forsythe, 

Malcolm and Moler [1977].

The data set for each profile consisted of a two-dimensional array representing
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data set lobes amplitude
noise

amplitude
radius
(m m )

Lx  - Ly
(m m )

S-1 3 0.02 0.01 50 100
s-2 5 0.02 0.002 10 200
s-3 7 0.003 0.003 2 5

Table 5.1: Characteristics of simulated data sets of single circular features.

Cartesian ordinates pairs obtained by the transformation of the polar coordinates 

from equation (5.9), as
a: ft] =  r(9A cos 0, +  Lx

(5.10)
y[i] =  r(0i)sin0, +  Ly

where (Lx , Ly) are the Cartesian ordinates of the origin of the polar representa

tion.

For the first inspection problem under consideration, three data sets were 

generated, each one representing a single circular feature sampled by thirty points 

around 360°. The magnitude of the figures used for the amplitude and noise 

magnification were chosen so as to simulate dimensions in millimeters (mm) and 

errors of roundness due to:

• error of form and some error of roughness (data set s-1);

• mainly error of form (data set s-2);

• small error of form relative to the error of roughness (data set s-3).

Table 5.1 shows the characteristics of the profiles generated. The number of lobes 

(3, 5 and 7) were chosen on the grounds that these are generally the most common 

in real profiles.

For the second inspection problem, three sets o f four data sets were generated, 

simulating four circular features on a plate, each sampled by fifteen points around 

360°, again with three five and seven lobes. The magnitude of the figures used 

for the amplitude and noise magnification were again chosen so as to simulate 

dimensions in millimeters (mm) but in this case to simulate errors of roundness 

due to, mainly, error o f form. Table 5.2 shows the characteristics of the profiles
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data set lobes amplitude
noise

amplitude
radius
(mm)

i-̂ X -- Ly
(mm)

centre
distances (mm)

s4h-l 3 0.06 0.005 10 50 100
s4h-2 5 0.1 0.001 20 50 300
s4h-3 7 0.02 0.002 3 5 30

Table 5.2: Characteristics of simulated data sets of four circular features on a 
plate.

generated for the second inspection problem. The characteristics for each set of 

four profiles were kept the same. Therefore, the resulting profiles for each set 

are nearly the same, apart from some variations introduced by random noise. 

The definition of the same characteristics for the four profiles may be a slight 

oversimplification but was based on the fact that this would be expected, for 

example, of a workpiece with circular profiles machined by the same process.

For the purpose of graphical illustration of the sort of profiles generated, linear 

plots of the profiles with 200 points are shown in figures 5.10 to 5.15. The data 

sets were saved in ASCII files for further manipulation and are listed in appendix

A .3.

Figure 5.10: Linear plot of simulated profile (top/bottom : air/metal metal): data 
set s-1.
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Figure 5.11: Linear plot of simulated profile (top/bottom : air/metal): data set 
s-2.

Figure 5.12: Linear plot of simulated profile (top/bottom : air/metal): data set 
s-3.

Figure 5.13: Linear plot of simulated profile (top/bottom : air/metal): data set 
s-4h01.
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Figure 5.14: Linear plot of simulated profile (top/bottom : air/metal): data set 
s-4h02.

Figure 5.15: Linear plot of simulated profile (top/bottom : air/metal): data set 
s-4h03.
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data set a b R (2 h)
s-1 100.0016 99.9990 50.0050 0.04740
s-2 199.9998 199.9999 10.0009 0.0365
s-3 5.0005 5.0001 2.0012 0.0075

Table 5.3: Parameters of MZC reference and out of roundness of roundness of 
simulated profiles: units in millimeters (mm).

5.5.5 Test Procedures

In order to measure the dimension, location and out of roundness of the circular 

features, a minimum zone reference (MZC) was used as best-fit criterion. A NAG 

Fortran implementation of the sequential quadratic programming (SQP) method 

(E04VDF [NAG, 1990], see sections 6.4 and 6.5.3) was used to minimise the zone 

parameter h subject to the non-linear constraints

(xi -  a)2 +  f a  -  b)2 <  (R +  h)2
(x,- -  a)2 +  (j/, 4- b)2 > ( R -  h)2

for i =  1, • • •, TV, where (a, b) are the centre of the reference and R its radius.

A piece of Fortran code was written to read the data sets, formulate the con

straints, call the function and input the data to it. The parameters of the best fit 

and the error o f roundness for the data sets related to the first inspection problem 

are shown in tables 5.3 and 5.4, for simulated and real profiles respectively. For 

the data sets related to the second inspection problem, tables 5.5, 5.6 and 5.7, 

respectively for each set of four circular profiles, show the parameters of the best 

fits and the distances between centres. The circular features are numbered in 

such a way that profiles 1,2 are the bottom, respectively left and right, and 3,4 

are the top, respectively left and right ones, as in figure 5.7.

Tests were performed so as to consider the cases when both errors (that is 

position and roundness for the first case and position and radius for the second) 

are less than respective tolerances, or when the position error is greater than its 

tolerance and the out of roundness or radius (either for the first or second cases)
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data set a b R (2 h)
11 52.9540 60.3820 13.6855 0.0310
12 152.0440 61.6562 13.5070 0.1947
13 92.6014 62.6240 4.9845 0.0955

Table 5.4: Parameters of MZC reference and out of roundness of roundness of 
real profiles: units in millimeters (mm).

data set s-4h01
profile a b R h distance between centres

1- 4-
1 50.0098 50.0012 10.0008 0.0580 - -
2 150.0003 49.9999 10.0027 0.0590 99.9993 100.0011
3 50.0000 149.9977 10.0044 0.0587 99.9965 99.9990
4 150.0012 149.9990 10.0031 0.0580 - -

Table 5.5: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set s-4h01: units in millimeters (mm).

data set s-4h02
profile a b R h distance between centres

1- 4-
1 50.0003 50.0002 20.0004 0.0870 - -
2 350.0003 50.0001 20.0005 0.0870 300.0 300.0001
3 50.0000 350.0000 20.0005 0.0870 299.9998 299.9990
4 350.0002 350.0001 20.0005 0.0867 - -

Table 5.6: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set s-4h02: units in millimeters (mm).

data set s-4h03
profile a b R h distance between centres

1- 4-
1 5.0005 5.0029 3.0012 0.0199 - -
2 35.0022 4.9993 3.0031 0.0190 30.0017 30.0016
3 5.0033 35.0003 3.0040 0.0195 29.9970 30.0018
4 35.0050 35.0012 3.0056 0.0198 - -

Table 5.7: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set s-4h03: units in millimeters (mm).
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data
set

nominal position eccentricity 
of MZCX y

s-1 100.0016 100.0240 0.025
s-2 199.9998 200.0199 0.02
s-3 5.0005 5.0051 0.005
h 52.9540 60.3970 0.015
12 152.0440 61.7562 0.1
13 92.6014 62.6740 0.05

Table 5.8: Simulated nominal position of profiles and eccentricity of respectives 
MZC reference centres: units in millimeters (mm).

are within their tolerance limits. The latter was considered so as to realise the 

point in which the problem becomes infeasible, that is fails inspection. The situ

ation when both errors are greater than respective tolerances was not considered 

because it is definitely a case of empty feasible region and the iteration process 

would have to be stopped anyway, as discussed in the next section. Thus, for 

the first inspection problem, examples of tolerance values of out of roundness 

were defined following the same strategy used for the tests described in chapter 

3. Values of 1.0,1.1, 1.2,1.3 times the out of roundness were used as roundness 

tolerances. In order to  define examples of centre position tolerance, a simulated 

error of position was defined by fixing the nominal centre position of the feature 

such that the measured centre position of the MZC was eccentric by an amount 

of the same magnitude of the roundness error, again simulating dimensions in 

millimeters. The nominal centre position for each data set and eccentricity of 

respectives MZC references are given in table 5.8. Following this, values in the 

region 0.5 to 1.3 times twice the eccentricity of the MZC centre position (since 

the tolerance value is a diametrical zone) were used as centre position tolerances.

For the second inspection problem, the nominal radius (fi„om) was defined 

by considering the features as holes and, therefore defining the lower limit as 

the maximum material condition (M M C) dimension. Thus, for each simulated 

feature, Rn0m was defined so as to be larger than Rmin =  min(Rk — A*) (k =  

1, • • •, 4), according to the MZC references given in tables 5.5 to 5.7. The values
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data set Rmin Rnom Rnom Rmin Rmin t Rnom
s-4h01 9.9428 10.0928 0.15 99.9965 0.2 100.1965
s-4h02 19.9134 20.0634 0.15 299.9998 0.2 300.1998
s-4h03 2.9813 3.0313 0.05 29.9970 0.05 30.047

Table 5.9: Nominal radius and distance between centres simulating four holes on 
a plate; units in millimeters (mm).

for Rnom were computed so as to be larger than Rm,n by an amount of the order of 

10-2 to 10_1, simulating dimensions in millimeters. The values of Rmin and Rnom 

for each data set are given in table 5.9. Following this, values of 1.0,1.1,1.2,1.3 

times Rnom ~  Rmin were defined as the tolerance on radius, where in this case 

the tolerance is indicated as Rnom ±  tolerance. Thus, in the limiting case, when 

the tolerance is ± (R n0m — Rmin), the MMC dimension will be the minimum 

radius, amongst the four features, defined by the respective MZC references. The 

nominal distance between centres was defined by selecting the minimum distance 

between MZC centres of any two related features,Lmin, and adding to it a value 

of about the same magnitude as the tolerance on radius (simulating dimensions 

in millimeters). Thus, Ln0m =  Lmin +  t, where t is the value added. The values 

for t and Ln0m are given in table 5.9. Following this, values in the region of 0.5 

to 1.3 times t were used as the position tolerance, such that when the tolerance 

is t, the distance between the MZC centres for at least one of the combinations 

will be on the limit, that is on the edge of the tolerance zone.

Preliminary tests were carried out in order to set best values for population 

size, crossover and mutation rates and penalty function and parameter. These 

tested consisted o f setting values for the genetic search parameters and evaluating 

the variation in performance of the algorithm to get a feasible solution to the 

profiles and tolerances fed to it. Only tolerance of roundness of single circular 

profiles were checked at this stage, hence simplifying the inspection problem to:
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find parameters (a, b) and R such that

(x{ — a)2 +  (yi — b)2 <  (R  +  tT)2
(5.12)

(x< -  a)2 +  (yi -  b)2 >  R2

for i — 1, • • •, N, where N  is the number of data points arid tT is the roundness 

tolerance.

For each data set, the roundness tolerance value was defined such that the 

ratio of tolerance to ratio was equal to 1.1. Four data sets representing single 

circular profiles were used, two being of real profiles (data sets 11 and 12) and 

the other simulated simulated ones (data sets s-2 and s-3).

Regarding the genetic search model, as mentioned in section 5.5.3, the length 

of the binary strings representing each variable was fixed to its maximum for the 

computer used, that is 31 bits. The range of real values, from which candidate 

solutions were translated to the binary notation of the genetic search, was defined 

with width equal to twice the roundness tolerance value such that:

• for the radius variable, R, the least squares radius value lies on upper limit 

of the range;

• for the centre position, (a, b), the least squares values of the centre position 

lie centrally between the lower and upper limits.

For the radius variable, the least squares value is shifted to the upper limit of the 

range because the inspection problem (constraints in (5.12)) uses an inscribing 

reference, and for this reason any feasible reference will have its radius less than 

the least squares one. The intention in defining the ranges proportional to the 

roundness tolerance value was to reduce them to a “safe” minimum, without, by 

adding such constraints, eliminating the feasible region of the inspection problem. 

The least squares values for the variables were used on the grounds that any 

feasible solution ought to lie “close” to the least squares solution, which may 

itself be a feasible solution. The least squares solution was computed by running
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a direct implementation of the algorithm proposed by Forbes [1989] (see section 

2.5.3), written in C language, single precision floating point (the main fragment 

of its source code is reproduced in appendix B). In case a position tolerance is 

also specified, the range for the centre position variables could be set equal to 

the tolerance value such that the coordinates of the nominal centre position lie 

centrally in between the upper and lower limits. These ranges define a square 

region around the circular region defined by the position tolerance, therefore 

ensuring that the feasible region is not further constrained.

Having defined that, the best values for the population size and rates of 

crossover and mutation were checked by fixing two of them in the range of recom

mended values and running the process for different values for the other, varying 

it around the range of recommended values. The exponent of the penalty func

tion was set to one (q =  1) and the penalty parameter to r =  100 (set in the 

evaluation function, see figure 5.8). These values were checked in latter tests. 

Therefore, the following procedure was undertaken:

• set the crossover and mutation rates to pc =  0.8 and pm =  0.01 and run the 

process for population sizes from 50 to 100 in intervals of 10;

• set the population size to 50, the mutation rate to pm =  0.01 and run the 

process for crossover rates from 0.55 to 0.85 in intervals of 0.05;

• set the population size to 50, the crossover rate to pc =  0.8 and run the 

process for mutation rates from 0.001 to 0.021 in intervals of 0.004.

These parameters and ranges were defined by running the “setup” programme 

before starting the search process. The other parameters were set as follows:

• the generation gap equal to 1.0;

• the scaling window equal to 2;
i . •

• the seed for the random number generator from 1 to 9;

175



• options “efg” , for elitist selection (e), floating point representation (f) and 

gray code (g).

The setup programme saves the parameter values in a file called in.ext and the 

variable ranges in a file called tem plate.ext, where ext is a user defined extension. 

At the start of a search process, this information is retrieved so as to set up the 

genetic algorithm. Thus, for each data set under test, the setup programme was 

run once, in the beginning of the experiments, so as to set initial values for the 

parameters and ranges. Any further modification was done by editing either the 

in.* or the template.* files. The results of this set of tests are presented in figures 

5.18, 5.19 and 5.20 and discussed in the next section.

After running these tests, another set of tests was run, this time altering the 

exponent of the penalty function and penalty parameter. The population size 

and crossover and mutation rates were set to respectively 50, 0.8 and 0.01, and 

the exponent of the penalty function and penalty parameter were set alternately 

as follows:

• to  q =  2 when the violation is greater than one ; otherwise, when the 

violation is less than one, q =  1; set the rest as before;

• to q — 1 and the rest as before;

• set values of the penalty parameter, r, equal to 10, 50,100, 300 and 500; set 

9  =  1 and the rest as before.

The evaluation function was altered, as indicated in figure 5.16, so as to cope 

with the change of value of the exponent of the penalty function. The process 

was run again and its efficiency recorded. Table 5.10 presents the results of this 

test.

One additional test was performed in order to demonstrate and quantify the 

importance of defining the range of real values for each variable as narrowly as
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{ N : number of constraints }
{ r : penalty parameter }
{ x : structure (solution) }
{ gi(x): ith constraint }
{ [gi(x)]q : penalty function }

G(x) := 0;
. for i := 1 to N do

if gi(x) > 0 then 
if gi(x) > 1.0 then 

q:=2;  
else 

q := l ;  
end
G(x):=G(x) + [gi (x)f; 

end 
end
G(x):= [G(x)]*r; 
return G(x)

Figure 5.16: Evaluation procedure with floating penalty function.

possible. To do this, the genetic search was run for the same inspection problem 

and same data sets as before, using the default values for all the parameters 

but different ranges for the variables, namely: 1,2,3 and 4 times the roundness 

tolerance value. The ranges were placed as before, that is having the least squares 

radius as the upper limit and the least squares centre position value central in 

between the limits. The variation on the number of generations was recorded and 

it is presented in figure 5.21.

Having done these sets of preliminary tests, the best values for such parameters 

(or region of values) were defined, as indicated in table 5.11 and discussed in the 

next section. Based on the results of these tests, suitable parameter values were 

chosen (as indicated in table 5.11) to set up agenetic search model which was used 

to perform more definitive tests for the two inspection problems in consideration 

and for the data sets available.

I
The same procedure was followed, that is:

• run the setup programme to input the genetic search parameters and ranges
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of real values for each variable, for each data set. The other parameters, 

apart from the ones given in table 5.11, were set as before. The range for 

each variable was set as described below;

• run the process for different tolerance values and record its efficiency.

Examples of tolerance values were chosen as described in the beginning of this 

section. The specific values for the different ratios of centre position error to 

tolerance are given in tables 5.13 to 5.18 for the first problem and tables 5.19 to 

5.21 for the second.

Regarding the ranges of real values, for the first inspection problem, and 

for the variables corresponding to the reference centre position coordinates, the 

ranges were set equal to the centre position tolerance value, such that the nom

inal values lay centrally in between the upper and lower limits. For the variable 

corresponding to the reference radius, the range was set equal to twice the round

ness tolerance value such that the ratio of error to tolerance was equal to 1.0. So 

for the largest example of roundness tolerance, this range was still adequate. For 

the second inspection problem, the ranges for the centre position variables were 

defined as equal to the tolerance on radius, since the amount by which a feasible 

reference can be shifted from a best fit reference is proportional to the tolerance 

on radius and will never exceed it. Considering that there is no nominal centre 

position but only relative position, the ranges were placed such that the least 

squares value lay centrally in between the limits. Again, the least squares values 

were chosen on the grounds that it ought to be close to any acceptable solution.

Furthermore, given that infeasibility can never be proved by this approach, it 

was chosen to allocate a failure condition if some number of iterations does not 

yield a feasible solution. As the feasible regi6n shrinks towards a point, there 

is an increasing probability that the search will need an increasing number of 

iterations to find a feasible solution. In the limiting case, when the error equals 

the tolerance value, it may happen that, for some cases, the number of generations 

to find the feasible point exceeds the failure condition, leading to a false negative178



{ N : number of constraints }
{ r : penalty parameter }
{ x : structure (solution) )
( gi(x) : ith constraint )
{ z : buffer zone )
{ [gi(x)]q : penalty function )

G(x) := 0 ; 
for i := 1 to N do 

if gi(x) > z then 
if gi(x)> 1.0 then 

q := 2 ; 
else

q := i ;
end
G (x) := G(x) + [gi(x)]Q ; 

end 
end
G(x):=[G(x)]*r; 
return G(x)

Figure 5.17: Evaluation procedure with floating penalty function and buffer zone.

result. Therefore, ways of reducing the number of generations at the limiting case 

were sought.

One alternative is to define a “buffer zone” around the feasible region such 

that any solution violating any constraint by no more than the defined value for 

the zone is an acceptable solution. Although this is an approximation to the true 

feasible region, as long as the zone so defined is much smaller than the geometric 

tolerances involved, this approximation is not likely to bring any practical harm 

in terms of accuracy. Alternatively, making the geometric tolerance zones a little 

smaller than those specified would compensate for worries about false positive 

results. This procedure was adopted by altering the evaluation function, as indi

cated in figure 5.17. Therefore, the evaluation functions implemented for the two 

inspection cases incorporate the floating penalty function and the buffer zone, 

as described in figure 5.17 (the source code of these functions are reproduced in 

appendix B). The buffer zone was set by inputing its value through the main 

function.

For the first inspection problem, the genetic search was run twice, with and
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without a buffer zone. For the second inspection problem however, the genetic 

search was run only with a buffer zone defined. For both cases the zone was of 

l.OxlO-5 mm (that is when the data set is given in millimeters), as shown in the 

next section.

The tolerance values for which the problems become infeasible were confirmed 

by running the NAG Fortran implementation of the sequential quadratic pro

gramming (SQP) method (routine E04VDF [NAG, 1990], see sections 6.4 and 

6.5.3), previously used for calculating the MZC references. Two pieces of Fortran 

code were written to call the function and input the parameters of the inspection 

problems to it.

Tests were run on a SUN 4/330, with 48 Mbytes of RAM (Random Access 

Memory) and speed o f 16 MIPS (Million of Instructions Per Second). For all 

cases tested, the efficiency was measured in terms of execution time and number 

of iterations. The execution time was estimated by running the programme under 

the “time” Unix command, which returns the CPU user time.

5.6 Results and Discussion

Figures 5.18 to 5.20 show the number of generations that the genetic search took 

to yield a feasible solution for different combinations of population size, crossover 

and mutation rates. Although the tests were performed for a small number of data 

sets, the results seemed quite consistent for the data sets tested and showed in 

most cases how the genetic search can be improved. For the profiles tested, there 

was a clear indication that the genetic search was improved when the population 

size was of about 60, and performed relatively well for a population size in the 

range of the range of 60 to 80. Variation of the crossover rate showed that a 

value of pc =  0.75 improved the genetic search for three of the data sets tested, 

while for the other one a slightly lower value of pc =  0.65 to 0.7 performed
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better. However, as far as the mutation rates is concerned, no clear trend could 

be observed when varying it in the region of recommended values. For data sets 

s-1 and 12, two minimum points are defined, around 0.001 and 0.013. For data 

set 11, the minimum seems to be around 0.001, while for data set s-2, it seems 

to be around 0.017. A rate of 0.001, the default value used by GENESIS, seems 

to be a reasonable value for all the data sets tested.

Table 5.10 shows the number of generations required to yield a feasible solution 

for two different penalty functions. The use of a piecewise penalty function showed 

that the genetic search performs better in this case than keeping the exponent 

q o f the penalty function equal to one. Also, tests made for different penalty 

parameters (r =  10,50,100,300 and 500) showed no variation in the number of 

generations. This shows that variation of the penalty parameter towards infinity 

is important only when searching for optimal solutions and not just for feasible 

ones.

Figure 5.21 shows that the number of generations to yield a feasible solution 

increases as the width of the range of real values used is increased. This can also 

be realized in figures 5.18 to 5.20 by comparing the curve of data set 12 with the 

others. The range used for data set 12 was between four and six times larger than 

was used for the other data sets. It also shows, indirectly, that the same effect 

will happen if the length of the binary strings is reduced. Therefore, it confirms 

the importance o f keeping such ranges as small as possible. For the single feature 

problem, the range for the radius variable was set equal to twice the roundness 

error. This was done so as to make sure that for all examples of tolerance values 

the feasible region was not further constrained. However, in practice, the width 

of the range may well be set equal to the roundness tolerance value, with the 

least squares value as the upper limit, since the distance from the least squares 

radius to the reference radius has to be less than the tolerance zone. The ranges 

for the centre position parameters were set exactly around the position tolerance 

and so they are as narrow as they can be without interfering with the feasible 

region. For the second inspection problem, the ranges for the centre position
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variables were defined as equal to the tolerance on radius. These ranges can also 

be reduced if it is considered that the amount by which a best fit reference can 

be shifted is no more than the smaller distance of the minimum zone circles to 

either the upper or lower limits defined by the tolerance on radius. This distance 

can be estimated by using the least squares reference and the width of the ranges 

can be made proportional to that.

Based on the results obtained, table 5.11 presents ranges of suitable values 

for such parameters, for the type of problem under consideration. The values of 

the parameters used for the subsequent tests are also given.

In order to evaluate the efficiency of the genetic search, the number of it

erations to get a feasible solution for different tolerance zone combinations was 

plotted as shown in figures from 5.22 to 5.30 and tabulated as shown in tables 

5.13 to 5.21. The figures and tables for each data set contains essentially the 

same information, however, while the tables give the exact figure used for the 

ratio of centre position error to tolerance and correspondent number of genera

tions, the graphs emphasise the trend towards an increased number of generations 

required to get a feasible solution as the problem approaches infeasibility. For 

the first inspection problem, plots A, B, C and D represent cross sections of a 

three-dimensional graph having ratio of roundness error to tolerance and ratio of 

centre position error to tolerance on its horizontal axes. For the second inspection 

problem the ratio of roundness error to tolerance is replaced by the ratio of the 

difference between the MMC radius defined by the MZC reference and the nomi

nal radius to the tolerance on radius, that is (Rnom — Rmin) (using the notation of 

table 5.9) over tolerance on radius. The vertical dashed lines indicate the point at 

which the problem becomes infeasible. However, they represent an approximate 

indication, since that the SQP method also presents some numerical problems 

when the problem approaches infeasibility (as discussed in the next chapter).

Graphs B to D of the figures related to the first inspection problem (figures 

5.22 to 5.27) confirm what has already been discussed in chapter 3: it may be
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possible to get a pass inspection of a feature whose best fit is eccentric by more 

than its tolerance allows, provided that the roundness tolerance is sufficiently 

larger than its actual error. The same effect can be seen again from graphs B to 

D of the figures related to the second inspection problem (figures 5.28 to 5.30): 

when the actual diameter is larger than its MMC size, the combination of features 

can be acceptable in terms of interchangeability even though the eccentricity of 

some of the features (when measured using a best-fit criterion) is larger than its 

corresponding tolerance. Consequently, this is a clear advantage of this approach 

when compared with the standard method of fitting best-fit geometric elements 

to data and measuring their characteristics.

For the graphs relative to the first inspection problem (figures 5.22 to 5.27), the 

dashed curves indicate the number of generations when a buffer zone of l.OxlO-5 

mm is used (i. e. about 0.1 % of the tolerance zone), whereas the solid curves 

indicate the number o f generations with no tolerance zone defined. For the second 

problem, the curves plotted are for a buffer zone of l.OxlO-5 mm.

The centre position tolerance values were chosen such that tests were made 

around a region “close” to the limit between feasible and infeasible regions. For 

each data set, and for each plot, the ratio of centre position error to tolerance 

“closest” to the limit represent the maximum ratio for which the genetic search 

could find a solution within a certain number of generations. In general, the 

distance from the test limit to the estimated limit was of the order of 2 % of 

the estimated limit for the first inspection case and up to 5 % for the second. 

The general pattern o f results is consistent over all data sets tested. For the first 

inspection problem (figures 5.22 to 5.27), the results show that in the limit tested, 

for most cases, a feasible solution is found within about 60 to 80 generations. Data 

sets 12 and 13, as expected, required more generations to get a feasible solution, 

as the width of the ranges used in these cases were considerably larger than for 

the other data sets. Data set 11 also required a few more generations than data 

sets s-1, s-2 and s-3, perhaps indicating that the simulated data sets “behave” 

better than the real ones. For the second inspection case, in the tested limit, a
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solution is found in most cases within about 100 to 150 generations. Although 

the number of generations in the limit for data set s-4h03 is not fewer than for 

the others, as might be expected (since the chosen ranges are narrower than for 

the other two simulated data sets), the points at which the tests were made for 

this case were closer to the feasibility limit than for the other two data sets.

Table 5.12 presents, for some data sets and for some tolerance combinations, 

the number of generations and computation time to get a feasible solution. The 

number of generations for cases of easy inspection, either for the first or second 

problem, are well bellow 50, representing a computation time of the order of 1 

and 3 seconds for the first and second problems respectively. For the tested limits, 

the computation time goes up to about 4 and 15 seconds for the first and second 

problems respectively. For the second problem, although it has as many as three 

times the number of parameters and as many as twice the number of constraints, 

the number of generations to get a feasible solution does not increase proportion

ally. Considering that the speed of execution of the computer used is affected 

by variable time-share overheads, this execution speed can be considered slightly 

slower than that of a late generation microcomputer dedicated to a measuring 

machine, for example a 486, 33 MHz micro-computer.

However, when the error becomes closer to the tolerance value, that is, as the 

feasible region shrinks, the number of generations tends to increase exponentially. 

In the limiting case, when the feasible region is a point in space, the number of 

generations to find this point is unaffordably high. This can be overcome by using 

a buffer zone on the boundaries of the feasible region, such that the feasible region 

is effectively enlarged by a certain amount. For the first inspection problem, it can 

be seen that when a buffer zone of l.OxlO-5 mm is used, the number of generations 

for the tested limits go down to about 40 generations. For the second problem the 

number of generations plotted already considers a buffer zone of l.OxlO-5 mm, 

and therefore, in order to further reduce the number of generations at the limiting 

cases, a larger zone would have to be used. The approximation introduced by 

defining a buffer zone around the feasible region leads to a degree of uncertainty
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about whether an inspection that gave a positive result really meant that the 

part was acceptable or not. In practice, introducing a buffer zone implies a slight 

widening of the geometric tolerance zone. Typically the increase might be one 

part in a thousand, so the error introduced by this method will be no more 

than 0.1 %. Provided the buffer is small compared to the tolerance band the 

likelihood of falsely accepting bad components will be tolerably low. Of course, 

the buffer zone could be taken off the tolerance, with a slight possibility then of 

false negative results in marginal cases.

When there is no feasible solution, the search would continue for ever and 

therefore it has eventually to be stopped artificially. However, it is in fact pos

sible to predict the cases of clear rejection by monitoring the rate at which the 

objective or fitness function of the problem (as in equation 5.4) changes, that is by 

monitoring the evolution towards feasibility of the best candidate solutions from 

generation to generation. This is shown in figures 5.31 to 5.34. In each graph, 

the curves show the evolution of the best solutions towards feasibility for cases 

of: clear acceptance (dashed curve); close to the limit of feasibility ( dash/dot 

and dotted curves, respectively above and below the limit), and clear rejection 

(solid curves). The values used for the ratios of centre position error to tolerance 

are indicated in the captions. It can be seen that after few tens of generations, it 

is possible to identify the bad components, that is the cases of clear rejection. As 

the range of values that the fitness function assumes changes for different features, 

this might be normalised by the maximum value that the function assumes, that 

is its initial value.

Therefore, a strategy for inspecting using this method might involve the def

inition, during a setup phase, of two threshold points, such that: •

• if the normalised value of the fitness function for the best solution has not 

reached an expected value after a threshold on the number of iterations or 

computation time, it is possible to say with high confidence that no feasible 

point exists.
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• if it is not possible to say at an early stage whether the problem is infeasible 

or not just by monitoring the evolution of the fitness function, then the 

process is stopped after reaching a second threshold point on the number 

of generations or computation time. The higher the threshold, the smaller 

is the chance o f rejecting marginally good components.

However, considering that the maximum number of generations is limited by 

the computation time acceptable for the inspection cycle, it may happen that 

the process has to be stopped before such marginally good components can be 

identified. For example, for the first inspection case, for centre position errors of 

about .98 of their tolerance limits, the number of generations to get a feasible 

solution was in the region of 60 to 80, which represented a computation time of 

the order of 3 to 5 seconds on the computer used. In these cases, the number of 

generations was reduced if a buffer zone was defined around the feasible region. 

Thus, if the process had to stopped at that stage, geometric errors under their 

tolerance limits by less than those figures quoted above would result in false 

negative reports. Therefore, although it is not possible to be categoric about the 

best choice of threshold on the basis of the tests shown here, since that efficiency 

of genetic search methods also depends on data set, there needs to be a trade off 

between the maximum computation time and the chance of false negative reports. 

Further discussion and conclusions about this method are deferred until the last 

chapter, after examining other non-linear techniques, which is done in the next 

chapter.
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Figure 5.18: Number of generations to get a feasible solution for different popu
lation sizes:pc =  0.8, pm =  0.01, q =  1 and r =  100. Data sets: s-1 (-.), s-2 (..), 
d t ll  (-) and dtl2  (- -).

Figure 5.19: Number of generations to get a feasible solution for different crossover
rates: population size of 50, pm =  0.01, q =  1 and r  =  100. Data sets: s-1 (-.),
s-2 (..), d t l l  (-) and dtl2 (- -).
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35

30

mutation rate

Figure 5.20: Number of generations to get a feasible solution for different muta
tion rates: population size of 50, pc =  0.8, 9 =  1 and r =  100. Data sets: s-1 (-.) , 
s-2 (..), d t ll  (-) and dtl2  (- -).

d a ta
set

p en a lty  fu n ctio n  q
1 or 2 1

11 5 14
12 20 22

S-1 13 13
s-2 13 20

Table 5.10: Number of generations to get a feasible solution for different values 
of the exponent q of the penalty function: population size of 50 and pc =  0.8, 
pm =  0.01 and r =  100.

parameter recommended values value set
population size 60 - 80 60
crossover rate 0.65 - 0.75 0.75
mutation rate - 0.001

exponent q i fg i  >  1 . 0  9  =  2 , else 9 = 1 as recommended
penalty par. r from 10 100

Table 5.11: Recommended range of values and values set for genetic search control 
parameters.
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Figure 5.21: Number of generations to get a feasible solution for different widths 
of the range of real values for each variable, for data sets: s-1 s-2 d t ll
(-) and dtl2  (- -).

data set gen comput. time (sec) data set gen comput. time (sec)
S-1 23 1.3 12 85 4.9
s-1 72 4.2 13 20 1.6
s-2 51 2.6 13 97 5.2
s-2 17 0.9 s-4h01 17 2.7
s-3 60 3.5 s-4h01 71 10.5
s-3 35 2.0 s-4h02 10 1.8
11 18 1.0 s-4h02 106 15.8
11 108 5.3 s-4h03 30 4.6
12 25 1.7 s-4h03 116 16.9

Table 5.12: Computation time of the genetic search, for some examples of toler
ance combinations for different data sets.
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100
Plot A: R=1.005 Plot 8: R=0.9

c. p. orror/c. p. tolerance c. p. error/c. p. tolerance

Figure 5.22: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R); without 
buffer zone (-), and with a buffer zone of l.OxlO-5 mm (- -): data set s-1.

R =  1.005 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 23 0.91 13 0.91 7 1.0 4
0.83 23 1.0 13 1.0 7 1.11 7
0.91 23 1.11 16 1.11 7 1.25 10

0.985 23 1.136 47 1.25 67 1.44 72

Table 5.13: Number of generations to get a feasible solution for different ratios
of: centre position error to tolerance (C) and roundness error to tolerance (R),
without buffer zone: data set s-1.
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Plot A: R-1.007 Plot B: FU0.9

Figure 5.23: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R); without 
buffer zone (-), and with a buffer a zone of l.OxlO-5 mm (- -): data set s-2.

