
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-020-00972-z

Point-to-line last passage percolation and the invariant
measure of a system of reflecting Brownian motions

Will FitzGerald1 · Jon Warren2

Received: 17 July 2019 / Revised: 12 February 2020
© The Author(s) 2020

Abstract
This paper proves an equality in law between the invariant measure of a reflected
system of Brownian motions and a vector of point-to-line last passage percolation
times in a discrete random environment. A consequence describes the distribution of
the all-time supremum of Dyson Brownian motion with drift. A finite temperature
version relates the point-to-line partition functions of two directed polymers, with an
inverse-gamma and a Brownian environment, and generalises Dufresne’s identity. Our
proof introduces an interacting system of Brownianmotions with an invariant measure
given by a field of point-to-line log partition functions for the log-gamma polymer.

Keywords Reflected Brownian motions · Random matrices · Dufresne’s identity ·
Log-gamma polymer · Point-to-line last passage percolation

Mathematics Subject Classification 60J65 · 60B20 · 60K35

1 Introduction

In this paper we generalise to a random matrix setting the classical identity:

sup
t≥0

(
B(t) − μt

) d= e(μ) (1)

where B is a Brownian motion, μ > 0 a drift and e(μ) is a random variable which has
the exponential distributionwith rate 2μ. In our generalisation, the Brownianmotion is
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replaced by the largest eigenvalue process of a Brownianmotionwith drift on the space
of Hermitian matrices (see Sect. 2) and the single exponentially distributed random
variable is replaced by a random variable constructed from a field of independent
exponentially distributed random variables using the operations of summation and
maximum. In fact this latter random variable is well known as a point-to-line last
passage percolation time.

Theorem 1 Let (H(t) : t ≥ 0) be an n × n Hermitian Brownian motion, let D be
an n × n diagonal matrix with entries D j j = α j > 0 for each j = 1, . . . n and let
λmax(A) denote the largest eigenvalue of a matrix A. Then

sup
t≥0

λmax(H(t) − t D)
d= max

π∈Π
flat
n

∑

(i j)∈π

ei j

where ei j are an independent collection of exponential random variables indexed by
N
2 ∩ {(i, j) : i + j ≤ n + 1} with rates αi + αn+1− j and the maximum is taken over

the set of all directed (up and right) nearest-neighbour paths from (1, 1) to the line
{(i, j) : i + j = n + 1} which we denote by Π

flat
n .

This result gives a connection between randommatrix theory and theKardar-Parisi-
Zhang (KPZ) universality class, a collection of models related to random interface
growth including growth models, directed polymers in a random environment and
various interacting particle systems. Connections of this form originated in the seminal
work of Baik, Deift, Johansson [2] showing that the limiting distribution of the largest
increasing subsequence in a random permutation is given by the Tracy-Widom GUE
distribution. They have been extensively studied since then: for curved initial data (in
our context point-to-point last passage percolation) in [4,27,35,36,39,44] where the
Robinson-Schensted-Knuth (RSK) correspondence plays a key role and for flat initial
data (in our context point-to-line last passage percolation) in [3,6,11,21,33,40] where
the relationships are more mysterious.

There are two results which particularly relate to Theorem 1. Baik and Rains [3]
used a symmetrised version of the RSK correspondence to prove an equality in law
between the point-to-line last passage percolation time and the largest eigenvalue from
the Laguerre orthogonal ensemble (LOE), see Sect. 2 for the definition; while a more
recent work by Nguyen and Remenik [33] used the approach of multiplicative func-
tionals from [9] to prove an equality in law between the supremum of non-intersecting
Brownian bridges and the square root of the largest eigenvalue of LOE. In Sect. 2 we
show these two results can be combined to establish Theorem 1 in the case of equal
drifts: α1 = α2 = · · · = αn .

One aspect of the links between random matrices and growth models in the KPZ
class is a striking variational representation for the largest eigenvalue of Hermitian
Brownian motion. Specifically, consider a system of reflected Brownian motions,
where each particle is reflected up from the particle below (see Sect. 3). Then the
largest particle of this system is equal in distribution, as a process, to the largest
eigenvalue of a Hermitian Brownian motion, see [4,25,36,44]. This can be combined
with a time reversal, as in [10], to show that the all-time supremum of the largest
eigenvalue has the same distribution as the largest particle in a stationary system of
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reflecting Brownian motions but with an additional reflecting wall at the origin. This
is a generalisation of the classical argument that deduces from the identity (1) that the
invariant measure of a reflected Brownianmotion with negative drift is the exponential
distribution. Thus we are motivated to study the invariant measure of this system of
reflecting Brownian motions with a wall and unexpectedly we find that the entire
invariant measure – rather than just the marginal distribution of the top particle – can
be described by last passage percolation.

Let α j > 0 for each j = 1, . . . , n and let (B(−α1)
1 , . . . , B(−αn)

n ) be indepen-
dent Brownian motions with drifts (−α1, . . . ,−αn). A system of reflected Brownian
motions with a wall at the origin can be defined inductively using the Skorokhod
construction,

Y1(t) = B(−α1)
1 (t) − inf

0≤s≤t
B(−α1)
1 (s) = sup

0≤s≤t

(
B(−α1)
1 (t) − B(−α1)

1 (s)
)

(2)

Y j (t) = sup
0≤s≤t

(
B

(−α j )

j (t) − B
(−α j )

j (s) + Y j−1(s)
)
for j ≥ 2. (3)

Wewill show in Sect. 3 that the distribution of Y (t) = (Y1(t), . . . ,Yn(t)) converges
to a unique invariant measure and we denote a random variable with this law by
(Y ∗

1 , . . . ,Y ∗
n ). This is equal in distribution to a vector of point-to-line last passage

percolation times where we allow the point from which the directed paths start to
vary: let Πflat

n (k, l) denote the set of all directed (up and right) nearest-neighbour
paths from the point (k, l) to the line {(i, j) : i + j = n + 1} and let

G(k, l) = max
π∈Πflat

n (k,l)

∑

(i j)∈π

ei j (4)

where ei j are independent exponential random variables indexed by N
2 ∩ {(i, j) :

i + j ≤ n + 1} with rates αi + αn− j+1.

Theorem 2 Let (Y ∗
1 , . . . ,Y ∗

n ) be distributed according to the invariant measure of the
system of reflected Brownianmotions defined by (2), (3) and let (G(1, n), . . . ,G(1, 1))
be the vector of point-to-line last passage percolation times defined by (4). For any
n ≥ 1,

(Y ∗
1 , . . . ,Y ∗

n )
d= (G(1, n), . . . ,G(1, 1)).

We will prove Theorem 2 by finding transition densities for both systems of a
similar form to those found for TASEP in Schütz [41] and reflected Brownian motions
in Warren [44] and use these to calculate explicit densities for both vectors. Then
Theorem 1, with general drifts, follows from Theorem 2 by the time reversal argument
discussed previously.

Point-to-line last passage percolation is related to the totally asymmetric exclusion
process (TASEP) by interpreting last passage times as the time at which a parti-
cle jumps. The point-to-line geometry corresponds to a periodic initial condition for
TASEP, where particles are initially located at every even site of the negative integers.
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The joint distribution of particle positions at a fixed time is given by a Fredholm deter-
minant in [11,40] and under a suitable limit the authors obtain the Airy1 process. Their
techniques also provide Fredholm determinants more generally, for example for the
vector (G(1, n), . . . ,G(n, n)). In TASEP and in the systems of reflected Brownian
motion studied in [45] the role of the flat geometry is played by a periodic initial con-
dition, whereas for the Brownian model (Y (t))t≥0 considered above this role is played
by a reflecting wall at the origin. This is a substantial difference: a natural path-valued
process to consider is the evolution as n varies of the path of the top particle; in this
setting the techniques used in [11,40,45] are no longer applicable. The path of the top
particle is a candidate for a finite n analogue of the Airy1 process.

Another motivation for this reflected system is provided by queueing theory:
reflected Brownian motions have been considered as a model for tandem queues in
heavy traffic and the invariantmeasures have been studied extensively both analytically
and numerically [14,17,20,24,26,35]. It is known from [26] that the invariant measure
has an explicit product form when a skew symmetry condition for the angles of reflec-
tion holds and it is known from [17] that the invariant measure can be expressed as a
sum of exponential random variables if a weaker relation between the angles holds.
In our case, the presence of a wall, which has a natural queueing interpretation as a
deterministic arrival process, ensures that the skew symmetry condition fails; nonethe-
less Theorem 2 describes the non-reversible invariant measure and we give an explicit
formula for its density in Sect. 3.

A further classical result from probability theory that we consider is Dufresne’s
identity. Let μ > 0, let B(−μ) be a Brownian motion with drift −μ and let γ −1(μ)

denote an inverse gamma random variable with shape parameter μ and rate 1. Then
Dufresne’s identity is an equality in law,

2
∫ ∞

0
e2B

(−μ)(t)dt
d= γ −1(μ)

which has been studied inmathematical finance and diffusion in a randomenvironment
(see [32,46] and the referenceswithin). This is a positive temperature version of the fact
that the all-time supremum of Brownian motion with negative drift has an exponential
distribution and suggests the following positive temperature version of Theorem 1.

Theorem 3 For i = 1, . . . , n let αi > 0 and let B(−αi )
i be independent Brownian

motions with drifts −αi . Let Wi j be a collection of inverse gamma random variables
indexed by N

2 ∩ {(i, j) : i + j ≤ n + 1} with shape parameters αi + αn− j+1

and rate 1 and let Π
flat
n denote the set of all directed paths from (1, 1) to the line

{(i, j) : i + j = n + 1}. Then
∫

0=s0<s1<···<sn<∞
e
∑n

i=1 B
(−αi )
i (si )−B

(−αi )
i (si−1)ds1 . . . dsn

d= 2
∑

π∈Π
flat
n

∏

(i j)∈π

Wi j .

The left hand side of this expression is the partition function for a point-to-line polymer
in a Brownian environment while the right hand side is the partition function for the
point-to-line log-gamma polymer. The point-to-point polymers have been studied in a
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number of recent papers: the Brownianmodel in [7,35,37] and the log-gamma polymer
in [8,16,38,42] with one motivation being their relationship to the KPZ equation (see
[15] for a survey). The point-to-line log-gamma polymer, which corresponds to a flat
initial condition for the KPZ equation, has been studied recently by [6,34] using a
local version of the geometric RSK correspondence and an expression is given for the
Laplace transform of the point-to-line partition function of the log-gamma polymer in
terms ofWhittaker functions. From Theorem 3 it follows that the Laplace transform of
the partition function of the point-to-line Brownian model, which has not been studied
previously, is also given by the same expression.

For the proof, we use a time reversal argument to show that Theorem 3 follows from
a stronger result on the invariant measure of a system of Brownian motions where
the reflection rules of the system in Theorem 2 are replaced by smooth exponential
interactions. We find this invariant measure by embedding the Brownian system in a
larger system of interacting Brownian motions, indexed by a triangular array, such that
the invariant measure of this system is given by a field of point-to-line log partition
functions for the log-gamma polymer.

2 Equal drifts and connections to LOE

This section discusses in more detail the connection between the results of Nguyen
and Remenik [33], and Baik and Rains [3].

Wefirst introduce the relevant randommatrix ensembles and processes.We consider
a Brownian motion on the space of n × n Hermitian matrices denoted (H(t))t≥0 and
constructed from independent entries {Hi, j : i ≤ j} such that along the diagonal Hii

are real standard Brownian motions, the entries below the diagonal {Hi j : i < j}
are standard complex Brownian motions, and the remaining entries are determined
by the Hermitian constraint Hi j = H̄ ji . The ordered eigenvalues λ1, . . . , λn form a
system of Brownian motions conditioned (in the sense of Doob) not to collide and
with a specified entrance law from the origin which can be constructed as a limit
from the interior of the Weyl chamber (for example, see [31]). The time changed
matrix-valued process (Hbr(t))t∈[0,1] = ((1 − t)H(t/(1 − t)))t∈[0,1] is a Brownian
bridge in the space of Hermitian matrices and the eigenvalues are given by applying
this time change to the above system of Brownian motions conditioned not to collide.
It can be checked, for example by calculating the joint distribution of particles at a
sequence of times, that the eigenvalues of a Hermitian Brownian bridge are given
by a system of Brownian bridges which we denote (Bbr

1 , . . . , Bbr
n ) with the ordering

Bbr
1 ≤ · · · ≤ Bbr

n all started at zero at time 0 and ending at zero at time 1 with a
specified entrance and exit law constructed as a limit from the interior of the Weyl
chamber, and conditioned (in the sense of Doob) not to collide in the time interval
t ∈ (0, 1).

Let X be an m × n matrix with entries given by independent standard normal
random variables and assume m ≥ n. Then M = XT X is an n × n matrix from the
Laguerre orthogonal ensemble (LOE) and the joint density of eigenvalues is given
by
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fLOE(λ1, . . . , λn) = 1

cn

∏

1≤i< j≤n

|λi − λ j |
n∏

i=1

λai e
−λi /2

where cn is a normalisation constant and the parameter a = (m − n − 1)/2.
Throughout this paper we will only be interested in the case a = 0, or equiv-
alently m = n + 1. The main result of Nguyen and Remenik [33] states
that

4

(

sup
0≤t≤1

Bbr
n (t)

)2
d= λLOEmax .