Table 5.14: Number of generations to get a feasible solution for different ratios
of: centre position error to tolerance (C) and roundness error to tolerance (R),
without buffer zone: data set s-2.
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c. p. error/c. p. tolerance c. p. error/c. p. tolerance

Figure 5.24: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R ); without 
buffer zone (-), and with a buffer a zone of l.OxlO-5 mm (- -): data set s-3.

Table 5.15: Number of generations to get a feasible solution for different ratios
of: centre position error to tolerance (C) and roundness error to tolerance (R),
without buffer zone: data set s-3.
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Plot A: R-1.009 Plot B: R=0.9

Figure 5.25: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R); without 
buffer zone (-), and with a buffer a zone of l.OxlO-5 mm (- -): data set 11.

R = 1.009 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 108 0.83 18 1.0 10 1.11 7
0.83 108 0.91 18 1.11 10 1.25 13
0.91 108 1.0 18 1.25 11 1.428 53
0.96 125 1.1145 55 1.31 46 1.53 74

Table 5.16: Number of generations to get a feasible solution for different ratios 
of: centre position error to tolerance (C) and roundness error to tolerance (R), 
without buffer zone: data set d t ll .
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100
Plot A: R-1.0066 Plot B: FU0.9

Figure 5.26: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R); without 
buffer zone (-), and with a buffer a zone of l.OxlO-5 mm (- -): data set 12.

R =  1.0066 R = 0.9 R = 0.8 R  = 0.7
C gen. C gen. C gen. C gen.

0.77 54 1.0 9 1.25 16 1.428 6
0.83 54 1.11 9 1.428 16 1.66 15
0.91 54 1.25 25 1.66 26 1.81 25

0.985 63 1.29 73 1.87 86 2.17 85

Table 5.17: Number of generations to get a feasible solution for different ratios
of: centre position error to tolerance (C) and roundness error to tolerance (R),
without buffer zone: data set dtl2.
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Plot B: R=0.9

Figure 5.27: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance and roundness error to tolerance (R); without 
buffer zone (-), and with a buffer a zone of l.OxlO-5 mm (- -): data set 13.

R =  1.0083 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 60 1.0 20 1.11 8 1.25 7
0.83 60 1.11 22 1.25 14 1.428 14
0.91 60 1.162 35 1.33 23 1.66 23

0.985 60 1.23 88 1.4 102 1.97 97

Table 5.18: Number o f generations to get a feasible solution for different ratios
of: centre position error to tolerance (C) and roundness error to tolerance (R),
without buffer zone: data set dtl3.
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Plot A: R=1.0066 Plot B: R=0.9

Figure 5.28: Number of generations to get a feasible solution for different, ratios 
of: centre position error to tolerance and ( Rnom — Rmin) to  tolerance on radius 
(R ), with a buffer zone of l.OxlO-5 mm: data set s-4h01.

R  =  1.0066 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 48 0.83 17 1.0 5 1.25 45
0.83 71 0.91 28 1.11 38 1.33 88
0.91 98 1.0 30 1.212 53 1.379 91

0.985 212 1.1428 81 1.2345 144 1.428 97

Table 5.19: Number of generations to get a feasible solution for different ratios of: 
centre position error to tolerance (C) and ( Rnom -  Rmin) to tolerance on radius 
(R ): data set s-4h01.
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Plot A: R-1.018 Plot B: R=0.9

Figure 5.29: Number of generations to get a feasible solution for different ratios 
of: centre position error to tolerance and (Rnom -  Rmin) to tolerance on radius 
(R ), with a buffer zone of l.OxlO-5 mm: data set s-4h02.

R =  1.018 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 53 0.83 20 0.91 8 1.0 5
0.83 80 0.91 24 1.0 10 1.11 8
0.91 106 1.0 43 1.11 90 1.25 10

0.985 219 1.11 151 1.19 198 1.428 152

Table 5.20: Number o f generations to get a feasible solution for different ratios of:
centre position error to  tolerance (C) and (R norn — R min) to tolerance on radius
(R ): data set s-4h02.
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Plot A: R-1.001 Plot B: R=0.9

Figure 5.30: Number of generations to get a feasible solution for different ratios 
of: centre position error to tolerance and ( R nom — R m in )  to tolerance on radius 
(R ), with a buffer zone of l.OxlO-5 mm: data set s-4h03.

R =  1.0066 R = 0.9 R = 0.8 R = 0.7
C gen. C gen. C gen. C gen.

0.77 12 1.0 7 1.11 22 1.25 10
0.83 14 1.11 30 1.25 35 1.428 28
0.91 19 1.25 89 1.66 76 1.66 33

0.985 35 1.395 123 1.85 194 2.1 116

Table 5.21: Number of generations to get a feasible solution for different ratios of:
centre position error to tolerance (C) and (R nom — Rmin) to tolerance on radius
(R ): data set s-4h03.
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Figure 5.31: Evolution of solutions towards feasibility for data set s-1, for ratio 
of roundness error to tolerance R =  0.9 and for ratios of centre position error to 
tolerance C  =  1.0 (- -), 1.136 (-.), 1.19 (..) and 1.6 (-): data set s-1.

number of generations

Figure 5.32: Evolution of solutions towards feasibility for data set 13, for ratio 
of roundness error to tolerance R =  0.9 and for ratios of centre position error to 
tolerance C  =  1.11 (- -), 1.23, (-.), 1.26 (..) and 1.66 (-): data set 13.
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Figure 5.33: Evolution of solutions towards feasibility for data set 13, for ratio 
of roundness error to tolerance R =  0.9 and for ratios of centre position error to 
tolerance C  =  1.11 (- -), 1.23, (-.), 1.26 (..) and 1.66 (-): data set s-4h01.

Figure 5.34: Evolution of solutions towards feasibility for data set 13, for ratio 
of roundness error to tolerance R =  0.9 and for ratios of centre position error to 
tolerance C  =  1.11 (- -), 1.23, (-.), 1.26 (..) and 1.66 (-): data set s-4h02.
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Chapter 6

Non-Linear Programming 
Methods for Inspecting 
Geometric Tolerances

6.1 Introduction

In the previous chapter, the approach discussed in chapter 3 and 4 for inspecting 

geometric features was extended to the inspection of circular mating features, 

a typical as well as important example of a situation that involves non-linear 

constraints in the formulation of the inspection problem. The advantages and 

disadvantages of using a linear model as an approximation to the non-linear model 

were also discussed and alternatives to formal non-linear programming techniques, 

namely genetic search techniques, were investigated. In this chapter, the use of 

formal non-linear programming techniques for inspecting geometric tolerances are 

further investigated and compared with the genetic search techniques discussed 

in the previous chapter.
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The optimisation of a non-linear function subject to non-linear constraints is 

considerably more complicated than that with only linear constraints, and the 

methods reflect this increase in complexity. With linear constraint methods, an 

initial feasible point is computed, and all iterates thereafter are feasible. This is 

possible because the search direction can be constructed so that the constraints 

in the current working set are automatically satisfied at all trial points computed 

during the iteration. By contrast, when even one constraint function is non

linear, it is not straightforward to generate a sequence o f iterates that exactly 

satisfy a specified sub-set of the constraints. Although driving the solution of a 

non-linear programme to optimality may present difficulties, the position may be 

more satisfactory when only the discovery of feasibility is of concern, as is the 

case of the inspection problems proposed here.

Despite the above comments, reliable commercial software implementations of 

non-linear programming methods exist, for example Sequential Quadratic Pro

gramming methods, or reduced gradient methods. Reduced gradient methods 

are particularly interesting because, similarly to linear programming methods, 

they can be used to determine whether a problem is feasible before starting the 

optimisation process.

This chapter investigates the applicability of such methods in the determina

tion o f the feasibility of the inspection problem. Specifically, it investigates the 

efficiency of commercial software implementations of two of such methods, namely 

the NAG implementation of the Sequential Quadratic Programming (SQP) [NAG, 

1990] and the GINO implementation of the Generalised Reduced Gradient (GRG) 

algorithm [The Scientific Press, 1992], for testing the feasibility of the model prob

lems formulated in chapter 5 (as in (5.6), (5.7) and (5.8), section 5.5.1).
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6.2 Non-Linear Programming Methods

An optimisation problem o f a non-linear function subject to non-linear constraints 

has the form of: minimise (or maximise) F ( X ) subject to

0 <  Ci(X) <  ub(n +  *') , i =  1, • • •, nineq ,

Ci(^f) =  0 , l  =  T lin e q  4" 1, * * * , Ul , (6.1)
lb(i) < Xi < ub(i) , i =  1, • • •, n ,

where X  is the solution vector of n variables, c,- are equality and inequality non

linear constraints and lb and ub are the lower and upper variable and constraint 

bounds. The number of inequality constraints, r i i n e q , or equality constraints, 

m — nincq may be zero. The objective function F ( X )  and the constraints c,- 

are assumed differentiable. In our inspection problems (formulated as in (5.6), 

(5.7) and (5.8)) there are no equality constraints and the inequality constraints 

are all differentiable. There is no objective function explicitly defined, since our 

problems are primarily concerned with feasibility.

Generally, optimisation methods generate a sequence of iterates leading to the 

solution. For example, in the methods for unconstrained and linearly constrained 

optimisation, an iteration is defined by the calculation of a search direction and 

of a step length. In general, non-linear programming methods generate the next 

iterate by solving a complete general unconstrained or linearly constrained sub- 

problem. This is the case of penalty and barrier function methods (see e. g. 

[Gill, Murray and Wright, 1981] and [Fiacco and McCormick, 1968]) and aug

mented Lagrangian methods (see e. g. [Gill, Murray and Wright, 1981] and 

[Hestenes, 1969]), which solve the original problem by formulating a sequence of 

unconstrained sub-problems related in some way to the original problem. Still in 

this class are the projected Lagrangian methods [Gill, Murray and Wright, 1981 

and Fletcher, 1987], which transform the original problem to a sequence of lin

early constrained sub-problems based on the Lagrangian function. However, some 

methods are based on extending methods for linear constraints to the non-linear
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line search direction

Figure 6.1: Feasible direction search.

case and, therefore, display the same structure as linearly constrained methods, 

namely, an iteration is composed of the calculation of a search direction followed 

by the calculation of a step length. The presence of non-linear constraints does 

not guarantee that a line search maintains feasibility so a simplistic explanation of 

what is done is that at any feasible point X °  a search direction d* in the tangent 

plane is calculated and a feasible arc is then obtained by projecting any point 

in the feasible region, as illustrated in figure 6.1. This is the case of gradient 

projection [Rosen, 1961] or reduced gradient methods [Abadie and Carpentier, 

1969] (these are often called feasible direction methods).

The next sections further review and present algorithmic details of the gener

alised reduced gradient method, and the Sequential Quadratic Programming, a 

particular method of projected Lagrangian methods.

Before moving on to the next section, the optimality conditions for a non

linear problem as in (6.1) are stated, since they apply to any method of solution. 

The necessary conditions for a solution X ’  to be a local minimum of (6.1) are 

[Gill, Murray and Wright, 1981]:

1. c(Af*) >  0, with c (X *) =  0, where c denote the subset of nb constraints 

that are active at X *;

2. g (X m) =  A (X *)TA*, where g (X *) is the gradient vector of the objective 

function, A(A’ *) is the matrix whose rows are the transposed gradient vec

tors o f the active constraints and A* is a n6-vector of Lagrange multipliers
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of the corresponding active constraints;

3. A* >  0 , t =  1, • • •, nb\ and

4. Z(X*)TW(X*,  X*)Z(X'‘) is positive semi-definite, where Z ( X m) denotes a 

matrix whose columns form a basis for the set of vectors orthogonal to 

the rows of Â(Ar*) and W''(Af*,A*) denotes the Hessian matrix, that is the 

matrix o f second partial derivatives, of the Lagrangian function L given by

L{X,X) =  F ( X ) ~  XTc(X)  (6.2)

When zero valued Lagrange multipliers A* are present, extra restrictions are nec

essary on the Hessian matrix of the Lagrangian function, as discussed in [Gill, 

Murray and Wright, 1981]. These optimality conditions for constrained optimi

sation are often called the Kuhn-Tucker conditions [Kuhn and Tucker, 1951].

6.3 Generalised Reduced Gradient Methods

Generalised Reduced Gradient (GRG) algorithms for non-linearly constrained 

optimisation problems were first developed by Abadie and Carpentier [1969], who 

also designed the first GRG software. In a computational study of Colville [1968], 

GRG methods were found to be among the most reliable and efficient at that time. 

Subsequent work on reduced gradient methods has been performed, amongst 

others, by Sargent and Murtagh [1973], Abadie [1978] and Lasdon, Waren et al. 

[1978], which resulted in further improvements to the original method.

There are many possible GRG algorithms. Basically, they are motivated by 

the same idea as are active set methods for linear constraints: to stay “on” a sub

set of the non-linear constraints while reducing the objective function. However, 

when non-linear constraints are involved, some sort of iterative “correction” pro

cess is required to follow a curving constraint boundary. The differences among 

reduced gradient type of algorithms arise from the variety of techniques used to
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achieve the aims of staying feasible and reducing the objective function. Their un

derlying concepts are described by Abadie and Carpentier [1969], Abadie [1978] 

and Lasdon, Fox and Ratner [1973]. This section briefly describes GRG2, the 

algorithm developed by Lasdon, Waren et. al. [1978], and implemented by GINO 

[The Scientific Press, 1992].

The problem as stated in 6.1 is converted to the following equality form by 

adding slack variables A'n+1, • • •, X n+m: minimise F (X )  subject to

Ci(X) — X n+i =  0 , i =  1, • • ■, m ,
(6.3)

lb(i) <  Xi <  ub(i) , t =  +

where lb(i) =  0 for i =  n +  1, • • • ,n  +  n,-„e,  and lb(i) =  ub(i) =  0 for t =  

n +  riineq +  1, • • •, n +  m. The variables X\, • • •, X „  are called natural variables.

Let X °  be a feasible solution to the constraints given in 6.1, and assume that 

nb of the c\ constraints are binding (i. e. hold as equalities) at X ". A constraint 

9i is taken as binding if |cj -  ub(n +  i)| <  e or |cj -  lb(n +  ¿)| <  e, that is if it is 

within e of one of its bounds (e is the parameter “EPNEWT” or “EPINIT” in 

GINO [The Scientific Press, 1992], see section 6.5.2).

GRG algorithms use the nb binding constraint equations to solve for nb of 

the natural variables, called the basic variables, in terms of the remaining n — nb 

natural variables and the nb slacks associated with the binding constraints. These 

n variables are called non-basic. Let j/ be the vector of nb basic variables and x 

the vector of n non-basic variables, with their value corresponding to X °  denoted 

by (y°, x°). Then the binding constraints can be written

c (y ,x )  =  0 (6.4)

where c is the vector of nb binding constraint functions (the definition of c is 

extended here to include the slack variables). The basic variables must be selected 

so that the nb-by-nb basis matrix B  =  (dci/dyj) i =  j  =  !,•••, nb is non-singular
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at X °  (that is has linearly independent columns). Then the binding constraints 

in 6.4 may be solved for y in terms of x, yielding a function y(x) valid for all 

(y, x)  sufficiently near (y_°,x°). This reduces the objective to a function of x only

F (y (x ) ,s )  =  r/j(x) (6.5)

and, in a neighbourhood of (y °,x °), reduces the original problem to a simpler 
reduced problem: minimise ?/>(x) subject to

l < x < u  (6.6)

where l and u are the bound vectors for x. The function ip(x) is called the reduced 

objective and its gradient, Vip(x), the reduced gradient.

The original problem is solved by solving a sequence of reduced problems. 

The reduced problems are solved by a gradient-based iterative method, whose 

general descent algorithm is as follows:

1. Compute the gradient o f the reduced objective function at the current point 

(y° ,x° ),  VV>(x°);

2. If the current solution is close enough of being optimal, stop;

3. Compute a one-dimensional search direction d from Vi/’ ix");

4. Determine how far to move along this search direction, starting from 

( j ° , i ° ) ,  and move this distance to a new point. Replace (y°,x°)  by this 

new point and return to step 1.

At a given iteration k, with non-basic variables x° and basic variables y°, 

the inverse of the basis matrix, B~l, is computed and the gradient V 0 (x ° )  is 

evaluated as follows

7T =  (dF/dy)TB - 1
(6.7)

dxp/dxj, =  (dF/dxj;) -  ir(5 c/9 i* )
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If (y_°i x°) is not optimal, then a search direction d is formed from VV»(x°) and 
a one-dimensional search is initiated to solve the problem

minimise ip(x° +  ad) (6.8)

for a  >  0.

There are several ways in which a search direction may be determine. GRG2 

uses the Broyden-Fletcher-Shanno (BFS) variable metric algorithm [Fletcher, 

1970a, and Shanno et. al., 1974], modified to accommodate upper and lower 

bounds on the variables as suggested by Goldfarb [1969]. Alternatively, conju

gate gradient (CG) methods [Fletcher, 1987] may be used (five CG methods are 

available in GINO [The Scientific Press, 1992], as described in section 6.5.2).

The minimisation of 6.8, that is to determine how far to move along d, is done 

only approximately to a first local minimum by choosing a sequence of positive 

values { o i ,  c*2 , • • • } for a. For each value a,-, ip(x° +  a;d) must be evaluated. 

By equation 6.5, this is equal to F(y(x°  +  a,d), x° +  aid) so that basic variables 

y(x°  +  a  id) must be determined. These satisfy the system of equations defined 

by the binding constraints

c(y ,x°  +  ctid) =  0 (6.9)

where x°, d and a, are known and y is to be found. This system is solved by a 

variant of Newton’s method [Abadie and Carpentier, 1969].

In determining how far to move along the search direction d, the initial step 

size is determined in a similar way to that described by Lasdon, Fox and Ratner 

[1973a], GRG2 then operates in two phases, halving the initial step size (if 

necessary) until an improved point is found, or doubling the step size until the 

minimum is bracketed. If, in calculating 0 (x ° +  a,d), the Newton’s method fails 

to converge, then, if this occurs on the first step, the step size is halved and it is 

tried again. Otherwise, if an improved point has already been found, the search 

is terminated. The search may continue until for three successive values of a<,
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A, B  and C , the objective value is such that they satisfy

0 <  A <  B <  C

+  Ad) >  xP(x° +  Bd) <  V>(x° +  Cd)
( 6.10)

Then the interval [A, C] contains a local minimum of ip(x° +  <*d). An approxi

mation to this minimum is located by fitting a quadratic function to the set of 

points.

If, in searching for such three successive points, some Ci constraints (which 

were previously not binding) or basic variable bounds may be violated. Then, a 

new (reduced) a  value is determined, such that at least one such new constraint 

or variable is at its bound and all others are satisfied. To determine this new 

constraint, an estimate is made of a  using linear interpolation between the cur

rent and previous values of the violated constraints. If, at this new point, the 

objective is less than at all previous points, the new constraint is added to the set 

of binding constraints, the one-dimensional search is terminated and solution of 

a new reduced problem begins. It is worth to mention that this is an important 

feature of this algorithm, as it attempts to return to the (non-linear) constraint 

surface at each step in the one-dimensional search. This differs from early strate

gies suggested by Abadie [1972], which involves linear search on the plane tangent 

to the constraint surface prior to returning to that surface.

The current solution is considered optimal if either of two tests is met. The 

first test checks whether the Kuhn-Tucker optimality conditions are satisfied to 

within a small positive number which can be controlled by the user. The second 

optimality test checks whether the fractional change in the objective is less than a 

certain value for a certain number of consecutive iterations, again set by the user 

(respectively “EPSTOP” and “ NSTOP” in GINO [The Scientific Press, 1992], 

see section 6.5.2).

When the basis constructed, B, is degenerate, that is it has one or more 

basic variables at bounds, the search direction produced may cause some of these
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variables to violate a bound immediately, i. e. d may not be a feasible direction. 

Then, GRG2 computes a usable feasible direction or proves that the current point 

satisfies the Kuhn-Tucker conditions.

The algorithm assumes that a feasible solution X °  is available. In the absence 

of an initial feasible solution, such a solution can be obtained (provided it exists) 

by the introduction o f artificial variables in a manner quite similar to that used 

for the simplex calculations [Hadley, 1964]. Referring to the problem formulated 

in 6.1, assume that no feasible solution is available. Select an initial point _X,mt 

and compute i =  1, • • •, m. For convenience assume that only the first l

inequality constraints are violated, so that Ci(Xtn,t) < 0 ,  i =  1, • • •, /. Then, / +  1 

new variables xn+i, i =  1, •••,/ +  1 are introduced and a region in a (n +  / +  1) 

parameter space is defined by the constraints

Ci(X) +  x„+i >  0 , * =  1, • - - ,  /

« ( X )  >  0 , t =  l +  1,- •• ,n ,„e?

C{(X) =  0 , i =  1 +  n,„e9, • • • ,m  (6.11)

$Zt'=l *̂ n+* *En+f+l ^  0
/&(») <  X  <  u6(i) , t =  1,• • • ,n  +  / 

where lb(i) =  0 for t =  n +  1, • • •, n +  l.

The new solution vector defined by x „+i, • • •, a;n+;+1], where xn+I =

—3i(Xinit), i =  1, • • •, / and xn+;+J =  — £ i =1 is a feasible solution to the set 

of constraints above. We now solve the problem

maximise Z  =  £n+i+i (6.12)

subject to the set o f constraints in 6.11. If max Z  =  x„+i+i =  0, then, the 

corresponding point X  is a feasible solution to the set of constraints originally 

defined in 6.1. Otherwise, if max Z  =  a:n4 (+i <  0, it can be proved that no 

feasible solution exists to the original set of constraints in 6.1.
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6.4 Projected Lagrange Methods

Fletcher [1974, 1977 and 1987], Murray [1976] and Gill, Murray and Wright [1981] 

present an overview of projected Lagrangian methods (or Lagrange-Newton meth

ods according to  Fletcher). Within Projected Lagrange methods, this review con

siders a class o f methods in which the objective function is specialised to be a 

quadratic function, so that the subproblem of interest is a quadratic programme 

(QP). The first suggestion of using a QP sub-problem to solve a non-linearly con

strained problem was made by Wilson [1963]. This was followed by innumerable 

works on this method, as reported by Gill, Murray and Wright [1981].

When optimality conditions 2, 3 and 4 hold, the optimum point X * is a sta

tionary point, that is minimum of the Lagrangian function. Based on this prop

erty, the optimum point X * of (6.1) can be defined as the solution o f a linearly 

constrained sub-problem, whose objective function is related to the Lagrangian 

function, and whose linear constraints are chosen so that minimisation occurs only 

within the desired sub-space. This suggests that the solution of a non-linearly 

constrained problem can be obtained by solving a sequence of linearly constrained 

sub-problems based on the Lagrangian function. Since a linearly constrained sub

problem is itself a constrained optimisation problem, the Lagrange multipliers of 

the sub-problem provide estimates of the multipliers of the original problem.

Thus, the following iterative method is suggested [Gill, Murray and Wright, 

1981 and Fletcher, 1987]: given an initial point Xina and an initial Lagrange 

multiplier vector Alm(, set k «— 0 and repeat the following steps:

1. Check termination criteria. If Xk satisfies the optimality conditions for the 

problem in (6.1), the algorithm terminates with Xk as the solution;

2. Solve the quadratic programming sub-problem. Let p* denote the solution
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of the quadratic programme

minimise $k(pk) 

subject to h ( P k )  > 0
(6.13)

3. Update the estimate of the solution. Set Xk+ 1  «— AT* +  pk, set A*+1 to the 

Lagrange multiplier vector associated with the kth sub-problem (6.13), set 

k <— k +  1 and go back to step 1. Note that the solution of the quadratic 

subproblem is the step from X * to X k+i rather than X k+\ itself.

During the kth major iteration, the linear constraints /* of the sub-problem in 

(6.13) are obtained by replacing the active set of non-linear constraints, c(Afc) =  

0, by their first order Taylor series approximation about X * given

h{pk) =  AkPk +  c* (6-14)

where c(Xk) (denoted by Ck) is the vector of active constraint values at Xk, and 

A(Xk) (denoted by Ak) is a matrix whose rows are the transposed gradient vectors 

of the active constraints.

Likewise, the objective function F (X )  in (6.1) is replaced by the quadratic 

function

<MP*) =  ffkPk +  \plHkPk (6.15)

where g(Xk) (denoted by gk) is the gradient of F(Xk), and Hk is an approximation 

of the Hessian matrix of the Lagrangian function (given in (6.2)).

The solution of (6.13) is given by solving the system of linear equations in pk 

and A*, namely
Hk -As
Âk 0

Pk
A*

~ 9 k
- C k

(6.16)

where A* is used as estimates o f the Lagrange multipliers for the (k -I- 1 )th sub

problem.
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The derivation of QP-based methods is based on conditions that hold only 

in a small neighbourhood of the optimum, and hence the significance of the sub

problem as in (6.14) and (6.15) is questionable when X k is not close to the opti

mum solution X m. Gill, Murray and Wright [1981], briefly consider formulations 

of the QP sub-problem that may differ from (6.13) when X * is far from optimal. 

For a discussion of the merits of different formulations of the QP sub-problem, 

see Murray and Wright [1980]. In the NAG implementation of this method (the 

Sequential Quadratic Programming (SQ P) function E04VCF [NAG, 1990]), the 

Hessian matrix of the quadratic approximation of F (X )  (Hk in (6.15)) is an ap

proximation of the Hessian matrix of an augmented Lagrangian function (see 

[Gill, Murray and Wright, 1981]).

In order to ensure that A*+i is a better point than A*, the solution of the QP 

sub-problem can be used as a search direction. The next iterate is then defined 
as

- ^ * + 1  =  Xk  +  otkPk (6-17)

where p* is the result of the QP sub-problem, and a* is a step length chosen to 

yield a “sufficient decrease” in some suitable chosen merit function that measures 

progress toward A*. In the SQP algorithm implemented by NAG [1990], the 

chosen merit function is an augmented Lagrangian function.

Strategies for determining the active set of constraints at each major iteration 

and initial estimates of the Lagrange multipliers are briefly discussed by Gill, 

Murray and Wright [1981], No information is given in the NAG documentation 

about such details.

One disadvantage of this method is that if no feasible point exists, the algo

rithm keeps iterating, in an attempt to reduce the constraint violations.
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6.5 Algorithm Implementation and Tests

6.5.1 Objectives

The objective of the work described here has been to test the practicability of 

using some standard non-linear programming techniques in the context of on-line 

geometric tolerance inspection. In order to do that, commercial software imple

mentations of the GRG and SQP methods (see sections 6.4 and 6.3), respectively 

GINO and NAG, were used for checking, for some data sets, whether the toler

ance constraints were violated. The data sets used were related to the inspection 

cases formulated in chapter 5, that is:

1. inspection of roundness and centre position of a circular feature, formulated 
as: find (a, b) and R such that

(x{ -  a)2 +  (j/, -  b)2 < ( R  +  tT)2 
(a:,- -  a)2 +  (y,- -  b)2 >  R2 
(xD -  a)2 +  (y0 -  b)2 <  tcp

for i =  1, • ■ •, N, where N  is the number of data points and (x0,y0) the 

nominal position.

2. template matching: inspection of position and dimension of four circu

lar features (holes or studs), having the same dimensions and tolerances, 

on a plate forming a square frame. Formulated as: find reference centres 

(a*, bk), k =  1, • • •, 4 such that

R'min <  (X i -a k)2+ (y i -b k )2 <  f iL x  , t =  !,••• ,JV* , A: =  !,-•• ,4  (6.19)

(6.18)

214



and
(L — tcj,)2 <  (oj — a2)2 +  (&i — &2)2 < (L  +  tc,,)2

{L -  i o ) 2 <  («1 -  a3)2 +  (6, -  h ) 2 < ( L  +  t^ )2
( 6 .20 )

(L  -  t c ) 2 <  (a2 -  a4)2 +  (62 -  b4)2 <  (L +  t ^

( l  —  t c p ) 2 ^  ( « 3  -  a 4 ) 2  +  ( 6 3  —  6 4 ) 2  <  +  t c j , y

where i\'k are the number of data points representing each circular feature, 

Rmin and Umax are the radius lower and upper limits, L  is the nominal 

distance between centres and t^  is the centre position tolerance. The refer

ences are numbered such that k =  1,2 are the bottom, respectively left and 

right, and k =  3,4 are the top, respectively left and right ones, as illustrated 

in figure 5.7.

The sequence of tasks obeyed for performing the tests was generally the same 

as for the tests described in the previous chapters. Details about the software 

packages, data acquisition and generation, and test procedures are described in 

the next sections.

6.5.2 GINO Software

GINO (General Interactive Optimiser) [The Scientific Press, 1992] is a modeling 

programme for solving optimisation problems which combines an interactive in

terface with GRG2, an implementation of the generalised reduced gradient (see 

section 6.3).

The version of GINO available for the tests was capable of handling up to 

100 variables and up to 50 constraints, requiring 512 kbytes of RAM (Random 

Access Memory) and appropriate for running on IBM PC compatibles or Apple 

Macintosh.

Details about how to enter the objective and constraint functions and run the 

programme are described in the software user guide and will not be considered
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here. In order to reduce the computational effort, an initial solution must be 

supplied, whether feasible or not, close to the estimated optimal solution. In 

addition to that there are a number of parameter options within GINO and 

GRG2 that allow you to set various print levels, set limits on iterative processes, 

set numerical tolerances used to determine if constraints are adequately satisfied 

and if various processes have converged, and choose alternative methods that 

can be used to perform different tasks. The parameters that are relevant to the 

iteration process are listed below. These parameters have default value assigned 

to them, which are indicated in square brackets. The values used in our problems, 

if different from the default ones, are indicated. The options are as follows:

• final binding constraint tolerance (EPNEWT) [10-4 ]: in GRG2 a constraint 

is assumed to be binding if it is within “EPNEW T” of its bound (either 

greater or less than the bound by no more than this amount). If a con

straint is not binding, then it is either within its bounds or it is a violated 

constraint. Increasing it can sometimes speed convergence, while decreas

ing it occasionally yields a more accurate solution. Values larger than 0.01 

should be treated cautiously, as should values smaller than 10-6 . A value 

“EPNEW T” =  10-5 was chosen, similar to the “buffer zone” defined by the 

genetic search model discussed in chapter 5.

• initial binding constraint tolerance (EPINIT) [10-4 ]: if it is desired to solve 

a given problem, first with a relatively large value o f “EPNEWT” , then with 

“EPNEW T” set to a smaller value, this can be achieved by assigning the 

initial constraint tolerance to “EPINIT” and the final one to “EPNEWT” .

• fractional objective change tolerance (EPSTOP) [10-4]: if the fractional 

change in the objective function is less than “EPSTOP” for “NSTOP” (see 

below) consecutive iterations, and the Kuhn-Tucker optimality conditions 

are not satisfied within “NSTOP” , then GRG2 terminates.

• pivot rejection tolerance (EPSPIV) [10-3]: if, in constructing the basis 

inverse, elements that are too small in absolute value are selected for pivot 

elements, it is possible that numerical inaccuracies in the inverse matrix will
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occur that will prevent finding the solution. Therefore, if the absolute value 

of a prospective pivot element is less than “EPSPIV” , then that element 

will be rejected as a pivot candidate.

• phase I objective augmentation (PH1EPS) [0.0]: sometimes an initial ap

proximation to the optimum point is available that yields a good value for 

the objective function but is infeasible. On the other hand, the initial fea

sible point found by phase I may yield a much poorer value of the objective 

function, sometimes so far from the approximate solution that GRG2 never 

finds the proper point. A non-zero value of “PH1EPS” will cause phase I 

to incorporate a multiple of the true objective, along with the sum of infea

sibilities, in the phase I objective. The multiple is selected so that, at the 

initial point, the ratio of the true objective and the sum of the infeasibil

ities is equal to “ PHIEPS” . The larger the value of “PHIEPS” , the more 

emphasis given to the actual objective function.

• iteration limit if no change in objective (NSTOP) [3]: if the fractional 

change in the objective function is less than “EPSTOP” for “NSTOP” con

secutive iterations, the programme will try some alternative strategies. If 

these do not produce a fractional function change greater than “EPSTOP” , 

then the optimisation process is terminated.

• Newton iteration limit (ITLIM) [10]: if after “ITLIM” iterations of the 

subroutine “NEW TON” , it has not converged satisfactorily (in its attempt 

to solve the binding constraint equations for the basic variable values), the 

iterations are stopped and corrective action is taken.

• one dimensional search iteration limit (LIMSER) [10,000]: if the number of 

completed one dimensional searches equals “ LIMSER” , then optimisation 

is terminated.

• basic variable estimation (IQUAD) [0]: The default method (option 0) for 

estimating initial values for basic variables uses linear extrapolation based 

on a calculated tangent vector. Quadratic extrapolation can often speed 

computations by providing better initial values of the basic variables for the
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Newton calculations. Quadratic extrapolation (option 1) has been selected 

in our case.

• derivatives (KDERIV) [0]: partial derivatives of the objective and constraint 

functions can be approximated by numerical forward differences (default 

option, 0) or central differences (option 1). Central differences are exact for 

linear and quadratic functions, while forward differences are exact only for 

linear functions. However, each central difference computed requires two 

function evaluations, while each forward difference requires only one.

• conjugate gradient method (MODCG) [1]: this parameter, together with 

“ MAXHES” (see below) controls which algorithm is used to generate search 

directions. If a conjugate gradient algorithm is to be used, then “ MODCG” 

specifies which one. The options are listed below, where option “1” , the 

Fletcher-Reeves formula, is the default one. For information about these 

methods, see Fletcher [1987] and Dennis and Schnable [1983].

“MODCG” value 

1 

2
3

4

5

Name of CG method 

Fletcher- Reeves 

Polak-Ribiere 

Perry

l-step DFP 

1-step BFGS

Using a conjugate gradient (CG ) algorithm instead of the default “BFGS” 

method (by setting “MAXHES” =  0, as indicated below) is primarily useful 

in problems with too many variables for the amount of computer memory 

available. Using one of the “CG ” options reduces storage requirements by 

about n(n  +  l ) /2  where n is the number of variables. However, the “CG” 

options often require more iterations and more computer time than the 

default “ BFGS” option.

• search direction (MAXHES) [-1]: the default option calls the “ BFGS” to 

compute the search direction. This option is the Broyden-Fletcher-Shanno
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(BFS) variable metric algorithm [Fletcher, 1970a, and Shanno et. al., 1974], 

modified to accommodate upper and lower bounds on the variables as sug

gested by Goldfarb [1969]. Otherwise, if “MAXHES” is set to “0” , it uses 

a conjugate gradient formula for generating search directions. The specific 

formula to be used is determined by “MODCG” .

6.5.3 SQP N A G  Function

The NAG library has two optimisation functions available that uses a sequential 

quadratic programming (SQP) algorithm: E04VDF and E04VCF. The latter is 

a comprehensive routine, that allows more user supplied parameter options than 

the other one, and was used in our tests.

E04VCF is a Fortran routine designed to minimise an arbitrary smooth func

tion subject to constraints, which may include simple bounds on the variables, 

linear constraints and smooth non-linear constraints (as formulated in 6.1). It 

uses a SQP algorithm on the lines briefly described in section 6.4, but standard 

documentation reveals little how it does some of the calculations.

This function is called by a piece of Fortran code in which a number of its 

input parameters such as number of variables and constraints, variable and con

straint bounds, and others are declared and defined. The user must supply an 

initial estimate of the solution close to the optimum. The user must also sup

ply sub-routines that define the objective and constraint functions and their first 

derivatives. Details about how to write such a programme are given in the soft

ware user guide and will not be considered here. In addition, there are a number 

o f parameters that can assume different values according to the problem or user 

needs. These parameters and the values used are described below: •

• EPSAF: this must specify a bound on the absolute error in computing 

the objective function F ( X )  at the initial point. It is recommended that
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“ EPSAF” be of the order of tM\F(X)\, where cm is the machine precision. 

This was done by calling the NAG routine XQ2AJF, which returns t\f. The 

value returned was 10-16, which was then multiplied by the absolute value 

of F (X ) .

ETA: this must specify how accurately the scalar a* (that is how far to 

move from X* to X*+1 along the search direction pk, see section 6.4) should 

approximate a univariate minimum of the merit function along pk- The 

recommended value of ETA for non-linearly constrained problems is 0.9, 

which corresponds to a relaxed line search.

FEATOL(j): this is an array that must contain a set of positive toler

ances that define the maximum permissible absolute violation in each con

straint in order for a point to be considered feasible. As the elements 

of “FEATOL(j)” increase, the algorithm is less likely to encounter dif

ficulties with ill-conditioning and degeneracy. However, larger values of 

“FEATOL(j)” mean that the constraints could be violated by a significant 

amount. It is recommended that “ FEATOL(j)” be set equal to the square 

root of the machine precision value «m  returned by the function X02AJF. 

A value of 10-s  was chosen for all the constraints, since this was compatible 

with the “buffer zone” set by the genetic search model.

COLD - logical: “COLD” must indicate whether the user has specified an 

initial estimate of the active set o f constraints. If “COLD” is “TRUE” , 

the initial working set is determined by the first QP sub-problem. The 

“warm” start option is particularly useful when the function is restarted 

at the point where an earlier run terminated. The “cold” start option (by 

setting “COLD” to “ . TRUE. ” ) was used.



6.5.4 Data Acquisition and Generation

The data sets used in this set of experiments were essentially the same as the 

ones used for the genetic search experiments, described in section 5.5.4, so as it 

was possible to make comparisons in terms of efficiency and result of inspection 

between the non-formal approach of genetic search and the non-linear program

ming methods discussed in this chapter. However, considering that the version 

of GINO available could handle no more than 50 constraints, the data sets had
b

to be sub-sampled, as described below, so as to comply with this limitation.

; I
Circular profiles originally data-logged for the tests described in section 3.8 

were used again. The data points were acquired by a coordinate measuring ma

chine, as described in section 3.8.2. Each set originally consisted of 30 data 

points evenly but not exactly spread along the circular features. For this set 

of experiments, the data sets were sub-sampled so that every other data point 

o f the original data set formed the sub-sampled data sets. The data sets were 

numbered 11,12, •••,15 in section 3.8.2 and will be called here sub-11, sub-12 

and so on, indicating that these are sub-sampled data sets. Linear plots of these 

profiles representing the original data sets (not sub-sampled ones), expressed in 

polar coordinates and shifted to the centroid of the points, are shown in figures 

3.19 to 3.23.

i
Simulated data sets were also used. These were generated as described in 

section 5.5.4, having the same characteristics of the data sets used for the genetic 

search experiments but with fewer data points. Thus, for the first inspection 

problem (formulated as in (6.18)), three data sets representing a single circular 

feature were generated, each one sampled by fifteen points. The characteristics 

o f these profiles are shown in table 5.1. The files are called sub-sl, 2 and 3. 

For the second inspection problem (four circular features on a plate, formulated 

as in (6.19) and (6.20)), five sets of four data sets were generated, simulating 

four circular features on a plate, each sampled by five points. Three of them 

were generated having the same characteristics of the ones used for the genetic
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data set lobes amplitude
noise

amplitude
radius
(mm)

Lx  --  Ly
(mm)

centre
distances (mm)

sub-4h01 3 0.06 0.005 10 50 100
sub-4h02 5 0.1 0.001 20 50 300
sub-4h03 7 0.02 0.002 3 5 30
sub-4h04 5 0.08 0.002 50 100 600
sub-4h05 7 0.15 0.002 5 10 50

Table 6.1: Characteristics of simulated data sets of four circular features on a 
plate.

Figure 6.2: Linear plot of simulated profile (top/bottom : air/metal): data set 
sub-4h04.

search experiments (namely s4h-l, 2 and 3) but with fewer data points. The 

other two were generated following the same reasoning, that is, the magnitude 

of the figures were chosen so as to simulate dimensions in millimeters (mm) and 

errors of roundness due to, mainly, errors of form. Again the characteristics of 

each set of four profiles were kept the same. Table 6.1 shows the characteristics of 

the profiles generated for the second inspection problem, including those already 

described in table 5.2.

The data sets were saved in ASCII files for further manipulation and are listed 

in appendix A .3. Figures 5.10 to 5.15 present linear plots of the profiles previously 

generated (but with 200 sampled points). Linear plots of the additional profiles 

sampled in sub-4h04 and sub-4h05 are illustrated in figures 6.2 and 6.3.
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Figure 6.3: Linear plot of simulated profile (top/bottom : air/metal): data set 
sub-4h05.

6.5.5 Test Procedures

The dimension, location and out of roundness of the circular features were mea

sured by fitting a minimum zone reference (MZC) to the data points. Similarly 

to the procedure described in section 5.5.5, the SQP NAG function E04VDF 

was used to minimise the zone parameter h subject to the set of constraints in 

(5.11). Computation of the MZC references was also carried out by GINO, and 

the results shown to be quite consistent with those obtained by using the SQP 

algorithm.

The parameters of the best fit and the error of roundness for the data sets re

lated to the first inspection problem are shown in tables 6.2 and 6.3, for simulated 

and real profiles respectively. For the data sets related to the second inspection 

problem, tables 6.4 to 6.8, for each set of four circular profiles, show the parame

ters of the best fits and the distances between centres. The circular features are 

numbered in such a way that profiles 1,2 are the bottom, respectively left and 

right, and 3,4 are the top, respectively left and right ones, as in figure 5.7.

In the set of tests using the GRG2 algorithm, and unlike the tests performed 

using genetic search, all the possible situations were considered, that is:

(
• when both errors (position and roundness for the first case and position and 

radius for the second) are less than respective tolerances;
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data set a b R (2 h)
sub-sl 100.002 99.9990 50.0070 0.0391
sub-s2 199.9994 200.0000 10.0010 0.0355
sub-s3 5.0016 4.9998 2.0023 0.0067

Table 6.2: Parameters of MZC reference and out o f roundness of roundness of 
simulated profiles: units in millimeters (mm).

data set a b R (2 h)
sub-11 52.9586 60.3766 13.6854 0.0183
sub-12 152.1365 61.6507 13.529 0.0563
sub-13 92.6307 62.645 4.997 0.0495
sub-14 67.8450 21.0954 8.8093 0.01835
sub-15 76.6165 41.79125 6.4743 0.09264

Table 6.3: Parameters of MZC reference and out o f roundness of roundness of 
real profiles: units in millimeters (mm).

data set sub-4h01
profile a b R h distance between centres

1- 4-
1 49.9993 50.0123 10.0027 0.0472 - -
2 150.0041 50.0014 10.0038 0.0485 100.0048 100.0105
3 50.0024 150.0141 10.0027 0.0491 100.0018 99.9984
4 150.0008 150.0119 10.0029 0.0482 - -

Table 6.4: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set sub-4h01: units in millimeters (mm).

data set sub-4h02
profile a b R h distance between centres

1- 4-
i 50.0000 50.0004 20.0003 0.0003 - -
2 349.9998 50.0002 20.0005 0.0003 299.9998 299.9998
3 50.0000 349.9998 20.0004 0.0003 299.9994 299.9996
4 349.9996 350.0000 20.0006 0.00026 - -

Table 6.5: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set sub-4h02: units in millimeters (mm).
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data set sub-4h03
profile a b R h distance between centres

1- 4-
1 4.9995 4.9956 3.0016 0.0164 - -
2 35.0053 4.9948 3.0015 0.0167 30.0058 30.0004
3 4.9997 34.9961 3.0012 0.0163 30.0005 29.9992
4 34.9989 34.9952 3.0006 0.0161 - -

Table 6.6: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set sub-4h03: units in millimeters (mm).

data set sub-4h04
profile a b R h distance between centres

1- 4-
1 99.9998 100.0002 50.0006 0.00015 - -
2 700.0000 100.0001 50.0009 0.00056 600.0002 599.9999
3 99.9998 700.0004 50.0009 0.00044 600.0002 600.0002
4 700.0000 700.0000 50.0011 0.00042 - -

Table 6.7: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set sub-4h04: units in millimeters (mm).

data set sub-4h05
profile a b R h distance between centres

1- 4-
i 10.0004 9.9641 5.0011 0.1220 - -
2 60.0007 9.9652 5.00074 0.1222 50.0003 49.9996
3 10.0000 59.9642 5.0004 0.1218 50.0001 50.0004
4 60.0004 59.9648 5.0001 0.1216 - -

Table 6.8: Parameters of MZC references of the four profiles and distances be
tween their centre positions, data set sub-4h05: units in millimeters (mm).
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data
set

nominal position eccentricity 
of MZCX y

sub-sl 100.002 100.019 0.02
sub-s2 199.9994 200.020 0.02
sub-s3 5.0016 5.0048 0.005
sub-11 52.9586 60.3866 0.01
sub-12 152.1365 61.6757 0.025
sub-13 92.6307 62.6700 0.025
sub-14 67.8450 21.1054 0.010
sub-15 76.6165 41.8412 0.050

Table 6.9: Simulated nominal position of profiles and eccentricity of respectives 
MZC reference centres: units in millimeters (mm).

• when the position error is greater than its tolerance and the out of roundness
j

or radius (either for the first or second cases) axe within their tolerance 

limits.

• when the roundness error or radius are out of their tolerance and position 

error is less than its tolerance;

• when the position error and roundness error or radius are outside their 

tolerance limits.

For the first inspection problem, following the same strategy used for the tests 

described in chapter 3 (see section 3.7.4), values of 0.7,0.8, 0.9,1.0,1.1,1.2,1.3 

times the out of roundness were used as roundness tolerances. For the centre 

position tolerance, values of 0.7, 0.8,0.9,1.0,1.1,1.2,1.3 times the twice the ec

centricity o f the MZC centre position from the nominal centre position (since the 

tolerance value is a diametrical zone) were used as examples of centre position 

tolerance. For each data set, the nominal centre position was fixed such that the 

measured centre position of the MZC reference was eccentric by an amount of 

the same magnitude of the roundness error, simulating dimensions in millimeters. 

The nominal centre position for each data set and eccentricity of respectives MZC 

references are given in table 6.9.
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data set Rmin Rnom Rnom Rmin Ljnin t ■Lnom
sub-4h01 9.9536 10.0536 0.1 99.9984 0.1 100.0984
sub-4h02 20.0000 20.1500 0.15 299.9994 0.2 300.1994
sub-4h03 2.9845 3.0348 0.05 29.9992 0.05 30.0492
sub-4h04 50.00034 50.10034 0.1 599.9999 0.1 600.0999
sub-4h05 4.8785 5.0785 0.2 49.9996 0.2 50.1996

Table 6.10: Nominal radius and distance between centres simulating four holes 
on a plate; units in millimeters (mm).

For the second inspection problem, following the same strategy adopted for 

the tests described in chapter 5 (see section 5.5.5), the nominal radius (R„om) 

was defined by considering the features as holes, and defining the lower limit as 

the maximum material condition (MMC) dimension. For each simulated plate, 

Rnom was defined so as to be larger than Rmin =  min(Rk — A*) (k  =  1, • • • ,4), 

according to the MZC references given in tables 6.4 to 6.8. The values for Rnom 

were computed so as to be larger than Rmin by an amount of the order of 10-1 

to 10-2 , simulating dimensions in millimeters. The values of Rmln and Rnom 

for each data set are given in table 6.10. Values of 0.7,0.8,0.9,1.0,1.1,1.2,1.3 

times Rnom — Rmin were defined as the tolerance on radius, where in this case the 

tolerance is indicated as RnomHolerance. In the limiting case, when the tolerance 

is ±{Rn om R m in  ), the MMC dimension will be the minimum radius, amongst the 

four features, defined by the respective MZC references. The nominal distance 

between centres was defined by selecting the minimum distance between MZC 

centres of any two related features, Lmtn, and adding to it a value of about the 

same magnitude as the tolerance on radius (simulating dimensions in millimeters). 

Thus, Lnom =  Rmin +  C where t is the value added. The values for t and Ln0m 

are given in table 6.10. Values of 0.7,0.8, 0.9,1.0,1.1,1.2,1.3 times t  were used 

as the position tolerance, such that when the tolerance is t ,  the distance between 

the MZC centres for at least one of the combinations will be on the limit, that is 

on the edge of the tolerance zone.

Following this pattern, for each data set, related to either the first or second 

problem, a set o f 49 different tolerance zone combinations were fed to the GRG2
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algorithm implemented in GINO. In the case of the SQP algorithm, preliminary 

tests had shown that when no feasible point was available, the algorithm kept 

iterating indefinitely and it had to be stopped eventually. The strategy adopted 

in this case, similarly to the genetic search, was to assume infeasibility after a 

“certain” number of iterations (as discussed in the next section). Therefore, the 

number of tolerance zone combinations tested, per data set, either for the first or 

second problems, were reduced to those in which infeasibility was not expected, 

based on the results obtained using the GRG algorithm.

For both algorithm implementations, an initial solution, close to the optimum, 

was supplied. For the data sets representing real profiles, that is, data sets sub—11 

to sub — 15, the values of the least squares fits to the data sets were used as the 

estimate. The least square references were again computed by using the algorithm 

suggested by Forbes [1989] (see section 2.5.3 and appendix B). For the simulated 

profiles, the nominal values for the centre position and radius, that is as defined 

in equations 5.10 and 5.9 respectively, were used as initial estimates.

The NAG routine was run under Unix, on a SUN 4/330, with 48 Mbytes of 

RAM (Random Access Memory) and speed of 16 MIPS (Million of Instructions 

Per Second). The efficiency of the NAG function algorithm was measured in 

terms of number of major iterations and computation time. The computation 

time was estimated by running the programme under the “time” Unix command, 

which returns the CPU user time. The GINO programme was run under DOS, 

on a IBM PC computer, microprocessor 386DX, 20MHz clock, with a math co

processor. The efficiency of this programme was measured in terms of number of 

iterations of the GRG algorithm and computation time. The computation time 

was estimated by timing “manually” the iteration process.
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6.6 Results and Discussion

The number of iterations of the GRG algorithm to get a pass/fail result of in

spection was tabulated as shown in tables 6.12 to 6.14 and 6.16 to 6.17 for the 

first inspection problem and tables 6.22 to 6.26 for the second problem. The 

least squares solution was used as initial estimate to start the iteration process. 

The result of inspection was indicated by appending a minus sign to the number 

of iterations if it was a fail. It is worth mentioning that for data sets sub-4h01 

and sub-4h05, related to the second inspection problem, the result of inspection 

was positive when the tolerance on radius was set smaller than its limit to avoid 

rejection, that is in which the radius is outside the tolerance zone for that, at a 

value of — Rmin), as defined in table 6.10. This can be explained by the

relatively large minimum circumscribing zones defined by very few data points, 

5 for each profile. A higher number of data points would reduce the uncertainty 

about this (pass) inspection decision. The average number of iterations of the 

GRG algorithms, in the case of the first inspection problem, are shown graphically 

in figures 6.4 and 6.5, respectively for the data sets representing simulated and 

read profiles. Figure 6.6 shows it for the data sets related to the second inspection 

problem. The computation time of the GRG algorithm for the data sets tested 

is shown in table 6.11, for some tolerance zone combinations.

Regarding the tests using the GRG algorithm, the results show that the gen

eral pattern in terms of number of iterations is consistent over all data sets tested. 

They also show that the algorithm takes longer to determine that it is definitely 

impossible to reduce to zero the sum of infeasibilities than to find a feasible 

solution to a particular problem. This is probably due to the fact that the op- 

timidity conditions are not entirely satisfied and therefore the algorithm tests 

whether there is any significant improvement o f the objective function over a 

certain number o f iterations.

A comparison between the average number of iterations for the tests using 

simulated and real profiles, for the first problem ( figures 6.4 and 6.5) shows that
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the results are generally consistent apart from a peak caused by data set sub-s2, 

and confirms that the simulated data sets (generated in the way described in 

sections 5.5.4 and 6.5.4) are valid for such tests.

Using the least squares solution as initial estimate has shown to be adequate, 

guaranteeing that a solution was found (when one existed) in a reasonable number 

of iterations. Thus in practice it is recommended that a least squares computation 

be performed before applying this method.

Despite the increase in complexity of the second inspection problem, the num

ber of iterations required is generally the same as for the first one. Note that for 

the region in which the centre position error is greater than its tolerance, and 

radius deviation (from its nominal value) is less than its tolerance, the result 

of inspection is predominantly positive, therefore resulting in lower number of 

iterations than for the first case in the corresponding region (roundness error 

smaller than its tolerance). However, by comparing the computation time be

tween both, it can be seen from table 6.11 that although the number of iterations 

is not altered, the amount of computation in each iteration is sensibly higher 

for the second case. The computation times tabulated are for a 386SX, 20MHz 

microprocessor. By comparison, these figures would be reduced by a factor of 

1/5 when running the algorithm on a 486, 33MHz microprocessor. Therefore, the 

efficiency of this method represents no problem for its use in a context of on-line 

inspection, even for more complex problems.

Regarding the SQP algorithm, the number of major iterations to get an opti

mal solution, in cases where the feasible region was not empty, are shown in tables 

6.15 and 6.21 for the first inspection problem, and 6.27 for the second problem. 

Again the least squares solution was used as initial estimate to start the iteration 

process. It can be seen that the number o f major iterations had little variation 

all over the different combinations that resulted in feasibility. The computation 

time was very fast, and varied little, in the region of 0.5 to 1.0 second for the 

cases tested. The least squares solution has again shown to be adequate, guar
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anteeing that a solution was found (when one existed) in a reasonable number 

of iterations. For infeasible problems the algorithm kept iterating and therefore 

had to be stopped eventually. One strategy to overcome this limitation might be, 

as suggested in the case of genetic search methods, to  assume as infeasible any 

problem that takes more than a specified limit of major iterations. From tables 

6.15, 6.21 and 6.27, conservative number of iterations for the sort of problems 

tested might be in the region of 20 iterations, which represents a computation 

time o f the order of 5 seconds on the computer used. However, when the geo

metrical errors are just under their tolerance limits, the iteration process may 

present problems due some numerical instabilities, which may be caused by La

grange multipliers becoming extremely small, or because a direction of descent 

could not be found or even because the tolerances on the constraints are too 

tight [NAG, 1990]. If the latter situation occurs, the instability may be resolved 

by relaxing the tolerances on the constraints. These numerical instabilities may 

cause the process to terminate without a solution or to keep iterating up to the 

maximum number of iterations previously defined. For the problems under test, 

such instabilities started when the centre position error was about 0.99 of its 

tolerance limit (when the combined error was equal to its tolerance limit). In 

such marginal cases, the number of iterations required for the algorithm to come 

up with a solution may exceed a pre-defined threshold on the number of itera

tions, resulting in false negative reports, similarly to what was observed when 

using genetic search techniques. Therefore, in this case there again needs to be 

acceptable trade off between the maximum computation time and the chance of 

false negative reports. Further discussion and conclusions about these methods 

are deferred until the next chapter.
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data
set

number of 
iterations

computation 
time (sec.)

data
set

number of 
iterations

computation 
time (sec.)

sub-si 1 1 3.3 sub-15 10 5.9
sub-s2 17 6.8 sub-4h01 12 12.1
sub-s3 10 4.1 sub-4h02 13 11.2
sub-11 6 2.9 sub-4h03 9 10.0
sub-12 12 6.5 sub-4h04 13 10.4
sub-13 10 4.1 sub-4h05 12 9.9
sub-14 17 7.5

Table 6.11: Longest execution times of the GRG2 algorithm for the data sets 
tested.

Figure 6.4: Average number of iterations of the GRG2 algorithm for inspection 
of roundness and centre position, over the whole set of simulated profiles.
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Figure 6.5: Average number of iterations of the GRG2 algorithm for inspection 
of roundness and centre position, over the whole set of real profiles.

Figure 6.6: Average number of iterations of the GRG2 algorithm over the whole
set of data sets for inspection of radius dimension and centre position of four
holes on a plate.

233



roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -3 -3 -4 -8 -8 -8 4
0.8 -3 -3 -4 -8 -8 4 2
0.9 -11 -2 -11 -2 2 2 2
1.0 -9 -5 -9 3 2 2 2
1.1 -7 -3 -4 3 2 2 2
1.2 -6 -3 -4 2 2 2 2
1.3 -6 -3 -4 2 2 2 2

Table 6.12: Search for feasible solution: number of iterations of the GRG2 algo
rithm to pass inspection (positive) or to fail inspection (negative); single circular 
feature, simulated data set sub-sl.

roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -6 -6 -6 -10 -11 -15 6
0.8 -6 -6 -6 -11 -11 7 7
0.9 -5 -4 -4 -4 -12 4 4
1.0 -7 -9 -17 13 13 13 4
1.1 -11 -9 -9 8 6 4 4
1.2 -6 -6 -7 6 6 4 4
1.3 -6 -6 -6 5 5 4 4

Table 6.13: Search for feasible solution: number of iterations of the GRG2 algo
rithm to pass inspection (positive) or to fail inspection (negative); single circular
feature, simulated data set sub-s2.
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roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -13 -10 -13 -14 -3 1 1
0.8 -17 -7 -14 -2 1 1 1
0.9 -12 -3 -2 -2 1 1 1
1.0 -5 -6 -7 1 1 1 1
1.1 -9 -6 -3 4 1 1 1
1.2 -9 -10 -11 3 1 1 1
1.3 -10 -9 -9 3 1 1 1

Table 6.14: Search for feasible solution: number of iterations of the GRG2 algo
rithm to pass inspection (positive) or to fail inspection (negative); single circular 
feature, simulated data set sub-s3.

data
set

roundness
(tolerance/error)

centre position (tolerance /  error)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

sub-sl
1.0 - - - - 2 2 2
1.1 - - 5 3 2 2 2
1.2 - 5 5 3 2 2 2
1.3 6 5 5 3 2 2 2

sub-s2
1.0 - - - - 2 2 2
1.1 - - - 3 2 2 2
1.2 - 3 2 3 2 2 2
1.3 4 3 2 3 2 2 2

sub-s3
1.0 - - - - 2 2 2
1.1 5 4 2 2 2 2 2
1.2 5 4 2 2 2 2 2
1.3 7 4 2 2 2 2 2

Table 6.15: Search for feasible solution: number of major iterations of the SQP 
NAG algorithm to pass inspection, for single circular features, simulated data 
sets.
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roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -7 -6 -5 -6 -6 4 4
0.8 -7 -6 -6 -6 -6 4 4
0.9 -7 -6 -7 -7 7 4 4
1.0 -7 -6 -7 7 7 4 4
1.1 -7 -6 -7 7 7 4 4
1.2 -7 -6 -7 7 7 4 4
1.3 -7 -6 -7 7 7 4 4

Table 6.16: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-11.

roundness 
(tolerance /error) 0.7 0.8i 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -13 -9 -9 -5 -4 3 2
0.8 -12 -11 -11 -5 5 2 2
0.9 -15 -10 -10 -5 4 4 2
1.0 -12 -10 -10 5 3 3 2
1.1 -10 -9 -10 5 3 2 2
1.2 -10 -9 -10 5 3 2 2
1.3 -10 -8 -10 5 3 2 2

Table 6.17: Search for feasible solution: number of iterations to pass inspection
(positive) or to fail inspection (negative), data set sub-12.
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roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -10 -3 -5 -5 -10 6 6
0.8 -10 -3 -5 -5 5 5 5
0.9 -10 -3 -5 -5 5 5 5
1.0 -10 -3 -5 5 6 5 5
1.1 -10 -3 -5 5 5 5 5
1.2 -10 -3 -5 5 5 5 5
1.3 -10 -3 -5 5 5 5 5

Table 6.18: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-13.

roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -16 -7 -15 -7 -5 5 3
0.8 -17 -7 -15 -8 -6 3 2
0.9 -6 -7 -15 -8 5 3 2
1.0 -7 -8 -15 5 5 3 2
1.1 -8 -8 -16 7 3 3 2
1.2 -15 -8 -11 5 3 2 2
1.3 -16 -8 -11 5 3 2 2

Table 6.19: Search for feasible solution: number of iterations to pass inspection
(positive) or to fail inspection (negative), data set sub-14.

237



roundness 
(tolerance /error) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -3 -3 -3 -5 -5 -8 2
0.8 -3 -3 -3 -5 -12 5 2
0.9 -6 -6 -3 -5 -7 2 2
1.0 -3 -6 -3 4 3 2 2
1.1 -3 -3 -3 3 3 2 2
1.2 -3 -3 -3 3 3 2 2
1.3 -3 -3 -3 3 2 2 2

Table 6.20: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-15.

data
set

roundness 
( tolerance /  error )

centre position (tolerance /  error)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

sub-11
1.0 - - - - 5 5 5
1.1 - - 5 5 5 4 2
1.2 6 6 5 5 5 5 4
1.3 6 6 5 5 5 5 4

sub-12
1.0 - - - 4 4 4 4
1.1 - 4 4 4 4 4 4
1.2 4 4 4 4 4 4 4
1.3 4 4 4 4 4 4 4

sub-13
1.0 - - - - 2 2 2
1.1 - 2 2 2 2 2 2
1.2 2 2 2 2 2 2 2
1.3 2 2 2 2 2 2 2

sub-14
1.0 - - - - 2 2 2
1.1 - - 5 5 4 4 3
1.2 6 6 5 5 5 4 4
1.3 6 6 6 6 5 5 5

sub-15
1.0 - - - - 4 4 4
1.1 - - - 4 4 4 4
1.2 - 5 5 4 4 4 4
1.3 5 5 5 4 4 4 4

Table 6.21: Search for feasible solution: number of major iterations of the SQP 
NAG algorithm to pass inspection, for single circular features, real data sets.
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radius
(tolerance / Rn0m -  Rmin) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -9 -8 -9 6 7 3 2
0.8 -8 -8 -12 6 4 2 2
0.9 -8 -8 -8 4 3 2 2
1.0 -12 -8 8 2 2 2 2
1.1 -12 -8 5 2 2 2 1
1.2 -12 -8 5 2 2 1 1
1.3 -11 -9 5 2 2 1 1

Table 6.22: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-4h01.

radius
(tolerance / R n o m  fumin') 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -11 -9 -12 -6 -8 -10 2
0.8 -13 -9 -10 -6 -8 2 2
0.9 -8 -9 -8 -6 2 2 2
1.0 -9 -10 -9 2 2 2 2
1 1 -15 -17 -9 2 2 1 1

f 1.2 -15 -11 -9 2 2 1 1
1.3 -15 -11 -8 2 1 1 1

Table 6.23: Search for feasible solution: number of iterations to pass inspection
(positive) or to fail inspection (negative), data set sub-4h02.

239



radius
(tolerance jRnom fumin') 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -9 -8 -8 -9 4 3 2
0.8 -8 -8 -9 7 3 2 1
0.9 -8 -7 -8 5 2 2 1
1.0 -6 -6 -5 2 1 1 1
1.1 -6 -6 -5 2 1 1 1
1.2 -6 -6 -5 2 1 1 1
1.3 -6 -6 -5 2 1 1 1

Table 6.24: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-4h03.

radius
(tolerance /Rnom Rmin) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

\ center position 
(tolerance /error)

0.7 *-11 -13 -12 -8 -8 3 3
0.8 -11 -10 -12 -8 -12 2 2
0.9 -9 -9 -9 -8 2 2 2
1.0 -9 -11 -8 2 2 2 1
1-1 -10 -11 -8 2 2 1 1
1.2 -10 -11 -8 2 1 1 1
1.3 -12 -11 -9 2 1 1 1

Table 6.25: Search for feasible solution: number of iterations to pass inspection
(positive) or to fail inspection (negative), data set sub-4h04.
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radius
(tolerance jRn0rn Rulin') 0.7 0.8 0.9 1.0 1.1 1.2 1.3

center position 
(tolerance /error)

0.7 -8 -9 -9 7 5 2 2
0.8 -8 -9 -10 8 5 2 2
0.9 -8 -9 -9 6 4 2 2
1.0 -8 -12 8 2 2 2 1
1.1 -12 -12 5 2 1 1 1
1.2 -12 -12 5 2 1 1 1
1.3 -12 -11 5 2 1 1 1

Table 6.26: Search for feasible solution: number of iterations to pass inspection 
(positive) or to fail inspection (negative), data set sub-4h05.

data
set

radius
(tolerance/Rnom R-min)

centre position (tolerance /  error)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

sub-4h01

0.9 - - - 2 2 2 2
1.0 2 2 2 2 2 2 2
1.1 2 2 2 2 2 2 2
1.2 2 2 2 2 2 2 2
1.3 2 2 2 2 2 2 2

sub-4h02
1.0 - - - 1 1 1 1
1.1 - - 2 2 2 2 2
1.2 - 2 2 2 2 2 2
1.3 2 2 2 2 2 2 2

sub-4h03
1.0 - 2 2 2 2 2 2
1.1 3 2 2 2 2 2 2
1.2 3 3 2 2 2 2 2
1.3 3 3 3 3 2 2 2

sub-4h04
1.0 - - - 2 3 3 3
1.1 - - 3 2 3 3 3
1.2 4 4 3 3 3 3 3
1.3 4 4 4 3 3 3 3

sub-15

0.9 - - - 3 2 2 2
1.0 - 3 2 2 2 2 2
1.1 3 3 2 2 2 2 2
1.2 3 3 3 3 3 3 3
1.3 3 3 3 3 3 3 3

Table 6.27: Search for feasible solution: number of major iterations of the SQP 
NAG algorithm to pass inspection, for four holes on plate, simulated data sets.
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Chapter 7

Conclusions and Suggestions for 
Further Work

7.1 Introduction

This work has proposed an approach to the inspection of geometric tolerances 

by which the data points representing the features to be inspected are checked 

for containment within a zone defined by the design geometric tolerance specifi

cations, in contrast to the usual approach of first defining best-fit references to 

data and then checking whether the deviations from the references and their pa

rameters satisfy the design tolerance constraints. A selection of important cases 

have been considered explicitly, including roundness, position of circular features, 

flatness, squareness and the combination of several circular features.

It has been shown that determining whether sets of data points represent

ing some features meet their tolerance specifications is equivalent to determining 

whether a feasible region is defined by the combination of sets of linear or non

linear constraints derived systematically from the data points and the geometric
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characteristics under consideration. This approach is superior to that based on 

defining best-fit references when the combination of two characteristics of a fea

ture is to be inspected, such as roundness and centre position for example.

Several numerical methods for assessing problem feasibility have been thor

oughly examined. Linear methods were investigated in chapters 3 and 4, that 

are applicable if the constraints are naturally linear or if there are valid approxi

mate mathematical models to the inspection problems. Non-linear methods were 

then examined for inspection situations in which linearisation is not appropriate. 

Chapter 5 investigated the use of genetic search techniques as opposed to for

mal non-linear techniques such as the generalised reduced gradient (GRG) and 

sequential quadratic programming (SQP), which are explored in chapter 6.

It remains here to bring together the various strands of these investigations 

and hence to evaluate the extent to which each may influence the next generation 

of computer aided metrology software. First a comparison is made in terms of 

practicability and accuracy between the non-linear methods looked at in chapter 

6 and genetic search techniques. There follows some further comparison between 

linear and non-linear techniques. The relative overall merits of the methods 

are then considered and final conclusions presented in the penultimate section, 

followed by some suggestions for further work.