We use the time change between Hermitian Brownian motions and bridges to express
this in terms of a Hermitian Brownian motion:

P(Bbr
n (t) ≤ x for all t ∈ [0, 1]) = P((1 − t)λmax(H(t/1 − t)) ≤ x for all t ∈ [0, 1])

= P(λmax(H(u)) ≤ x(1 + u) for all u ≥ 0)

= P(xλmax(H(v/x2)) ≤ x2 + v for all v ≥ 0)

= P(sup
t≥0

λmax(H(t) − t I ) ≤ x2)

where the change of variables are given by u = t/(1 − t) and v = ux2 and
the largest eigenvalue inherits the scaling property of Brownian motion. There-
fore

4 sup
t≥0

λmax(H(t) − t I )
d= λLOEmax . (5)

This is connected to last passage percolation by the results of Baik and Rains [3].
We refer to Section 10.5 and 10.8.2 of Forrester [22] for the precise statements we
use which are obtained after taking a suitable limit of the geometric data considered
in [3] to exponential data. Let Πflat

n denote the set of all directed nearest-neighbour
paths from the point (1, 1) to the line {(i, j) : i + j = n + 1}, where the directed
paths consist only of up and right steps: that is to say, paths whose co-ordinates are
non-decreasing. We let ei j be independent exponential random variables indexed by
N
2 ∩ {(i, j) : i + j ≤ n + 1} with rate αi + αn− j+1 and define the last passage

percolation time

G(1, 1) = max
π∈Πflat

n (k,l)

∑

(i j)∈π

ei j .

This can be compared with point-to-point last passage percolation in a symmetric
random environment. Fix n and define exponential data {êi j : i, j ≤ n} by êi j =
ê j i = ei j for i < n − j + 1, and êi j = 1

2ei j for i = n − j + 1. Let Πn denote the
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set of all directed (up and right) nearest-neighbour paths from the point (1, 1) to the
point (n, n). Due to the symmetry of the random environment

2 max
π∈Πflat

n

∑

(i j)∈π

ei j = max
π∈Πn

∑

(i j)∈π

êi j . (6)

TheRSKcorrespondence can be applied toany rectangular array of data andgenerates
a pair of semi-standard Young tableaux (P, Q)with shape ν such that ν1 is equal to the
point-to-point last passage percolation time. When applied to exponential data with
symmetry (see Section 10.5.1 of Forrester [22]), the two tableaux can be constructed
from each other and the distribution of ν has a density with respect to Lebesgue
measure given by

fRSK(x1, . . . , xn) =
∏n

i=1 αi
∏

i< j (αi + α j )
∏

i< j (αi − α j )
det(e−αi x j )

for distinct αi . In the case when αi = 1 for each i = 1, . . . , n this can be evaluated as
a limit and gives the eigenvalue density for LOE (scaled by a constant factor of 2). In
combination with Eq. (6) this shows that,

4 max
π∈Πflat

n

∑

(i j)∈π

ei j
d= λLOEmax (7)

Therefore the combination of Eqs. (5) and (7) proves Theorem 1 in the case when D
is a multiple of the identity matrix. We could use this time change argument in the
reverse direction to provide an alternative proof of Nguyen and Remenik starting from
Eq. (7) and our proof of Theorem 1.

3 Reflected Brownianmotions with a wall

3.1 Time reversal

In the introduction we defined a system of reflected Brownian motions with a wall
at the origin Y = (Y1, . . . ,Yn) and we now define the system without the wall. Let
α j > 0 for each j = 1, . . . , n and let (B(−αn)

1 , . . . , B−(α1)
n ) be independent Brownian

motionswith drifts. A systemof reflectedBrownianmotions can be defined inductively
using the Skorokhod construction,

Zn
1 (t) = B(−αn)

1 (t)

Zn
j (t) = sup

0≤s≤t
(B

(−αn− j+1)

j (t) − B
(−αn− j+1)

j (s) + Zn
j−1(s)) for j ≥ 2.
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An iterative application of the above gives the n-th particle the representation

Zn
n (t) = sup

0=t0≤t1≤···tn=t

n∑

i=1

(B(−αn−i+1)

i (ti ) − B(−αn−i+1)

i (ti−1)). (8)

This gives an interpretation of the largest particle in a reflected system as a point-
to-point last passage percolation time in a Brownian environment. Similarly the n-th
particle in the system with a wall defined by (2, 3) has a representation

Yn(t) = sup
0≤t0≤···≤tn=t

n∑

i=1

(B(−αi )
i (ti ) − B(−αi )

i (ti−1)), (9)

where the only difference is that there is one extra supremum over t0 and we have
reversed the order of the drifts. These systems are related: in [10] it was proved in the
zero drift case that for each fixed t ,

Yn(t)
d= sup

0≤s≤t
Zn
n (s)

by a time reversal argument which easily extends to the case with drifts. We prove a
vectorised version of this time reversal which can also be useful for studying the full
vector (Y1, . . . ,Yn). We first extend the definition of Z to a triangular array Z = (Zk

j :
1 ≤ j ≤ k, 1 ≤ k ≤ n) as follows

Zk
1(t) = B(−αk )

n−k+1(t) for 1 ≤ k ≤ n (10)

Zk
j (t) = sup

0≤s≤t
B

(−αk− j+1)

n−k+ j (t) − B
(−αk− j+1)

n−k+ j (s) + Zk
j−1(s) for 2 ≤ j ≤ k (11)

with the representation

Zk
j (t) = sup

0=t0≤···≤t j=t

j∑

i=1

(B(−αk−i+1)

n−k+i (ti ) − B(−αk−i+1)

n−k+i (ti−1)).

We note that the Z process is still constructed from only n independent Brownian
motions.

Proposition 1 For any fixed t, let (Y1, . . . ,Yn) be defined by Eq. (2, 3) and
(Z1

1, Z
2
2, . . . , Z

n
n ) by Eq. (10), then, for any fixed t ≥ 0,

(Y1(t), . . . ,Yn(t))
d=

(

sup
0≤s≤t

Z1
1(s), . . . , sup

0≤s≤t
Zn
n (s)

)

.
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In particular, the equality in law of the marginal distribution of the last co-ordinate
gives the extension of [10] to general drifts,

Yn(t)
d= sup

0≤s≤t
Zn
n (s).

Proof Fix t and observe that

(Yk(t))
n
k=1 =

(

sup
0≤t0≤···tk=t

k∑

i=1

(B(−αi )
i (ti ) − B(−αi )

i (ti−1))

)n

k=1

=
(

sup
0=u0≤···uk≤t

k∑

i=1

(B(−αi )
i (t − uk−i ) − B(−αi )

i (t − uk−i+1))

)n

k=1

by letting t − ui = tk−i . By time reversal (B(−αi )
i (t) − B(−αi )

i (t − s))s≥0
d=

(B(−αi )
n−i+1(s))s≥0. Therefore

(Yk(t))
n
k=1

d=
(

sup
0=u0≤···uk≤t

k∑

i=1

(B(−αi )
n−i+1(uk−i+1) − B(−αi )

n−i+1(uk−i ))

)n

k=1

=
(

sup
0≤s≤t

Zk
k (s)

)n

k=1

where the final equality requires changing the index of summation from i to k− i +1.
�	

Proposition 2 For i = 1, . . . , n, let αi > 0.

(i) The vector
(
sup0≤s≤t Z

1
1(s), . . . , sup0≤s≤t Z

n
n (s)

)
converges almost surely as

t → ∞ to a finite random variable. From this and Proposition 1 we can deduce
that (Y1(t), . . . ,Yn(t)) converges in distribution as t → ∞ to a random variable
which we denote (Y ∗

1 , . . . ,Y ∗
n ) and satisfies

(Y ∗
1 , . . . ,Y ∗

n )
d=

(

sup
0≤s≤∞

Z1
1(s), . . . , sup

0≤s≤∞
Zn
n (s)

)

.

(ii) The top particle satisfies

Y ∗
n

d= sup
0≤t<∞

Zn
n (t)

d= sup
0≤t<∞

λmax(H(t) − t D).

(iii) Suppose that αi = 1 for all i = 1, . . . , n, then the top particle satisfies

4Y ∗
n

d= 4 sup
0≤t<∞

Zn
n (t)

d= 4 sup
0≤t<∞

λmax(H(t) − t I )
d= λLOEmax .
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The random variable (Y ∗
1 , . . . ,Y ∗

n ) is distributed according to the unique invariant
measure of the Markov process Y , which will follow from Lemma 3.

Proof We first show the almost sure convergence in part (i).
It is sufficient to show the suprema

(
sup0≤s≤∞ Z1

1(s), . . . , sup0≤s≤∞ Zn
n (s)

)
are

almost surely finite. We prove a stronger statement that will be useful later, namely,
that

lim
t→∞

1

t
Zk
j (t) = −min(αk, αk−1, . . . , αk− j+1).

Denote min(αk, αk−1, . . . , αk− j+1) by δkj . We proceed, for each k, by induction on j .

For j = 1, we have Zk
1(t) = B(−αk )

n−k+1(t) and the required statement is a property of
Brownian motion with drift. For the inductive step,

Zk
j (t) = sup

0≤s≤t
B

(−αk− j+1)

n−k+ j (t) − B
(−αk− j+1)

n−k+ j (s) + Zk
j−1(s)

= B
(−αk− j+1)

n−k+ j (t) + sup
0≤s≤t

(−B
(−αk− j+1)

n−k+ j (s) + Zk
j−1(s)

)
.

Now observe that B
(−αk− j+1)

n−k+ j (t)/t → −αk− j+1, and, making use of the inductive
hypothesis,

1

t
sup

0≤s≤t

(−B
(−αk− j+1)

n−k+ j (s) + Zk
j−1(s)

) → max(0, αk− j+1 − δkj−1).

Thus we deduce that Zk
j (t)/t tends to −min(αk− j+1, δ

k
j−1) = δkj .

For parts (ii) and (iii), the first equality in distribution follows by the time reversal at
the start of this section. The second equality in distribution follows from thewell known
equality in distribution of processes between the largest particle in a reflected system
of Brownian motions and the largest eigenvalue of Hermitian Brownian motion. For
equal parameters a proof can be found in any of [4,25,36,44] and for general parameters
a proof can be found in [1]. The final equality in distribution for part (iii) follows from
the results of Nguyen and Remenik and the time change in Sect. 2. �	

The fluctuations of the largest eigenvalue of the Laguerre orthogonal ensemble are
governed in the large n limit by the Tracy-Widom GOE distribution. This distribution
arises as the scaling limit for models in the KPZ universality class with flat initial
data and so we now see that (the marginals of) the stationary distribution of reflecting
Brownian motions with a wall also lies within this universality class. This is explained
byEq. (9) or the relationship to sup0≤s≤∞ Zn(s) alongwith Eq. (8) which both identify
Y ∗
n as a point-to-line last passage percolation time in a Brownian environment.
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3.2 Transition density

The system of reflected Brownianmotions with a wall can be defined through a system
of SDEs and we use this to define the process with a general initial condition. Let
0 ≤ y1 ≤ y2 ≤ · · · ≤ yn and define

Y j (t) = y j + B
(−α j )

j (t) + L j (t) for j = 1, . . . , n (12)

where L1 is the local time process at zero of Y1 and L j is the local time process at zero
of Y j −Y j−1 for each j = 2, . . . , n. This is aMarkov process and we give its transition
density. This has a form similar to [1,10,41,44,45]. Let W+

n = {0 ≤ z1 ≤ · · · ≤ zn}
denote the state space of a system of reflected Brownian motions with a wall. We
define differential and integral operators acting on infinitely differentiable functions
f : [0,∞) → R which have superexponential decay at infinity as follows,

Dβ f (x) = f ′(x) − β f (x), Jβ f (x) =
∫ ∞

x
eβ(x−t) f (t)dt (13)

where we define the derivative at zero to be the right derivative at zero. The operators
satisfy easy to verify identities:

(i) Commutation relations: for any real α, β,

JβDα = Dα Jβ, Jβ Jα = Jα Jβ, DβDα = DαDβ

(ii) Inverse relations: let Id denote the identity map, for any real α,

Dα Jα = −Id, JαDα = −Id

(iii) Relations to ordinary differentiation and integration: for any real α,

Dα f (x) = eαx D0(e−αx f (x)) Jα f (x) = eαx J 0(e−αx f (x)).

We use the notation Dα1,...,αn = Dα1 . . . Dαn and Jα1,...,αn = Jα1 . . . Jαn to denote
concatenated operations and Dα

x , Jα
x in order to specify a variable x on which the

operators act. We note that when the operators act on different variables they also
commute. Let φ

(α)
t (resp. ψ

(α)
t and η

(α)
t ) be the transition density of a Brownian

motion (resp. Brownian motion killed at the origin and reflected at the origin) with
drift α. These have the following explicit expressions

φ
(α)
t (x, y) = 1√

2π t
e− (y−x−αt)2

2t for x, y ∈ R, t ≥ 0

ψ
(α)
t (x, y) = eα(y−x)−α2t/2

(
1√
2π t

e− (y−x)2

2t − 1√
2π t

e− (y+x)2

2t

)
for x, y, t ≥ 0
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η
(α)
t (x, y) = e2αy√

2π t
e−α(x+y)− α2 t

2

(
e− (x−y)2

2t + e− (x+y)2

2t

)

− αe2αyErfc

(
x + y + αt√

2t

)
for x, y, t ≥ 0.

The transition density for Brownian motion with drift reflected at the origin can be
found in Appendix 1, Section 16 of [13]. When the drift is zero we may omit the
superscript. Observe that ψt (x, y) = φt (y− x)−φt (y+ x) for all x, y ≥ 0. The right
hand side can be defined for all x, y and can be used to specify the right derivative of
ψt at zero to ensure that the operation D can be applied toψt . A similar procedure can
be used to specify the right derivative at zero of ψ

(α)
t , η

(α)
t and all of these functions

lie in the class of functions specified at the start of this section. We define

rt (x, y) = e−∑n
i=1 αi (yi−xi )−α2

i t/2det(D
α1,...,α j
y j J−α1,...,−αi

xi ψt (xi , y j ))
n
i, j=1.

Proposition 3 The transition probabilities of (Y1(t), . . . ,Yn(t))t≥0 have a densitywith
respect to Lebesgue measure given by rt (x, y).

The following calculation shows that the proposition holds in the case n = 1 by
using Siegmund duality. This can be stated in an integral form, for any fixed t ,

∫ y

0
η

(−α)
t (x, u)du =

∫ ∞

x
ψ

(α)
t (y, v)dv.

We differentiate this expression in y, apply Girsanov’s theorem and symmetry to the
killed Brownian motion and use the identities in (iii) to obtain for all x, y ≥ 0,

η
(−α)
t (x, y) = D0

y J
0
x ψ

(α)
t (y, x) = D0

y J
0
x e

−α(y−x)−α2t/2ψt (y, x)

= e−α(y−x)−α2t/2Dα
y J

−α
x ψt (x, y).

In the case of equal drifts this identity can be used to give an alternative form of
Proposition 3. For k ≥ 1 let J (k) (resp. (D(k)) denote J 0 (resp. D0) concatenated k
times. Define

r̄t (x, y) = det(D( j−1)
y j J (i−1)

xi η
(−1)
t (xi , y j ))

n
i, j=1. (14)

The transition probabilities of (Y1(t), . . . ,Yn(t))t≥0 with drift vector (−1, . . . ,−1)
have a density with respect to Lebesgue measure on W+

n given by r̄t (x, y).

Lemma 1 For any f : W+
n → R which is bounded, continuous and zero in a neigh-

bourhood of the boundary of W+
n ,

lim
t→0

∫

W+
n

rt (x, y) f (y)dy = f (x)

uniformly for all x ∈ W+
n . This also holds with r replaced by r̄ .
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Let G (αk )
x = 1

2
d

dx2
− αk

d
dx denote the generator of a Brownian motion with drift

−αk .

Proof (Proposition 3) We show that r satisfies the Kolmogorov backward equations,
together with its boundary conditions, for the process Y = (Y1, . . . ,Yn). Let

q(t; x, y) = det(D
α1,...,α j
y j J−α1,...,−αi

xi ψt (xi , y j ))
n
i, j=1

and observe that

∂r

∂xi
= e−∑n

i=1 αi (yi−xi )−α2
i t/2D−αi

xi q = 0 at xi = xi−1

because the i-th and (i − 1)-th rows of the determinant defining D−αi
xi q coincide at

xi = xi−1, by virtue of the identity D−αi
xi J−αi

xi f = − f .
To show that ∂r/∂x1 = 0 at x1 = 0 we consider the matrix in the definition of r

and bring the prefactor eα1x1 in r into the top row of this matrix. We use the identity
eα1x1 J−α1

x1 ψt (x1, y j ) = J 0x1e
α1x1ψt (x1, y j ) and observe that the derivative in x1 of the

right hand side equals zero when evaluated at x1 = 0. This shows that the derivative
of every term in the top row of this matrix equals zero because the derivative in x1
commutes with the operations acting in y j . Therefore ∂r/∂x1 = 0 at x1 = 0.

To show that theKolmogorovbackward equation is satisfied for x, y in the interior of
W+

n we let ri j (t; xi , y j ) = eαi xi−α2
i t/2D

α1,...,α j
y j J−α1,...,−αi

xi ψt (xi , y j ).We differentiate
in t , and use the fact that ψt satisfies the heat equation, to obtain

∂ri j (t; xi , y j )
∂t

=eαi xi−α2
i t/2D

α1,...,α j
y j J−α1,...,−αi

xi

(
1

2

∂2ψt (xi , y j )

∂x2i
− 1

2
α2ψt (xi , y j )

)

.

It is convenient to express the terms in brackets using the operations D and J ,

(
1

2

∂2ψt (xi , y j )

∂x2i
− 1

2
α2ψt (xi , y j )

)

= 1

2
Dαi
xi D

−αi
xi ψt (xi , y j ).

The operations Jx and Dx commute and therefore

∂ri j (t; xi , y j )
∂t

= 1

2
eαi xi−α2

i t/2Dαi
xi D

−αi
xi D

α1,...,α j
y j J−α1,...,−αi

xi ψt (xi , y j )

= 1

2
eαi xi Dαi

xi D
−αi
xi e−αxi ri j (t; xi , y j )

= G (αi )
xi ri j (t; xi , y j ).

Therefore, since rt (x, y) = e−∑
αi yi det(ri j (t; xi , y j )),

∂r

∂t
=

n∑

i=1

G (αi )
xi r .
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The proposed transition densities r satisfy the Kolmogorov backward equation for
Y = (Y1, . . . ,Yn) and the arguments in [44] show that r are the transition densities
for Y . We sketch this argument but refer to [44] for the details. Let f be a bounded
continuous function which is zero in a neighbourhood of the boundary of W+

n and
define F(u, x) = ∫

W+
n
ru(x, y) f (y)dy for u ≥ 0 and x ∈ W+

n . Fix some T > 0 and
ε > 0. By using Itô’s formula and the fact that rt solves the Kolmogorov backward
equation we obtain that (F(T + ε − t,Yt ) : t ∈ [0, T ]) is a martingale with respect to
the process (Yt )t≥0. In particular, F(T +ε, y) = Ey(F(ε, YT )). The ε is introduced in
order to ensures smoothness of F and allow the application of Itô’s formula, however,
using Lemma 1 we can take the limit as ε tends to zero to conclude that Ey( f (YT )) =∫
W+

n
rT (x, y) f (y)dy. This holds for all bounded continuous f which are zero in a

neighbourhood of the boundary of W+
n which is sufficient to prove that rT (y, ·) is the

density of the distribution of YT since this distribution does not charge the boundary.
�	

Proof (Lemma 1) The proof follows the argument in [44]. The transition density for
killed Brownian motion satisfies ψt (x, y) = φt (y − x) − φt (x + y) and we can split
the determinant

q(t; x, y) = det(D
α1,...,α j
y j J−α1,...,−αi

xi ψt (xi , y j ))
n
i, j=1

into a sum of two terms q = q1 + q2 where

q1(t; x, y) = det(D
α1,...,α j
y j J−α1,...,−αi

xi φt (y j − xi ))
n
i, j=1

and q2 := q − q1. We first show that

lim
t→0

∫
f (y)e−∑

i αi (yi−xi )q2(t; x, y)dy = 0. (15)

We observe that q2 is a sum of products of factors where in each product there is at
least one factor of the form

D
α1,...,α j
y j J−α1,...,−αi

xi φt (xi + y j ) (16)

for some 1 ≤ i, j ≤ n. For {y1 ≤ ε} the function f takes the value zero and on
{y1 > ε} the factor (16) is approaching zero exponentially fast as 1/t → ∞. As a
result (15) holds.

We now consider q1 and observe that the entries in the matrix simplify due to the
translation invariance of the function: in particular Dα

y J
−α
x h(y − x) = h(y − x) for

any smooth function h. This means that the matrix in q1 has diagonal entries

D
α1,...,α j
y j J

−α1,...,−α j
xi φt (y j − x j ) = φt (y j − xi ).

Therefore the term corresponding to the identity permutation in the determinant of q1
is a standard n-dimensional heat kernel. The remaining terms are negligible as in [44].

�	
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The transition densities must satisfy the semigroup property and this suggests a
generalisation of the Andréief (or Cauchy-Binet) identity. This identity states that for
any functions ( fi )ni=1 and (gi )ni=1,

∫

Wn
det( fi (x j ))

n
i, j=1det(g j (xi ))

n
i, j=1dx1 . . . dxn = det

( ∫ ∞

0
fi (x)g j (x)dx

)n

i, j=1
.

(17)

We prove a generalisation involving the inhomogeneous derivative and integral oper-
ators, J and D.

Lemma 2 Let ( fi )ni=1 and (g j )
n
j=1 be collections of infinitely differentiable functions

on [0,∞) such that g j has superexponential decay at infinity for each j = 1, . . . , n
while fi has at most exponential growth at infinity for each i = 1, . . . , n.

(i) For k ≥ 1, let g(−k)(x) = ∫ ∞
x

(x−u)k−1

(k−1)! g(u)du and f (k) denote the k-th deriva-
tives of f . Then

∫

W+
n

det( f ( j−1)
i (x j ))

n
i, j=1det(g

(−i+1)
j (xi ))

n
i, j=1dx1 . . . dxn

= det

(∫ ∞

0
fi (x)g j (x)dx

)n

i, j=1

(ii) Let Dα, Jα be defined as in Eq. (13) and assume fi (0) = 0 for each i = 1, . . . , n.
Then

∫

W+
n

det
(
Dα1,...,α j fi (x j )

)n
i, j=1det

(
J−α1,...,−αi g j (xi )

)n
i, j=1dx1 . . . dxn

= det

( ∫ ∞

0
fi (x)g j (x)dx

)n

i, j=1
.

We note that (i) is not quite the homogeneous case of (ii) because (ii) involves applying
integration by parts to x1, whereas (i) does not. We also note that g(−k) = J (k)g so that
part (i) can be applied to the transition density r̄ from Eq. (14). We have not intended
to make the conditions on g optimal and have simply chosen some conditions which
are sufficient for our purposes.

Proof We start with the proof of (ii). We observe that for 0 ≤ x < z,

f (z)J−αg(z) − f (x)J−αg(x) =
∫ z

x
Dα f (y)J−αg(y)dy −

∫ z

x
f (y)g(y)dy.

(18)

We use this formula iteratively to prove that
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∫

W+
n

det
(
Dα1,...,α j fi (x j )

)
det

(
J−α1,...,−αi g j (xi )

)
dx1 . . . dxn

=
∫

W+
n

det
(
fi (x j )

)
det

(
g j (xi )

)
dx1 . . . dxn . (19)

For the first step we use a Laplace expansion of the determinants appearing on the left
hand side and then apply Eq. (18) with parameter α = αn and integrating with respect
to xn from xn−1 to ∞. Then we reconstruct the resulting expressions as determinants.
This gives three terms. The first term is

∫

W+
n

det(Fi j (x j ))
n
i, j=1det(Gi j (xi ))

n
i, j=1dx1 . . . dxn

where Fi j (x j ) = Dα1,...,α j fi (x j ) for all 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1, Fin(xn) =
Dα1,...,αn−1 fi (xn) for all 1 ≤ i ≤ n,Gi j (xi ) = J−α1,...,−αi g j (xi ) for all 1 ≤ i ≤ n−1
and 1 ≤ j ≤ n, and Gnj (xn) = J−α1,...,−αn−1g j (xn) for all 1 ≤ j ≤ n. The other two
terms are boundary terms given by the following expression evaluated at xn = xn−1
and xn = ∞,

∫

W+
n−1

det(Ai j (x j ))
n
i, j=1det(Bi j (xi ))

n
i, j=1dx1 . . . dxn−1

where Ai j (x j ) = Dα1,...,α j fi (x j ) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, Ain =
Dα1,...,αn−1 fi (xn) for all 1 ≤ i ≤ n and Bj (xi ) = J−α1,...,−αi g j (xi ) for all
1 ≤ i, j ≤ n. These boundary terms are both zero: the determinant of Ai j van-
ishes at xn = xn−1, because two columns are equal, and we obtain zero at infinity by
virtue of the growth and decay conditions imposed on f and g.

The general structure becomes clear after the second step. We perform the same
procedure with the integration by parts (18) with parameter α = αn−1, and integrating
with respect to the variable xn−1 between xn−2 and xn . We obtain three terms as above
with

Fi j (x j ) =
{
Dα1,...,α j fi (x j ) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2

Dα1,...,α j−1 fi (x j ) for all 1 ≤ i ≤ n, n − 1 ≤ j ≤ n

Gi j (xi ) =
{
J−α1,...,−αi g j (xi ) for all 1 ≤ i ≤ n − 2, 1 ≤ j ≤ n

J−α1,...,−αi−1g j (xi ) for all n − 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1.

and the boundary terms evaluated at xn−1 = xn−2 and xn−1 = xn with

Ai j (x j ) =
{
Dα1,...,α j fi (x j ) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2

Dα1,...,α j−1 fi (x j ) for all 1 ≤ i ≤ n, n − 1 ≤ j ≤ n

Bi j (xi ) =
{
J−α1,...,−αi g j (xi ) for all 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

J−α1,...,−αi−1g j (xi ) for i = n, 1 ≤ j ≤ n.
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The determinant of Ai j will vanish at xn−1 = xn−2 while the determinant of Bi j
will vanish at xn−1 = xn . Therefore both boundary terms vanish. Equation (19) now
follows by iterating this procedure. The order of the integration by parts with respect
to the variables and choice of the parameter α in (18) is important to ensure there
are no boundary terms and is the following: (xn, αn), (xn−1, αn−1), . . . , (x1, α1) then
(xn, αn−1), (xn−1, αn−2), . . . , (x2, α1) until finally (xn, α1). In the integration by parts
with respect to (x1, α1) there is a boundary term at zero, however, this is also zero due
to the constraint that fi (0) = 0 for each i = 1, . . . , n.