7.2 Comparison of Non-linear Techniques

All the types of genetic search algorithm and non-linear programming techniques 

under consideration seem from theoretical evidence and from the tests performed 

in sections 5.5 and 6.5, to offer valid techniques for geometric tolerance inspection. 

As far as practicability and accuracy of results are concerned, the tests indicate 

that each has good and bad features that must be considered and balanced.

In terms of computation times, the three algorithms performed very well for
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cases of easy acceptance for the sort o f problems under test. The tests using the 

GRG algorithm were run on a 386, 20 MHz micro-computer, and therefore the 

figures quoted in table 6.11 have to be multiplied by a factor of about 1/5 to 

obtain their equivalent execution times running on the SUN computer used for 

testing the other two algorithms. The GRG and the SQP algorithms produced 

a result (in cases of easy acceptance) in about the same time, while the genetic 

algorithm was a bit slower. However, the tests of the genetic algorithm were more 

severe, as larger data sets were used in this case: 30 and 60 data points for the 

first and second problems respectively, as opposed to 15 and 20 data points used 

for the tests of the GRG and SQP algorithms. The reason for using smaller data 

sets was that the GRG GINO implementation available [The Scientific Press, 

1992] was able to process up to 50 constraints only, and consequently the data 

sets had to be sub-sampled for such tests. Considering that each data point 

generates two constraints, the number of constraints in the genetic search was as 

many as two and three times that used for the GRG and SQP tests. The number 

of parameters of the problems tested was increased from 3 to 8 (for the first 

and second problems respectively). The computation time for the different sizes 

of the problems tested increased approximately by a factor of 3 for the genetic 

algorithm, while for the GRG and SQP algorithms it increased approximately by 

a factor of 3 and 2.5 respectively. For the SQP and GRG algorithms, the number 

of operations performed in each iteration is roughly proportioned to (perhaps 

increasing with a power slightly greater than unity) the number of parameters 

and constraints (which determine the size of the matrices to be manipulated), 

and the degree of non-linearity of the constraint functions (which determines the 

difficulty of the line search process). Unlike formal non-linear techniques, the 

genetic search is not so affected by the size of the problem or the degree of non

linearity of the constraints, except that it is generally more “difficult” to find a 

feasible solution as the dimension of the parameter space increases and it is more 

constrained. Although the stochastic processes inherent to genetic search make it 

difficult to predict behaviours theoretically, a combination of general arguments 

and experimental evidence suggests that the computational effort of the genetic
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algorithm may increase less rapidly than those for GRG and SQP algorithms as 

problem complexity increases.

The main advantage of the GRG algorithm over the genetic and SQP algo

rithms is that it yields a definitive answer of whether the problem is infeasible 

or not in a reasonable computation time and presents negligible instability or 

uncertainty of result when the geometric errors are just under their tolerance 

limits. The uncertainty of result of the GRG algorithm would be caused essen

tially by the tolerance or buffer zone defined around the constraints. However, 

for typical buffer values needed here, of the order of 10-5 of the tolerance, the 

error introduced would be of the order of 0.001 %, which in practice has no sig

nificance. On the other hand, both the SQP and the genetic search algorithms 

had to be halted filter a “certain” number of iterations when there was no feasible 

solution, since the algorithms could not detect such condition and kept iterating 

indefinitely. The problem with such a measure is that, if the computation time 

has to be under “certain” limits, there may be some marginal feasible cases for 

which the allowed computation time is not enough to differentiate them from 

the truly infeasible cases, resulting in acceptable components being rejected by 

such inspection methods. The genetic algorithm has an advantage over SQP in 

the sense that it is possible to detect cases of clear rejection at an early stage, 

therefore saving computation time.

For the cases tested, when limiting the computation time to about 15 and 5 

seconds (on the computer used) for the genetic and SQP algorithms respectively, 

large majority of tests failed to solve in the time available when the geometric 

error was within 2 and 1 % of its tolerance zone from limit for the genetic and 

SQP algorithms respectively, while such failures were very rare at greater than 5 

and 2 % respectively. On a tolerance zone of 0.1 mm, the uncertainty region is 

no more than a few micrometers and directly comparable with typical measuring 

machine accuracies (e. g. the CMM used for these tests has an accuracy of 5/im 

on each axis). Since the error due to algorithmic approximation is independent of 

and generally similar to or smaller than the error due to the machine inaccuracies,
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the resulting vectorial summation of these two errors (the square root of the sum 

of the square of the errors) will not be a great deal larger than the error due to 

machine inaccuracy alone. Thus the number of false decisions will not be much 

different from that which would occur with a “perfect” algorithm and a real (not 

perfect) CMM. Moreover, the algorithmic errors can be controlled to lie almost 

entirely in the false positive (or false negative) region while those of the instrument 

will be randomly scattered in both regions. Although these algorithms lead to 

some marginally good components being rejected, it is reasonable to expect that 

there exists, from the engineering and economics point of view, an acceptable 

trade off between the maximum computation time and the risk of false negative 

reports resulting from adopting such techniques.

Further conclusions about these methods will be drawn after considering a 

comparison between linear and non-linear techniques.

7.3 Comparison of Linear and Non-linear Tech

niques

The main disadvantage of linear techniques is that they are only applicable when 

the formulation of the inspection problems can be made linear in its parame

ters. On the other hand, non-linear techniques can be applied to any situation, 

no matter whether the formulation of the problem results in linear or non-linear 

constraint functions. However, the extra computational effort resulting from us

ing such tèchniques is unnecessary when the formulation of the inspection problem 

can be made linear without significantly compromising the precision of the in

spection process, as is the case of inspection of some important characteristics 

such as roundness, flatness, squareness and parallelism amongst others. In ad

dition, as the size o f data sets grows, the computational effort resulting from 

formal non-linear techniques increases at a greater rate than with linear ones, 

and consequently they are less affordable.
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The Simplex method of linear programming is sensitive to the size of the data 

sets, mainly due to artificial variables added to the problem (as many ¿is the 

number of constraints), which increase the number of iterations and the number 

of operations per iteration. By contrast, for the Fletcher algorithm, the number 

of iterations is not affected by the size o f the data sets (neither are the sizes of the 

matrices to be processed). For example, the tests in section 3.7, for inspection 

of roundness and centre position, were performed using large data sets (513 data 

points), from a roundness measuring machine. Using specially derived start-up 

procedures, computation times hardly exceeded one second, considerably shorter 

than the ones recorded for the tests performed in chapter 5 and 6, using non-linear 

techniques, for data sets with few tens of data points.

Large data sets result from a number of surface probing techniques, such as 

profilometry, as is the case of roundness measuring machines or CMMs fitted 

with analogue probes, and vision systems, when the surface or profile is sampled 

by image analysis. The use of such techniques is expected to increase and with 

it the need to process large sets of inspection data in an efficient way. The 

Fletcher algorithm provides a valid, rapid and significant approach for cases in 

which linearisation is possible and large data sets are to be processed. It far 

out-performs GRG and SQP under such conditions. With minimal data sets 

from CMMs, there is still a speed advantage, although its practical significance is 

smaller since the other methods are fast enough for many practical applications.

7.4 Conclusions

Table 7.1 summarises in general form some of the advantages and disadvantages 

of the methods looked at. Referring to the headers on table 7.1, the generality of 

use of a method is whether it can cope with linear as well as non-linear functions. 

The ease of operation of a software implementation of a method is understood 

as whether it needs, at an initial stage, to set parameters, apart from the geo
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metric tolerancing information, which will interfere with the performance of the 

algorithm. The certainty of result o f a method is an indication of the chances of 

not having false “pass” or “fail” inspection results. Another important feature of 

a method is whether it can cope well with large data sets.

A particular algorithmic implementation is considered here generally suitable 

for on-line inspection if it can produce a result within about 5 seconds, run

ning on a computer of moderate speed expected to be dedicated to a measuring 

machine, for example a 486, 33 MHz micro-computer. This execution time is 

generally less than that of data acquisition cycles of, for example, a coordinate 

measuring machine or a roundness measuring instrument. When a vision ma

chine is used, although the data acquisition time itself is very low, the time for 

loading/unloading the component from the measuring site (or clearing the field 

for image acquisition in case of “on-site” inspection) can generally be assumed 

to be in the region of few seconds. The information about errors is whether it is 

possible using the same software implementation or the same method to measure 

the errors of the workpiece being inspected, in addition to checking whether they 

satisfy tolerance requirements.

Of the methods considered, the Simplex and Fletcher algorithms are for linear 

programming and in this sense are limited to those cases in which linearisation is 

possible. On the other hand, genetic search and non-linear programming methods 

have general use, as they can be applied to linear as well as non-linear inspection 

problems.

method generality 
of use

ease of 
operation

certainty 
of result

large 
data sets

on-line
inspec.

information 
about errors

Simplex R G G P R/G G
Fletcher R G G G G P
Gen. S. G R R R P/R P

GRG G G G P R/G G
SQP G G R P R G

Table 7.1: General appreciation of the methods investigated: G - good; R - 
reasonable ; P - poor.
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Any software implementation of the linear programming methods would be 

quite easy to operate, as long as interfaced with a friendly front-end, since no 

decision has to be made about any parameter that might affect the efficiency or 

accuracy of the algorithm. This is not quite the same when genetic search or 

SQP methods are used. Apart from the parameters intrinsic to the algorithms 

that have standard recommended values which could be pre-set by the manufac

turer, other parameters would have to be defined such as threshold values and 

buffer zones, which are in general application dependent. However, as the defini

tion of these parameters is determined by quality control policies and production 

planning schemes, the definition o f such parameters could be taken at a man

agerial level. Therefore, although there would be a more complex initial set-up 

phase probably requiring professional input, no greater skill than usual would be 

required of a machine operator.

Non-linear programming methods such as generalised reduced gradient (GRG) 

methods also need a number of parameters to be set by the user. However, there 

exist recommended values for this parameters which perform well for most cases, 

including the ones under consideration. Therefore such parameters could be pre

set to default values, making any software implementation of such methods quite 

easy to operate, again provided that it is interfaced by a suitable front-end.

Regarding implementation o f these methods, a common problem is how to 

automate the process of formulating and feeding a range of inspection problems 

to such algorithms. The details of constraint sets that must be set up depend 

critically upon the geometry of the features and will vary somewhat even between 

closely related problems such as inspecting position and size of two, three or more 

circular features positioned in different ways, or combining different characteris

tics o f features, to be inspected simultaneously. If each particular inspection case 

had to be treated at the level used in this work, the methods would be impractical 

for all but research or special, high-cost applications. The sort o f features and 

characteristics that need to be inspected are defined in standards [BSI, 1990], and 

for these, the type of constraint function generated by each data set or by the
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tolerance constraints could, in principle, be held in the “library” of a compiler 

or knowledge based system which would “compose” the inspection problem as 

defined by the user. Although this is not within the scope of the work presented 

in this thesis, it must be addressed if a more general and automated inspection 

system is considered. General evidence of the structure of inspection problem 

formulation, as examined here, and of for example, the rapid recent progress in 

implementing algebraic manipulation on small computers all reinforces the plau

sibility of useful “features inspection compilers” being developed.

As discussed, in margined cases when the errors are very close to the tolerance 

values, there exists an uncertainty about a “pass” or “fail” result of inspection. 

The certainty of a “pass/fail” result from a linear programming method, will be 

dependent on two factors: the machine precision and the level of approximation 

of the linear formulation of a non-linear inspection problem. In general numerical 

errors will be very small, while linearisation errors are deemed tolerable a priori, 

so the results of such algorithms may be regarded as very accurate. For the genetic 

and SQP algorithms, the main factor of marginal uncertainty is the limit on the 

number of iterations to find a feasible solution. In some cases, there may be a 

feasible solution which is not found because it would take more computation time 

to find it than has been allowed by the defined threshold. The level of uncertainty 

will depend on the the maximum computation time affordable for inspection 

(and so on the computation speed that can be afforded) and on the width of the 

tolerance or buffer zone on the constraints. The buffer zone could be taken off the 

geometric tolerance zone, with a slight possibility then of false negative results 

in marginal cases. Although both algorithms present such a problem, the tests 

have shown that the chances of false result for the SQP algorithm are slightly less 

than for the genetic algorithm, making the former a better choice in this sense.

In the case of the GRG algorithm, although a number of approximations are 

made by the algorithm, as described in section 6.5.2, in practice the main factor 

of uncertainty will be the buffer or tolerance zones on the constraints, which, as 

discussed, will be of very little significance in practice.
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The Simplex method, in contrast with the Fletcher algorithm, is expensive 

computationally when processing large data sets. The GRG and SQP algorithms 

are by nature more complex than linear programming and also directly affected by 

an increase in the size o f data sets. The genetic algorithm also leads to an increase 

of the computational time (by increasing the number of iterations), although not 

by as much as formal non-linear programming techniques.

Considering the computation speed of computers presently likely to be ded

icated to a measuring machine, and from the considerations made above, the 

Simplex method can be considered adequate for on-line inspection, if small data 

sets (up to a few tens o f points) are used (for example the cases tested in section 

4.4). The same can be said about the GRG algorithm. The Fletcher algorithm 

is adequate for on-line inspection, no matter what size of data set is used. In 

the case o f the genetic and SQP algorithms, their adequacy for on-line inspection 

is mainly dependent on the acceptable level of uncertainty of result of marginal 

cases. For the cases tested, and for the level of uncertainty considered, they are 

on the edge of what can be regarded as adequate for on-line inspection. The SQP 

method can be considered slightly better than the genetic algorithm. Ideally, 

faster computers would be required for the genetic and SQP algorithm, so as to 

minimise the risk of false “fail” results. It is, of course, likely that such computers 

will be available at suitable costs in the near future.

Of the methods considered, the Fletcher algorithm has the disadvantage that 

it does not indicate an optimal point in cases where a feasible region exists. As a 

consequence of that, no information can be obtained about the errors generated 

by the manufacturing process. The genetic search method has the same limi

tation, not because it is not possible to obtain an optimum point but because 

it would take too long. The other methods under consideration do not present 

such limitation and therefore have the advantage of being suitable not only for 

inspection purposes but for checking for drifts of the manufacturing process.

To conclude, the Fletcher algorithm offers a very useful tool for inspecting
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the combined effect of form, position and orientation errors of geometric fea

tures, especially when the features are sampled by large data sets, as long as 

the formulation of the inspection problem involves only linear functions. There 

are inspection problems which are naturally linear and others which can be well- 

linearised, and for these this algorithmic approach is very attractive. The GRG 

algorithm brings together the advantages of generality of use, ease of operation, 

certainty of result and information about errors. It is also adequate for on-line 

inspection with small to moderate data sets. Therefore, the combination of the 

GRG and the Fletcher algorithm in one software package can adequately cope 

with a large range of inspection problems and different sizes of data sets.

The main drawback of genetic and SQP algorithms is that some uncertainty of 

result in marginal cases may have to be accepted, in order to keep the inspection 

cycle as short as required. The computation times for the SQP algorithm are 

shorter than those of the genetic algorithm, and in this respect, the SQP algo

rithm can be considered the better. Although for the sort of problems and data 

sets used for tests, the computational times of the GRG and SQP were shorter 

than those of the genetic algorithm, it has been seen that the rise in computa

tional effort of the genetic algorithm in response to an increase in problem size 

and data sets is less than those of formal non-linear techniques. Therefore, it may 

well be that, for more complex problems and large data sets, the genetic algo

rithm offers a better alternative. At present there is insufficient data to do more 

than speculate on this point. As faster low-cost computers become available 

genetic search will become more practicable but also the size of the problems 

that can be handled by GRG in a reasonable time will increase. If constraint 

feasibility methods become widely used for inspection, then problems of greater 

geometrical complexity will be addressed and a trend towards increasing number 

of constraints and larger sets will continue. Thus, genetic search should certainly 

not be discounted although for the immediate future GRG is recommended as 

the preferred method for situations where the linear techniques developed here 

cannot be used.
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7.5 Suggestions for Further Work

It is envisaged that the work presented in this thesis can be followed up on three 

levels. On a first level, the approach discussed here can be generalised to in

clude a wide range of inspection situations. Thus, in addition of the geometric 

features and characteristics already discussed, others could be included, such as: 

cylindricity, straightness of a cylinder axis, straightness of a general axis, square

ness or parallelism of a cylinder axis related to plane, sphericity and so forth. 

Considering that the number of parameters required to represent for example a 

cylinder (8), a sphere (4) or a line in three-dimensions (4) are in the same region 

of those o f the inspection problems discussed in this thesis, it seems likely that 

such implementations would be satisfactory for on-line inspection.

In addition, software implementations of the algorithmic methods considered 

here could be developed in a form appropriate for routine application. Such soft

ware would include an interface with a measuring machine (e. g. a coordinate 

measuring machine) for data acquisition, and a user friendly front-end for tol

erance information input, any other input required, and output of results. The 

crucial aspect is to devise ways to automate the process of formulating different 

inspection problems (constraint generation) based on the input, by a machine 

operator, o f the basic features and tolerances to be inspected.

On a second level, work can be carried out on whether other numerical meth

ods not considered in this work can be applied and, if so, on their relative merits 

when compared to the ones already discussed in this work. This is the case, 

for example, of linear and non-linear minimax Chebyshev approximation, as sug

gested by Forbes [1992] or other methods, such as penalty function methods, that 

transform the constrained problem into a sequence of non-constrained problems.

On a third and more complex level, an investigation can be pursued on possible 

ways of integrating the inspection activity with the design stage, such that the 

geometric errors of different features can be inspected by direct comparison with
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their CAD data files.

Based on the formalisms developed here and on the experimental results ob

tained, the likelihood of practically useful systems being produced is high enough 

to justify further work in all of these areas.
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Appendix A

Data Set Listings

A .l Talyrond Data Sets

Data sets 1 to 10 represent profiles from a roundness measuring instrument. 

They should be read horizontally, row by row. Each element in the array (of 513 

elements) corresponds to the radial deviation of the profile, where the angular 

position of each point is implicitly given as 2tt* /512 where i is the element index 

in the data array.

Data Set 1

1.0795 0.6350 0.8255 0.9525 1.0160 1.7780 1.3970 0.5080 0.1905

-0.0635 -0.1905 0.3810 0.8255 1.3970 0.6350 0.8255 1.1430 1.4605

1.2065 1.7145 1.3970 0.3810 0.5715 1.3970 2.7305 1.9050 1.2700
1.4605 2.4130 2.0955 2.3495 1.6510 1.4605 1.9685 0.5715 1.5875
2.1590 1.8415 2.5400 7.4295 5.0165 3.0480 1.8415 1.5240 4.0005
3.2385 3.7465 3.1750 4.1275 3.3655 3.6195 3.3655 3.3020 3.2385
2.9845 4.0640 4.1910 4.3180 3.3655 4.1910 3.6195 2.9845 3.3020

4.2545 3.9370 3.1750 2.4765 3.7465 3.8100 2.7305 3.1115 3.6830

3.4925 3.8735 2.1590 3.1115 3.0480 3.4290 3.8100 3.8735 3.8735
3.4290 3.0480 2.7940 2.7305 2.2860 1.9685 2.9210 2.1590 2.7940
2.0320 1.7780 2.1590 1.3970 1.8415 2.0955 2.4765 2.7940 0.7620
-0.8890 -0.0635 0.5715 0.7620 0.6985 1.0795 1.5875 1.9685 1.5875
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0.9525 0.6350 -0.0635 -1.1430 0.7620 0.3175 -0.8890 -0.1905 -0.0635
0.0635 -1.9050 -2.2225 -2.6670 -0.9525 -0.5715 0.0000 -0.6350 -1.4605
-0.9525 -1.4605 -2.3495 -2.6035 -2.3495 -2.3495 -3.0480 -3.0480 -3.3655
-3.9370 -1.9685 -2.2225 -2.2860 -3.2385 -2.0955 -2.4765 -3.7465 -2.4130
-2.7940 -1.9685 -3.9370 -4.5085 -1.9685 -1.8415 -3.0480 -3.1115 -3.0480

-2.7940 -2.6035 -2.7940 -4.1910 -3.6830 -5.2705 -5.5245 -3.8735 -3.8100

-5.9055 -5.1435 -5.3340 -5.0165 -3.9370 -3.8100 -3.8100 -4.0005 -4.6355

-3.4925 -4.8895 -3.4925 -2.3495 -2.6670 -2.1590 -1.5240 -1.9685 -1.9685
-2.4130 -1.7780 -3.6195 -2.4765 -2.0955 -3.8735 -4.8895 -3.1115 -4.2545

-4.8895 -5.9690 -3.0480 -0.1270 -2.6670 -2.3495 -2.5400 -1.5875 -2.7305

-1.3970 -1.9050 -0.1270 -0.1905 -0.8255 -1.0160 -0.8255 -0.5080 0.6350

1.0160 0.0000 0.2540 -1.7145 -0.3810 0.3810 -0.3810 -1.2065 -1.0160
0.1905 -1.0795 -1.2700 -1.3335 -1.6510 -1.3970 -0.9525 -0.8255 -0.5080

-0.5080 0.1905 1.3335 0.2540 1.5875 0.5080 2.1590 2.6670 1.7145
0.5715 0.7620 1.3335 2.7305 1.4605 1.7145 1.7145 1.8415 0.1270

2.0320 2.0320 2.9210 3.7465 4.0640 2.8575 1.7145 1.6510 2.6670
2.0320 1.9050 2.0320 3.4290 2.7305 2.1590 2.9210 3.1115 0.5080

1.5875 2.2225 3.3655 2.3495 1.2065 2.6035 2.6035 0.5080 2.3495

3.1750 2.6035 2.8575 3.3655 2.1590 2.2860 2.5400 2.7305 2.2225

2.2860 1.4605 1.3335 1.4605 1.9050 2.2225 2.1590 3.1750 3.8100

3.3020 2.4765 2.4130 2.6670 3.7465 2.8575 1.7145 2.4130 2.7305

1.9050 0.9525 2.2860 2.2860 2.0320 1.2700 1.4605 1.9050 1.7780
2.2225 1.5875 3.0480 2.7940 2.4130 3.6195 3.4290 3.4925 4.0640
4.0640 3.2385 4.7625 4.8260 3.4925 2.9845 3.5560 3.6830 4.6990

5.6515 4.8260 3.3020 3.9370 3.8735 4.6355 4.5720 4.3815 5.1435

3.7465 3.0480 4.0005 4.9530 3.3020 4.6990 4.1275 5.2705 5.6515
4.2545 5.0165 5.9055 5.7785 6.2230 6.0325 4.3180 5.9055 6.0960

6.9850 6.0325 6.8580 6.5405 4.8895 6.0960 7.1755 6.1595 7.9375

6.4135 6.7310 7.4295 6.9215 7.3025 5.9055 7.6200 7.6200 8.2550

7.8105 8.2550 6.9850 8.3185 8.1280 8.8265 9.2075 8.7630 9.4615

9.9060 9.5250 9.3980 10.5410 9.2075 9.3980 9.6520 8.1915 9.5250

10.7315 9.2710 9.0170 10.4140 11.0490 10.4140 9.5250 9.9695 9.0170

9.1440 10.3505 10.0330 9.5885 9.9060 10.9855 10.4140 10.7950 11.5570
10.9220 9.4615 10.7315 11.6205 10.6680 11.2395 11.1760 10.8585 10.7315(
9.7155 10.2235 9.2075 11.6205 10.7315 11.1125 10.6045 11.0490 9.9060

9.7155 9.4615 9.2710 9.0170 9.5250 8.6995 8.7630 8.0010 10.0965

7.1755 7.1120 7.7470 8.3185 8.9535 9.2075 9.5885 8.6995 8.7630
8.6995 8.5090 7.6200 8.5725 8.6360 9.2710 7.7470 8.1280 7.6200
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7.8740 7.8105 8.1915 7.7470 7.6835 7.1120 8.5090 6.9850 7.2390
6.7945 6.2230 5.8420 6.0325 5.3340 6.0325 5.2070 5.0800 4.9530

5.9690 5.0165 5.0165 5.7150 5.2705 4.5085 3.4290 4.8895 3.6195

3.4925 2.3495 4.1275 3.6830 3.8100 2.8575 3.2385 2.5400 2.7940

2.4130 2.9210 2.9845 2.4130 1.7145 2.3495 0.3175 0.4445 2.7940
0.1905 1.6510 2.0320 1.0160 0.7620 0.0000 -0.4445 1.0160 0.8890

1.3970 0.0000 1.3335 0.5715 2.0955 2.2225 1.9050 2.3495 2.4130

Data Set 2

4.8895 6.6675 5.5245 5.7785 6.0325 4.8895 6.2865 6.3500 6.6675

4.8260 5.9055 6.8580 6.7310 5.6515 6.7945 6.7945 7.2390 5.9055

5.0165 3.8735 6.3500 5.7150 4.0640 4.6990 2.4130 6.0960 5.2705

3.9370 3.2385 1.9685 3.5560 2.1590 5.2705 4.8895 4.1275 2.0320

2.3495 4.0005 3.1750 5.0165 4.3180 2.7940 3.3020 3.8100 2.2860
3.8100 3.3655 3.9370 2.7940 3.9370 3.5560 -0.1905 2.7940 1.1430
0.2540 2.9845 1.1430 2.8575 0.9525 0.5715 -2.1590 0.8255 0.2540
0.3175 -0.3175 -0.5715 -0.2540 -1.7145 -0.4445 -0.5715 -2.2225 -0.8890

-0.8890 -1.3970 -2.6035 -4.6355 -2.9845 -2.8575 -4.3180 -3.7465 -3.4290

-3.6830 -4.4450 -5.7785 -3.7465 -5.3975 -6.2230 -4.9530 -8.8900 -6.2865

-7.1120 -5.3340 -6.3500 -5.9055 -6.5405 -6.6040 -6.6675 -6.3500 -6.0325

-5.7150 -5.7785 -5.6515 -5.2705 -5.1435 -5.0800 -4.7625 -4.4450 -4.1910

-4.1275 -4.0640 -3.5560 -3.2385 -3.3655 -2.9845 -2.4130 -2.2860 -1.9685

-1.3335 -1.8415 -1.5875 -1.7780 -1.3335 -1.3335 -1.0795 -0.9525 -0.8255

-0.8255 -0.4445 -0.2540 -0.3810 -0.0635 0.0635 0.1905 0.3810 0.8255

0.6985 0.2540 1.4605 1.4605 1.7145 2.0955 1.6510 1.8415 1.8415

1.8415 1.9685 1.9050 1.7780 1.9685 1.9050 2.2225 2.2225 2.3495
2.4130 2.4130 2.6035 2.3495 2.4130 2.5400 2.6670 2.9845 2.5400

2.7305 2.4130 2.5400 2.3495 2.0320 2.0955 2.1590 2.0320 2.2225

2.1590 2.2225 1.6510 1.7780 1.7780 1.5240 1.4605 0.8890 0.4445

0.6985 -0.1270 -2.1590 -0.0635 -1.2700 -0.5080 -0.8890 -0.8255 -0.9525

-1.5240 -3.1115 -1.3970 -2.1590 -2.8575 -3.3655 -3.4290 -4.5085 -3.6195

-5.3340 -4.3815 -3.1750 -4.3815 -3.4925 -3.6195 -5.2070 -5.2705 -5.0165

-5.2705 -5.2705 -5.9055 -6.6675 -6.4770 -6.4135 -6.7310 -7.1755 -8.8265

-7.4295 -7.5565 -8.0645 -8.1915 -8.0645 -7.3025 -7.4295 -6.4770 -6.0960

-5.7785 •-5.3975 -5.1435 -4.9530 -4.7625 -4.6355 -4.6355 -4.1275 -3.8100

-3.6830 -3.5560 -3.3020 -3.1115 -3.0480 -2.7305 -2.4130 -2.4130 -2.0955
-1.9050 -■1.7145 -1.5240 -1.3335 -1.0795 -0.9525 -0.6985 -0.5715 -0.5080
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-0.3175 -0.1905 -0.1270 0.0635 -0.0635 0.1905 0.3810 0.3810 0.8890
0.8890 1.1430 0.9525 1.4605 1.7145 1.9050 1.7780 2.1590 2.2225

2.3495 2.5400 2.6670 2.2225 2.9210 2.9845 3.3020 3.5560 3.4925

3.5560 3.6195 3.3655 3.6830 3.5560 3.8100 3.8100 3.8735 3.8735

3.8735 4.0005 3.7465 3.9370 3.9370 4.0005 4.1275 3.6195 3.7465

3.7465 4.0640 4.2545 4.1910 4.1910 4.3180 4.1275 4.1910 4.3815

4.4450 4.1910 4.5085 4.2545 4.2545 4.5720 4.3815 4.0640 3.9370

4.3815 4.1910 4.2545 4.1910 4.1275 4.0005 4.1910 4.1910 4.1275

4.0640 4.0640 3.8100 3.6830 4.0640 4.1275 4.1275 4.3815 4.5085

4.5085 4.6990 4.4450 5.2705 4.8895 4.7625 4.9530 4.8895 4.9530

4.8895 5.2705 5.1435 5.5880 5.7150 5.6515 5.8420 6.1595 6.2230

6.2865 6.3500 6.3500 6.4135 6.0325 6.0960 6.0960 6.1595 6.0325

5.9055 5.9055 5.9055 6.5405 6.4135 6.5405 6.3500 6.4770 6.5405

6.3500 6.4135 6.2865 6.4770 6.6675 6.7310 6.7310 6.6040 6.6040

6.9850 6.7310 6.4770 6.4770 5.6515 6.4135 6.0960 6.3500 6.0325

6.5405 6.2865 6.3500 6.4135 6.3500 6.2865 6.2230 6.1595 4.8895

5.8420 5.6515 5.7150 5.2070 5.2705 5.0800 5.4610 5.2705 5.2070

4.6990 4.8260 4.8895 4.7625 4.5085 4.8895 4.4450 4.6355 4.5720

4.1275 3.3655 4.3815 3.1115 3.6830 4.1910 3.6195 3.2385 2.0955

2.4765 3.4925 2.7305 7.3025 1.7780 2.6670 2.6035 2.3495 4.3815

2.6035 2.6035 2.0320 1.8415 1.0795 0.6985 0.2540 -0.0635 0.4445

0.1270 -0.2540 -0.2540 -0.5715 -0.5080 4.3180 2.9210 0.0000 12.1285

0.0635 1.9685 0.8255 1.5240 1.7780 1.4605 1.9685 2.0320 1.3970
2.3495 2.2860 2.9210 3.0480 3.1750 3.5560 3.2385 3.4290 3.8100

2.5400 3.8735 4.0005 4.1910 4.0640 4.2545 3.8100 4.1910 4.8260

4.6355 5.0800 4.7625 4.9530 5.3975 5.3975 5.7150 5.3975 5.0800

4.5720 4.8260 6.2865 5.0165 5.3975 5.5245 5.0800 6.0325 5.8420

5.9690 6.1595 7.2390 6.8580 4.6990 6.2865 6.5405 7.1120 4.8260

6.2865 6.7310 7.2390 6.1595 4.8260 7.3025 6.4135 6.3500 4.9530

Data Set 3

-33.4645 -32.9565 -31.4325 -28.4480 -25.7810 -24.0665 -22.5425 -20.5740

-22.2885 -21.9075 -22.0345 -21.4630 -22.2250 -23.4315 -25.9715 -26.0985

-26.7970 -27.3050 -25.4635 -23.6220 -20.8915 -16.7640 -12.8270 -8.6995

-5.7785 -2.6670 -0.5080 1.0795 1.0795 2.0320 2.0955 1.6510

2.6035 3.3655 0.6350 -1.9685 0.1270 -1.0160 0.1270 0.1905

1.5240 1.4605 5.4610 6.4770 9.2075 12.3190 17.4625 22.8600
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20.5105 24.4475 27.7495 31.5595