Finally part (ii) of the lemma follows from applying the Andréief identity (17) to
the righthand side of Eq. (19). Part (i) of the Lemma is the same except that there is
no integration by parts in x1 so that the condition fi (0) = 0 is not required. �	

3.3 Invariant measures

Lemma 3 (Dupuis and Williams [20]) Let (Y1(t), . . . ,Yn(t))t≥0 be the system of
reflected Brownian motions with a wall given in Eq. (12) and Pt (x, ·) denote the law
of (Y1(t), . . . ,Yn(t)) when started from an initial state x ∈ W+

n . Then Y has a unique
invariant measure denoted π and satisfies ‖Pt (x, ·) − π‖ → 0 for all x ∈ W+

n where
‖μ‖ = sup|g|≤1|

∫
μ(dy)g(y)| is the total variation distance of μ.

There are stronger results in the literature including convergence rates: for example
Theorem 4.12 of [14] can be applied to prove V -uniform ergodicity for Y . For the
process where all particles are started from the origin, the convergence in distribution
is contained in Proposition 2.

Proposition 4 (i) When α1 = · · · = αn = 1, then (Y ∗
1 , . . . ,Y ∗

n ) has a density with
respect to Lebesgue measure on W+

n given by

π̄(x1, . . . , xn) = det( f ( j−1)
i−1 (x j ))

n
i, j=1 (20)

with the sequence of functions ( fi )i≥0 defined inductively as follows:

f0(x) = 2e−2x (21)

G ∗ fi+1 = fi and f ′
i (0) = fi (0) = 0 for i ≥ 1 (22)

where G ∗ = 1
2

d2

dx2
+ d

dx .
(ii) When the drifts are distinct, (Y ∗

1 , . . . ,Y ∗
n ) has a density with respect to Lebesgue

measure on W+
n given by

π(x1, . . . , xn) = 1
∏

i< j (αi − α j )
e−∑n

i=1 αi xi det(Dα1,...,α j fi (x j ))
n
i, j=1

where fi (x) = eαi x − e−αi x .

We make two remarks:
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(i) For equal drifts the initial function f0 satisfies G ∗ f0 = 0 and f ′
0(0) + 2 f0(0) =

0. The functions fi could also have been defined so as to satisfy the boundary
condition f ′

i (0) + 2 fi (0) = 0 for i ≥ 1, however, π̄ would be unchanged as we
can use row operations to add on constant multiples of f0.

(ii) When the drifts are distinct, Dieker and Moriarty [17] show the invariant measure
is a sum of exponential random variables and this sum can be calculated explicitly
for small values of n. However, when the drifts coincide Proposition 4 part (i)
shows the invariantmeasure contains polynomial prefactors in the style of repeated
eigenvalues.

Lemma 4 The functions π̄ andπ are positive onW+
n and satisfy

∫
W+

n
π̄ = ∫

W+
n

π = 1.

We will prove this in Sect. 4 and for the moment prove Theorem 2 assuming this
lemma.

Proof (Proposition 4) In the case of equal rateswe apply part (i) of Lemma2 to calculate
the convolution between the proposed invariant measure and the transition densities
from Proposition 3. The functions fi and η satisfy the growth and decay conditions at
infinity for Lemma 2 and this shows that

∫

W+
n

π̄(x)r̄t (x, y)dx = det

(
D( j−1)

y j

∫ ∞

0
fi−1(x)η

(−1)
t (x, y j )dx

)n

i, j=1

where D( j−1) denotes the ( j − 1)-th iterated concatenation of D0 and η
(−1)
t is the

transition density of reflected Brownian motion with drift −1. Fixing y, we use the
notation

( fi , η
(−1)
t ) =

∫ ∞

0
fi (x)η

(−1)
t (x, y)dx .

Let G = 1
2

d2

dx2
− d

dx and then for k ≥ 1, since d
dt η

(−1)
t = G η

(−1)
t ,

d

dt
( fk, η

(−1)
t ) = ( fk,G η

(−1)
t ) = (G ∗ fk, η(−1)

t ) = ( fk−1, η
(−1)
t ).

The step ( fk,G η
(−1)
t ) = (G ∗ fk, η(−1)

t ) follows from integrating by parts where the
boundary terms are given by fk(x)

d
dx η

(−1)
t (x, y) and η

(−1)
t (x, y)( d fkdx + 2 fk(x)) each

evaluated at zero and infinity. The boundary terms all equal to zero by the boundary
conditions on η and fk . Integrating in t ,

( fk, η
(−1)
t ) = fk(y) +

∫ t

0
( fk−1, η

(−1)
t )ds

and iterating this gives, since ( f0, η
(−1)
t ) = f0(y),

( fk, η
(−1)
t ) = tk

k! f0(y) + · · · + fk(y).
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Thus the functions fk are invariant under the action of the η
(−1)
t modulo multiples of

f0, . . . , fk−1. Consequently, for any t > 0 we can apply row operations to obtain

∫

W+
n

π̄(x)r̄t (x, y)dx = det( f ( j−1)
i−1 (y j ))

n
i, j=1 = π̄(y).

In the case when the drifts are not equal we apply Lemma 5 to express the convo-
lution of our proposed invariant measure and the transition density from Proposition
3 as a single determinant,

∫
π(x)rt (x, y)dx = e−∑n

i=1 αi yi det

(
D

α1,...,α j
y

∫ ∞

0
fi (x)ψt (x, y j )e

−α2
i t/2dx

)n

i, j=1
.

The conditions for Lemma 3 are satisfied because fi (0) = 0 for each i = 1, . . . , n
and the conditions on the growth and decay of fi and ψ at infinity are satisfied. We
have

∫ ∞

0
fi (x)ψt (x, y)e

−α2
i t/2dx = fi (y)

and therefore
∫

π(x)rt (x, y)dx = 1
∏

i< j (αi − α j )
e−∑n

i=1 αi yi det
(
D

α1,...,α j
y fi (y j )

)n

i, j=1
= π(y).

�	

4 Point to line last passage percolation

4.1 Transition densities

Last passage percolation times can be interpreted as an interacting particle systemwith
a pushing interaction between the particles. We define a Markov chain (Gpp(k))k≥0
with n particles with positions on the real line ordered asGpp

1 < · · · < Gpp
n . We update

the system between time k − 1 and time k by applying the following local update rule
sequentially to Gpp

1 , . . . ,Gpp
n as follows:

Gpp
j (k) = max{Gpp

j (k − 1),Gpp
j−1(k))} + e jk (23)

where (e jk)1≤ j≤n,k≥1 are an independent sequence of exponential random vari-
ables and Gpp

1 (0) = · · · = Gpp
n (0) = 0. The interactions of the particles are

exactly the local update rules of last passage percolation and the largest parti-
cle position at time n describes the point-to-point last passage percolation time
Gpp

n (n) = maxπ∈Πn

∑
(i j)∈π ei j where Πn is the set of all directed (up and right)

paths from (1, 1) to (n, n).
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The advantage of such an interpretation is that there is an explicit transition density
for this Markov chain. This was proven in the case of equal parameters (and geometric
data) by Johansson [28] and with inhomogeneous parameters (and geometric data)
by Dieker and Warren [18]. This Markov chain plays an important role in the recent
work, for example [29], on the two-time distribution of last passage percolation. In
this section we show how this Markov chain can also be used to study point-to-line
last passage percolation.

For α ∈ R, let Dα, I α be defined by acting on functions f : R → R which are
infinitely differentiable for x > 0, are equal to zero on x ≤ 0 and satisfy that f (k)(0+)

exists for each k ≥ 0. On such a class of functions define

Dα f (x) =
{
f ′(x) − α f (x), x > 0

0, x ≤ 0
Iα f (x) =

{∫ x
0 eα(x−t) f (t)dt, x > 0

0, x ≤ 0.
(24)

Then Dα, I α preserve this class of functions and satisfy Dα I α f = f for functions
of this form. We also define homogeneous analogues: for a function g satisfying the
above, define g(r)(x) or D(r)g to be the r -th iterated derivative of g for x > 0 and
equal to zero for x ≤ 0 and similarly g(−r)(x) or I (−r)g to be the iterated integral
∫ x
0

(x−y)r−1

(r−1)! gm(y)dy for x > 0 and equal to zero for x ≤ 0.

Proposition 5 Let (Gpp(k))k≥0 be the Markov chain described above with n par-
ticles constructed from independent exponentially distributed random variables
(ei j )1≤i≤n, j≥1 with ei j having rate αi > 0.

(i) In the case of equal rates: α1 = · · · = αn = 2, the m-step transition probabilities
have a density with respect to Lebesgue measure on W+

n given by, for x, y ∈ W+
n ,

Qm(x, y) = det(g( j−i)
m (y j − xi ))

n
i, j=1

where gm(z) = 2m
Γ (m)

zm−1e−2z1z>0 and g(r)
m are defined above.

(ii) For α j > 0 for each j = 1, . . . , n, the m-step transition densities have a density
with respect to Lebesgue measure on W+

n given by, for x, y ∈ W+
n ,

Qm(x, y) =
(

nm∏

i=1

αi

)

e−∑n
i=1 αi (yi−xi )det( f (i, j)

m (y j − xi ))
n
i, j=1

where fm(u) = um−1

(m−1)!1u>0 and

f (i, j)
m (z) =

⎧
⎪⎨

⎪⎩

Dαi+1,...,α j fm(z) for j > i

I α j+1,...,αi fm(z) for j < i

fm(z) for i = j .

(25)

with D and I defined in Eq. (24).
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Our proof is a generalisation of the method in Johansson [28] to the case of inho-
mogeneous parameters and exponential rather than geometric jump distributions. An
exponential case is not an entirely straightforward generalisation of the formulas in
the geometric case because of taking derivatives of functions with a discontinuity. In
order to obtain m-step transition densities from 1-step transition densities we prove a
version of Lemma 2 for our operators D and I . There are two differences: we allow for
possible discontinuities in the functions at the origin and part (ii) of the Lemma allows
for new particles to be added at the origin. This will be used in the next subsection to
study point-to-line last passage percolation.

Lemma 5 (i) Let f , g be functions satisfying the conditions at the start of this section.
Then for x, z ∈ W+

n ,

∫

W+
n

det
(
f (i, j)(y j − xi )

)n
i j=1det

(
g(i, j)(z j − yi )

)n
i, j=1dy1 . . . dyn

= det

(
( f ∗ g)(i, j)(z j − xi )

)n

i, j=1

where ( f ∗ g)(z) = ∫ z
0 f (y)g(z − y)dy and f (i, j), g(i, j) and ( f ∗ g)(i, j) are

defined analogously to (25).
(ii) Let ( fi )

n−1
i=1 be a collection of infinitely differentiable functions onR+ with fi (0) =

0 for each i = 1, . . . , n − 1. Let g be a function satisfying the conditions at the
start of this section. Then for z ∈ W+

n , and using the notation y1 := 0

∫

W+
n−1

det
(
f (1, j)
i−1 (y j )

)n
i, j=2det

(
g(i, j)(z j − yi )

)n
i, j=1dy2 . . . dyn

= det

⎛

⎜⎜
⎜
⎝

g(z1) g(1,2)(z2) . . . g(1,n)(zn)
( f1 ∗ g)(z1) ( f1 ∗ g)(1,2)(z2) . . . ( f1 ∗ g)(1,n)(zn)

...
...

. . .
...

( fn−1 ∗ g)(z1) ( fn−1 ∗ g)(1,2)(z2) . . . ( fn−1 ∗ g)(1,n)(zn)

⎞

⎟⎟
⎟
⎠

n

i, j=1

where ( f ∗ g)(z) = ∫ z
0 f (z − y)g(y)dy and f (i, j), g(i, j) and ( f ∗ g)(i, j) all

defined analogously to (25).

Proof (Proposition 5) We first prove that the one-step transition densities are given by
Q1. This is equivalent to showing that for all n ≥ 1, and for x, y ∈ W+

n ,

e−∑n
i=1 αi (yi−xi )det( f (i, j)

1 (y j − xi ))
n
i, j=1 =

n∏

j=1

e−α j (y j−max(x j ,y j−1))1y j>x j (26)

where we use the convention y0 := 0. The right hand side is zero unless x j < y j for
all j = 1, . . . , n. We check this for the left hand side. If yk ≤ xk for some 1 ≤ k ≤ n
then the first k columns of the matrix in (26) only have non-zero elements in the first
k − 1 rows since for j ≤ k and i ≥ k the (i, j)-th entry of the matrix in (26) is a
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function which only takes non-zero values for positive arguments and the argument is
y j − xi ≤ 0.

For the remainder of the proof, we can suppose x j < y j for j = 1, . . . , n. We prove
(26) by induction on n and observe that the result holds at n = 1. For the inductive
step we use a Laplace expansion of the determinant in the last row

det( f (i, j)
1 (y j − xi ))

n
i, j=1

=
n∑

k=1

(−1)k+n f (n,k)
1 (yk − xn)det( f

(i, j)
1 (y j − xi ))i �=n, j �=k . (27)

We prove the terms in the sum for 1 ≤ k ≤ n − 2 are zero by considering separately
the cases yk ≤ xn and yk > xn . If yk ≤ xn then f (n,k)

1 (yk − xn) = 0. Suppose instead
yk > xn . Observe that for z > 0 and j > 1,

(
d

dz
− α j

)
f (i, j−1)
1 (z) = f (i, j)

1 (z). (28)

Since yk > xn , then (28) can be used to re-express the columns indexed by j =
k + 1, . . . , n of the final determinant in (27) which involve strictly positive arguments
y j − xi for j ≥ k + 1. Therefore

det( f (i, j)
1 (y j − xi ))i �=n, j �=k

=
n∏

j=k+1

(
∂

∂ y j
− α j

)
det(Mi j )

n−1
i, j=1 (29)

where

Mi j =
{
f (i, j)
1 (y j − xi ) for 1 ≤ j ≤ k − 1

f (i, j)
1 (y j+1 − xi ) for k ≤ j ≤ n − 1.

We apply the inductive hypothesis to the determinant of M with the variables
x1, . . . , xn−1 and y1, . . . , yk−1, yk+1, . . . yn and parameters α1, . . . , αn−1 to observe
that (29) equals

n∏

j=k+1

(
∂

∂ y j
− α j

) {
e
∑k−1

j=1 α j (y j−x j )+∑n−1
j=k α j (y j+1−x j )

k−1∏

j=1

e−α j (y j−max(x j ,y j−1))

· e−αk (yk+1−max(xk ,yk−1))
n−1∏

j=k+1

e−α j (y j+1−max(x j ,y j ))
}
.

(30)

We observe that max(y j , x j ) = y j for each j = k + 1, . . . , n − 1. Therefore the
expression in {·} is differentiable in yk+1, . . . , yn , and furthermore, equals a factor of
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eαn−1yn−1 multiplied by a factor independent of yn−1. Therefore the expression in {·}
vanishes once we apply

(
∂

∂ yn−1
− αn−1

)
and (30) equals zero.

Therefore the sum in Eq. (27) can be restricted to the sum of two terms

− f (n,n−1)
1 (yn−1 − xn)det( f

(i, j)
1 (y j − xi ))i �=n, j �=n−1

+det( f (i, j)
1 (y j − xi ))i �=n, j �=n1yn>xn . (31)

We consider the two cases when yn−1 ≤ xn and yn−1 > xn separately. If yn−1 ≤ xn
then the only non-zero contribution comes from the second term in Eq. (31). In this
case by applying the inductive hypothesis and noting that max(yn−1, xn) = xn we
obtain the required result that

e−∑n
j=1 α j (y j−x j )det( f (i, j)

1 (y j − xi ))i �=n, j �=n=
n−1∏

j=1

e−α j (y j−max(x j ,y j−1))e−αn(yn−xn).

(32)

Suppose instead yn−1 > xn and consider Eq. (31). Observe that

f (n,n−1)
1 (yn−1 − xn) = 1

αn
(eαn(yn−1−xn) − 1). (33)

We consider the first determinant in Eq. (31). The argument in the last column is
strictly positive and so Eq. (28) can be used to re-express this column as follows

det( f (i, j)
1 (y j − xi ))i �=n, j �=n−1 =

(
∂

∂ yn
− αn

)
det(Ki j )

n−1
i, j=1

where

Ki j =
{
f (i, j)
1 (y j − xi ) for 1 ≤ j ≤ n − 2

f (i, j)
1 (y j+1 − xi ) for j = n − 1.

We apply the inductive hypothesis to the determinant of K with variables x1, . . . , xn−1
and y1, . . . , yn−2, yn and parameters α1, . . . , αn−1 to obtain,

det( f (i, j)
1 (y j − xi ))i �=n, j �=n−1 =

(
∂

∂ yn
− αn

) {
e
∑n−2

j=1 α j (y j−x j )+αn−1(yn−xn−1)

·
n−2∏

j=1

e−α j (y j−max(x j ,y j−1))e−αn−1(yn−max(xn−1,yn−2))

}
. (34)

The expression in {·} is independent of yn . Therefore the term in (34) involving ∂/∂ yn
applied to {·} equals zero.
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Using (33), (34) and the inductive hypothesis we evaluate (31) multiplied by the
prefactor given by exp(−∑n

j=1 α j (y j − x j )) for yn−1 > xn and obtain

(−1)

αn
e−∑n

j=1 α j (y j−x j )det( f (i, j)
1 (y j − xi ))i �=n, j �=n−1

=
n−1∏

j=1

e−α j (y j−max(x j ,y j−1))e−αn(yn−xn) (35)

and

e−∑n
j=1 α j (y j−x j ) (−1)

αn
eαn(yn−1−xn)det( f (i, j)

1 (y j − xi ))i �=n, j �=n−1

=
n−1∏

j=1

e−α j (y j−max(x j ,y j−1))e−αn(yn−yn−1). (36)

To complete the inductive step of the proof of (26) in the case yn−1 > xn we use (27)
and (31) to simplify the left hand side of (26) and observe that (32) and (35) cancel
while (36) equals the required expression. This completes the inductive step and we
establish that (26) holds. The formula for the m-step transition densities follows from
Lemma 5.

In the case when all parameters are equal, say α1 = · · · = αn = 2, the transition
density is given by

2nme−∑n
i=1 2(yi−xi )det( f (i, j)

m (y j − xi ))
n
i, j=1 = det(2me−2(y j−xi ) f (i, j)

m (y j − xi ))
n
i, j=1.

We transform this equation into the expression given in the statement of the propo-
sition by iteratively using the identities that e−2z D2 fm(z) = D0(e−2z fm(z)) and
e−2z I 2 fm(z) = I 0(e−2z fm(z)) for all z ∈ R. �	

Proof (Lemma 5) We first prove part (i) for f and g which satisfy the conditions of the
Lemma and furthermore are infinitely differentiable on all of R. We apply Lemma 2
with the functions fi (·) = (I α1,...,αi f )(· − xi ) and g j (·) = (Dα1,...,α j g)(z j − ·) and
observe that Dα1,...,α j fi (z) = f (i, j)(z − x j ) and J−α1,...,−αi g j (z) = g(i, j)(z − x j ).
The Dα have been defined on amore general class of functions in this section but agree
with the definition used in Lemma 2 when the functions are smooth. The condition on
the growth of f at infinity in Lemma 2 can be removed because g(z j − ·) is zero in a
neighbourhood of infinity. As a result Lemma 2 proves that

∫

W+
n

det
(
f (i, j)(y j − xi )

)n
i, j=1det

(
g(i, j)(z j − yi )

)n
i, j=1dy1 . . . dyn

= det
(
( f ∗ g)(i, j)(z j − xi )

)n

i, j=1
(37)
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where we have used the following to simplify the right hand side,
∫ ∞

−∞
(Dα1,...,α j g)(z j − y)(I α1,...,αi f )(y − xi )dy = ( f ∗ g)(i, j)(z j − xi )

where the operators pass through the convolution because f and g are smooth on all
of R. Therefore the Lemma holds for functions which are infinitely differentiable on
all of R in addition to satisfying the stated conditions.

We now use approximation to extend the class of functions f and g to those stated
in the Lemma. For each ε > 0, let fε be an infinitely differentiable function satisfying
fε(x) = f (x) for x ≥ ε and fε(x) = 0 for x ≤ 0, and that there exists a constant C
such that | fε(x)| < C for all ε and all x ∈ [−1, 1]. For any z ∈ R and j ≥ 1,

lim
ε→0

( fε ∗ gε)(z) = ( f ∗ g)(z), lim
ε→0

I α1,...,α j ( fε ∗ gε)(z) = I α1,...,α j ( f ∗ g)(z),

(38)

lim
ε→0

Dα1,...,α j ( fε ∗ gε)(z) = Dα1,...,α j ( f ∗ g)(z). (39)

We prove (39); Eq. (38) is more straightforward. Observe that if z ≤ 0 then both sides
are zero and for z > 0,

d j

dz j
(( fε ∗ gε)(z)−( f ∗ g)(z)) =

∫ ε

0
fε(y)g

( j)
ε (z−y)dy −

∫ ε

0
f (y)g( j)(z − y)dy

+
∫ ε

0
f ( j)
ε (z−y)gε(y)dy−

∫ ε

0
f ( j)(z − y)g(y)dy

(40)

tends to zero as ε → 0 because for ε < z/2 then g( j)
ε (z − y) = g( j)(z − y) and

f ( j)
ε (z − y) = f ( j)(z − y) for 0 ≤ y ≤ ε, and gε and fε are bounded.
Equation (37) holds with f and g replaced by fε and gε because these are smooth.

Defining f (i, j)
ε and g(i, j)

ε analogously to (25) we obtain,

∫

W+
n

det
(
f (i, j)
ε (y j − xi )

)n
i, j=1det

(
g(i, j)
ε (z j − yi )

)n
i, j=1dy1 . . . dyn

= det
(
( fε ∗ gε)

(i, j)(z j − xi )
)n

i, j=1
. (41)

We want to pass to the limit as ε ↓ 0. Equations (38) and (39) show that the right hand
side of Eq. (41) converges.

Let x1 < · · · < xn and z1 < · · · < zn and let ε < min(mini< j {z j −
zi },mini< j {x j − xi }). Consider the Laplace expansions of the determinants on the
left hand side of (41). A term in the expansion corresponding to permutations σ and
ρ equals

∫

W+
n

n∏

i=1

f (σ (i),i)
ε (yi − xσ(i))g

(i,ρ(i))
ε (zρ(i) − yi )dy1 . . . dyn .
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If ρ is the identity then each factor gε(zρ(i) − yi ) is bounded uniformly in ε for
0 ≤ yi ≤ zρ(i). If ρ is not the identity then there exists i < j with ρ(i) > i and

ρ( j) ≤ i . The (i, ρ(i)) factor is equal to g(i,ρ(i)
ε (zρ(i) − yi ) and is bounded uniformly

in ε on the region 0 ≤ yi ≤ zρ(i) − ε. On the region, yi > zρ(i) − ε this factor may
be unbounded, however, the ( j, ρ( j)) factor is zero because y j ≥ yi > zρ(i) − ε >

zρ( j) and therefore the argument in the ( j, ρ( j)) factor is strictly negative. The same
argument applies to σ . This shows that the integrand is bounded uniformly in ε and
since it converges pointwise then the convergence of the left hand side of (41) follows
from the dominated convergence theorem.

We have established part (i) when x1 < · · · < xn and z1 < · · · < zn . We will
complete the proof of part (i) by showing that both sides are continuous in x and z for
x, z ∈ W+

n . For the right hand side of part (i), we observe that y → ( f ∗ g)(i, j)(y)
is continuous except if j > i and y = 0. We consider the Laplace expansion of the
right hand side with the sum indexed by permutations ρ. If ρ is the identity then each
factor is continuous. If ρ is not the identity, then there exists i < j with ρ(i) > i
and ρ( j) ≤ i . The argument of the ( j, ρ( j)) factor is zρ( j) − x j and so the ( j, ρ( j))
factor is zero on {zρ(i) ≤ xi } because x j ≥ xi ≥ zρ(i) ≥ zρ( j). On {zρ(i) > xi }
then the factor ( f ∗ g)(i,ρ(i)(zρ(i) − xi ) is continuous. As zρ(i) − xi ↓ 0, the factor
( f ∗g)(i,ρ(i)(zρ(i)−xi ) remains bounded and the factor ( f ∗g)( j,ρ( j))(zρ( j)−y j ) → 0.
As a result the right hand side of part (i) is continuous in x and z. The integrand on the
left hand side of part (i) is bounded over compact intervals and so the left hand side is
continuous in x and z. This completes the proof of part (i).

Formally, part (ii) of the Lemma follows from embedding thematrix of size n−1 on
the left hand side of part (ii) in a matrix of size n with the addition of a delta function

det( f (1, j)
i−1 (y j ))

n
i, j=2δ0(y1) = det( f (1, j)

i−1 (y j ))
n
i, j=1

where f0 := δ0(·) and f (1, j)
0 are interpreted as weak derivatives. Continuing formally

part (ii) is now an application of Lemma 2

∫

W+
n

det(Dα2,...,α j fi−1(y j ))
n
i, j=1det(J

−α2,...,−αi g j (yi ))
n
i, j=1dy1 . . . dyn

= det

(∫ ∞

−∞
fi−1(y)g j (y)dy

)n

i, j=1

where g j (yi ) = Dα2,...,α j g(z j − yi ) and f0 := δ0. The top row on the right hand side
is equal to (δ0, g j ) = g(1, j)(z j ).

To give a rigorous proof of part (ii) we use a similar integration by parts argument
to Lemma 2 and approximate g by a smooth gε as in part (i) of the current Lemma.
In the proof, the condition fi (0) = 0 for each i = 1, . . . , n − 1 is needed for the
boundary term from the integration by parts with respect to y2 to be zero. �	
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4.2 Proof of Theorem 2

We apply the results of the previous section to study point-to-line last passage perco-
lation. Recall the point to line last passage percolation times G(k, l) are defined by
(4). It is convenient to view the exponential data and last passage percolation times to
be set-up in the following array:

G(1, n) · · · G(1, 2) G(1, 1)
. . .

...
...