17.1450 12.6365 8.3185 1.9685

-26.9240 -28.7655 -28.1940 -27.2415

-16.1925 -15.1765 -15.0495 -14.1605

-17.4625 -17.2085 -18.3515 -16.5100

-10.0330 -8.3820 -7.6200 -5.0165

6.5405 7.8105 7.2390 8.0010
4.8895 3.9370 -0.6350 -4.1910

-19.0500 -22.4155 -23.3680 -23.0505

-18.3515 -17.5260 -15.8115 -15.8750

-10.0965 -8.3185 -7.4295 -9.4615

-7.5565 -8.3820 -7.3025 -6.7945

-3.4290 -3.0480 -2.7940 -2.5400

-6.6675 -6.5405 -7.7470 -8.0645

-13.6525 -13.0810 -14.6050 -14.6050

-16.7640 -15.2400 -14.8590 -15.2400

-14.0335 -13.8430 -14.4145 -15.1130

-14.6685 -13.3350 -12.5095 -12.8905

-6.2865 -3.9370 -4.0640 -2.4765

6.7945 7.3660 8.5090 6.5405

10.9855 11.1125 13.2715 14.0970

24.0665 28.3845 29.8450 29.6545

34.7980 32.0675 28.6385 24.3205

17.2085 16.0020 15.0495 14.7320

14.8590 12.8270 11.3665 10.2235

5.4610 6.4135 5.9055 6.0325

8.2550 7.4295 6.2865 4.8895

5.6515 5.7785 6.8580 7.0485

11.7475 7.8105 0.7620 -9.3980

-15.6210 -15.0495 -15.4940 -14.0335

-6.6040 -8.3185 -10.6680 -12.2555

-20.4470 -17.9705 -14.0970 -9.2075

-3.2385 -0.3175 5.6515 11.4935

-27.5590 -35.3060 -39.3065 -40.9575

-24.3205 -20.3835 -17.7165 -14.9225

-7.4930 -8.6995 -9.3345 -11.8745

-15.8115 -17.0815 -18.2245 -18.7325

-15.6210 -14.2240 -15.6845 -14.2240

32.3215 35.6235 31.3055 23.9395

-3.2385 -11.3030 -20.1295 -24.1300

-24.6380 -22.3520 -21.3995 -17.5895

-15.8750 -17.3355 -17.7165 -18.0975

-15.6845 -13.9065 -12.1920 -10.8585

-1.8415 1.0795 3.4290 5.3340

9.5250 8.6360 9.0805 11.3665

-7.9375 -12.4460 -13.3350 -16.1925

-24.1300 -23.4950 -21.4630 -20.5105

-14.6050 -13.0175 -12.3190 -11.1125

-9.5250 -9.2710 -8.3820 -6.5405

-7.0485 -6.0960 -4.2545 -5.0165

-3.4925 -3.4925 -3.5560 -5.9055

-9.3345 -10.7950 -12.3825 -14.4145

-12.7000 -12.7000 -14.2240 -14.9225

-16.5735 -15.3670 -15.4940 -16.3195

-15.1765 -13.7795 -14.7320 -14.4145

-9.6520 -10.9220 -9.3980 -6.2230

14.2875 1.6510 3.5560 4.6990

9.5885 10.4140 11.7475 10.8585

15.8750 18.7325 20.3835 20.8915

31.4325 33.7185 34.2900 34.8615

20.3200 16.8275 16.8275 17.7800

16.0655 15.4940 16.4465 17.2085

8.8900 8.3820 7.6835 6.6040

5.8420 6.5405 5.7785 8.2550

3.8100 4.7625 4.4450 4.8895

8.2550 9.3980 10.6045 12.1285

-12.8270 -14.9860 -15.8750 -16.2560

-13.5890 -11.3665 -8.9535 -9.3980

-20.3200 -21.5265 -22.9235 -21.5900

-4.1910 -0.7620 0.5080 -2.1590

18.7960 16.3830 4.9530 -9.4615

-39.6875 -36.2585 -32.1945 -28.9560

-12.4460 -10.0330 -6.9850 -6.6040

-11.6840 -13.2715 -15.0495 -15.9385

-17.7800 -18.0340 -16.9545 -16.1925

-15.7480 -17.3355 -18.0975 -18.3515
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-1 9 .5 5 8 0 -2 0 .3 2 0 0 -2 1 .7170 -2 1 .0 8 2 0
-2 3 .5 5 8 5 -2 3 .1 1 4 0 -2 2 .1 6 1 5 -2 2 .6 6 9 5
-1 9 .1 1 3 5 -1 7 .5 2 6 0 -1 7 .5 8 9 5 -1 5 .7 4 8 0
-1 1 .6 8 4 0 -1 1 .0 4 9 0 -1 1 .3 6 6 5 -1 0 .9 2 2 0
-1 1 .1 1 2 5 -1 0 .4 1 4 0 -9 .2 7 1 0 -8 .3 8 2 0
-3 .8 7 3 5 -2 .6 0 3 5 1.2700 2 .2860
6 .7 3 1 0 7 .3 6 6 0 6 .2230 5 .6515

-0 .7 6 2 0 -1 .9 6 8 5 -4 .8 2 6 0 -5 .0 1 6 5
1 .3970 3 .1 7 5 0 9 .1440 10.7315

19 .3 6 7 5 18 .4 7 8 5 17 .7165 17 .2720
-1 1 .9 3 8 0 -1 7 .3 9 9 0 -2 1 .5 2 6 5 -2 2 .9 2 3 5
-2 2 .6 6 9 5 -1 6 .5 1 0 0 -1 3 .3985 -1 0 .4 1 4 0
-4 .1 9 1 0 -5 .0 1 6 5 -4 .8 2 6 0 -8 .3 8 2 0

-1 9 .2 4 0 5 -2 1 .2 7 2 5 -2 0 .7010 -1 9 .1 1 3 5
-4 .8 2 6 0 0 .1 2 7 0 4 .6355 9 .0170
2 5 .4 6 3 5 2 5 .3 3 6 5 23 .6855 20 .0660
5 .1 4 3 5 4 .5 0 8 5 4 .1275 3 .5560
5 .8 4 2 0 6 .5 4 0 5 6 .0325 7 .4930
6 .1 5 9 5 4 .9 5 3 0 3 .7465 2 .2860

-1 8 .0 9 7 5 -2 3 .9 3 9 5 -2 9 .5275 -3 3 .0 2 0 0
-3 2 .7 0 2 5

Data

-2 .2 2 2 5 -2 .4 7 6 5 -3 .1 1 1 5 -4 .1910
-2 .4 1 3 0 15 .7 4 8 0 0 .1905 -4 .7625
-4 .8 2 6 0 -4 .1 9 1 0 -3 .8 7 3 5 -4 .6990
-4 .8 8 9 5 -5 .0 1 6 5 -4 .3 1 8 0 -2 .4 7 6 5
1 .9 0 5 0 -3 .6 8 3 0 0 .6985 -3 .8 1 0 0

-2 .9 8 4 5 -5 .3 3 4 0 -5 .5 2 4 5 -5 .9 0 5 5
-7 .7 4 7 0 -8 .2 5 5 0 -8 .3 1 8 5 -8 .5 7 2 5
8 .8 2 6 5 -0 .2 5 4 0 -0 .1 9 0 5 1.0795

-5 .9 0 5 5 -7 .0 4 8 5 -9 .5 2 5 0 -7 .6 8 3 5
7 .6 2 0 0 -8 .8 2 6 5 -8 .5 7 2 5 5 .4610

-8 .2 5 5 0 -8 .1 2 8 0 -8 .0 6 4 5 -7 .8 1 0 5
-9 .4 6 1 5 -9 .8 4 2 5 -1 0 .3505 -1 1 .0 4 9 0

-1 3 .9 7 0 0 -1 4 .6 0 5 0 -1 5 .0 4 9 5 -1 5 .4 9 4 0
14 .7 9 5 5 -1 7 .7 8 0 0 -1 6 .9 5 4 5 -1 7 .7 8 0 0

-2 1 .5 9 0 0 -2 3 .1140 -2 1 .9 7 1 0 -2 2 .0 9 8 0
-2 0 .4 4 7 0 -2 1 .3995 -2 0 .9 5 5 0 -2 1 .2 0 9 0
-1 5 .1 1 3 0 -1 4 .5 4 1 5 -1 3 .4 6 2 0 -1 2 .8 9 0 5
-9 .5 8 8 5 -1 0 .4 1 4 0 -9 .5 8 8 5 -9 .7 1 5 5
-6 .2 2 3 0 -7 .3 0 2 5 -7 .4 2 9 5 -6 .0 3 2 5
3 .3655 4 .0 0 0 5 5 .5 2 4 5 5 .7 1 5 0
5 .5880 4 .4450 2 .5 4 0 0 0 .6 9 8 5

-4 .6 9 9 0 -4 .6 3 5 5 -3 .6 8 3 0 -0 .8 8 9 0
14 .1605 16 .8275 18 .6055 2 1 .2 7 2 5
14 .2875 11 .1125 4 .9 5 3 0 -3 .8 7 3 5

-2 3 .7 4 9 0 -2 4 .3 2 0 5 -2 6 .7 9 7 0 -2 6 .4 7 9 5
-1 0 .6 0 4 5 -7 .4 9 3 0 -6 .1 5 9 5 -5 .7 1 5 0
-1 1 .4 9 3 5 -1 4 .3 5 1 0 -1 4 .9 8 6 0 -1 7 .7 1 6 5
-1 8 .7 9 6 0 -1 4 .6 0 5 0 -1 0 .9 8 5 5 -7 .8 1 0 5
12 .5730 17 .6530 2 1 .9 7 1 0 2 4 .8 9 2 0
16 .5100 12 .2555 10 .1600 7 .4 2 9 5
3 .8735 4 .0640 4 .2 5 4 5 5 .3 9 7 5
8 .4455 6 .1595 7 .0 4 8 5 6 .5 4 0 5
1 .2700 -1 .7 1 4 5 -4 .7 6 2 5 -1 1 .9 3 8 0

-3 4 .7 3 4 5 -3 6 .1 3 1 5 -3 6 .1 3 1 5 -3 5 .6 8 7 0

Set 4

-4 .0 0 0 5 -4 .2 5 4 5 -4 .3 1 8 0 -3 .2 3 8 5
1 .9050 -5 .1 4 3 5 -4 .3 8 1 5 -5 .3 3 4 0

-5 .3 9 7 5 -4 .8 8 9 5 -2 .0 9 5 5 -5 .2 0 7 0
1 .0160 0 .2540 6 .2 8 6 5 -2 .9 8 4 5

-3 .8 7 3 5 1 .9050 23 .8 7 6 0 4 .1 9 1 0
-6 .2 8 6 5 -6 .7 3 1 0 -7 .0 4 8 5 -7 .4 2 9 5
-8 .9 5 3 5 -9 .0 8 0 5 2 .4 7 6 5 4 .0 0 0 5
2 .7940 0 .1905 -4 .5 0 8 5 10 .2870

-8 .6 3 6 0 -9 .1 4 4 0 -9 .2 7 1 0 -3 .8 1 0 0
4 .4 4 5 0 2 .7940 -7 .4 9 3 0 -8 .3 8 2 0

-8 .1 9 1 5 -8 .5 7 2 5 -8 .5 7 2 5 -9 .0 8 0 5
-1 1 .4 9 3 5 -1 1 .8 7 4 5 -1 2 .7 0 0 0 -1 3 .3 3 5 0
-1 6 .1 2 9 0 -1 6 .8 9 1 0 -1 7 .1 4 5 0 0 .6 3 5 0
-1 7 .9 7 0 5 -1 7 .9 7 0 5 -1 7 .7 8 0 0 -1 7 .6 5 3 0
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-1 6 .9 5 4 5 -1 6 .7 0 0 5 -1 6 .4 4 6 5 9 .3 3 4 5
8 .4 4 5 5 -1 3 .7 7 9 5 -1 3 .6 5 2 5 -1 3 .4 6 2 0

-1 2 .0 6 5 0 -1 1 .6 8 4 0 -1 1 .2 3 9 5 -1 1 .4 3 0 0
-1 0 .5 4 1 0 -1 0 .4 7 7 5 -1 0 .6 0 4 5 -1 0 .7 9 5 0
-1 1 .3 6 6 5 -1 1 .8 1 1 0 -1 2 .1 9 2 0 -1 2 .5 0 9 5
-1 3 .8 4 3 0 -1 4 .2 8 7 5 -1 4 .4 7 8 0 -1 2 .1 2 8 5
-1 4 .9 2 2 5 -1 2 .1 9 2 0 -1 5 .2 4 0 0 -1 5 .0 4 9 5
-1 4 .8 5 9 0 -4 .7 6 2 5 -1 3 .9 0 6 5 -1 4 .5 4 1 5
-1 3 .2 0 8 0 -1 3 .2 7 1 5 -1 3 .1 4 4 5 -1 2 .9 5 4 0
-1 1 .6 2 0 5 -1 1 .6 8 4 0 -1 1 .4 9 3 5 -1 1 .1 7 6 0

7 .4 2 9 5 1 5 .0 4 9 5 13 .4620 -1 .2 0 6 5
-9 .3 9 8 0 3 .9 3 7 0 -2 .9 8 4 5 -4 .0 0 0 5
10 .7315 -7 .7 4 7 0 -7 .0 4 8 5 7 .4 2 9 5
8 .5 7 2 5 4 .2 5 4 5 -5 .5 2 4 5 -5 .5 2 4 5
2 .4 1 3 0 0 .3 1 7 5 -5 .0 8 0 0 -4 .7 6 2 5

-6 .0 3 2 5 -6 .0 9 6 0 -6 .4 7 7 0 -6 .8 5 8 0
0 .0 6 3 5 -6 .6 0 4 0 -5 .3 3 4 0 -4 .3 8 1 5

-8 .0 0 1 0 -4 .5 7 2 0 -1 1 .2 3 9 5 -5 .6 5 1 5
-2 .5 4 0 0 -1 0 .9 2 2 0 -1 0 .6 6 8 0 -9 .9 6 9 5
-2 .6 6 7 0 -1 .1 4 3 0 -4 .5 0 8 5 -3 .7 4 6 5
5 .7 1 5 0 1 .8 4 1 5 6 .6 6 7 5 2 .0 9 5 5
3 .4 2 9 0 1 0 .1 6 0 0 4 .8 8 9 5 3 .6 1 9 5
2 .9 8 4 5 2 .4 7 6 5 16 .2560 12 .0015

-1 .0 7 9 5 -1 .7 7 8 0 -2 .2 8 6 0 -2 .8 5 7 5
4 .8 8 9 5 -6 .0 3 2 5 -6 .4 1 3 5 0 .9 5 2 5
-5 .3 9 7 5 1 1 .2 3 9 5 7 .6 8 3 5 6 .5 4 0 5
5 .3 3 4 0 -1 .1 4 3 0 6 .0 3 2 5 3 .3 6 5 5
16 .8275 3 5 .1 1 5 5 20 .0660 6 .7 3 1 0
3 .1 1 1 5 5 .1 4 3 5 4 .2 5 4 5 6 .0 9 6 0

2 1 .7 1 7 0 2 .7 3 0 5 7 .1 1 2 0 2 .4 1 3 0
-4 .5 0 8 5 1 5 .0 4 9 5 -0 .3 1 7 5 -6 .0 3 2 5
-1 .3 9 7 0 -2 .7 9 4 0 3 .1115 -1 .2 0 6 5
-3 .5 5 6 0 -1 .7 7 8 0 -2 .4 7 6 5 -1 .7 1 4 5
1 .4605 3 .4 2 9 0 2 .0 3 2 0 6 .0 9 6 0
7 .4 2 9 5 3 .8 1 0 0 7 .0485 7 .4 2 9 5
8 .9 5 3 5 2 .5 4 0 0 2 .4 1 3 0 1 .6510
-0 .2 5 4 0 3 .4 2 9 0 2 .0 3 2 0 7 .3 0 2 5
-6 .2 2 3 0 -6 .5 4 0 5 -6 .6 0 4 0 7 .8 1 0 5

-1 2 .7 6 3 5 3 .8100 -3 .4 2 9 0 -1 4 .6 6 8 5
-9 .8 4 2 5 -0 .8 8 9 0 -2 .6 6 7 0 -6 .9 8 5 0

-1 0 .9 8 5 5 -1 0 .6 6 8 0 -4 .9 5 3 0 -1 0 .5 4 1 0
-1 0 .7 9 5 0 -1 1 .2 3 9 5 -1 1 .3 0 3 0 -1 1 .6 8 4 0
-1 2 .7 0 0 0 -1 2 .9 5 4 0 -1 3 .1 4 4 5 -1 3 .5 8 9 0
-1 4 .5 4 1 5 -1 4 .7 9 5 5 -1 4 .9 2 2 5 -1 4 .8 5 9 0
-1 5 .1 1 3 0 -1 5 .1 1 3 0 -1 5 .2 4 0 0 -1 4 .8 5 9 0
-1 4 .2 8 7 5 -1 4 .0 3 3 5 -1 3 .9 0 6 5 -1 3 .5 2 5 5
-1 2 .7 0 0 0 -1 2 .5 7 3 0 -1 2 .0 0 1 5 -1 1 .9 3 8 0
-1 1 .4 3 0 0 -1 1 .0 4 9 0 2 .0320 11 .8 7 4 5
10 .8585 3 .4925 -9 .5 8 8 5 8 .1 9 1 5
5 .5 8 8 0 9 .2075 3 .6195 -6 .7 3 1 0
7 .8 7 4 0 13 .7795 10 .8585 -5 .0 1 6 5

-4 .3 1 8 0 -4 .1 2 7 5 -5 .0 1 6 5 -5 .1 4 3 5
-5 .8 4 2 0 -5 .1 4 3 5 -5 .5 2 4 5 -1 .3 3 3 5
-6 .9 8 5 0 -2 .5 4 0 0 -7 .3 0 2 5 17 .8 4 3 5
-9 .8 4 2 5 -1 0 .0 9 6 5 -1 0 .1 6 0 0 -5 .7 7 8 5

-1 1 .3 0 3 0 -1 1 .7 4 7 5 8 .1 2 8 0 7 .4 2 9 5
-8 .9 5 3 5 -8 .8 2 6 5 -7 .8 7 4 0 -6 .9 2 1 5
-2 .9 8 4 5 -2 .2 2 2 5 -1 .2 0 6 5 -0 .3 1 7 5
2 .0 9 5 5 2 .8575 2 .9210 3 .3 0 2 0
7 .6 2 0 0 21 .4630 11 .1125 2 0 .3 8 3 5

10 .3505 0 .6350 2 .7305 0 .3 8 1 0
-4 .0 0 0 5 -4 .5 0 8 5 -4 .8 8 9 5 -5 .5 2 4 5
4 .0 0 0 5 -5 .7 1 5 0 -1 .4 6 0 5 -5 .4 6 1 0

-3 .8 1 0 0 1.5875 -1 .0 1 6 0 -2 .4 7 6 5
0 .2 5 4 0 4 .0 6 4 0 1 .2700 2 .2 2 2 5
3 .2 3 8 5 15 .6210 16 .4465 4 .6 3 5 5
4 .1 2 7 5 1 .5875 16 .3195 4 .4 4 5 0

-2 .4 7 6 5 -0 .9 5 2 5 6 .4 7 7 0 -3 .6 1 9 5
-6 .3 5 0 0 -6 .6 6 7 5 -5 .0 1 6 5 8 .1 9 1 5
-4 .2 5 4 5 -5 .1 4 3 5 8 .7 6 3 0 -1 .4 6 0 5
-1 .2 0 6 5 -0 .6 9 8 5 0 .3 1 7 5 0 .8 8 9 0
6 .4 1 3 5 4 .3180 7 .0485 7 .2 3 9 0
4 .0 0 0 5 4 .3 1 8 0 4 .0 0 0 5 4 .0 0 0 5
1 .4605 11.8745 7 .9375 7 .4 2 9 5
0 .7 6 2 0 0 .6350 0 .9525 -4 .8 2 6 0

-4 .7 6 2 5 4 .6355 2 .4130 4 .7 6 2 5
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3 .3 0 2 0 -6 .9 2 1 5 3 .7 4 6 5 1.3335 4 .9 5 3 0 -0 .8 8 9 0 -5 .5 8 8 0  - 5 .4610
-1 .5 8 7 5 -4 .1 2 7 5 -5 .3 9 7 5 -5 .7 7 8 5 -3 .6 8 3 0 -2 .5 4 0 0 4 .6 3 5 5  - 0 .9525
-1 .9 0 5 0 -2 .4 1 3 0 -2 .0 3 2 0 0 .8890 -0 .7 6 2 0 1 .0160 -0 .5 0 8 0 1 .2700
-1 .0 7 9 5 1 .9050 2 .9 8 4 5 0 .0635 -0 .3 8 1 0 2 .2 8 6 0 0 .8 2 5 5 3 .3655
-0 .6 3 5 0 2 .6 6 7 0 1 .5240 1 .1430 -0 .7 6 2 0 -0 .8 2 5 5 2 .4765 0 .8255
-1 .9 0 5 0 -1 .9 0 5 0 4 .1 2 7 5 8 .8265 -3 .4 2 9 0 1 .6 5 1 0 -3 .7 4 6 5  -■ 5.3975
-5 .1 4 3 5 -5 .3 9 7 5 -6 .0 3 2 5 -5 .8 4 2 0 -5 .7 7 8 5 0 .3 1 7 5 -5 .3 3 4 0  -4 .0 0 0 5
-2 .4 1 3 0 -4 .0 6 4 0 2 .2 2 2 5 -2 .6 6 7 0 -3 .4 9 2 5 -0 .5 0 8 0 -0 .6 3 5 0  - 2 .5400
-0 .7 6 2 0 -0 .3 8 1 0 2 .1 5 9 0 -0 .8 8 9 0 -2 .8 5 7 5 0 .0 0 0 0 -1 .3 3 3 5  -•0.1270
-2 .4 1 3 0 -2 .9 8 4 5 0 .7 6 2 0 6 .4135 -1 .3 9 7 0 3 .2 3 8 5 14 .2240  -•0.3175
4 .8 2 6 0 7 .8 7 4 0 -1 .1 4 3 0 -1 .3 3 3 5 -1 .6 5 1 0 0 .2 5 4 0 4 .2 5 4 5 •0.0635
-1 .3 9 7 0 -1 .5 2 4 0 -1 .9 0 5 0 -2 .5 4 0 0 -3 .3 6 5 5 -2 .7 3 0 5 -3 .5 5 6 0  -■ 2.0955
-2 .7 9 4 0

Data Set 5

-2 0 .0 0 2 5  - 2 7 .2 4 1 5 -2 2 .6 0 6 0 -2 0 .8 9 1 5 -2 1 .4 6 3 0 -1 9 .7 4 8 5 -1 5 .1 7 6 5 i -2 3 .9 3 9 5
-2 1 .0 1 8 5  - 17 .1450 -1 6 .3 8 3 0 -2 0 .1 2 9 5 -2 0 .7 0 1 0 -1 3 .5 8 9 0 -1 4 .9 2 2 5 i -1 0 .7 3 1 5
-9 .1 4 4 0 -9 .3 3 4 5 -1 6 .5 7 3 5 -1 4 .0 9 7 0 -1 7 .9 7 0 5 -1 1 .0 4 9 0 -1 0 .2 2 3 5 i -1 2 .7 6 3 5

-1 1 .0 4 9 0 -6 .0 3 2 5 -4 .7 6 2 5 -1 0 .0 3 3 0 -5 .0 8 0 0 -3 .4 9 2 5 -7 .3 0 2 5 -3 .1 1 1 5
-1 .9 6 8 5 -5 .5 8 8 0 -4 .9 5 3 0 -1 .0 7 9 5 -3 .4 9 2 5 -4 .8 2 6 0 -1 .9 6 8 5 1 .9685
-9 .3 9 8 0 -3 .6 1 9 5 -0 .9 5 2 5 0 .3 1 7 5 5 .0 8 0 0 -0 .4 4 4 5 0 .4 4 4 5 5 .7 7 8 5
-1 .9 6 8 5 3 .6 1 9 5 5 .2 7 0 5 6 .5 4 0 5 -0 .0 6 3 5 4 .5 0 8 5 5 .7 7 8 5 5 .2 7 0 5
8 .4 4 5 5 8 .0 6 4 5 5 .9 6 9 0 2 .0 9 5 5 2 .7 3 0 5 7 .4 9 3 0 8 .7 6 3 0 9 .5 2 5 0
4 .6 9 9 0 6 .6 6 7 5 11 .5570 4 .3 8 1 5 5 .2 7 0 5 12 .6365 6 .3 5 0 0 7 .2 3 9 0
5 .9 0 5 5 7 .8 1 0 5 5 .5 8 8 0 -2 .2 2 2 5 2 .8 5 7 5 7 .2 3 9 0 7 .3 6 6 0 6 .2 8 6 5
1 0 .7 9 5 0 4 .0 0 0 5 -0 .7 6 2 0 3 .8 1 0 0 3 .0 4 8 0 7 .1 7 5 5 4 .8 8 9 5 -1 .7 1 4 5
0 .1 9 0 5 1 .3335 5 .5 8 8 0 8 .0 6 4 5 1 .4605 3 .8 1 0 0 5 .5 2 4 5 -1 .3 9 7 0
1 .9 6 8 5 6 .2 8 6 5 7 .4930 -2 .6 6 7 0 -3 .8 1 0 0 -4 .6 3 5 5 -5 .3 3 4 0 4 .5 0 8 5

-7 .9 3 7 5 -2 .2 8 6 0 -1 .6 5 1 0 0 .4 4 4 5 -1 .1 4 3 0 -2 .0 9 5 5 4 .8 8 9 5 2 .8 5 7 5
4 .3 8 1 5 5 .3 9 7 5 -2 .1 5 9 0 0 .5 0 8 0 -3 .7 4 6 5 -5 .9 0 5 5 -1 0 .9 2 2 0 i -4 .0 6 4 0

-5 .3 3 4 0 -7 .3660 -3 .1 7 5 0 -1 .6 5 1 0 2 .7 3 0 5 -1 .3 9 7 0 2 .5 4 0 0 -4 .4 4 5 0
2 .6 6 7 0 -1 .4605 -7 .0 4 8 5 1 .2065 1 .5875 -1 .2 0 6 5 -6 .4 1 3 5 -9 .9 6 9 5

-2 .3 4 9 5 -2 .8575 -7 .9 3 7 5 -2 .8 5 7 5 -4 .0 6 4 0 -3 .8 7 3 5 -1 .2 0 6 5 -1 4 .5 4 1 5
-9 .3 9 8 0 -7 .4930 -4 .6 9 9 0 -1 .3 3 3 5 -5 .2 0 7 0 -6 .0 3 2 5 -7 .4 9 3 0 -2 .5 4 0 0
-8 .0 6 4 5 -3 .7465 0 .1 2 7 0 -8 .3 1 8 5 -6 .1 5 9 5 -5 .3 3 4 0 -1 .2 7 0 0 -8 .1 2 8 0
-2 .0 9 5 5 0 .1 9 0 5 -6 .4 7 7 0 3 .0 4 8 0 2 .6 6 7 0 0 .4 4 4 5 3 .0 4 8 0 -5 .4 6 1 0
1 .2 7 0 0 2 .4 7 6 5 0 .1 2 7 0 -2 .1 5 9 0 -6 .2 8 6 5 -2 .8 5 7 5 1 .1430 -7 .8 7 4 0
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0 .2 5 4 0 1 .0160 1 .9685 0 .1905
-1 .1 4 3 0 5 .2 7 0 5 -2 .6 0 3 5 5 .0800
8 .8 2 6 5 7 .2 3 9 0 3 .4 9 2 5 4 .2 5 4 5
10 .9220 11 .6205 10 .9855 12.1920
13 .7 7 9 5 15 .6845 12 .0650 11 .6840
17 .5 2 6 0 18 .6690 20 .3 2 0 0 16.6370
13 .9 0 6 5 11 .1760 13 .3350 18 .7325
2 7 .0 5 1 0 3 0 .5 4 3 5 27 .3 6 8 5 29 .5910
2 6 .5 4 3 0 2 5 .2 7 3 0 20 .9 5 5 0 25 .5905
2 8 .0 6 7 0 2 3 .9 3 9 5 23 .9 3 9 5 24 .7650
2 8 .3 8 4 5 2 5 .2 0 9 5 19 .0500 17.4625
2 4 .9 5 5 5 2 2 .9 2 3 5 28 .3 8 4 5 23 .9395
16 .9545 2 2 .2 2 5 0 20 .8 2 8 0 24 .9555
18 .7960 2 2 .9 8 7 0 22 .7 3 3 0 24 .3840
14 .7 9 5 5 2 1 .5 9 0 0 16 .5100 17.0815
10 .9 2 2 0 13 .5255 7 .8 1 0 5 16.8910
13 .6525 6 .4 7 7 0 12 .1920 15.2400
6 .8 5 8 0 6 .9 8 5 0 3 .6 8 3 0 5 .8420
3 .3 0 2 0 8 .1 9 1 5 7 .8 7 4 0 -1 .7 1 4 5
1 .5875 -3 .8 7 3 5 1 .9050 3 .0480

-9 .6 5 2 0 5 .1 4 3 5 -5 .0 8 0 0 -5 .0 1 6 5
-0 .2 5 4 0 1 .2065 2 .5 4 0 0 -3 .9370
-0 .5 0 8 0 5 .5 2 4 5 -4 .6 3 5 5 -2 .9 2 1 0
-2 .5 4 0 0 -8 .3 8 2 0 -2 .4 1 3 0 -1 .1 4 3 0
-2 .7 3 0 5 0 .6 3 5 0 4 .4 4 5 0 -1 .1 4 3 0
0 .4 4 4 5 -1 .9 0 5 0 0 .5 7 1 5 0 .7620
3 .4 2 9 0 6 .8 5 8 0 2 .8 5 7 5 7 .9375
1 .6510 0 .3 1 7 5 1 .1430 2 .9845

-0 .8 2 5 5 0 .3 1 7 5 -2 .7 9 4 0 1.8415
6 .6 6 7 5 -4 .0 0 0 5 5 .3 3 4 0 5 .0165

-1 .2 0 6 5 -3 .6 1 9 5 -2 .4 7 6 5 1.2065
-4 .9 5 3 0 -6 .7 9 4 5 -2 .7 3 0 5 -4 .3 1 8 0
-6 .2 8 6 5 -4 .3 8 1 5 -8 .2 5 5 0 -2 .0 9 5 5
-8 .5 0 9 0 -4 .2 5 4 5 -6 .4 1 3 5 -9 .2710
-9 .9 0 6 0 -1 4 .2 2 4 0 -1 1 .4 3 0 0 -7 .1120

-1 1 .4 9 3 5 -1 7 .5 2 6 0 -1 3 .7 7 9 5 -1 5 .5 5 7 5
-2 0 .3 8 3 5 -1 5 .3 0 3 5 -1 3 .6 5 2 5 -2 0 .4 4 7 0
-1 7 .2 7 2 0 -1 7 .2 0 8 5 -1 8 .6 6 9 0 -1 4 .9225

0 .5 0 8 0 -1 .3970 -3 .2 3 8 5 -0 .1 2 7 0
-2 .4 1 3 0 0.5715 2 .8575 5 .2 0 7 0
11 .2395 10.9220 3 .0480 6 .3 5 0 0
9 .1 4 4 0 12.4460 1.2700 5 .9 6 9 0

19 .4945 21.8440 18 .7960 2 2 .4 7 9 0
19 .5580 15.2400 17 .7165 17 .2085
13 .9065 14.9225 19 .5580 2 1 .4 6 3 0
2 8 .7 0 2 0 27 .1145 26 .6065 2 3 .6 2 2 0
2 2 .4 7 9 0 19.6215 24 .5110 2 5 .4 0 0 0
2 9 .4 6 4 0 22 .0345 24 .7650 3 3 .5 2 8 0
15 .8115 20 .3200 27 .6860 2 6 .3 5 2 5
2 3 .3 0 4 5 26 .5430 16 .6370 2 2 .6 0 6 0
2 2 .9 8 7 0 24 .1300 18 .6690 14 .4780
2 4 .3 8 4 0 22 .5425 14 .0970 18 .6055
13 .5890 6 .1595 16.8910 19 .9 3 9 0
13 .4620 6 .7310 14.4145 13 .4620
9 .0 1 7 0 8 .2550 13.5890 4 .0 0 0 5

10 .5 4 1 0 7.3025 6 .0325 2 .4 1 3 0
1 .9685 0 .6350 0 .5715 0 .6 3 5 0

-2 .3 4 9 5 5 .0165 -4 .2 5 4 5 0 .2 5 4 0
0 .7 6 2 0 -0 .6985 -0 .6 9 8 5 3 .6 1 9 5

-1 .2 7 0 0 -0 .0635 4 .1275 -7 .9 3 7 5
-0 .3 8 1 0 -5 .2070 -2 .0320 -2 .4 1 3 0
1 .7780 0 .1905 -4 .8260 -2 .0 3 2 0
3 .4 2 9 0 -5 .4610 -3 .5 5 6 0 -1 .2 7 0 0
5 .1 4 3 5 0 .9525 1 .7780 7 .9 3 7 5

-1 .8 4 1 5 3.6830 4 .3180 2 .7 9 4 0
-1 .7 1 4 5 1.3335 -1 .0 7 9 5 3 .6 8 3 0
4 .0 6 4 0 21.6535 48 .9 5 8 5 3 4 .9 8 8 5
-1 .0 7 9 5 3 .4925 2 .9210 -1 .2 7 0 0
-1 .7 7 8 0 -4 .8895 -0 .6 3 5 0 0 .3 8 1 0
-5 .3 9 7 5 -5 .3975 -7 .7 4 7 0 -7 .6 8 3 5
-4 .2 5 4 5 -9 .4615 -6 .1 5 9 5 -5 .2 0 7 0
-8 .3 8 2 0 -6 .5405 -9 .7 7 9 0 -1 5 .4 9 4 0
-9 .0 1 7 0 -13 .8430 -1 3 .4 6 2 0 -1 2 .6 3 6 5

-1 3 .5 2 5 5 -20 .2565 -1 4 .8590 -1 2 .9 5 4 0
-1 5 .0 4 9 5 -12 .8905 -1 8 .9 8 6 5 -1 2 .8 2 7 0
-2 3 .5 5 8 5 -21 .2725 -1 9 .8120 -2 0 .1 2 9 5
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-2 0 .2 5 6 5 -2 6 .4 7 9 5 -2 3 .5 5 8 5 -2 2 .1 6 1 5
-2 3 .3 6 8 0 -2 2 .1 6 1 5 -2 1 .9 0 7 5 -2 0 .3 2 0 0
-2 9 .1 4 6 5 -2 2 .3 5 2 0 -2 1 .9 7 1 0 -2 4 .1 3 0 0
-2 0 .5 7 4 0
-2 0 .5 1 0 5

-1 6 .8 2 7 5 -2 3 .6 2 2 0 -1 9 .1 7 7 0

Data

-2 4 .5 1 1 0 -2 8 .0 6 7 0 -2 7 .3 6 8 5 -2 9 .9 0 8 5
-2 0 .9 5 5 0 -2 0 .1 2 9 5 -2 4 .7 6 5 0 -2 2 .0 9 8 0
-2 4 .3 8 4 0 -2 5 .4 0 0 0 -2 8 .5 1 1 5 -1 9 .6 8 5 0
-1 7 .9 0 7 0 -1 5 .8 1 1 5 -2 0 .6 3 7 5 -2 1 .4 6 3 0
-1 6 .5 1 0 0 -1 2 .2 5 5 5 -9 .4 6 1 5 -5 .3 3 4 0
-1 2 .1 9 2 0 -9 .8 4 2 5 -3 .2 3 8 5 -7 .0 4 8 5
-5 .7 7 8 5 -4 .6 3 5 5 1 .7780 0 .1905
1 .0 7 9 5 -1 .3 3 3 5 -7 .9 3 7 5 -6 .9 2 1 5