G(n − 1, 2) G(n − 1, 1)
G(n, 1)

wherewe canview the vertical direction as time, increasing upwards, and each horizon-
tal layer as describing the positions of a system of particles with an additional particle
added after each time step. These last passage percolation times form a Markov chain
(Gpl(k))1≤k≤n where Gpl(k) = (G(n − k + 1, k), . . . ,G(n − k + 1, 1)). We use
the notation Gpl(k) = (Gpl

1 (k), . . . ,Gpl
k (k)). The recursive property of last passage

percolation implies that Gpl satisfies for all 1 ≤ j ≤ k ≤ n,

Gpl
j (k) = max{Gpl

j−1(k − 1),Gpl
j−1(k)} + en−k+1,k− j+1 (42)

where we recall that ei j has rate αi + αn− j+1 and we use the notation Gpl
0 (k) := 0

for all k = 0, . . . , n. Comparing this with the update rule for the point to point case
given at (23) we see that it is the same up to a shift in the labels of the particles. Thus
we can repeatedly apply the 1-step transition densities of Proposition 5 while adding
in an extra particle at the origin after each step to compute the joint distribution of
the vector (G(1, n), . . . ,G(n, n)). This will show that the distribution of this vector
agrees with the invariant measure of the Brownian system considered in Theorem 4.
This also proves the positivity and normalisation of π̄ and π stated in Lemma 4 which
is required to complete the proof of Theorem 4.

Proof (Theorem 2) We prove the result by induction on n and observe that the case
n = 1 is true. We first prove the case of equal rates: α1 = · · · = αn = 1. Suppose that
the distribution of Gpl(n − 1) is given by the density

π̄(x1, . . . , xn−1) = det( f ( j−1)
i−1 (x j ))

n−1
i, j=1.

where the functions f0, f1, . . . fn−1 are specified in Proposition 4. In view of Eq. (42)
and Proposition 5 the distribution of Gpl(n) has density given by

∫

W+
n−1

det( f ( j−2)
i−2 (x j ))

n
i, j=2det(g

( j−i)(y j − xi ))
n
i, j=1dx2 . . . dxn
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where we re-label the particle positions at time n−1 as x2, . . . , xn and use the notation
x1 := 0. We use Lemma 5 part (ii) to express this as a single determinant

det

(
D( j−1)g(y j ) for i = 1

D( j−1)(Fi−2 ∗ g)(y j ) for i = 2, . . . , n

)n

i, j=1

where D( j) denotes the j-th derivative, and Fi (x) = ∫ x
0 fi (z)dz . The convolutions

can be calculated by using the defining property of the fi , namely that for each i =
1, . . . , n − 1 we have G ∗ fi = fi−1 with fi (0) = f ′

i (0) = 0 or in integrated form for
x > 0,

f ′
i (x) =

∫ x

0
2e−2(x−u) fi−1(u)du =

∫ x

0
g(x − u) fi−1(u)du.

From this it follows that for x > 0,

fi (x) =
∫ x

0
Fi−1(u)g(x − u)du

by differentiation and using the boundary conditions fi (0) = 0 for i = 1, . . . , n − 1
and Fi (0) = 0 for i = 0, . . . , n − 2. Finally note that g(x) = f0(x) for x > 0.
Therefore the distribution of Gpl(n) has density given by

det( f ( j−1)
i−1 (y j ))

n
i, j=1

and this completes the inductive step with equal rates.
In the case of distinct rates we proceed again by induction. The inductive hypothesis

allows us to suppose that the distribution of Gpl(n − 1) is given by the density

π(x2, . . . , xn) = 1
∏

2≤i< j≤n(αi − α j )
e−∑n

i=2 αi xi det(Dα2,...,α j fi (x j ))
n
i, j=2.

Then the density of Gpl(n) is computed using one step transition density for general
jump rates in Proposition 5 to be

∏n
j=1(α1 + α j )

∏
2≤i< j≤n(αi − α j )

∫

W+
n−1

e−∑n
i=2 αi xi det(Dα2,...,α j fi (x j ))

n
i, j=2e

−∑n
i=1(α1+αi )(yi−xi )

×
(
det( f (i, j;α1+α)

1 (y j − xi ))
n
i, j=1dx2 . . . dxn

)
(43)

where f (i, j;α1+α)
1 is defined as in (25) but with parameters α1 + αi for i = 1, . . . , n

and once again we have used the notation x1 := 0. In applying the transition density
from Proposition 5 we need to substitute α1 +αi for αi to take account of the fact that
the random variable e1,n− j+1 which contributes to Gpl

j (n) has rate α1 + α j .
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The product of exponential terms in (43) is given by e−∑n
i=1 αi yi e−∑n

i=1 α1(yi−xi )

where we recall that x1 := 0. We combine this second exponential factor with the
second determinant in the integrand of (43) as

e−∑n
i=1 α1(yi−xi )det( f (i, j;α1+α)

1 (y j−xi ))
n
i, j=1 = det(e−α1(y j−xi ) f (i, j;α1+α)

1 (y j − xi ))
n
i, j=1

= det( f̂ (i, j)
1 (y j−xi ))

n
i, j=1

where f̂ (i, j)
1 is defined as in (25) but with the function f1 replaced by e−α1z1z>0. The

final equality follows from the identities e−α1z Dα1+α1,...,α1+α j f1(z) = Dα1,...,α j (e−α1z

f1(z)) and e−α1z I α1+α1,...,α1+α j f1(z) = I α1,...,α j (e−α1z f1(z)) for all z ∈ R.
Therefore the density of Gpl(n) is given by

∫

W+
n

e−∑n
i=1 αi yi det(Dα2,...,α j fi (x j ))

n
i, j=2det( f̂

(i, j)
1 (y j − xi ))

n
i, j=1dx2 . . . dxn .

This is now in the form to apply Lemma 5 part (ii) to obtain,

e−∑n
i=1 αi yi det

(
Dα2,...,α j e−α1y j for i = 1

Dα2,...,α j
∫ y j
0 fi (x)e−α1(y j−x)dx for i = 2, . . . , n

)n

i, j=1

where D∅ = Id. The first row is given by

e−α1y j = 1

2α1
Dα1 f1(x).

For each i = 2, . . . , n the integrals can be computed explicitly (noting that the αi are
distinct):

∫ y j

0
fi (x)e

−α1(y j−x)dx = (α1 − αi )eαi y j − (α1 + αi )e−αi y j

(α1 − αi )(α1 + αi )
+ Ce−α1y j

= 1

(α1 + αi )(α1 − αi )
Dα1 fi (y j ) + Ce−α1y j

where C = C(α) is some constant in y1 and Ce−α1y can be removed from the i-th
row by row operations. This shows that the density of Gpl(n) is given by

π(x1, . . . , xn) = 1
∏

1≤i< j≤n(αi − α j )
e−∑n

i=1 αi yi det
(
Dα1,...,α j fi (y j )

)n
i, j=1

and so completes the inductive step with distinct (α1, . . . , αn).
For general (α1, . . . , αn) such that αi > 0 for each i = 1, . . . , n we prove the result

by a continuity argument in α. By Proposition 2 we have the following representation
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of the invariant measure:

(Y ∗
1 , . . . ,Y ∗

n )
d=

(

sup
0≤s≤∞

Z1
1(s), . . . , sup

0≤s≤∞
Zn
n (s)

)

and in the proof we also showed that almost surely there exists some random time
v such that all of the suprema on the right hand side have stabilised. Moreover for
any ε > 0 this time can be chosen uniformly over drifts bounded away from the
origin α1 ≥ ε . . . , αn ≥ ε. We can construct a realisation of the Brownian paths
(B(−α1)

1 , . . . , B(−αn)
n ) so that they are continuous in α1, . . . , αn in the supremum norm

on compact time intervals. Therefore since ε is arbitrary we obtain that the right hand
side is almost surely continuous in the variables (α1, . . . , αn) on the set (0,∞)n .
Therefore the distribution of (Y ∗

1 , . . . ,Y ∗
n ) is continuous on the same set, and so is the

distribution of (G(1, n), . . . ,G(1, 1)) (as a finite number of operations of summation
and maxima applied to exponential random variables). This continuity completes the
proof for any αi > 0 for i = 1, . . . , n. �	

Proof (Theorem 1) The Theorem follows by combining Theorem 2 with Proposition 2
part (ii). �	

5 Finite temperature

5.1 Time reversal

The partition function for a 1 + 1 dimensional directed point-to-point polymer in a
Brownian environment (also known as the O’Connell-Yor polymer and studied in
[35,37]) is the random variable,

Zn(t) =
∫

0=s0<···<sn−1<sn=t
e
∑n

i=1 B
(−αn−i+1)

i (si )−B
(−αn−i+1)

i (si−1)ds1 . . . dsn−1.

We define a second random variable with an extra integral over s0 and with the drifts
reordered,

Yn(t) =
∫

0<s0<···<sn−1<sn=t
e
∑n

i=1 B
(−αi )
i (si )−B

(−αi )
i (si−1)ds0 . . . dsn−1. (44)

This is the partition function for a 1+ 1 dimensional directed polymer in a Brownian
environment with a flat initial condition. A change of variables shows that

Yn(t) =
∫

0=u0<···<un<t
e
∑n

i=1 B
(−αi )
i (t−un−i )−B

(−αi )
i (t−un−i+1)du1 . . . dun
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by letting t − ui = sn−i . By time reversal of Brownian motions, (B(−αn−i+1)

n−i+1 (t) −
B(−αn−i+1)

n−i+1 (t − s)s≥0
d= (B(−αn−i+1)

i (s))s≥0, we obtain,

Yn(t)
d=

∫

0=u0<···<un<t
e
∑n

i=1 B
(−αi )
n−i+1(un−i+1)−B

(−αi )
n−i+1(un−i )du1 . . . dun =

∫ t

0
Zn(s)ds

(45)

where the final equality follows by changing the index of summation from i to n−i+1.
As t → ∞, the right hand side converges to

∫ ∞
0 Zn(s)ds and we now check that

this is an almost surely finite random variable. We consider the drifts and Brownian
motions separately and bound the contribution from the Brownian motions. For each
j = 1, . . . , n let δ j > 0 and observe that there exists random constants K1, . . . , Kn

such that B1(s) ≤ K1 + δ1s for all s > 0 and sup0≤s≤t B j (t) − Bj (s) ≤ K j + δ j t for
t ≥ 0 and each j = 2, . . . , n. By choosing δ1 + · · · + δn < min1≤ j≤n α j this shows
that the negative drifts dominate and the integral is almost surely finite. As a result the
left hand side of (45) converges in distribution to a random variable which we denote
Y ∗
n which satisfies

Y ∗
n

d=
∫ ∞

0
Zn(s)ds. (46)

5.2 Exponentially reflecting Brownianmotions with a wall

We extend (44) to a definition of a vector (Y1, . . . ,Yn) as a functional of n independent
Brownian motions with drifts (B(−α1)

1 , . . . , B(−αn)
n ) according to

Yk(t) =
∫

0<s0<···<sk−1<sk=t
e
∑k

i=1 B
(−αi )
i (si )−B

(−αi )
i (si−1)ds0 . . . dsk−1 for k = 1, . . . , n.

The system (Y1, . . . ,Yn) can be described by a system of SDEs. Let X j = log
( 1
2Y j

)

and observe that by Itô’s formula,

dX1(t) = dB(−α1)
1 (t) + (e−X1(t)/2)dt (47)

dX j (t) = dB
(−α j )

j (t) + e−(X j (t)−X j−1(t))dt for j = 2, . . . , n. (48)

Wewill call X a system of exponentially reflectingBrownianmotionswith a (soft) wall
at the origin.We observe that (Y1, . . . ,Yn) starts with each co-ordinate at zero and that
each co-ordinate is strictly positive for all strictly positive times. This constructs an
entrance law for the process (X1, . . . , Xn) from negative infinity.Wewill be interested
in the invariant measure of this system which is related to log partition functions of
the log-gamma polymer (see Theorem 4).

To prove this we embed exponentially reflecting Brownian motions with a wall
in a larger system of interacting Brownian motions indexed by a triangular array
(Xi j (t) : i + j ≤ n+1, t ≥ 0)with a unique invariant measure given by a whole field
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Fig. 1 The interactions in the system {Xi j : i + j ≤ n + 1}

of log partition functions for the log-gamma polymer. The Brownian system that we
consider (see Eq. (49) for a formal definition) involves particles evolving according to
independent Brownian motions with a drift term which depends on the neighbouring
particles. The interactions in the drift terms are one-sided and drawn as → or � in
Fig. 1 where the particle at the point of the arrow has a drift depending on the particle
(or wall) at the base of the arrow. There are two types of interaction:

(i) → is an exponential drift depending on the difference of the two particles. This
corresponds in a zero-temperature limit to particles which are instantaneously
reflected in order to maintain an interlacing.

(ii) � is a more unusual interaction and corresponds in a zero temperature limit to
a weighted indicator function applied to the difference of the two particles. The
effect of introducing this interaction is that the process Xi j when started from
its invariant measure and run in reverse time is given by the process where the
direction of each interaction is reversed (see Proposition 6).

More formally we consider a diffusion process with values in R
n(n+1)/2 whose

generator is an operator L acting on functions f ∈ Cn(n+1)/2
c (R) according to,

L f =
∑

{(i, j):i+ j≤n+1}

1

2

d2 f

dx2i j
+ bi j (x)

d f

dxi j
(49)

where x = {xi j : i + j ≤ n + 1} and

bi j (x) = −αn− j+1 + (αi−1 + αn− j+1)exi j

exi−1, j+1 + exi j
1{i>1} + e−(xi j−xi, j+1)1{i+ j<n+1}

−e−(xi−1, j−xi j )1{i>1} + 1

2
e−xi j 1{i+ j=n+1}.

We observe that L restricted to functions of (x1n, . . . , x11) alone is the generator
for a system of exponentially reflecting Brownian motions with a wall, defined in
(47, 48).
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For foundational results on such a systemwe refer to Varadhan [43] (see pages 197,
254, 259-260) which can be summarised in the following lemma.

Lemma 6 Let L = 1
2Δ f + b · ∇ where b ∈ C∞(Rd ,Rd). Suppose there exists a

smooth function u : Rd → (0,∞) such that u(x) → ∞ as |x | → ∞ and Lu ≤ cu
for some c > 0. Then there exists a unique process with generator L and the process
does not explode. Suppose furthermore there exists a smooth function φ such that
φ ≥ 0,

∫
Rd φ = 1 and L∗φ = 0 where L∗ f = 1

2Δ f − ∇ · (b f ), then the measure
with density φ is the unique invariant measure for the process with generator L.

Lemma 7 Let L be the generator defined in (49). There exists a smooth function
u : Rd → (0,∞) such that u(x) → ∞ as |x | → ∞ and L u ≤ cu for some c > 0.

Therefore the conditions of Lemma 6 are satisfied and there exists a unique process
with generator L given by (49) which does not explode.

Proof We define the function

u(x) =
∑

{(i, j):i+ j≤n+1}
exi j + e−xi j

which satisfies u(x) → ∞ as |x| → ∞. The diffusion terms and terms involving a
bounded drift can all be easily bounded by a constant times u. We check this also
holds for the terms involving unbounded drifts. The terms involving a wall satisfy,

e−xi,n−i+1
du

dxi,n−i+1
= e−xi,n−i+1(exi,n−i+1 − e−xi,n−i+1) ≤ 1.

The terms involving interlacing interactions between particles satisfy

e−(xi j−xi, j+1)
du

xi j
= e−(xi j−xi, j+1)(exi j − e−xi j ) ≤ exi, j+1 ≤ u(x)

and

−e−(xi−1, j−xi j ) du

dxi j
= −e−(xi−1, j−xi j )(exi j − e−xi j ) ≤ e−xi−1, j ≤ u(x).

We sum over all interactions to prove that u has the required properties. �	

5.3 The log-gamma polymer

The invariant measure of both the exponentially reflecting Brownian motions with a
wall defined in (47) and (48) and the X array defined in (49) can be described by the
log-gamma polymer. The log-gamma polymer originated in the work of Seppäläinen
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[42] and is defined as follows. Let {Wi j : (i, j) ∈ N
2, i + j ≤ n + 1} be a family of

independent inverse gamma random variables with densities,

P(Wi j ∈ dwi j ) = 1

Γ (γi, j )
w

−γi j
i j e−1/wi j

dwi j

wi j
for wi j > 0 (50)

and parameters γi j = αi + αn− j+1. Let Πflat
n (k, l) denote the set of all directed (up

and right) paths from the point (k, l) to the line {(i, j) : i + j = n + 1} and define the
partition functions and log partition functions:

ζkl =
∑

π∈Πflat
n (k,l)

∏

(i, j)∈π

Wi j , ξkl = log ζkl . (51)

These are the partition functions for a (1 + 1) dimensional directed polymer in a
random environment given by {Wi j : (i, j) ∈ N

2, i + j ≤ n + 1}.
Lemma 8 The distribution of ξi j given ξi+1, j = xi+1, j and ξi, j+1 = xi, j+1 has a
density with respect to Lebesgue measure proportional to

exp
(−(αi+αn− j+1)xi j−exi, j+1−xi j −exi+1, j−xi j +(αi+αn− j+1) log(e

xi, j+1+exi+1, j )
)
.

The distribution of the field (ξi, j : i+ j ≤ n+1) has a density with respect to Lebesgue
measure on R

n(n+1)/2 proportional to

π(x) =
∏

i+ j<n+1

exp

(
− (αi + αn− j+1)xi j − exi, j+1−xi j − exi+1, j−xi j

+(αi + αn− j+1) log(e
xi, j+1 + exi+1, j )

)
·

n∏

i=1

exp
(−2αi xi,n−i+1 − e−xi,n−i+1

)
.

Proof The partition functions satisfy a local update rule ζi j = (ζi, j+1 + ζi+1, j )Wi j

and equivalently ξi j = logWi j + log(eξi, j+1 +eξi+1, j ). This combined with the explicit
density for the inverse gamma density (50) proves the first statement. The second part
then follows by an iterative application of the first part. �	

5.4 The invariant measure of exponentially reflecting Brownianmotions with a
wall and the log-gamma polymer

Theorem 4 Let (Xi j (t) : i + j ≤ n + 1, t ≥ 0) be the diffusion with generator (49).
This has a unique invariant measure which we denote (X∗

i j : i + j ≤ n + 1) and
satisfies

(X∗
i j : i + j ≤ n + 1)

d= (ξi j : i + j ≤ n + 1).
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A consequence is that (ξ1n, . . . , ξ11) is distributed as the unique invariant measure of
the system of exponentially reflecting Brownian motions with a wall, defined in (47,
48).

A key role in the proof will be played by inductive decompositions of the generator
for the Brownian system in (49) and the explicit density for the log-gamma polymer
in Lemma 8. Let S ⊂ N

2 ∩ {(i, j) : i + j ≤ n + 1} have a boundary given by a
down-right path in the orientation of Fig. 2 (the boundary is denoted by the dotted
line)—explicitly we require that if (i, j) ∈ S then (i + k, j + l) ∈ S for all k, l ≥ 0
such that i + j + k + l ≤ n + 1. We can define the log-gamma polymer on S and
we denote the density of log partition functions on S by πS(x). Lemma 8 proves that
πS(x) is proportional to exp(−VS(x))

∏
(i, j)∈S dxi j with

VS(x) =
∑

(i, j)∈S\Dn

(
(αi + αn− j+1)xi j + exi, j+1−xi j + exi+1, j−xi j

−(αi + αn− j+1) log(e
xi, j+1 + exi+1, j )

)
+

n∑

i=1

(2αi xi,n−i+1 + e−xi,n−i+1)

where Dn = {(i, j) ∈ N
2 : i + j = n+1}. We can build the density of the log-gamma

polymer inductively by adding an extra vertex (i, j) to S and assuming that both S
and S∪ (i, j) have down-right boundaries in the orientation of Fig. 2. We observe that
VS∪{i, j} = VS + V ∗ where

V ∗ = (αi + αn− j+1)xi j + e−(xi j−xi+1, j ) + e−(xi j−xi, j+1)

−(αi + αn− j+1) log(e
xi, j+1 + exi+1, j ). (52)

We now consider an inductive decomposition of the generator in (49) which is
related to the abovedecompositionof the log-gammapolymer.Weconsider aBrownian
systemwith particles indexed by S which (i) agrees with the process with generatorL
when S = {(i, j) : i + j ≤ n + 1} and (ii) has an invariant measure with density πS .
The process can be represented by the interactions present in the diagram on the left
hand side of Fig. 2. We consider a diffusion with values indexed by S with generator
LS , acting on functions f ∈ Cn(n+1)/2

c (R) as follows,

LS f =
∑

(i, j)∈S\Dn

(
1

2

d2 f

dx2i j
− αn− j+1

d f

dxi j
+ e−(xi j−xi, j+1)

d

dxi j
− e−(xi j−xi+1, j )

d

dxi+1, j

+ (αi + αn− j+1)e
xi+1, j

exi+1, j + exi, j+1

d

dxi+1, j

)
+

∑

(i, j)∈S∩Dn

1

2

d2 f

dx2i j

−αn− j+1
d f

dxi j
+ 1

2
e−xi j d f

dxi j
. (53)
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Fig. 2 Updating LS toLS∪{(i, j)}

For the same class of sets S we consider a second diffusion with generatorAS , acting
on functions f ∈ Cn(n+1)/2

c (R) as follows,

AS f =
∑

(i, j)∈S\Dn

(
1

2

d2 f

dx2i j
− αi

d f

dxi j
+ e−(xi j−xi+1, j )

d

dxi j
− e−(xi j−xi, j+1)

d

dxi, j+1

+ (αi+αn− j+1)exi, j+1

exi+1, j + exi, j+1

d

dxi, j+1

)
+

∑

(i, j)∈S∩Dn

1

2

d2 f

dx2i j
−αi

d f

dxi j
+ 1

2
e−xi j d f

dxi j
.

(54)

Proposition 6 and Lemma 7 show that there exists unique processes with generators
LS and AS and that these processes do not explode. The motivation for considering
AS is that the process with this generator will be the time reversal of the process with
generator LS when the process is run in its invariant measure πS . The process with
operator AS can be represented by a diagram in the same way asLS in Fig. 1, where
for the AS process the direction of every interaction is reversed.

We add in a vertex (i, j) as described in Fig. 2, where we assume that both S and
S ∪ (i, j) have boundaries with down-right paths in the orientation of Fig. 2. Then,

LS∪{(i, j)} = LS + 1

2

d2

d2xi j
− αn− j+1

d

dxi j
+ e−(xi j−xi, j+1)

d

dxi j

−e−(xi j−xi+1, j )
d

dxi+1, j
+ (αi + αn− j+1)exi+1, j

exi+1, j + exi, j+1

d

dxi+1, j
(55)

and

AS∪{i, j} = AS + 1

2

d2

d2xi j
− αi

d

dxi j
+ e−(xi j−xi+1, j )

d

dxi j

−e−(xi j−xi, j+1)
d

dxi, j+1
+ (αi + αn− j+1)exi, j+1

exi+1, j + exi, j+1

d

dxi, j+1
. (56)
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Lemma 9 For any subset S with a down-right boundary in the orientation of Fig. 2,
the diffusion with generator 1

2 (LS + AS) is a gradient diffusion satisfying

1

2
(LS + AS) = 1

2
ΔS − 1

2
∇VS · ∇S,

where ΔS = ∑
i j∈S d2

dx2i j
and ∇S = ∑

i j∈S d
dxi j

. In particular, the process with gener-

ator 1
2 (LS +AS) has invariant measure given by πS and is reversible when run in its

invariant measure.

Proof We use the inductive decompositions of L ,A and V to check the Lemma
inductively. For the base case we let S = {(i, j) : i + j = n + 1} and observe that
in this case LS = AS and both are the generators for n independent exponentially
reflecting Brownian motions with a wall. Then the Lemma follows from:

−1

2

dVS

dxi,n−i+1
= −αi + 1

2
e−(xi,n−i+1).

For the inductive step we consider a set S with a down-right boundary and add an
extra vertex (i, j) with the property that S ∪ (i, j) also has a down-right boundary.
We show that

d2

dx2i j
− ∇V ∗ · ∇S∪(i, j) = LS∪{i, j} − LS + AS∪{i, j} − AS, (57)

by calculating the non-zero co-ordinates of ∇V ∗:

dV ∗

dxi, j+1
= e−(xi j−xi, j+1) − (αi + αn− j+1)exi, j+1

exi, j+1 + exi+1, j
,

dV ∗

dxi+1, j
= e−(xi j−xi+1, j ) − (αi + αn− j+1)exi+1, j

exi, j+1 + exi+1, j

dV ∗

dxi j
= αi + αn− j+1 − e−(xi j−xi, j+1) − e−(xi j−xi+1, j )

and observing that this gives equalitywith the right hand side of (57) by using Eqs. (55)
and (56). �	
Lemma 10 Let S be a subset S with a down-right boundary in the orientation of Fig. 2
and let dS denote the difference in drifts between LS and AS. Then

(i) The vector field dS is divergence-free,

∇ · dS = 0

(ii) The vector fields dS and ∇VS are orthogonal,

(dS,∇VS) = 0
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Proof We prove both parts inductively. For the base case we let S = {(i, j) : i + j =
n + 1} and observe that ∇ · dS = 0 and (dS,∇VS) = 0 both hold because dS = 0. For
any set S with a down-right boundary, we add in a new vertex (i, j) with the property
that S ∪ (i, j) also has a down-right boundary. For part (i), the difference of drifts
inherits an inductive decomposition fromLS and AS :

dS∪{(i, j)} = dS + d∗

where dS is extended to be RS∪{i, j} valued by setting dS(i, j) = 0. Every component
of d∗ is zero except for the following:

d∗(i, j + 1) = e−(xi j−xi, j+1) − (αi + αn− j+1)exi, j+1

exi, j+1 + exi+1, j
(58)

d∗(i + 1, j) = −e−(xi j−xi+1, j ) + (αi + αn− j+1)exi+1, j

exi, j+1 + exi+1, j
(59)

d∗(i, j) = αi − αn− j+1 + e−(xi j−xi, j+1) − e−(xi j−xi+1, j ). (60)

We observe that

∇ · d∗ = 0

by differentiating (58–60) to obtain the following,

d

dxi, j+1
d∗ = e−(xi j−xi, j+1) + (αi + αn− j+1)e2xi, j+1

(exi+1, j + exi, j+1)2
− (αi + αn− j+1)exi, j+1

exi+1, j + exi, j+1

d

dxi+1, j
d∗ = −e−(xi j−xi+1, j ) − (αi + αn− j+1)e2xi+1, j

(exi+1, j + exi, j+1)2
+ (αi + αn− j+1)exi+1, j

exi+1, j + exi, j+1

d

dxi j
d∗ = −e−(xi j−xi, j+1) + e−(xi j−xi+1, j ),

and observing that the sum equals zero. Combining this with the inductive hypothesis,
that ∇ · dS = 0, shows that ∇ · dS∪(i, j) = 0.