-0 .8 2 5 5 2 .5 4 0 0 -1 .6 5 1 0 1.7780
-2 .2 2 2 5 -6 .4 1 3 5 -1 0 .5 4 1 0 -1 1 .0 4 9 0
-8 .0 0 1 0 -3 .2 3 8 5 1 .4605 -3 .0 4 8 0
-3 .1 1 1 5 -3 .7 4 6 5 -3 .8 7 3 5 0 .1270

-1 7 .9 0 7 0 -4 .8 8 9 5 -3 .6 1 9 5 6 .0960
9 .4 6 1 5 13 .3 9 8 5 11 .4300 8 .1915
1 .1 4 3 0 -8 .0 6 4 5 -2 .0 9 5 5 -6 .7 3 1 0
2 .4 1 3 0 1 .7780 -1 0 .4 7 7 5 -1 .6 5 1 0
0 .8 2 5 5 1 .9685 1 .6510 -0 .1 9 0 5

-2 1 .0 1 8 5 -1 5 .4 9 4 0 -9 .4 6 1 5 -1 2 .7 6 3 5
-2 2 .4 7 9 0 -1 1 .1 7 6 0 -1 5 .0 4 9 5 -1 8 .0 3 4 0
-2 4 .5 7 4 5 -2 7 .4 3 2 0 -3 7 .4 0 1 5 -3 2 .7 6 6 0
-2 0 .3 2 0 0 -2 2 .9 2 3 5 -3 0 .6 0 7 0 -2 6 .8 6 0 5
-2 9 .0 8 3 0 -3 2 .8 9 3 0 -3 2 .8 9 3 0 -2 8 .6 3 8 5
-3 7 .9 7 3 0 -3 3 .4 6 4 5 -2 7 .1 1 4 5 -3 0 .3 5 3 0
-2 5 .2 0 9 5 -2 2 .1 6 1 5 -3 3 .3 3 7 5 -2 8 .5115
-2 1 .4 6 3 0 -2 1 .6 5 3 5 -1 6 .8 2 7 5 -2 4 .8 2 8 5
-2 2 .2 2 5 0 -6 .1 5 9 5 -2 .1 5 9 0 -2 .0 9 5 5
-1 0 .2 2 3 5 -9 .7 7 9 0 -1 1 .7 4 7 5 -1 4 .7320
-2 .1 5 9 0 2 .9 8 4 5 -2 .2 8 6 0 -6 .4 7 7 0
0 .5 7 1 5 -3 .4 2 9 0 0 .8 8 9 0 2 .1590
8 .5 7 2 5 5 .0 1 6 5 9 .9 6 9 5 10 .7315

-2 1 .9 0 7 5 -1 7 .2 7 2 0 -1 8 .7 9 6 0 -1 9 .3675
-1 9 .8 1 2 0 -2 8 .3 8 4 5 -2 7 .8 1 3 0 -2 3 .6855
-2 1 .3360 -2 2 .0 3 4 5 -1 7 .8 4 3 5 -1 8 .4 1 5 0
-2 1 .3360 -2 1 .5 2 6 5 -2 5 .4 6 3 5 -2 3 .7490

Set 6

-2 7 .3 6 8 5 -2 6 .6 7 0 0 -2 1 .8 4 4 0 -1 6 .4 4 6 5
-2 5 .5 2 7 0 -2 9 .9 7 2 0 -2 1 .6 5 3 5 -2 6 .0 9 8 5
-1 9 .8 7 5 5 -2 1 .9 0 7 5 -2 4 .0 6 6 5 -1 8 .4 7 8 5
-2 4 .1 9 3 5 -2 2 .2 2 5 0 -1 9 .0 5 0 0 -1 5 .8 1 1 5
-1 2 .7 6 3 5 -1 3 .9 7 0 0 -1 1 .4 9 3 5 -7 .6 2 0 0
-1 .9 0 5 0 0 .3 1 7 5 -4 .4 4 5 0 -5 .3 3 4 0
2 .6670 4 .5 0 8 5 11 .3030 8 .6995
0 .1905 0 .1 9 0 5 -5 .9 6 9 0 -1 0 .6045

-1 .6 5 1 0 -6 .4 7 7 0 -3 .1 7 5 0 -5 .3 9 7 5
-7 .4 2 9 5 -1 0 .6 6 8 0 -7 .6 2 0 0 -5 .2 0 7 0
-2 .0 3 2 0 -2 .9 8 4 5 -7 .8 1 0 5 -1 .3 3 3 5
5 .7785 0 .1 2 7 0 -0 .7 6 2 0 -3 .3 6 5 5
7 .3025 5 .6 5 1 5 8 .1280 8 .2550

10 .0965 1 0 .3 5 0 5 10 .2870 4 .3815
-3 .8 1 0 0 -1 .0 7 9 5 1 .2065 2 .0320
-6 .4 7 7 0 -1 9 .2 4 0 5 -2 .7 3 0 5 -5 .7 7 8 5
-1 .3 3 3 5 -1 0 .5 4 1 0 -8 .4 4 5 5 -1 6 .1 9 2 5

-2 2 .2 2 5 0 -2 1 .8 4 4 0 -1 7 .2 7 2 0 -2 2 .6060
-1 5 .8 1 1 5 -1 5 .8 1 1 5 -2 5 .7 8 1 0 -2 2 .2 2 5 0
-2 7 .3 6 8 5 -2 7 .9 4 0 0 -2 7 .6 2 2 5 -1 9 .8 7 5 5
-3 1 .3 0 5 5 -3 6 .4 4 9 0 -3 4 .0 3 6 0 -3 2 .3 2 1 5
-2 9 .9 0 8 5 -3 1 .1 1 5 0 -3 2 .2 5 8 0 -3 4 .1630
-2 7 .2 4 1 5 -3 0 .1 6 2 5 -3 0 .2 2 6 0 -3 2 .1945
-2 1 .7 8 0 5 -2 4 .0 0 3 0 -2 5 .5 9 0 5 -2 7 .6860
-2 0 .2 5 6 5 -1 8 .7 3 2 5 -1 8 .7 3 2 5 -1 5 .5 5 7 5
-4 .1 9 1 0 -1 5 .4 9 4 0 -1 3 .9 7 0 0 -4 .7 6 2 5
-4 .6 3 5 5 -7 .2 3 9 0 -6 .7 3 1 0 -5 .7 7 8 5
3 .0480 -4 .6 9 9 0 3 .2 3 8 5 5 .2070
5 .5245 6 .4 1 3 5 9 .3345 3 .9370
9 .5250 1 1 .1 7 6 0 6 .1595 -2 .9 2 1 0
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4 .7 6 2 5 4 .2 5 4 5 9 .2075 10 .5410
7 .3 6 6 0 13 .2715 10 .0330 7 .8105
15 .6210 9 .7155 6 .4135 16.1290
7 .3 0 2 5 16 .2560 12 .7000 12.1920

2 4 .2 5 7 0 24 .1 9 3 5 25 .1460 18.1610
12 .0650 14 .4145 1 .8415 7 .2390
8 .3 1 8 5 9 .1440 13.0175 11.1125
5 .3 3 4 0 -1 .2 7 0 0 7 .6200 6 .7945

-0 .4 4 4 5 -4 .3 8 1 5 -2 .4 7 6 5 4 .6 9 9 0
-1 3 .0 8 1 0 -2 8 .5 7 5 0 -1 4 .7 9 5 5 -1 4 .2 8 7 5
-1 5 .3 0 3 5 -8 .8 9 0 0 -2 0 .4 4 7 0 -2 9 .1 4 6 5
-1 7 .5 8 9 5 -2 5 .2 0 9 5 -2 3 .3 6 8 0 -2 1 .7 1 7 0
-1 5 .3 6 7 0 -1 5 .7 4 8 0 -1 8 .2 2 4 5 -1 5 .3 6 7 0
-15.43Ò 5 -1 0 .5 4 1 0 -1 4 .4 1 4 5 -1 6 .2 5 6 0
-1 8 .9 2 3 0 -1 7 .0 1 8 0 -1 6 .7 6 4 0 -1 3 .2 0 8 0
-6 .4 7 7 0 -6 .1 5 9 5 -6 .0 9 6 0 -2 .1 5 9 0
2 .9 8 4 5 0 .4 4 4 5 5 .7 7 8 5 11 .4935
8 .6 3 6 0 4 .8 2 6 0 -1 .2 7 0 0 -0 .6 9 8 5
6 .0 3 2 5 7 .5 5 6 5 4 .9 5 3 0 0 .6350
14 .2875 10 .9855 15 .3670 11 .3665
8 .8 2 6 5 5 .5 8 8 0 2 .3495 5 .2 7 0 5
2 .5 4 0 0 11 .7475 15 .3035 6 .2230
8 .9 5 3 5 8 .7 6 3 0 6 .4 7 7 0 11 .9380
15 .8750 13 .3985 4 .8 8 9 5 7 .7 4 7 0
5 .3 3 4 0 15 .4305 19 .6215 20 .2 5 6 5

2 5 .2 0 9 5 2 3 .7 4 9 0 23 .8 7 6 0 23 .2410
19 .7485 2 2 .5 4 2 5 2 5 .7 1 7 5 24 .3205
18 .3515 17 .9070 2 0 .7 6 4 5 18 .0340
15 .8115 15 .0 4 9 5 11 .5570 10 .2870
4 .7 6 2 5 9 .1 4 4 0 9 .7 7 9 0 7 .1755

-1 2 .9 5 4 0 -1 3 .9 7 0 0 -1 4 .4 7 8 0 -1 3 .2 7 1 5
-1 .7 1 4 5 -3 .1 7 5 0 -5 .5 2 4 5 -1 3 .6 5 2 5

-1 1 .5 5 7 0 -1 4 .5 4 1 5 -1 8 .6 0 5 5 -2 3 .3 0 4 5
-2 3 .1 1 4 0
-2 4 .7 6 5 0

-3 1 .5 5 9 5 -2 7 .1 7 8 0 -2 5 .7 1 7 5

7 .2 3 9 0 10 .5410 1 0 .7 9 5 0 11 .4935
1 4 .4 1 4 5 12 .3190 6 .1 5 9 5 9 .5 2 5 0
1 8 .6 0 5 5 11 .3030 1 1 .4 9 3 5 14 .5415
1 9 .3 0 4 0 17 .7165 2 4 .3 8 4 0 17 .8435
1 2 .5 0 9 5 16 .0020 9 .2 7 1 0 10 .9855
1 .5 8 7 5 14 .0335 1 0 .8 5 8 5 11 .9380

1 3 .3 3 5 0 10 .3505 1 0 .4 7 7 5 10 .1600
1 3 .0 8 1 0 5 .8420 8 .5 7 2 5 10 .0965
3 .8 7 3 5 1 .0160 -7 .8 1 0 5 -4 .4 4 5 0

-8 .3 8 2 0 -1 0 .0 3 3 0 -1 8 .4 7 8 5 -1 2 .5 0 9 5
-2 8 .3 8 4 5 -2 3 .0 5 0 5 -2 8 .1 3 0 5 -1 7 .9 0 7 0
-2 1 .1 4 5 5 -2 1 .4 6 3 0 -1 4 .3 5 1 0 -1 3 .3 9 8 5
-1 3 .9 0 6 5 -2 5 .4 0 0 0 -2 4 .8 9 2 0 -2 4 .6 3 8 0
-1 9 .2 4 0 5 -1 3 .8 4 3 0 -1 9 .1 7 7 0 -1 7 .7 8 0 0
-1 4 .8 5 9 0 -1 5 .0 4 9 5 -8 .6 9 9 5 -9 .6 5 2 0
-1 .9 0 5 0 -6 .7 9 4 5 -0 .8 2 5 5 4 .6 3 5 5
8 .6 9 9 5 -6 .7 3 1 0 -2 .0 9 5 5 5 .1 4 3 5
8 .2 5 5 0 7 .3660 5 .2 7 0 5 7 .8 1 0 5
5 .3 3 4 0 13 .7160 9 .6 5 2 0 8 .7 6 3 0
3 .4 2 9 0 2 .6035 1 2 .3 1 9 0 11 .8745
2 .2 2 2 5 -4 .3 1 8 0 1 .7 7 8 0 4 .7 6 2 5

1 1 .6 2 0 5 8 .1280 8 .3 8 2 0 6 .6 6 7 5
9 .2 0 7 5 9 .8 4 2 5 1 3 .4 6 2 0 14 .9225

1 1 .6 2 0 5 13 .1445 1 1 .1 1 2 5 13 .2 7 1 5
1 8 .8 5 9 5 25 .1 4 6 0 2 6 .0 9 8 5 2 4 .0 6 6 5
1 9 .4 9 4 5 20 .4 4 7 0 2 4 .0 0 3 0 2 3 .8 1 2 5
2 3 .6 8 5 5 21 .3995 2 0 .5 7 4 0 16 .6370
1 9 .2 4 0 5 15 .8750 2 2 .1 6 1 5 24 .1 9 3 5
7 .0 4 8 5 10 .5410 1 3 .5 8 9 0 9 .5 2 5 0
4 .0 0 0 5 0 .3 8 1 0 -2 .2 8 6 0 -9 .2 7 1 0

-1 8 .4 7 8 5 -1 5 .9 3 8 5 -1 8 .4 1 5 0 -1 3 .4 6 2 0
-1 5 .8 1 1 5 -1 0 .1 6 0 0 -1 5 .1 7 6 5 -1 0 .3 5 0 5
-1 6 .1 9 2 5 -1 6 .5 7 3 5 -1 9 .5 5 8 0 -1 7 .4 6 2 5
-2 0 .8 9 1 5 -2 0 .0 6 6 0 -2 1 .1 4 5 5 -2 2 .0 3 4 5
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Data Set 7

-1 1 .3 6 6 5 -1 0 .7 9 5 0 -1 1 .0 4 9 0 -1 1 .2 3 9 5
-1 1 .9 3 8 0 -1 1 .8 1 1 0 -1 1 .8 7 4 5 -1 2 .0 0 1 5
-1 2 .7 0 0 0 -1 2 .5 0 9 5 -1 2 .6 3 6 5 -1 2 .1 9 2 0
-1 2 .9 5 4 0 -1 3 .3 3 5 0 -1 3 .7 1 6 0 -1 3 .7 7 9 5
-1 3 .4 6 2 0 -1 3 .6 5 2 5 -1 3 .7 1 6 0 -1 3 .9 7 0 0
-1 3 .7 7 9 5 -1 4 .0 9 7 0 -1 4 .5 4 1 5 -1 4 .6 6 8 5
-1 4 .4 1 4 5 -1 4 .6 0 5 0 -1 4 .8 5 9 0 -1 4 .8 5 9 0
-1 4 .1 6 0 5 -1 4 .6 6 8 5 -1 4 .6 6 8 5 -1 3 .3 9 8 5
-1 4 .4 7 8 0 -1 4 .6 0 5 0 -1 4 .8 5 9 0 -1 4 .6 6 8 5
-1 4 .5 4 1 5 -1 4 .5 4 1 5 -1 4 .7 3 2 0 -1 4 .2 2 4 0
-1 3 .7 7 9 5 -1 4 .0 3 3 5 -1 3 .6 5 2 5 -1 3 .9 0 6 5
-1 3 .0 1 7 5 -1 3 .2 0 8 0 -1 3 .7 1 6 0 -1 3 .6 5 2 5
-1 2 .7 6 3 5 -1 3 .2 7 1 5 -1 3 .1 4 4 5 -1 2 .5 7 3 0
-1 1 .9 3 8 0 -1 2 .3 8 2 5 -1 2 .1 2 8 5 -1 1 .4 9 3 5
-1 1 .6 2 0 5 -1 1 .6 8 4 0 -1 1 .6 2 0 5 -1 1 .4 9 3 5
-1 0 .5 4 1 0 -1 0 .3 5 0 5 -1 0 .6 0 4 5 -9 .7 1 5 5
-9 .2 0 7 5 -1 0 .0 3 3 0 -9 .5 2 5 0 -8 .2 5 5 0
-8 .8 2 6 5 -8 .7 6 3 0 -7 .5 5 6 5 -7 .1 7 5 5
-7 .1 1 2 0 -6 .0 9 6 0 -5 .9 0 5 5 -5 .3 3 4 0
-4 .8 8 9 5 -4 .8 2 6 0 -4 .6 9 9 0 -4 .3 8 1 5
-3 .7 4 6 5 -3 .6 8 3 0 -3 .3 6 5 5 -2 .7 3 0 5
-2 .8 5 7 5 -3 .0 4 8 0 -1 .9 0 5 0 -1 .2 0 6 5
-1 .5 8 7 5 0 .6 9 8 5 0.0000 0.0000

-0 .3 8 1 0 0 .6 3 5 0 1 .2065 1 .1430
1 .9 6 8 5 2 .1 5 9 0 2 .6035 2 .4765
3 .3 0 2 0 3 .8 7 3 5 3 .9 3 7 0 3 .3655
5 .0 8 0 0 5 .3 9 7 5 5 .2 7 0 5 5 .1435
6 .3 5 0 0 6 .6 0 4 0 6 .2230 6 .7945
7 .3 6 6 0 7 .4 9 3 0 7 .4930 7 .8105
8 .6 3 6 0 8 .6 3 6 0 8 .8 2 6 5 9 .2710
9 .6 5 2 0 11 .3030 9 .9060 10.0965

1 1 .0 4 9 0 11 .0490 11 .1760 11.1760
1 1 .7 4 7 5 11 .5570 11 .5570 11 .1760
1 2 .2 5 5 5 12 .3825 12 .4460 12 .3825
1 2 .9 5 4 0 13 .0810 12 .4460 12 .9540

-1 1 .4 9 3 5 -1 1 .6 8 4 0 -1 2 .0 0 1 5 -1 2 .0 0 1 5
-1 1 .8 7 4 5 -1 2 .9 5 4 0 -1 2 .6 3 6 5 -1 2 .5 0 9 5
-1 3 .3 9 8 5 -1 3 .5 2 5 5 -1 3 .3 3 5 0 -1 3 .6 5 2 5
-1 3 .8 4 3 0 -1 3 .9 0 6 5 -1 4 .0 3 3 5 -1 4 .2 2 4 0
-1 4 .1 6 0 5 -1 4 .0 3 3 5 -1 3 .8 4 3 0 -1 3 .8 4 3 0
-1 4 .7 9 5 5 -1 4 .6 0 5 0 -1 4 .2 2 4 0 -1 4 .1 6 0 5
-1 4 .8 5 9 0 -1 5 .0 4 9 5 -1 4 .4 1 4 5 -1 4 .2 8 7 5
-1 2 .1 2 8 5 -1 4 .4 1 4 5 -1 4 .1 6 0 5 -1 4 .2 2 4 0
-1 4 .4 7 8 0 -1 4 .4 7 8 0 -1 4 .6 0 5 0 -1 4 .6 6 8 5
-1 4 .4 1 4 5 -1 4 .0 9 7 0 -1 4 .2 2 4 0 -1 3 .9 0 6 5
-1 3 .8 4 3 0 -1 4 .0 3 3 5 -1 3 .5 8 9 0 -1 3 .2 7 1 5
-1 3 .5 8 9 0 -1 3 .3 3 5 0 -1 2 .5 7 3 0 -1 2 .5 7 3 0
-1 2 .7 0 0 0 -1 1 .8 7 4 5 -1 1 .3 0 3 0 -1 1 .8 7 4 5
-1 1 .7 4 7 5 -1 1 .3 6 6 5 -1 0 .9 8 5 5 -1 1 .5 5 7 0
-1 0 .5 4 1 0 -9 .8 4 2 5 -1 0 .4 7 7 5 -1 0 .2 8 7 0
-9 .2 0 7 5 -9 .0 8 0 5 -9 .2 7 1 0 -9 .4 6 1 5
-7 .9 3 7 5 -7 .8 1 0 5 -8 .3 8 2 0 -8 .1 2 8 0
-6 .6 6 7 5 -6 .9 2 1 5 -6 .8 5 8 0 -6 .8 5 8 0
-5 .3 9 7 5 -5 .4 6 1 0 -5 .3 9 7 5 -5 .5 8 8 0
-4 .4 4 5 0 -4 .2 5 4 5 -4 .1 9 1 0 -3 .9 3 7 0
-2 .2 8 6 0 -2 .7 3 0 5 -2 .6 6 7 0 -2 .8 5 7 5
-1 .5 8 7 5 -1 .7 1 4 5 -1 .7 7 8 0 -1 .1 4 3 0
-0 .3 8 1 0 -0 .2 5 4 0 -0 .1 2 7 0 -0 .1 9 0 5
1 .0160 1 .2700 1.6510 1 .5240
1 .9685 2 .6035 2 .7940 2 .7 3 0 5
3 .6 8 3 0 4 .2 5 4 5 4 .5 0 8 5 4 .7 6 2 5
5 .3340 5 .5245 5 .3340 5 .9055
6 .6 0 4 0 6 .8 5 8 0 6 .9215 7 .1120
7 .8 7 4 0 8 .0 0 1 0 8 .1280 8 .4455
9 .3345 9 .3345 9 .3980 9 .6520

10 .0330 10 .0330 10 .4775 11 .1125
10 .7950 10 .7950 10 .8585 11 .6205
11 .4935 11 .8745 12 .2555 12 .6365
12 .7000 13 .0175 13 .3350 12 .8905
13.9065 13 .9065 14 .0335 13.3985

267



14 .0 9 7 0 13 .1 4 4 5 13 .2080 14 .0 3 3 5 14.0335 13 .8430 13.9065 14 .1 6 0 5
14 .2240 13 .9 0 6 5 14 .1605 1 4 .4 1 4 5 14.6685 14 .4145 14.1605 14 .7 9 5 5
14 .4145 14 .5 4 1 5 14 .7320 1 4 .6 6 8 5 14 .5415 14 .3510 14.9225 14 .3 5 1 0
14 .4780 15 .1 1 3 0 14 .9225 1 5 .1 7 6 5 14 .8590 14 .8590 15.0495 14 .7320
15 .2400 14 .9 2 2 5 15 .1130 15 .1 1 3 0 15 .2400 14 .5415 14.7955 14 .6 6 8 5
15 .8750 14 .7 9 5 5 15 .0495 15 .0 4 9 5 14 .6685 14 .2875 14 .4780 14 .6 0 5 0
14 .6050 14 .7 9 5 5 14 .9225 1 4 .0 3 3 5 13 .3350 13 .9700 14 .0970 14 .4 1 4 5
14 .9225 14 .9 8 6 0 14 .4145 1 3 .2 0 8 0 12 .9540 13 .7795 14 .0335 14 .1 6 0 5
13 .9 7 0 0 13 .5255 13 .9065 1 2 .3 1 9 0 12 .8905 13 .8430 13 .6525 13 .5 8 9 0
13 .3 9 8 5 12 .9540 13 .1445 1 3 .0 8 1 0 13 .2080 13 .2715 13.2715 13 .0 1 7 5
12 .5730 12 .2 5 5 5 12 .3190 1 2 .3 8 2 5 12 .5095 12 .4460 12.1285 12 .0 6 5 0
11 .6205 11 .4 3 0 0 11 .5570 1 1 .5 5 7 0 11 .6205 11 .4935 11 .1760 10 .9 2 2 0
10 .8585 10 .9 2 2 0 11 .9380 11 .0 4 9 0 10 .8585 10 .2870 10.2870 10 .0 3 3 0
9 .7 7 9 0 9 .5 2 5 0 9 .4 6 1 5 9 .3 3 4 5 9 .3980 8 .9 5 3 5 8 .3 1 8 5 8 .6 9 9 5
8 .6 3 6 0 8 .4 4 5 5 8 .2 5 5 0 8 .8 9 0 0 8 .7630 7 .6 2 0 0 7 .8 1 0 5 8 .0 0 1 0
7 .8 7 4 0 7 .6 8 3 5 7 .5 5 6 5 7 .4 9 3 0 7 .1120 6 .1 5 9 5 6 .2230 6 .3 5 0 0
6 .5 4 0 5 6 .0 3 2 5 6 .3 5 0 0 5 .7 1 5 0 4 .4 4 5 0 4 .1 9 1 0 5 .0165 5 .0 8 0 0
5 .0 1 6 5 4 .9 5 3 0 4 .3 8 1 5 3 .4 2 9 0 3 .3655 3 .8 1 0 0 3 .8735 3 .9 3 7 0
3 .7 4 6 5 3 .7 4 6 5 2 .9 8 4 5 1 .6 5 1 0 1 .7780 2 .5 4 0 0 2 .4130 2 .3 4 9 5
2 .2 8 6 0 1 .8415 0 .7 6 2 0 0 .3 8 1 0 1 .3335 0 .9 5 2 5 1 .3335 0 .8 8 9 0
0 .8 8 9 0 0 .3 1 7 5 -0 .1 9 0 5 -0 .1 9 0 5 -0 .2 5 4 0 -0 .1 9 0 5 -0 .3 1 7 5 -0 .3 8 1 0

-0 .6 3 5 0 -1 .2 7 0 0 -1 .4 6 0 5 -1 .5 8 7 5 -1 .7 1 4 5 -1 .6 5 1 0 -1 .7 7 8 0 -2 .1 5 9 0
-2 .2 8 6 0 -2 .4 7 6 5 -2 .7 9 4 0 -2 .7 9 4 0 -2 .9 8 4 5 -2 .8 5 7 5 -3 .1 1 1 5 -3 .8 1 0 0
-3 .5 5 6 0 -3 .9 3 7 0 -3 .9 3 7 0 -4 .1 2 7 5 -4 .1 2 7 5 -3 .7 4 6 5 -4 .8 2 6 0 -4 .8 8 9 5
-5 .0 8 0 0 -5 .4 6 1 0 -5 .7 1 5 0 -5 .5 2 4 5 -5 .5 8 8 0 -5 .7 7 8 5 -6 .3 5 0 0 -6 .6 0 4 0
-6 .6 0 4 0 -6 .6 6 7 5 -6 .8 5 8 0 -6 .5 4 0 5 -6 .7 3 1 0 -6 .8 5 8 0 -7 .7 4 7 0 -7 .5 5 6 5
-7 .4 9 3 0 -7 .7 4 7 0 -7 .9 3 7 5 -7 .8 7 4 0 -8 .0 6 4 5 -8 .5 7 2 5 -8 .6 3 6 0 -8 .5 0 9 0
-8 .8 9 0 0 -9 .3 9 8 0 -8 .1 2 8 0 -9 .4 6 1 5 -9 .5 8 8 5 -9 .8 4 2 5 -9 .5 8 8 5 -9 .9 6 9 5

-1 0 .3 5 0 5
-1 1 .4 9 3 5

-1 0 .7 3 1 5 -1 0 .4 1 4 0 -1 0 .3 5 0 5  -1 0 .8 5 8 5

Data Set 8

-1 0 .5 4 1 0 -1 0 .9 2 2 0 -1 1 .0 4 9 0

-6 .8 5 8 0 -7 .8 1 0 5 -9 .9 6 9 5 -6 .9 8 5 0 -8 .2 5 5 0 -1 0 .7 3 1 5 -3 .4 2 9 0 -1 .7780
-2 .4 1 3 0 -3 .4 2 9 0 -4 .2 5 4 5 -4 .0 6 4 0 -4 .8 2 6 0 -1 .3 3 3 5 3 .3655 1 .7145
7 .1 7 5 5 10 .0 3 3 0 7 .3 6 6 0 4 .2 5 4 5 4 .3180 6 .7 3 1 0 6 .4 1 3 5  ]12.0650
8 .2 5 5 0 9 .2 7 1 0 9 .2 7 1 0 5 .6 5 1 5 4 .1275 3 .1 1 1 5 4 .3 8 1 5 4 .0 0 0 5
1 .9050 7 .6 2 0 0 6 .4 7 7 0 1 .5 8 7 5 -2 .4 7 6 5 -6 .8 5 8 0 -6 .1 5 9 5  ■ 3 .4 9 2 5
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-6 .6 6 7 5 -7 .5 5 6 5 -6 .2 2 3 0 -5 .2 0 7 0
-5 .7 7 8 5 -8 .0 0 1 0 0 .0000 -1 .4 6 0 5

-1 1 .4 9 3 5 -1 3 .6 5 2 5 -1 4 .1 6 0 5 -1 3 .1 4 4 5
-2 6 .2 8 9 0 -2 5 .0 8 2 5 -2 2 .2 8 8 5 -1 9 .9 3 9 0
-2 4 .1 3 0 0 -2 3 .1 7 7 5 -1 9 .8 1 2 0 -2 1 .9 0 7 5
-2 7 .8 1 3 0 -3 1 .6 2 3 0 -2 5 .0 8 2 5 -2 1 .9 7 1 0
-2 8 .5 1 1 5 -2 8 .3 8 4 5 -2 8 .5 1 1 5 -2 8 .7 0 2 0
-1 0 .4 7 7 5 -1 4 .0 9 7 0 -1 1 .2 3 9 5 -8 .4 4 5 5
-5 .0 8 0 0 -4 .3 8 1 5 -1 .4 6 0 5 -3 .1 1 1 5
3 .6 8 3 0 4 .3 8 1 5 2 .9210 3 .8 1 0 0
13 .9700 14 .2240 10 .2870 6 .6 6 7 5
8 .3 8 2 0 9 .1 4 4 0 9 .3345 7 .6 8 3 5
15 .1765 12 .2555 12 .1285 7 .9 3 7 5
14 .9225 14 .7955 10 .8585 4 .8 2 6 0
1 .9050 5 .2705 -4 .8 2 6 0 1 .2 0 6 5

-1 2 .3 8 2 5 -1 2 .1 9 2 0 -6 .8 5 8 0 -4 .4 4 5 0
-1 2 .8 9 0 5 -1 6 .8 2 7 5 -1 3 .6 5 2 5 -1 5 .3 0 3 5
-2 0 .3 8 3 5 -2 1 .5 9 0 0 -1 8 .4 7 8 5 -2 1 .2 7 2 5
-1 7 .5 8 9 5 -1 7 .9 0 7 0 -1 6 .7640 -1 4 .3 5 1 0
-2 0 .6 3 7 5 -1 7 .9 7 0 5 -1 5 .6 2 1 0 -1 6 .8 9 1 0
-1 0 .7 3 1 5 -9 .3 9 8 0 -7 .6 8 3 5 -4 .5 7 2 0
-1 .0 1 6 0 -1 .9 0 5 0 -1 .9 0 5 0 3 .4 2 9 0
11 .6 2 0 5 9 .5250 12 .0650 11 .3 6 6 5
18 .0340 17 .1450 11 .9380 1 1 .8 1 1 0
2 2 .3 5 2 0 15 .6845 14 .2875 18 .2 8 8 0
2 1 .3 9 9 5 18 .0340 15 .6845 1 7 .3 9 9 0
15 .9385 8 .1280 6 .1595 6 .9 8 5 0
9 .5 8 8 5 7 .6835 8 .1280 3 .4 9 2 5
4 .9 5 3 0 1 .3970 2 .2860 -1 .2 0 6 5

-1 0 .0 9 6 5 -4 .3 1 8 0 -2 .1 5 9 0 -1 0 .2 8 7 0
-7 .3 0 2 5 -6 .5 4 0 5 -4 .3 8 1 5 -6 .6 6 7 5
-9 .4 6 1 5 -6 .1 5 9 5 -4 .6 9 9 0 -2 .2 2 2 5
-1 .7 7 8 0 0 .1270 4 .7 6 2 5 6 .9 8 5 0
2 .9 2 1 0 3 .1750 2 .3495 2 .8 5 7 5
5 .2 7 0 5 8 .3 8 2 0 15.5575 16 .5 7 3 5
12 .9540 11.8745 15 .1765 19 .8 1 2 0
17 .0815 20 .7 0 1 0 20 .4 4 7 0 2 3 .8 7 6 0
2 3 .6 2 2 0 26 .5 4 3 0 25 .9080 2 3 .2 4 1 0

-4 .7 6 2 5 -5 .4 6 1 0 -8 .7 6 3 0 -7 .3 0 2 5
-0 .0 6 3 5 2 .3 4 9 5 -1 2 .3 1 9 0 -1 0 .5 4 1 0

-1 3 .8 4 3 0 -1 9 .1 7 7 0 -1 7 .5 2 6 0 -2 3 .4 9 5 0
-1 6 .7 0 0 5 -1 7 .5 2 6 0 -2 2 .2 8 8 5 -2 4 .2 5 7 0
-2 0 .4 4 7 0 -2 1 .9 7 1 0 -2 4 .1 9 3 5 -2 5 .7 8 1 0
-2 4 .4 4 7 5 -2 9 .9 0 8 5 -2 2 .4 1 5 5 -2 4 .0 0 3 0
-2 9 .7 8 1 5 -2 6 .9 8 7 5 -1 6 .0 6 5 5 -1 1 .5 5 7 0
-9 .1 4 4 0 -8 .5 0 9 0 -4 .6 9 9 0 -3 .6 8 3 0
-9 .3 9 8 0 -1 2 .3 1 9 0 -6 .7 3 1 0 -1 .4 6 0 5
8 .9 5 3 5 4 .3 8 1 5 7 .2 3 9 0 12 .3190
7 .7 4 7 0 9 .8 4 2 5 6 .7 9 4 5 10 .7950
7 .7 4 7 0 7 .4 9 3 0 8 .1 2 8 0 12 .6365
7 .8 1 0 5 10 .9855 1 0 .5 4 1 0 10 .5410
3 .1 1 1 5 3 .6 8 3 0 1 .9 6 8 5 0 .3810
6 .2 2 3 0 1 .5875 -1 0 .2 2 3 5 -1 9 .7 4 8 5

-1 2 .7 0 0 0 -1 5 .0 4 9 5 -1 4 .8 5 9 0 -1 1 .8 7 4 5
-1 2 .6 3 6 5 -1 6 .2 5 6 0 -1 7 .3 3 5 5 -1 8 .9 2 3 0
-1 6 .7 0 0 5 -1 5 .6 8 4 5 -1 6 .8 2 7 5 -2 0 .7 0 1 0
-1 4 .3 5 1 0 -1 5 .8 1 1 5 -1 7 .6 5 3 0 -2 3 .3 6 8 0
-1 7 .7 1 6 5 -1 8 .6 6 9 0 -1 3 .2 7 1 5 -1 2 .7 0 0 0
-4 .0 0 0 5 -4 .1 2 7 5 -1 .5 2 4 0 3 .9370
5 .9 6 9 0 8 .1 2 8 0 1 3 .7 1 6 0 11 .9380

14 .6685 17 .4625 2 1 .8 4 4 0 20 .8 9 1 5
20 .5 7 4 0 26 .2 2 5 5 2 6 .9 8 7 5 27 .2 4 1 5
15 .1130 12 .8270 1 4 .0 3 3 5 18 .5420
19 .4945 21 .9 7 1 0 2 3 .6 2 2 0 17 .1450
6 .0 9 6 0 7 .3025 1 0 .4 7 7 5 9 .0805
4 .4 4 5 0 4 .1 9 1 0 2 .0 9 5 5 4 .2 5 4 5

-7 .8 7 4 0 -7 .0 4 8 5 -1 0 .8 5 8 5 -1 1 .9 3 8 0
-1 2 .8 2 7 0 -1 2 .3 8 2 5 -1 8 .5 4 2 0 -1 7 .2 7 2 0
-9 .5 2 5 0 -9 .7 1 5 5 -8 .2 5 5 0 -7 .1 7 5 5
-4 .1 9 1 0 -2 .7 9 4 0 -2 .7 9 4 0 -3 .8 7 3 5
2 .9 8 4 5 -3 .4 9 2 5 0 .3 1 7 5 -1 .3 3 3 5
5 .5 2 4 5 2 .9 2 1 0 6 .4 7 7 0 5 .0800

17 .9705 16 .5100 1 4 .8 5 9 0 12 .8270
2 6 .2 8 9 0 25 .7 8 1 0 2 0 .8 9 1 5 17 .1450
26 .1 6 2 0 23 .2 4 1 0 2 6 .1 6 2 0 2 5 .3 3 6 5
23 .1 1 4 0 20 .2 5 6 5 2 5 .5 9 0 5 21 .8 4 4 0
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20 .4 4 7 0 2 1 .8 4 4 0 2 3 .2 4 1 0 24 .2 5 7 0 2 3 .5 5 8 5 19 .9390 19 .2405 18 .2880
13 .4620 11 .8745 9 .3 3 4 5 6 .0 3 2 5 1 .5240 10 .6045 11 .4300 12 .6365
5 .9 0 5 5 2 .4 1 3 0 -1 .3 3 3 5 1 .0160 3 .6 1 9 5 7 .7 4 7 0 5 .7785 4 .1 9 1 0
0 .0 0 0 0 -0 .3 8 1 0 -3 .3 0 2 0 -2 .6 6 7 0 -3 .3 6 5 5 -1 .8 4 1 5 -1 .4 6 0 5 -2 .7 9 4 0
-2 .7 9 4 0 -4 .6 3 5 5 -1 0 .2 2 3 5 -1 7 .4 6 2 5 -1 8 .5 4 2 0 -1 4 .7 3 2 0 -1 2 .1 2 8 5 -1 0 .0 9 6 5

-1 0 .7 9 5 0 -1 2 .3 8 2 5 -1 4 .2 2 4 0 -1 3 .6 5 2 5 -1 2 .1 9 2 0 -9 .1 4 4 0 -7 .8 7 4 0 -6 .2 2 3 0
-1 0 .0 9 6 5 -8 .9 5 3 5 -8 .3 1 8 5 -9 .9 0 6 0 -1 1 .1 1 2 5 -1 3 .8 4 3 0 -1 0 .0 3 3 0 -4 .0 0 0 5

2 .2 2 2 5 1 .5240 0 .9 5 2 5 1 .4605 1 .0795 1 .7780 0 .0635 3 .9 3 7 0
7 .9 3 7 5 11 .0490 1 1 .4 9 3 5 8 .8 2 6 5 8 .1 9 1 5 9 .0170 6 .4135 5 .3 3 4 0
12 .9540 12 .8270 1 1 .4 3 0 0 12 .6365 12 .3190 11 .8745 13 .7160 17 .5260
19 .2405 2 1 .7 8 0 5 2 4 .1 9 3 5 2 3 .0 5 0 5 21 .0 1 8 5 19 .1135 18 .6055 16 .3 1 9 5
2 2 .8 6 0 0 2 3 .4 3 1 5 2 7 .6 2 2 5 2 6 .4 1 6 0 23 .4 9 5 0 2 3 .5 5 8 5 21 .0820 18 .6 6 9 0
19 .1770 2 5 .4 6 3 5 2 4 .3 8 4 0 2 3 .6 2 2 0 23 .4 9 5 0 2 2 .6 0 6 0 20 .0660 14 .9 2 2 5
14 .7955 2 1 .9 0 7 5 2 0 .7 0 1 0 19 .3040 18 .1610 15 .6845 10 .9220 10 .6 0 4 5
10 .0330 6 .3 5 0 0 6 .6 0 4 0 13 .5890 12 .9540 9 .5 8 8 5 9 .8425 6 .5 4 0 5
4 .3 8 1 5 1 .5240 -3 .2 3 8 5 -5 .2 7 0 5 -9 .3 9 8 0 -8 .2 5 5 0 -8 .2 5 5 0 -9 .7 7 9 0

-1 1 .4 9 3 5 -1 2 .1 2 8 5 -1 3 .3 3 5 0 -1 1 .0 4 9 0 -7 .3 6 6 0 -7 .4 2 9 5 -8 .6 3 6 0 -9 .2 7 1 0
-1 0 .6 6 8 0 -1 1 .6 8 4 0 -1 7 .3 3 5 5 -2 0 .0 6 6 0 -1 6 .4 4 6 5 -1 2 .0 6 5 0 -1 4 .3 5 1 0 -1 7 .2 7 2 0
-1 5 .4 9 4 0 -1 9 .4 9 4 5 -1 7 .9 0 7 0 -1 4 .9 8 6 0 -1 4 .1 6 0 5 -1 1 .3 6 6 5 -1 6 .2 5 6 0 -1 2 .3 1 9 0
-1 5 .3 6 7 0 -1 9 .0 5 0 0 -2 3 .9 3 9 5 -1 9 .3 6 7 5 -1 9 .2 4 0 5 -2 0 .1 9 3 0 -1 6 .8 9 1 0 -1 3 .8 4 3 0
-1 0 .1 6 0 0 -1 0 .0 3 3 0 -1 5 .4 3 0 5 -1 6 .5 7 3 5 -1 3 .5 8 9 0 -1 5 .6 2 1 0 -8 .1 9 1 5 -8 .8 2 6 5
-7 .5 5 6 5

Data Set 9

-3 .4 2 9 0 -3 .9 3 7 0 -2 .2 8 6 0 -1 .0 7 9 5 -1 .0 7 9 5 -2 .4 7 6 5 -0 .8 2 5 5 -1 .4 6 0 5 -1 .7 7 8 0
-1 .9 6 8 5 -3 .1 1 1 5 -2 .9 8 4 5 -2 .0 3 2 0 -2 .2 2 2 5 -3 .1 7 5 0 -2 .2 2 2 5 . -3 .0 4 8 0 -2 .0 9 5 5
-2 .1 5 9 0 -2 .9 2 1 0 -2 .4 1 3 0 -1 .3 9 7 0 -2 .5 4 0 0 -1 .8 4 1 5 -1 1 .8 7 4 5 -6 .1 5 9 5 -2 .6 6 7 0
-2 .4 7 6 5 3 .1 7 5 0 0 .8 8 9 0 -2 .4 7 6 5 -3 .1 1 1 5 -2 .7 3 0 5 -2 .4 1 3 0 -3 .1 1 1 5 -2 .2 8 6 0
-3 .4 9 2 5 -3 .9 3 7 0 -4 .6 3 5 5 -2 .7 9 4 0 -2 .0 3 2 0 -2 .9 8 4 5 -3 .3 6 5 5 -2 .5 4 0 0 -3 .2 3 8 5
-3 .5 5 6 0 -2 .9 8 4 5 -2 .7 9 4 0 -3 .2 3 8 5 -4 .0 0 0 5 -2 .3 4 9 5 -3 .3 0 2 0 -3 .8 7 3 5 -3 .5 5 6 0
-3 .7 4 6 5 -3 .5 5 6 0 -3 .7 4 6 5 -2 .9 8 4 5 -3 .3 0 2 0 -2 .7 3 0 5 -3 .3 0 2 0 -3 .4 9 2 5 -5 .3 9 7 5
-3 .7 4 6 5 -5 .8 4 2 0 -3 .6 1 9 5 -2 .9 8 4 5 -3 .1 1 1 5 -5 .4 6 1 0 -8 .3 8 2 0 -7 .8 1 0 5 -5 .2 7 0 5
-4 .9 5 3 0 -4 .0 0 0 5 -3 .8 1 0 0 -4 .0 6 4 0 -3 .7 4 6 5 -4 .1 2 7 5 -4 .1 9 1 0 -3 .1 7 5 0 -3 .2 3 8 5
-3 .6 8 3 0 -3 .7 4 6 5 -3 .4 2 9 0 -3 .3 6 5 5 -4 .0 6 4 0 -6 .4 1 3 5 -4 .3 8 1 5 -3 .0 4 8 0 -3 .2 3 8 5
-3 .3 6 5 5 -4 .1 2 7 5 -3 .8 1 0 0 -4 .8 8 9 5 -3 .2 3 8 5 -3 .9 3 7 0 -3 .6 1 9 5 -3 .8 1 0 0 -4 .8 2 6 0
-3 .3 6 5 5 -3 .4 2 9 0 -4 .1 2 7 5 -4 .0 6 4 0 -3 .6 8 3 0 -3 .7 4 6 5 -4 .3 8 1 5 -3 .6 8 3 0 -4 .5 0 8 5
-3 .3 0 2 0 -3 .1 1 1 5 -3 .1 1 1 5 -3 .4 9 2 5 -2 .8 5 7 5 -3 .1 7 5 0 -2 .7 9 4 0 -2 .9 8 4 5 -3 .4 9 2 5
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-4 .1 2 7 5 -4 .1 2 7 5 -4 .7 6 2 5 -4 .6 9 9 0 -5 .0800 -3 .4 9 2 5 -4 .2 5 4 5 -4 .4450
-5 .0 1 6 5 -4 .5 7 2 0 -6 .2 8 6 5 -4 .4 4 5 0 -4 .8260 -6 .4 7 7 0 -4 .3 8 1 5 -3 .7465

J -3 .8 7 3 5 -3 .9 3 7 0 -3 .6 8 3 0 -3 .6 1 9 5 -3 .8 1 0 0 -3 .6 1 9 5 -3 .8 7 3 5 -4 .3815
-4 .2 5 4 5 -4 .3 8 1 5 -4 .0005 -3 .3 0 2 0 -2 .9845 -3 .0 4 8 0 -4 .3 8 1 5 -3 .6830
-3 .0 4 8 0 -3 .3 6 5 5 -4 .7 6 2 5 -3 .6 8 3 0 -3 .4925 -3 .4 2 9 0 -4 .7 6 2 5 -4 .5720
-3 .4 9 2 5 -3 .7 4 6 5 -4 .5 0 8 5 -4 .1 2 7 5 -3 .1 1 1 5 -2 .9 8 4 5 -3 .6 8 3 0 -3 .2385
-3 .2 3 8 5 -2 .4 7 6 5 -3 .3 0 2 0 -2 .9 8 4 5 -2 .9 8 4 5 -2 .4 7 6 5 -2 .6 0 3 5 -2 .7305
-2 .5 4 0 0 -3 .0 4 8 0 -2 .8 5 7 5 -2 .8 5 7 5 -2 .9 2 1 0 -3 .2 3 8 5 -2 .7 3 0 5 -2 .8575
-3 .1 1 1 5 -5 .1 4 3 5 -6 .6 0 4 0 -5 .0 1 6 5 -4 .3 8 1 5 -3 .9 3 7 0 -3 .6 8 3 0 -3 .2385
-2 .3 4 9 5 0 .6 9 8 5 -3 .6 8 3 0 -1 .9 6 8 5 -2 .5 4 0 0 -2 .0 3 2 0 -2 .0 3 2 0 -1 .7145
-2 .3 4 9 5 -1 .3 9 7 0 -1 .6 5 1 0 -2 .3 4 9 5 -1 .4 6 0 5 -1 .3 9 7 0 -0 .8 8 9 0 -0 .6350
-0 .8 8 9 0 5 .2 0 7 0 -2 .2 2 2 5 -1 .3 3 3 5 1.7780 -0 .1 9 0 5 -0 .5 0 8 0 -1 .3335
-0 .7 6 2 0 -0 .8 2 5 5 0 .6985 7 .8105 -0 .2 5 4 0 0 .9 5 2 5 0 .3 1 7 5 1.3970
-0 .4 4 4 5 -0 .1 2 7 0 -0 .3 1 7 5 0 . 0 0 0 0 0 .1905 0 .5 0 8 0 -0 .0 6 3 5 0 .0635
0 .6 9 8 5 -0 .0 6 3 5 1.0160 -1 .0 1 6 0 -3 .1750 -3 .2 3 8 5 -0 .6 9 8 5 -0 .3175

-0 .1 9 0 5 -1 .0 7 9 5 -3 .8 7 3 5 -5 .0 1 6 5 -2 .2225 -0 .0 6 3 5 0 .3 1 7 5 0 .4445
1 .2700 5 .3 3 4 0 1 .8415 1 .4605 1.0795 1 .2700 1 .2700 1.4605
1 .2700 0 .4 4 4 5 2 .0320 1 .6510 2 .4765 2 .0 3 2 0 1 .6510 7 .3025
4 .7 6 2 5 1 .8415 1 .4605 1 .9050 2 .0955 2 .7 3 0 5 1 .3970 1.6510
3 .6 1 9 5 2 .0 3 2 0 2 .2860 2 .1590 1.9685 1 .9685 2 .4 7 6 5 2 .4130
2 .2 2 2 5 1 .3335 2 .6035 2 .8575 2 .8575 2 .7 9 4 0 3 .1 1 1 5 2 .6670
2 .2 2 2 5 0 .8 2 5 5 1.2700 1 .5240 1.1430 2 .0 3 2 0 0 .3 1 7 5 1.2065
0 .3 8 1 0 1 .1430 3 .1750 1 .5240 1.3335 1 .2065 1 .3335 1.9050
1 .7780 2 .4 1 3 0 4 .0 0 0 5 4 .3 8 1 5 4 .5085 5 .0 1 6 5 3 .9 3 7 0 5 .7785
5 .6 5 1 5 5 .6 5 1 5 5 .2070 5 .5245 5 .9690 5 .0 1 6 5 4 .3 8 1 5 3 .2385
2 .0 9 5 5 -0 .4 4 4 5 -1 .3970 -2 .0 9 5 5 -3 .3 0 2 0 -5 .0 1 6 5 -5 .2 7 0 5 -5 .5880

-2 .7 9 4 0 -3 .6 8 3 0 -1 .6510 0 .6 9 8 5 0 .3175 0 .5 7 1 5 -3 .5 5 6 0 -2 .7305
1 .5 2 4 0 2 .7 3 0 5 2 .0320 2 .7940 2 .9210 2 .8 5 7 5 2 .6 6 7 0 2 .5400
1 .7780 0 .3 1 7 5 2 .7940 2 .6035 2 .9210 2 .3 4 9 5 1 .0795 2 .4765
3 .4 2 9 0 3 .4 9 2 5 3 .9370 4 .3 8 1 5 4 .3180 4 .7 6 2 5 3 .6 1 9 5 4 .0005
3 .6 8 3 0 3 .4 9 2 5 4 .9530 5 .0800 3 .9370 4 .8 2 6 0 4 .9 5 3 0 4 .9530
4 .0 6 4 0 5 .0 1 6 5 4 .7625 4 .3 1 8 0 4 .9530 5 .0 1 6 5 4 .1 9 1 0 5 .3975
5 .3 3 4 0 5 .3 9 7 5 5 .1435 4 .4 4 5 0 3 .5560 3 .3 0 2 0 4 .5 0 8 5 5 .5245
6 .0 3 2 5 6 .0 3 2 5 5 .9055 5 .5245 5 .7785 5 .6 5 1 5 6 .5 4 0 5 5 .9690
6 .2 8 6 5 10 .6 6 8 0 4 .8 8 9 5 5 .4610 2 .7940 5 .5 8 8 0 5 .5 8 8 0 5 .0165
5 .3 3 4 0 4 .6 3 5 5 2 .9210 5 .8420 5 .2705 3 .3 6 5 5 2 .6 6 7 0 2 .2860
3 .6 8 3 0 4 .9 5 3 0 3 .9370 5 .1435 1.6510 -0 .1 2 7 0 -0 .4 4 4 5 2 .7940
4 .9 5 3 0 4 .0 6 4 0 4 .1 9 1 0 4 .3 8 1 5 3 .6195 4 .8 2 6 0 4 .9 5 3 0 3 .1750
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3 .8735 4 .5 7 2 0 4 .0 0 0 5 2 .4 7 6 5 1 .7145 2 .9 8 4 5 2 .9845  2 .8575
3 .2385 2 .9 2 1 0 2 .2 8 6 0 2 .3 4 9 5 3 .2385 3 .3 6 5 5 2 .9210  2 .8575
3 .2385 3 .2 3 8 5 2 .9 8 4 5 2 .4 1 3 0 0 .2540 2 .4 1 3 0 2 .2860  2 .6670
1 .7780 2 .2 8 6 0 1 .9685 2 .0 9 5 5 1 .2700 0 .7 6 2 0 0 .3810  1 .1430
0 .6985 0 .8 8 9 0 1 .3335 0 .1 9 0 5 0 .6985 0 .9 5 2 5 0 .3810  0 .6985
0 .6350 0 .8 8 9 0 1 .2065 1 .4605 1 .7780 0 .6 3 5 0 1 .2065 1 .7780
1 .3335 0 .0 6 3 5 1 .3335 -0 .0 6 3 5 -0 .0 6 3 5 1 .7780 -0 .2 5 4 0  -0 .0 6 3 5

-0 .63501 -1 .3 9 7 0 -2 .5 4 0 0 0 .8 8 9 0 1 .0160 -0 .1 2 7 0 -0 .8 8 9 0  0 .4445
0 .0635 0 .5 7 1 5 2 .1 5 9 0 0 .7 6 2 0 0 .8255 4 .3 1 8 0 7 .3660  -0 .1 9 0 5
1 .6510 0 .0 6 3 5 -0 .3 1 7 5 -1 .1 4 3 0 -0 .4 4 4 5 -1 .5 2 4 0 -0 .2 5 4 0  -1 .5 8 7 5

-0 .5 7 1 5 i -1 .5 8 7 5 -2 .2 2 2 5 4 .1 2 7 5 -1 .6 5 1 0 -1 .4 6 0 5 -2 .0 9 5 5  -2 .4 7 6 5
-2 .5 4 0 0 i -3 .3 0 2 0 -3 .3 6 5 5 -3 .8 1 0 0

Data Set 10

-8 .7 6 3 0 -8 .5 0 9 0 -9 .5 8 8 5 -9 .5 8 8 5 -9 .4 6 1 5 -9 .7 1 5 5 -9 .9 6 9 5 -1 0 .4 1 4 0
-1 0 .4 7 7 5  - 11 .0 4 9 0 -1 1 .0 4 9 0 -1 0 .9 2 2 0 -1 1 .4 3 0 0 -1 2 .0 6 5 0 -1 2 .1 2 8 5 -1 2 .0 6 5 0
-1 2 .6 3 6 5  - 12 .5 7 3 0 -1 2 .6 3 6 5 -1 2 .8 9 0 5 -1 2 .7 6 3 5 -1 2 .8 9 0 5 -1 2 .8 2 7 0 -2 .6 6 7 0
-1 1 .1 7 6 0  - 1 2 .1 2 8 5 -1 3 .2 7 1 5 -1 2 .0 0 1 5 -1 2 .2 5 5 5 -1 1 .8 7 4 5 -1 1 .9 3 8 0 -1 2 .3 1 9 0
-1 3 .0 1 7 5  - 1 1 .7 4 7 5 -1 2 .1 2 8 5 -1 3 .3 9 8 5 -1 3 .5 8 9 0 -1 3 .0 8 1 0 -1 4 .6 0 5 0 -1 4 .7 9 5 5
-1 3 .5 8 9 0  - 14 .2 2 4 0 -1 5 .1 1 3 0 -1 3 .7 1 6 0 -1 3 .6 5 2 5 -1 5 .6 8 4 5 -1 6 .1 2 9 0 -1 5 .6 2 1 0
-1 4 .9 2 2 5  - 1 5 .7 4 8 0 -1 5 .6 2 1 0 -1 5 .6 2 1 0 -1 5 .7 4 8 0 -1 5 .4 9 4 0 -1 5 .3 0 3 5 -1 5 .1 1 3 0
-1 5 .0 4 9 5  - 15 .3 0 3 5 -1 5 .4 3 0 5 -1 4 .9 2 2 5 -1 4 .9 2 2 5 -1 4 .9 2 2 5 -1 4 .4 7 8 0 -1 4 .5 4 1 5
-1 4 .6 6 8 5  - 14 .0 9 7 0 -1 4 .2 8 7 5 -1 4 .3 5 1 0 -1 3 .9 0 6 5 -1 3 .4 6 2 0 -1 3 .5 8 9 0 -1 3 .2 7 1 5
-1 3 .3 9 8 5  - 13 .5 8 9 0 -1 3 .5 8 9 0 -1 3 .0 1 7 5 -1 3 .0 8 1 0 -1 3 .0 1 7 5 -1 2 .8 2 7 0 -1 2 .5 7 3 0
-1 2 .6 3 6 5  - 12 .3 8 2 5 -1 2 .2 5 5 5 -1 2 .4 4 6 0 -1 2 .1 9 2 0 -1 2 .0 0 1 5 -1 2 .1 9 2 0 -1 2 .4 4 6 0
-1 2 .2 5 5 5  - 12 .4 4 6 0 -1 2 .0 0 1 5 -1 1 .4 9 3 5 -1 1 .2 3 9 5 -1 1 .6 8 4 0 -1 1 .3 6 6 5 -1 1 .4 9 3 5
-1 1 .4 3 0 0  - 1 1 .1 7 6 0 -1 0 .6 6 8 0 -1 0 .6 6 8 0 -1 0 .5 4 1 0 -1 0 .2 8 7 0 -1 0 .4 1 4 0 -1 0 .5 4 1 0
-1 0 .4 7 7 5  - 10 .6 0 4 5 -1 0 .8 5 8 5 -1 0 .9 8 5 5 -1 1 .1 1 2 5 -1 1 .1 1 2 5 -1 1 .0 4 9 0 -1 1 .1 7 6 0
-1 1 .7 4 7 5  - 11 .8 1 1 0 -1 1 .8 1 1 0 -1 2 .0 6 5 0 -1 2 .3 8 2 5 -1 2 .2 5 5 5 -1 1 .9 3 8 0 -1 2 .3 1 9 0
-1 2 .3 8 2 5  - 12 .3 1 9 0 -1 2 .2 5 5 5 -1 2 .8 2 7 0 -1 2 .7 6 3 5 -1 2 .6 3 6 5 -1 2 .9 5 4 0 -1 2 .5 0 9 5
-1 2 .4 4 6 0  - 1 2 .5 7 3 0 -1 2 .4 4 6 0 -1 2 .5 7 3 0 -1 2 .5 7 3 0 -1 2 .6 3 6 5 -1 2 .7 6 3 5 -1 2 .8 2 7 0
-1 2 .7 6 3 5  - 12 .8 9 0 5 -1 2 .8 9 0 5 -1 2 .6 3 6 5 -1 2 .1 9 2 0 -1 2 .1 2 8 5 -1 2 .3 1 9 0 -1 1 .8 7 4 5
-1 1 .8 1 1 0  - 12 .0 6 5 0 -1 1 .9 3 8 0 -1 1 .4 3 0 0 -1 1 .4 3 0 0 -1 1 .4 3 0 0 -1 1 .1 7 6 0 -1 1 .3 6 6 5
-1 1 .3 6 6 5  - 11 .2 3 9 5 -1 1 .3 0 3 0 -1 1 .6 2 0 5 -1 0 .9 8 5 5 -1 0 .8 5 8 5 -1 0 .8 5 8 5 -1 0 .9 2 2 0
-1 0 .9 2 2 0  - 10 .6 6 8 0 -1 1 .1 7 6 0 -1 1 .5 5 7 0 -1 1 .3 0 3 0 -1 1 .2 3 9 5 -1 0 .8 5 8 5 -1 0 .2 8 7 0
-1 0 .4 1 4 0 -8 .9535 -1 0 .3 5 0 5 -1 0 .0 3 3 0 -1 0 .7 3 1 5 -1 0 .6 6 8 0 -1 0 .4 1 4 0 -1 0 .0 3 3 0
-9 .7 1 5 5 -9 .5885 -9 .3 3 4 5 -9 .0 1 7 0 -8 .7 6 3 0 -9 .1 4 4 0 -9 .0 8 0 5 -9 .0 8 0 5
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-9 .0 1 7 0 -8 .9 5 3 5 -8 .6 3 6 0 -8 .2 5 5 0
-8 .1 9 1 5 -8 .4 4 5 5 -8 .6995 -7 .8 1 0 5
-8 .0 6 4 5 -8 .4 4 5 5 -7 .9 3 7 5 -7 .8 7 4 0
-5 .0 1 6 5 -7 .2 3 9 0 -7 .8 1 0 5 -7 .7 4 7 0
-6 .7 9 4 5 -6 .7 3 1 0 -6 .0 9 6 0 -6 .9 2 1 5
-4 .5 0 8 5 -4 .0 6 4 0 -3 .8 1 0 0 -2 .4 1 3 0
-4 .2 5 4 5 -4 .3 1 8 0 -3 .1 1 1 5 -2 .0 3 2 0
-2 .4 7 6 5 -2 .0 9 5 5 -2 .0 3 2 0 -2 .0 9 5 5
-1 .4 6 0 5 -1 .7 1 4 5 -1 .2 7 0 0 -1 .5 2 4 0
-0 .3 8 1 0 0 .3 1 7 5 -0 .8 8 9 0 -0 .4 4 4 5
-0 .1 9 0 5 -0 .3 8 1 0 0 .8890 0 .2 5 4 0
1 .5875 1 .7 1 4 5 1.4605 1 .5 2 4 0
0 .4 4 4 5 0.0000 1.0795 1 .2 0 6 5

-0 .1 9 0 5 -0 .5 0 8 0 -1 .4 6 0 5 -0 .6 9 8 5
2 .9 2 1 0 1 .0 7 9 5 0 .7620 -2 .1 5 9 0

-1 .7 1 4 5 -1 .5 8 7 5 -2 .8 5 7 5 -3 .1 7 5 0
-3 .0 4 8 0 -2 .2 8 6 0 -1 .8415 -2 .4 1 3 0
-2 .4 1 3 0 -2 .0 9 5 5 -3 .1750 -2 .0 3 2 0
-2 .9 8 4 5 -3 .8 7 3 5 -2 .6670 -2 .9 8 4 5
-1 .9 6 8 5 -2 .0 9 5 5 -2 .9 2 1 0 -2 .4 7 6 5
-3 .4 9 2 5 -3 .4 2 9 0 -2 .8 5 7 5 -4 .4 4 5 0
-3 .6 8 3 0 -3 .6 1 9 5 -4 .3 8 1 5 -3 .3 6 5 5
-4 .5 7 2 0 -5 .0 8 0 0 -4 .2 5 4 5 -5 .9 0 5 5
-2 .0 3 2 0 0 .2 5 4 0 -1 .3 3 3 5 -3 .9 3 7 0
-4 .8 2 6 0 -3 .4 2 9 0 -2 .3 4 9 5 -4 .1 2 7 5
-1 .5 8 7 5 -2 .1 5 9 0 -2 .0 9 5 5 0 .8 2 5 5
-1 .3 3 3 5 0 .1 2 7 0 2 .7940 1 .7780
-2 .1 5 9 0 -2 .4 1 3 0 -2 .5 4 0 0 -2 .9 8 4 5
-2 .6 6 7 0 -1 .9 6 8 5 -1 .6 5 1 0 -1 .6 5 1 0
-1 .2 7 0 0 -1 .2 7 0 0 -1 .3 9 7 0 -1 .6 5 1 0
-1 .2 7 0 0 -1 .2 0 6 5 -1 .5 2 4 0 -1 .5 2 4 0
-2 .0 3 2 0 -2 .1 5 9 0 -2 .0 3 2 0 -2 .2 2 2 5
-2 .4 1 3 0 -2 .7 3 0 5 -2 .6035 -2 .7 3 0 5
-3 .8 7 3 5 -4 .0 0 0 5 -3 .8 1 0 0 -3 .9 3 7 0
-5 .7 7 8 5 -6 .0 3 2 5 -6 .3 5 0 0 -6 .0 3 2 5
-6 .6 0 4 0 -6 .7 3 1 0 -7 .0 4 8 5 -7 .8 1 0 5
-8 .1 2 8 0 -8 .5 7 2 5 -8 .5 7 2 5 -8 .6 3 6 0
-8 .2 5 5 0 -8 .5 0 9 0 -8 .1 9 1 5 -8 .3 1 8 5

-7 .9 3 7 5 -7 .4 9 3 0 -7 .3 6 6 0 -7 .7 4 7 0
-7 .6 2 0 0 -7 .9 3 7 5 -7 .1 7 5 5 -7 .1 1 2 0
-8 .0 0 1 0 -7 .6835 -7 .6 2 0 0 -7 .7 4 7 0
-7 .3 6 6 0 -5 .0800 -7 .3 0 2 5 -6 .8 5 8 0
-7 .1 1 2 0 -6 .5405 -6 .2 2 3 0 -6 .2 8 6 5
-1 .9 0 5 0 -4 .7625 -5 .0 8 0 0 -4 .4 4 5 0
-2 .1 5 9 0 -1 .9 6 8 5 -2 .0 3 2 0 -2 .6 6 7 0
-1 .4 6 0 5 -1 .5 8 7 5 -1 .9 0 5 0 -1 .1 4 3 0
-1 .8 4 1 5 -1 .0 7 9 5 -1 .4 6 0 5 -1 .3 3 3 5
0.0000 -0 .3 1 7 5 -1 .5 2 4 0 -0 .3 8 1 0

-1 .0 7 9 5 -0 .3 1 7 5 1 .6510 1 .7780
1 .5240 -0 .3 1 7 5 -0 .6 3 5 0 0 .2 5 4 0
1 .0160 0 .6985 0 .3 8 1 0 -0 .3 8 1 0

-0 .3 8 1 0 -1 .2065 -0 .0 6 3 5 3 .9 3 7 0
-3 .8 7 3 5 -2 .3495 -1 .7 1 4 5 -2 .6 0 3 5
-3 .0 4 8 0 -3 .4925 -3 .9 3 7 0 -3 .7 4 6 5
-2 .1 5 9 0 -2 .7 3 0 5 -3 .7 4 6 5 -4 .1 2 7 5
-1 .5 2 4 0 -2 .8575 -2 .7 9 4 0 -1 .9 6 8 5
-3 .9 3 7 0 -2 .7 3 0 5 -1 .0 1 6 0 -1 .9 6 8 5
-2 .2 8 6 0 -3 .1 7 5 0 -3 .1 7 5 0 -2 .7 3 0 5
-5 .4 6 1 0 -4 .6355 -5 .0 8 0 0 -5 .7 1 5 0
-3 .4 9 2 5 -4 .7 6 2 5 -3 .4 9 2 5 -2 .4 1 3 0
-6 .5 4 0 5 -3 .9 3 7 0 -3 .8 7 3 5 -4 .9 5 3 0
-4 .0 6 4 0 -6 .6 0 4 0 -5 .4 6 1 0 -4 .6 3 5 5
-4 .1 9 1 0 -2 .7 9 4 0 -3 .3 6 5 5 -4 .3 8 1 5
-0 .5 0 8 0 -1 .5 8 7 5 -0 .5 7 1 5 0 .3 1 7 5
-0 .2 5 4 0 -0 .5 0 8 0 -1 .0 7 9 5 -2 .0 9 5 5
-3 .4 9 2 5 -2 .9 8 4 5 -2 .5 4 0 0 -2 .4 1 3 0
-1 .5 8 7 5 -1 .6 5 1 0 -1 .3 3 3 5 -1 .1 4 3 0
-1 .8 4 1 5 -1 .7 1 4 5 -1 .6 5 1 0 -1 .8 4 1 5
-1 .3 3 3 5 -1 .3 3 3 5 -1 .7 7 8 0 -1 .7 7 8 0
-2 .6 0 3 5 -2 .2225 -2 .2 8 6 0 -2 .6 0 3 5
-2 .9 8 4 5 -3 .4290 -3 .8 7 3 5 -3 .7 4 6 5
-4 .2 5 4 5 -4 .3180 -5 .0 8 0 0 -5 .5 2 4 5
-6 .2 2 3 0 -6 .2 2 3 0 -6 .2 2 3 0 -6 .3 5 0 0
-7 .6 2 0 0 -7 .5 5 6 5 -8 .0 0 1 0 -8 .2 5 5 0
-8 .7 6 3 0 -8 .0 0 1 0 -7 .8 7 4 0 -7 .9 3 7 5
-8 .3 1 8 5 -7 .7 4 7 0 -7 .6 2 0 0 -7 .6 2 0 0
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A .2 CM M  Data Sets

Data sets 11 to 15 represent circular profiles, sampled by 30 points by a coordinate 

measuring machine. They consist of two-dimensional arrays, where each line 

corresponds to a data point (x- and ¡/-coordinates). Data sets sub-11 to sub-15 

are sub-sampled from these data sets (by taking each other data point, starting 

from the first one) and are not reproduced separately.

D a ta  S e ts
11 12 13

X y X y X y
3 9 .3 1 1 0 5 9 .4 6 2 0 138 .6 3 7 0 6 1 .3 9 1 0 87 .6160 62 .3 8 0 0
3 9 .3 4 1 0 6 1 .6 4 6 0 138 .7 0 2 0 6 3 .1 6 0 0 87 .9060 64 .3390
4 0 .0 8 5 0 6 4 .9 9 3 0 139 .1 9 9 0 6 5 .6 0 4 0 89 .9010 66 .8570
4 1 .1 4 4 0 6 7 .2 8 8 0 140 .2 2 0 0 6 8 .0 7 4 0 91 .9110 67 .5970
4 2 .6 3 4 0 6 9 .3 7 0 0 141 .4800 6 9 .9 9 9 0 94 .1680 67 .4050
4 5 .0 1 7 0 7 1 .5 2 7 0 143 .5 0 2 0 7 2 .0 8 8 0 96.2210 65 .9810
4 6 .7 1 7 0 7 2 .5 6 6 0 145 .8 5 7 0 7 3 .6 5 6 0 97.3530 64 .2 0 2 0
4 8 .5 5 0 0 7 3 .3 3 7 0 148 .5 7 2 0 7 4 .7 2 5 0 97 .6120 62 .6170
5 0 .5 1 3 0 7 3 .8 4 9 0 151 .7 7 6 0 7 5 .2 0 3 0 96 .6390 59 .6200
5 2 .7 1 5 0 7 4 .0 5 1 0 154 .4 7 7 0 7 4 .9 9 8 0 94 .7110 58 .0800
5 4 .2 1 1 0 7 4 .0 0 8 0 1 5 7 .2 1 7 0 7 4 .2 0 5 0 93 .1810 57 .6 7 9 0
5 5 .8 1 4 0 7 3 .7 8 1 0 160 .1 3 3 0 7 2 .5 7 5 0 90 .8750 57 .9400
5 7 .9 1 4 0 7 3 .1 3 5 0 162 .9 1 7 0 6 9 .8 3 0 0 89 .3080 58 .9460
6 0 .2 6 2 0 7 1 .9 5 8 0 164 .0 4 8 0 6 8 .0 2 7 0 87 .6640 61 .8 1 8 0
6 3 .1 4 3 0 6 9 .5 1 2 0 165 .1 7 9 0 6 5 .1 9 7 0 87 .6650 63 .3640
6 4 .4 5 5 0 6 7 .8 0 0 0 165 .6 3 5 0 6 2 .2 6 2 0 88 .6820 65 .7100
6 5 .5 1 8 0 6 5 .8 0 8 0 165 .4780 5 9 .5 8 3 0 91 .6200 67 .5430
6 6 .1 5 8 0 6 3 .9 2 0 0 164 .6 1 8 0 5 6 .9 9 6 0 93 .2970 67 .6 0 7 0
6 6 .5 2 7 0 6 2 .0 9 1 0 163 .0820 5 3 .7 3 9 0 96 .6760 65 .5 3 9 0
6 6 .6 3 3 0 6 0 .2 0 9 0 160 .6 3 3 0 5 1 .1 3 9 0 97 .5360 63 .4 8 7 0
6 6 .5 3 7 0 5 8 .7 3 6 0 158 .3 2 6 0 4 9 .5 8 9 0 97 .0440 60 .3 2 2 0
6 6 .2 3 9 0 5 7 .1 1 9 0 155 .9 4 6 0 4 8 .6 9 1 0 94 .8570 58 .1 5 9 0
6 5 .7 7 6 0 5 5 .5 7 9 0 153 .2640 4 8 .1 9 5 0 92 .8330 57 .6 3 8 0
6 5 .0 4 4 0 5 3 .9 6 9 0 150 .4290 4 8 .2 5 5 0 91.4570 57 .7690
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d a t a  se t 11 (c o n t.) d a t a  s e t  12 (c o n t.) d a ta  se t 13 ( c o n t . )
X y X y X y

63 .7780 52 .0000 147 .8200 48 .8 5 1 0 89 .6710 5 8 .6 0 4 0
62 .1850 50 .2680 144 .9600 50 .2100 88 .2590 6 0 .1 6 4 0
59 .8150 48 .5 2 7 0 141 .7930 52 .9740 88 .4380 6 5 .3 8 6 0
58 .7080 47 .9530 139 .9760 55 .7870 92 .9200 6 7 .6 4 6 0
57 .1800 47 .3490 139 .1390 57 .9830 95 .8430 5 8 .8 0 8 0
55 .4100 46 .9050 138 .7340 59 .9360 90 .5320 5 8 .0 8 2 0

D a ta  S e ts
14 15 c o n tin u a tio n

X y X y X y X y
5 9 .0 3 2 0 21 .0610 70 .1900 4 0 .9 1 4 0 65 .4810 12 .6070 7 7 .5 3 3 0 35 .3 7 2 0
5 9 .5 5 7 0 24 .0890 70 .1740 4 2 .2 5 9 0 62 .9030 13 .7960 7 6 .0 5 6 0 35 .3 1 2 0
6 1 .6 9 1 0 27 .3860 70 .6600 4 4 .2 3 1 0 60 .8000 15 .7940 7 4 .6 2 8 0 35 .5 8 8 0
6 4 .8 7 8 0 29 .3970 71 .7060 4 5 .9 4 2 0 59 .3 7 5 0 18.6670 7 3 .3 1 7 0 36 .1 6 7 0
6 8 .0 7 3 0 29 .9110 73 .8170 4 7 .6 0 0 0 59 .0290 21 .1920 7 2 .0 7 0 0 37 .1 0 9 0
7 0 .9 0 4 0 29 .3640 75 .4240 4 8 .1 6 4 0 60 .5890 26 .0970 7 0 .2 6 8 0 4 0 .4 0 1 0
7 4 .3 4 0 0 27 .0590 77 .9370 4 8 .1 6 6 0 63 .1 3 2 0 28 .5310 7 0 .2 2 3 0 4 2 .6 8 6 0
7 5 .6 5 6 0 25 .1410 79 .7840 4 7 .4 9 7 0 67 .0 1 0 0 29 .8700 7 2 .3 1 4 0 4 6 .5 6 7 0
7 6 .4 1 1 0 23 .1120 82 .2720 4 5 .0 3 7 0 71 .0650 29 .3060 7 6 .0 2 0 0 4 8 .2 5 7 0
7 6 .6 3 2 0 20 .4460 82 .8690 4 3 .5 8 1 0 75 .3860 25 .6650 7 8 .9 1 8 0 4 7 .8 9 0 0
7 5 .9 4 2 0 17.6390 83 .0910 4 1 .9 9 5 0 76 .0 0 9 0 17.7680 8 1 .9 3 1 0 4 5 .5 7 2 0
7 4 .4 0 8 0 15.2050 82 .7560 39 .8 5 4 0 72 .5 8 9 0 13 .6700 8 2 .6 4 8 0 39 .5 6 2 0
7 2 .0 7 2 0 13 .3560 82 .0190 38 .3 0 8 0 64 .6 5 9 0 12.8730 7 9 .3 4 7 0 35 .9 4 5 0
7 0 .4 5 4 0 12 .6720 79 .7100 3 6 .1 3 9 0 60 .3 2 1 0 16.5050 7 7 .5 2 1 0 3 5 .3 6 5 0
6 8 .0 2 3 0 12.2810 78 .8390 35 .7 3 3 0 59 .1 2 8 0 19.8630 7 2 .2 8 3 0 36 .9 2 2 0
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Data sets square-1-1 and square-1-2 to square7-l and square-7-2 represent 

planar surfaces sampled by a coordinate measuring machine, where each pair of 

data sets (e. g. square-1-1 and square-1-2) represent two related surfaces. They 

consist of three-dimensional arrays, where each line corresponds to a data point 

(x-, y- and z-coordinates). Data sets square-1-1 and square-2-1 contain 12 data 

points, while data sets square-1-2 and square-2-2 are equal and contain 25 points. 

All the other data sets contain 6 data points each.

D a ta  S e ts
s q u a re -1 -1 s q u a re -1 -2  /  sq u a re -2 -2

X y Z X y Z

5 8 .4 5 5 6 6 .3 1 0 8 .197 7 2 .4 1 6 64 .594 2 5 .7 4 8
5 9 .0 9 0 4 9 .8 9 0 8 .188 6 5 .5 7 0 61 .092 2 5 .7 3 7
5 9 .5 7 5 3 6 .7 0 9 10 .512 7 2 .5 7 7 55 .092 2 5 .7 4 0
5 9 .0 2 4 5 1 .6 3 8 9 .944 7 1 .7 5 2 48 .506 2 5 .7 3 7
5 8 .4 2 2 6 8 .4 6 7 11 .234 7 2 .7 4 2 38 .383 2 5 .7 2 7
5 8 .6 0 8 6 2 .6 1 1 14 .044 7 8 .9 6 7 39 .364 2 5 .7 3 9
5 8 .9 8 0 5 2 .6 9 1 12 .882 8 0 .7 2 7 52 .295 2 5 .7 4 9
5 9 .4 4 7 4 0 .0 8 5 16 .582 8 2 .3 6 7 62 .354 25 .754
5 9 .5 1 9 3 7 .9 5 0 18 .499 8 6 .7 0 0 56 .603 2 5 .7 5 0
5 9 .2 2 5 4 5 .8 9 1 19 .530 8 8 .6 5 0 49 .086 2 5 .7 5 5
5 8 .8 6 0 5 5 .2 6 8 17.796 8 8 .4 7 2 38 .130 25 .703
5 8 .5 0 0 6 4 .8 2 4 19.464 9 6 .0 0 5 38 .009 25 .761

s q u a re -2-1 9 8 .0 3 2 51 .200 25 .769
X y Z 9 8 .2 4 8 64 .416 2 5 .7 7 2

1 4 1 .4 3 2 7 0 .8 7 6 7.821 1 1 3 .6 2 2 64 .167 2 5 .786
1 4 1 .8 0 5 6 1 .3 5 0 8 .853 1 1 4 .1 9 3 56.960 25.791
142 .1 7 1 5 1 .7 8 7 12 .085 1 1 4 .9 9 7 51 .007 25 .788
1 4 2 .4 5 0 4 9 .2 0 1 9 .685 115 .571 41 .904 25 .787
1 4 2 .6 9 3 3 7 .7 8 9 11 .053 1 2 0 .4 1 0 40 .425 2 5 .7 9 3
1 4 2 .3 0 0 4 8 .1 3 2 11 .489 1 2 8 .8 3 5 49 .782 25 .802
1 4 2 .1 2 5 5 2 .6 8 1 10 .522 135 .241 38 .664 25 .818
1 4 1 .9 0 0 5 8 .6 6 2 12 .648 1 3 3 .2 4 0 4 9 .982 25.811
1 4 1 .6 2 9 6 5 .6 4 6 16 .894 13 0 .8 3 4 58 .376 25 .799
14 2 .0 5 1 5 4 .5 2 3 21.451 1 3 4 .9 8 7 6 3 .322 25 .809
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s q u a re -2-1 ( c o n t . ) sq u a re -1 -2  /  sq u a re -2 -2  (c o n t.)
X y z X y z

142 .314 4 7 .7 0 2 2 0 .3 2 3 130 .867 57 .198 25 .808
142 .747 36 .455 21 .678 - -

s q u a re -3-1 8 q u are-3 -2
X y z X y z

8 9 .3 9 8 0 4 3 .3 3 5 0 2 4 .9 1 9 0 25 .6 0 0 0 41 .0 4 2 0 17.2610
8 4 .0 7 2 0 35 .0 4 2 0 2 7 .7 6 8 0 37 .9 6 7 0 55 .4860 22 .1510
8 0 .0 2 9 0 24 .2 9 9 0 2 7 .7 6 7 0 4 0 .4 7 4 0 71 .7390 19.7100
7 4 .6 8 5 0 28 .3 4 1 0 3 6 .4 8 1 0 54 .7 7 3 0 65 .7380 31 .1750
7 8 .0 1 5 0 37 .2 6 3 0 3 6 .4 8 4 0 56 .2 1 8 0 45 .4 3 3 0 37 .4160
7 7 .9 8 5 0 4 7 .2 2 9 0 4 1 .2 5 6 0 4 1 .5 7 4 0 24 .3980 32 .6360

sq u a re -4 -1 s q u a re -4 -2
X y z X y z

4 3 .4 8 6 0 4 6 .9 5 8 0 5 1 .8 5 9 0 8 4 .6 4 4 0 39 .9690 33 .7100
3 9 .0 1 1 0 57 .7 1 8 0 5 1 .9 3 5 0 8 6 .3 0 1 0 56 .2830 36 .0870
58 .8 8 6 0 72 .0740 5 1 .9 7 7 0 8 8 .1 1 9 0 74 .1670 33 .8600
5 7 .8 1 7 0 59 .4 6 9 0 5 1 .9 1 1 0 8 7 .9 8 2 0 72 .8640 40 .8700
5 6 .3 6 6 0 4 2 .3 6 7 0 5 1 .8 1 6 0 8 5 .4 3 7 0 47 .7 4 1 0 40 .8690
71 .6 6 3 0 4 1 .0 6 9 0 5 1 .7 8 5 0 8 3 .8 2 9 0 31 .9530 38 .7180

s q u a re -5-1 sq u a re -5 -2
X y z X y z

3 8 .8 2 4 0 4 7 .2 8 1 0 5 1 .8 8 9 0 3 6 .0 7 8 0 91 .5520 34 .7720
55 .1 2 1 0 4 2 .9 3 2 0 5 1 .8 1 8 0 5 3 .5 3 2 0 89 .9810 34 .7740
51 .7 1 5 0 56 .9900 5 1 .9 0 6 0 7 0 .8 8 3 0 88 .4110 35 .5070
6 6 .5 2 0 0 56 .2 9 8 0 5 1 .8 7 7 0 5 7 .2 0 4 0 89 .6450 40 .3900
6 7 .5 8 4 0 68 .8 1 9 0 5 1 .9 4 0 0 4 7 .5 6 5 0 90 .5150 44 .0370
3 9 .3 7 1 0 71 .6 3 4 0 5 2 .0 2 2 0 7 8 .1 1 7 0 87 .7550 44 .0400

s q u a re -6-1 8 q u are-6 -2
X y z X y z

4 0 .3 9 9 0 4 6 .3 5 8 0 6 1 .5 1 9 0 9 9 .4 0 0 0 37 .1120 44 .0310
4 1 .6 0 4 0 60 .5 6 5 0 6 1 .5 3 3 0 100 .7280 51 .3670 46 .0780
54 .9 9 3 0 6 6 .6 2 9 0 6 1 .5 4 3 0 101 .9 1 0 0 64 .1130 43 .8290
65 .1 4 4 0 4 7 .8 3 2 0 6 1 .5 2 5 0 101 .6 4 1 0 61 .1 0 0 0 54 .9770
79 .2 6 8 0 63 .1 7 3 0 6 1 .5 3 5 0 100 .8080 52 .3220 50 .5260
94 .0 9 0 0 4 3 .5 7 4 0 6 1 .5 1 1 0 9 9 .2 3 9 0 35 .3910 55 .6290
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sq u a re -7 -1 sq u a re -7 -2
X y z X y z

75 .5 5 1 0 -4 7 .8 6 9 0 77 .0 3 8 0 78 .1810 102 .2570 89 .0000
107 .9810 -2 7 .0 7 3 0 95 .5 2 5 0 117 .7700 101 .5100 90 .4540
157 .7900 -2 .9 3 4 0 116 .8790 154 .1110 87 .9 9 9 0 106 .0780
153 .7800 -5 0 .2 5 0 0 74 .4 4 2 0 74 .9990 71 .4 2 6 0 123 .2730
121 .8 4 9 0 16 .7820 134 .7880 94 .5640 4 9 .8 3 4 0 147 .6550
7 1 .0 3 0 0 17 .9960 136 .1980 154 .1960 47 .9 7 4 0 150.6600

A .3 Simulated Data Sets

Data sets s-1, s-2 and s-3 contain 30 sampled data points each, representing 

circular profiles generated as described in section 5.5.4. They consist of two- 

dimensional arrays, where each line corresponds to a (z, y) data point. Data sets 

sub-sl to sub-s3 are sub-sampled from these data sets (again by taking each other 

data point, starting from the first one) and are not reproduced separately.

D a ta  S e ts
S-1 s-2 s-3

X y X y X y
150.0081 100 .0000 210 .0 0 0 2 200 .0 0 0 0 7 .0017 5 .0000
148 .9221 110 .3987 209 .7 9 8 5 202 .0827 6 .9614 5 .4169
145 .6999 120 .3 4 6 9 209 .1 5 2 6 204 .0 7 5 0 6 .8299 5 .8147
140 .4714 129 .4042 2 0 8 .0 9 0 7 205 .8782 6 .6164 6 .1744
133 .4690 137.1711 206 .6 8 0 0 207 .4 1 8 9 6 .3391 6 .4872
125 .0038 143 .3079 2 0 4 .9 9 1 6 208 .6458 6 .0022 6 .7358
115 .4502 147 .5508 203 .0 9 0 4 209 .5 1 1 4 5 .6 1 9 0 6.9051
105 .2245 149 .7080 2 0 1 .0 4 7 2 209 .9635 5 .2091 6 .9890
9 4 .7 7 4 7 149 .7153 198 .9527 209 .9 6 4 2 4 .7 9 1 0 6 .9887
8 4 .5 5 0 5 147 .5487 196 .9097 209 .5 1 0 9 4 .3 8 0 6 6 .9064
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s-1  (c o n t.) s-2  ( c o n t . ) s -3  (c o n t.)
X y X y X y

7 4 .9 9 9 9 143 .3014 195.0077 208 .6469 3 .9 9 8 3 6 .7 3 5 0
6 6 .5 3 2 4 137.1696 193 .3203 207 .4186 3 .6 6 1 2 6 .4 8 6 9
5 9 .5 2 8 5 129 .4042 191 .9093 205 .8782 3 .3 8 2 2 6 .1754
5 4 .3 0 1 7 120.3462 190 .8485 204 .0745 3 .1 7 1 6 5 .8141
5 1 .0 7 9 1 110 .3985 190 .1997 202.0831 3 .0 4 0 6 5 .4 1 6 5
4 9 .9 9 4 2 100 .0000 189 .9990 200 .0000 2 .9 9 7 3 5 .0000
5 1 .1 0 1 4 89 .6063 190 .2337 197.9241 3 .0 4 6 5 4 .5 8 4 8
5 4 .3 3 9 2 79 .6705 190 .8790 195.9391 3 .1 7 2 8 4 .1 8 6 5
5 9 .5 6 3 8 70 .6214 191 .9086 194 .1212 3 .3 7 8 4 3 .8 2 1 8
6 6 .5 5 0 1 62.8501 193 .2960 192 .5544 3 .6 6 0 0 3 .5 1 1 8
74 .9 9 6 1 56 .6920 194 .9907 191 .3236 4 .0 0 0 7 3 .2 6 9 2
8 4 .5 4 5 3 52 .4355 196 .9095 190 .4884 4 .3 8 1 8 3 .0973
9 4 .7 7 1 2 50 .2512 198 .9564 190 .0707 4 .7 9 0 6 3 .0 0 7 8

1 0 5 .2 2 9 4 50 .2456 201 .0 4 3 5 190 .0720 5 .2 0 9 4 3 .0 0 8 0
1 1 5 .4 5 5 2 52 .4337 203 .0 9 0 4 190 .4886 5 .6181 3 .0 9 7 7
1 2 5 .0 0 3 5 56 .6927 205.0091 191 .3240 5 .9 9 8 8 3 .2700
1 3 3 .4 4 8 8 62 .8514 206 .7 0 3 0 192 .5556 6 .3 3 9 4 3 .5125
1 4 0 .4 4 0 2 70 .6185 208 .0 9 0 7 194 .1218 6 .6 2 2 3 3 .8 2 1 3
1 4 5 .6 6 5 3 79 .6685 209 .1203 195 .9394 6 .8 2 6 9 4 .1 8 6 6
1 4 8 .9 0 3 2 89 .6053 209 .7648 197 .9244 6 .9 5 6 0 4 .5 8 4 2
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Data sets s4h-l, s4h-2 and s4h-3 contain 60 sampled data points each, rep

resenting 4 four related circular profiles, where each of the profiles was sampled 

by 15 points and generated as described in section 5.5.4. Each data sets consist 

of a two-dimensional array, where each line corresponds to a data point (x- and 

^coordinates). The data points representing each profile are listed in sequence 

such that the first, second, third and forth quarters of the arrays correspond 

respectively to the bottom left and right and top left and right profiles.

D a ta  S e ts
s 4 h - l s4h -2 s4 h -3

X y X y X y
60 .0 0 5 1 50 .0 0 0 0 70 .0008 50 .0 0 0 0 8 .0005 5 .0 0 0 0
5 9 .1 9 0 3 5 4 .0 9 1 8 68 .3507 58 .1 7 0 3 7 .7448 6 .2221
5 6 .7 1 7 0 5 7 .4 5 9 9 63 .3250 6 4 .7 9 8 9 7 .0025 7 .2 2 4 0
53 .0 8 0 1 59 .4 7 9 6 56 .1 8 0 5 69 .0 2 1 6 5.9311 7 .8 6 5 8
4 8 .9 6 0 6 59 .8 8 9 5 47 .9 0 0 3 69 .9 7 6 9 4 .6878 7 .9 7 0 0
4 5 .0 0 0 0 5 8 .6 6 0 3 40 .0431 67 .2 4 5 8 3 .4907 7 .6141
4 1 .8 6 3 2 5 5 .9 1 1 8 33 .8190 61 .7 5 6 2 2 .5870 6 .7531
4 0 .1 8 3 8 52 .0 8 6 5 30 .3520 5 4 .1 7 6 3 2 .0447 5 .6 2 8 2
4 0 .2 4 7 6 47 .9271 30 .5 2 1 0 4 5 .8 5 9 6 2 .0849 4 .3 8 0 4
4 1 .9 5 2 9 4 4 .1 5 3 4 33 .8196 38 .2 4 4 3 2 .5575 3 .2 2 5 4
4 4 .9 9 8 3 4 1 .3 3 6 8 39 .9 5 6 5 32 .6041 3 .5083 2 .4 1 6 3
4 8 .9 4 8 7 3 9 .9 9 7 7 47 .9 1 8 5 3 0 .1 9 5 7 4 .6849 2 .0 0 1 6
5 3 .1 0 1 1 4 0 .4 5 5 8 56 .1806 30.9781 5 .9238 2 .1 5 7 0
5 6 .6 6 9 2 4 2 .5 9 3 2 63 .4411 35 .0 7 2 2 7 .0130 2 .7 6 4 4
5 9 .0 8 3 7 4 5 .9 5 5 7 68 .1926 41 .9001 7 .7378 3 .7811

1 6 0 .0 0 4 8 50 .0 0 0 0 370 .0 0 0 3 50 .0 0 0 0 38 .0018 5 .0 0 0 0
1 5 9 .1 9 1 3 5 4 .0 9 2 2 368 .3 5 0 6 58 .1 7 0 2 37 .7459 6 .2 2 2 6
1 5 6 .7 1 7 6 5 7 .4 6 0 7 363 .3251 6 4 .7 9 9 0 37 .0030 7 .2 2 4 6
153 .0801 5 9 .4 7 9 7 356 .1 8 0 4 69 .0 2 1 2 35.9311 7 .8 6 5 5
1 4 8 .9 6 0 2 59 .8 9 3 4 347 .9 0 0 3 6 9 .9 7 7 5 34 .6878 7 .9701
1 4 5 .0 0 0 0 58 .6 6 0 3 3 4 0 .0 4 3 2 67 .2 4 5 6 33 .4905 7 .6 1 4 6
141 .8601 5 5 .9 1 4 0 333 .8 1 9 2 61 .7 5 6 0 32 .5876 6 .7 5 2 7
1 4 0 .1 8 0 7 5 2 .0 8 7 2 3 3 0 .3 5 2 3 5 4 .1 7 6 2 32.0461 5 .6 2 7 9
140 .2 4 9 0 4 7 .9 2 7 4 330 .5211 4 5 .8 5 9 6 32.0831 4 .3 8 0 0
1 4 1 .9 5 5 6 4 4 .1 5 5 4 333 .8 1 9 2 38 .2 4 4 0 32 .5561 3 .2 2 4 4
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s 4 h - l  ( c o n t .) s4 h -2  (c o n t.) s4 h -3  ( c o n t .)
X y X y X y

144 .9974 4 1 .3 3 5 2 3 3 9 .9 5 6 4 32 .6040 33 .5081 2 .4 1 5 9
148 .9483 39 .9 9 3 4 3 4 7 .9 1 8 5 30 .1957 34 .6 8 4 8 2 .0 0 1 0
153 .1027 4 0 .4 5 1 0 3 5 6 .1 8 0 6 30 .9781 35 .9 2 3 6 2 .1 5 7 5
156 .6714 4 2 .5 9 0 6 3 6 3 .4 4 0 7 35 .0 7 2 6 37 .0 1 3 5 2 .7 6 3 8
159 .0842 4 5 .9 5 5 5 3 6 8 .1 9 2 6 41 .9 0 0 2 37 .7371 3 .7 8 1 4
6 0 .0 0 2 0 150 .0000 70 .0 0 0 3 350 .0000 8 .0 0 1 3 3 5 .0 0 0 0
5 9 .1 9 2 3 154 .0927 6 8 .3 5 0 9 358 .1 7 0 3 7 .7446 3 6 .2 2 2 0
5 6 .7 1 6 3 157 .4 5 9 2 63 .3251 364 .7 9 9 0 7 .0029 3 7 .2 2 4 4
5 3 .0 8 0 3 159 .4803 56 .1 8 0 6 369 .0 2 1 8 5 .9 3 1 3 3 7 .8 6 6 2
4 8 .9 6 0 6 159 .8889 4 7 .9 0 0 3 369 .9 7 7 0 4 .6 8 8 0 3 7 .9 6 8 8
4 4 .9 9 7 2 158 .6 6 5 2 4 0 .0 4 3 3 367 .2 4 5 6 3 .4 9 0 6 3 7 .6 1 4 4
4 1 .8 5 9 9 155 .9141 3 3 .8 1 9 5 361 .7 5 5 8 2 .5 8 7 6 3 6 .7 5 2 7
4 0 .1 7 8 9 152 .0 8 7 5 3 0 .3 5 1 9 354 .1 7 6 3 2 .0 4 5 7 3 5 .6 2 8 0
4 0 .2 4 9 7 1 4 7 .9 2 7 5 3 0 .5 2 0 9 345 .8 5 9 6 2 .0 8 4 0 3 4 .3 8 0 2
4 1 .9 5 2 7 144 .1 5 3 3 3 3 .8 1 9 6 338 .2 4 4 3 2 .5 5 6 2 3 3 .2 2 4 5
4 4 .9 9 8 3 141 .3 3 6 8 3 9 .9 5 6 3 332 .6 0 3 8 3 .5086 3 2 .4 1 6 8
4 8 .9 4 8 7 139 .9 9 7 4 4 7 .9 1 8 5 330 .1 9 5 6 4 .6 8 4 8 3 2 .0 0 1 3
5 3 .1 0 1 2 140 .4 5 5 5 5 6 .1 8 0 4 330 .9 7 8 7 5 .9 2 3 7 3 2 .1 5 7 3
56 .6701 142 .5 9 2 2 6 3 .4 4 0 9 335 .0 7 2 4 7 .0 1 3 8 3 2 .7 6 3 4
5 9 .0 8 7 5 1 4 5 .9 5 4 0 6 8 .1 9 2 2 341 .9 0 0 3 7 .7382 3 3 .7 8 0 9

160 .0 0 2 5 1 5 0 .0 0 0 0 3 7 0 .0 0 0 7 350 .0 0 0 0 38 .0 0 2 0 3 5 .0 0 0 0
159 .1920 1 5 4 .0 9 2 5 3 6 8 .3 5 0 7 358 .1 7 0 3 37 .7 4 4 5 3 6 .2 2 2 0
156 .7189 157 .4621 363 .3 2 5 1 364 .7 9 9 0 37 .0 0 2 8 3 7 .2 2 4 3
153 .0801 159 .4 7 9 5 3 5 6 .1 8 0 6 369 .0221 3 5 .9 3 0 7 3 7 .8 6 4 5
148 .9606 159 .8 8 9 5 3 4 7 .9 0 0 3 369 .9 7 7 3 34 .6 8 7 8 37 .9 7 0 1
144 .9976 1 5 8 .6 6 4 5 3 4 0 .0 4 3 0 367 .2461 33 .4 9 1 2 3 7 .6 1 3 2
141 .8617 155 .9 1 2 8 3 3 3 .8 1 8 9 361 .7562 3 2 .5 8 6 8 3 6 .7 5 3 3
140 .1796 1 5 2 .0 8 7 4 330 .3 5 2 1 354 .1 7 6 3 32 .0451 35 .6 2 8 1
140 .2501 1 4 7 .9 2 7 6 3 3 0 .5 2 1 6 345 .8 5 9 7 32 .0 8 4 4 3 4 .3 8 0 3
141 .9524 144 .1531 3 3 3 .8 1 9 0 338 .2 4 3 8 32 .5561 3 3 .2 2 4 4
144 .9972 1 4 1 .3 3 4 9 3 3 9 .9 5 6 5 332.6041 33 .5 0 8 2 3 2 .4 1 6 0
148 .9482 139 .9931 3 4 7 .9 1 8 4 330 .1 9 4 9 3 4 .6 8 4 7 3 1 .9 9 9 8
153 .1020 140 .4531 3 5 6 .1 8 0 3 330 .9 7 8 9 3 5 .9 2 3 6 3 2 .1 5 7 6
156 .6689 1 4 2 .5 9 3 5 3 6 3 .4 4 0 8 335 .0 7 2 5 3 7 .0 1 3 0 3 2 .7 6 4 4
159 .0 8 6 7 145 .9 5 4 4 3 6 8 .1 9 2 5 341 .9 0 0 2 37 .7 3 8 0 3 3 .7 8 1 0



Data sets sub-4h01 to sub-4h03 are sub-sampled from the previous similar 

data sets (again by taking each other data point, starting from the firstjone) 

and are not reproduced separately. Data sets sub-4h04 and sub-4h05 contain 20 

sampled data points each, representing four related circular profiles sampled by 

5 points each and generated as described in section 6.5.4. The sequence in which 

the data points are listed is the same as before.

I

D a ta  S e ts
su b -4 h 0 4 su b -4 h 0 5

X y X y
150 .0 0 0 6 100 .0000 15.0010 10.0000
115 .4511 147 .5536 11.5726 14.8401
5 9 .5 4 8 5 129 .3897 6.0701 12.8552
5 9 .5 4 8 5 70 .6103 5 .8386 6 .9765
1 1 5 .4 5 0 9 52 .4470 11.5183 5 .3272
7 5 0 .0 0 0 3 100.0000 65 .0010 10.0000
7 1 5 .4 5 1 2 147.5540 61 .5729 14.8410
6 5 9 .5 4 7 9 129 .3902 56 .0703 12.8551
6 5 9 .5 4 8 9 70 .6106 55 .8394 6 .9772
7 1 5 .4 5 1 3 52 .4459 61 .5178 5 .3286
1 5 0 .0 0 1 3 700 .0000 15.0000 60 .0000
115 .4511 747 .5537 11 .5723 64 .8392
5 9 .5 4 7 7 729 .3903 6 .0702 62.8551
5 9 .5 4 8 3 670.6101 5.8391 56 .9769
1 1 5 .4 5 0 9 652.4471 11.5181 55 .3278
7 5 0 .0 0 1 4 700 .0000 65.0011 60 .0000
7 1 5 .4 5 1 2 747 .5539 61 .5726 64.8401
6 5 9 .5 4 8 5 729 .3897 56 .0696 62 .8556
6 5 9 .5 4 7 9 670 .6098 55 .8394 56.9771
7 1 5 .4 5 1 0 652 .4466 61 .5182 55 .3275
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Appendix B

Extracts of Source Codes

This appendix reproduces the main fragments of the C codes written for some 

o f the algorithms used in this thesis. The codes reproduced below are limited to 

those which are not standard or commercially available implementations and are 
listed in the following sequence:

• the iteration process of the gauge algorithm [Fletcher, 1970a];

• the genetic search evaluation functions for the first and second inspection 

problems;

• the ring and zone exchange algorithms [Chetwynd and Phillipson, 1980];

• the least squares circle and plane algorithms [Forbes, 1989].
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