For part (ii), we assume the inductive hypothesis, that (dS,∇VS) = 0, and observe
that this means (dS∪(i, j),∇VS∪(i, j)) = 0 is equivalent to the following identity:

(d∗,∇VS) + (dS,∇V ∗) + (d∗,∇V ∗) = 0. (61)

We observe that d∗ and ∇V ∗ are only non-zero in the co-ordinates (i, j + 1), (i +
1, j) and (i, j) so we can restrict to considering ∇VS and dS in these coordinates.

We observe that by definition dS(i, j) = 0 and

dS(i, j + 1) = αi−αn− j + e−(xi, j+1−xi, j+2)1{i+ j<n} − e−(xi, j+1−xi+1, j+1)1{i+ j<n}

+ (αn− j + αi−1)exi, j+1

exi, j+1 + exi−1, j+2
1{(i−1, j+1)∈S}

−e−(xi−1, j+1−xi, j+1)1{(i−1, j+1)∈S} (62)
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dS(i + 1, j) = αi+1 − αn− j+1 + e−(xi+1, j−xi+1, j+1)1{i+ j<n} − e−(xi+1, j−xi+2, j )1{i+ j<n}

− (αn− j+2 + αi+1)exi+1, j

(exi+1, j + exi+2, j−1)
1{(i+1, j−1)∈S}

+e−(xi+1, j−1−xi+1, j )1{(i+1, j−1)∈S}. (63)

The indicator functions correspond to the effect of � and ↓ or → interactions which
may ormay not be present depending on the shape of S.We also note that for i+ j = n,
then we have αi − αn− j = αi+1 − αn− j+1 = 0.

For i + j < n, the terms in VS which involve any of xi, j+1, xi+1, j or xi j are given
via the following decompositions:

VS =(αi + αn− j )xi j+1 + e−(xi j+1−xi j+2) + e−(xi j+1−xi+1 j+1) + (αi+1 + αn− j+1)xi+1 j

+ e−(xi+1 j−xi+1 j+1) + e−(xi+1 j−xi+2 j ) + e−(xi−1 j+1−xi j+1)1{(i−1, j+1)∈S}
+ e−(xi+1 j−1−xi+1 j )1{(i+1, j−1)∈S} − (αi−1 + αn− j )

log(exi j+1 + exi−1, j+2)1{(i−1, j+1)∈S}
− (αi+1 + αn− j+2) log(e

xi+1 j + exi+2, j−1)1{(i+1, j−1)∈S} + ṼS

(64)

where ṼS does not depend on any of: xi j+1, xi+1 j , or xi j . For i + j = n,

VS =2αi xi, j+1 + e−xi, j+1 + 2αi+1xi+1, j + e−xi+1, j + e−(xi−1 j+1−xi j+1)1{(i−1, j+1)∈S}
+ e−(xi+1 j−1−xi+1 j )1{(i+1, j−1)∈S} − (αi−1 + αn− j )

log(exi j+1 + exi−1, j+2)1{(i−1, j+1)∈S}
− (αi+1 + αn− j+2) log(e

xi+1 j + exi+2, j−1)1{(i+1, j−1)∈S} + ṼS

(65)

where ṼS does not depend on any of: xi j+1, xi+1 j , or xi j .
Therefore we will check (61) by using Eqs. (52, 58–60, 62–63, 64–65) in the

following. We will first observe that the terms involving indicator functions vanish.
The terms in ∇VS(i, j + 1) involving 1{(i−1, j+1)∈S} are equal to

(
e−(xi−1 j+1−xi j+1) − (αi−1 + αn− j )exi j+1

exi j+1 + exi−1 j+2

)
1{(i−1, j+1)∈S}.

This is the negative of the terms in dS(i, j +1) involving 1{(i−1, j+1)∈S} from (62). We
have shown above that ∇V ∗(i, j + 1) = d∗(i, j + 1). Therefore the terms involving
indicator functions 1{(i−1, j+1)∈S} cancel in the sum (d∗,∇VS)+(dS,∇V ∗). The terms
involving 1{(i+1, j−1)∈S} also cancel in the sum (d∗,∇VS) + (dS,∇V ∗). In this case,
∇V ∗(i+1, j) = −d∗(i+1, j) and the terms involving 1{(i+1, j−1)∈S} in∇VS(i+1, j)
and dS(i + 1, j) are equal.

Therefore it is sufficient to show that Eq. (61) holds in the case when neither
(i − 1, j + 1) nor (i + 1, j − 1) are in S. This is a useful simplification and we
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calculate in this case for i + j < n,

(d∗,∇VS) =
(
e−(xi j−xi j+1) − (αi + αn− j+1)exi j+1

exi j+1 + exi+1 j

)

(
αi + αn− j − e−(xi j+1−xi j+2) − e−(xi j+1−xi+1 j+1)

)

+
(

− e−(xi j−xi+1 j ) + (αi + αn− j+1)exi+1 j

exi j+1 + exi+1 j

)

(
αi+1 + αn− j+1 − e−(xi+1 j−xi+2 j ) − e−(xi+1 j−xi+1 j+1)

)

(dS,∇V ∗) =
(

αi − αn− j + e−(xi j+1−xi j+2) − e−(xi j+1−xi+1 j+1)

)

(
e−(xi j−xi j+1) − (αi + αn− j+1)exi j+1

exi j+1 + exi+1 j

)

+
(

αi+1 − αn− j+1 + e−(xi+1 j−xi+1 j+1) − e−(xi+1 j−xi+2 j )

)

(
e−(xi j−xi+1 j ) − (αi + αn− j+1)exi+1 j

exi j+1 + exi+1 j

)

(d∗,∇V ∗) =
(
e−(xi j−xi j+1) − (αi + αn− j+1)exi j+1

exi j+1 + exi+1 j

)

(
e−(xi j−xi j+1) − (αi + αn− j+1)exi j+1

exi+1 j + exi j+1

)

+
(

− e−(xi j−xi+1 j ) + (αi + αn− j+1)exi+1 j

exi+1 j + exi j+1

)

(
e−(xi j−xi+1 j ) − (αi + αn− j+1)exi+1 j

exi+1 j + exi j+1

)

+
(

αi − αn− j+1 + e−(xi j−xi j+1) − e−(xi j−xi+1 j )

)

(
αi + αn− j+1 − e−(xi j−xi j+1) − e−(xi j−xi+1 j )

)
.

The following (non-obvious) cancellation then proves that Eq. (61) holds. For i + j <

n, it is easy to see that all terms involving e−(xi j+1−xi j+2) cancel and this similarly
holds for the terms e−(xi+1 j−xi+2 j ). It is useful to consider all terms that involve either
e−(xi j+1−xi+1 j+1) or e−(xi+1 j−xi+1 j+1) together and all such terms cancel. In the case
i + j = n, none of these terms are present, however, there is an extra −exi j+1 − exi+1 j

in∇VS which cancels in (d∗,∇VS). The remaining calculation for the cases i + j < n
and i + j = n is the same.

Once these cancellations have been performed the left hand side of (61) is a function
of xi j+1, xi+1 j and xi j alone, and has a much simpler form. In particular, after this
cancellation (d∗,∇VS) + (dS,∇V ∗) equals
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2αi

(
e−(xi j−xi j+1) − (αi + αn− j+1)exi j+1

exi j+1 + exi+1 j

)

+2αn− j+1

(
−e−(xi j−xi+1 j ) + (αi + αn− j+1)exi+1 j

exi j+1 + exi+1 j

)
.

We can observe that (d∗,∇V ∗) simplifies to equal the negative of this: (i) the terms
in (d∗,∇V ∗) that do not involve any α parameters cancel; (ii) the terms involving a
single α parameter are equal to

−2(αi + αn− j+1)e2xi j+1−xi j

exi+1 j + exi j+1

+2(αi + αn− j+1)e2xi+1 j−xi j

exi+1 j + exi j+1
+ 2αn− j+1e

−(xi j−xi j+1) − 2αi e
−(xi j−xi+1 j )

= −2αi e
−(xi j−xi j+1) + 2αn− j+1e

−(xi j−xi j+1)

and (iii) the terms involving a product of α parameters are equal to

(αi + αn− j+1)
2e2xi j+1

(exi j+1 + exi+1 j )2
− (αi + αn− j+1)

2e2xi+1 j

(exi j+1 + exi+1 j )2
+ α2

i − α2
n− j+1

= 2αi (αi + αn− j+1)exi j+1 − 2αn− j+1(αi + αn− j+1)exi+1 j

exi+1 j + exi j+1
.

Therefore (61) holds and part (ii) of the Lemma follows by induction. �	
Proof (Theorem 4) Let S be a subset with a boundary given by a down-right path in
the orientation of Fig. 2. Lemma 9 shows that 1

2 (L
∗
S + A ∗

S )πS = 0 and Lemma 10
shows that

1

2
(L ∗

S − A ∗
S )πS = 1

2
(∇ · dS + (dS,∇VS))πS = 0.

As a result L∗
SπS = 0 and Lemma 6 proves that πS is the invariant measure for the

process with generatorLS . In particular, the case S = {(i, j) : i + j ≤ n + 1} proves
the Theorem. �	
Proof (Theorem 3) A consequence of Theorem 4 is that

∫ ∞

0
Zn(s)

d= Y ∗
n

d= 2eX
∗
11

d= 2ζ(1, 1)

where Y ∗
n is equal in distribution to

∫ ∞
0 Zn(s) by the time reversal at the start of this

section and by definition ξ(1, 1) = log ζ(1, 1). The definition of Zn has α1, . . . , αn

in a reversed order to the left hand side of Theorem 3, however, the distribution of
ζ(1, 1) is invariant under reversing the order of the parameters — this follows from
the deterministic fact that ζ(1, 1) takes the same value when constructed from the data
{Wi j : i + j ≤ n + 1} and the reflected data {Wji : i + j ≤ n + 1} (in fact the
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distribution of ζ(1, 1) is left invariant under any permutation of the α parameters as a
consequence of the same invariance for the process Zn , proven in [37]). �	

5.5 Time reversals and intertwinings

The generator L in (49) depends on a sequence of parameters (α1, . . . , αn) and we
use the notation (X (α1,...,αn)

i j (t))t∈R,i+ j≤n+1 for the process with this generator when
we want to make the dependence on the α parameters explicit.

Proposition 6 Let (X (α1,...,αn)
i j (t) : i + j ≤ n + 1, t ∈ R) denote the diffusion process

with generator (49) in stationarity. This process has the following properties:

(i) Time symmetry,

(X (α1,...,αn)
i j (t))t∈R,i+ j≤n+1

d= (X (αn ,...,α1)
j i (−t))t∈R,i+ j≤n+1. (66)

(ii) The marginal distribution of any row (Xi,n−i+1, . . . , Xi,1) run forwards in
time is a system of exponentially reflecting Brownian motions with a wall at
the origin with drift vector (−αi , . . . ,−αn). The marginal distribution of any
column (Xn− j+1, j , . . . , X1, j ) run backwards in time is a system of exponen-
tially reflecting Brownian motions with a wall at the origin and drift vector
(−αn− j+1, . . . ,−α1).

In particular, for equal drifts, part (i) proves that the top particle has the same
distribution when run started from its invariant measure either forward or backwards
in time: (X11(t))t∈R

d= (X11(−t))t∈R. This fact does not strike us a priori because the
SDEs (47, 48) do not appear to define a reversible diffusion unless n = 1.

Proof The reversed time dynamics of the process started in its invariant measure is
a Markov process with generator L̂ given by the Doob h-transform of the adjoint
generator with respect to its invariant measure, in particular, L̂ f = 1

π
L ∗(π f ). Let

b be the drift of the process with generator L and a the drift of the process with
generator A (where we define A = AS when S = {(i, j) : i + j ≤ n + 1}). The
Doob h-transform simplifies due to the fact that L ∗π = 0 and we obtain

L̂ = 1

2
Δ + (−b − ∇V ) · ∇ = 1

2
Δ + a · ∇

where we use that −∇V = a + b from Lemma 9. Therefore the time reversal of the
process with generatorL is the process with generatorA . The process with generator
A is represented by Fig. 2 where the direction of every interactions is reversed. This
is equivalent to swapping the i j-th particle with the j i-th particle and reversing the
order of the parameters. This proves part (i).

We first prove part (ii) for the columns of the X array. When run forwards in
time the X array has a nested structure in which particles do not depend on parti-
cles to the right of them. This means that when considering a particular column, say
(Xn−k+1k, . . . , X1k), we can restrict to a subarray (Xi j : j ≥ k, i + j ≤ n+1) where
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this is the rightmost column. The top row of this subarray run forwards in time is
a system of exponentially reflecting Brownian motions with a wall with drift vector
(−α1, . . . ,−αn−k+1). Combining this with the time reversal in part (i) proves that
the column (Xn−k+1k, . . . , X1k) run backwards in time is a system of exponentially
reflecting Brownian motions with a wall with drift vector (−αn−k+1, . . . ,−α1). This
proves the result for every column in the X array. The result for rows then follows
from the time reversal in part (i). �	
This easily extends to show that the time reversal of the process with generator LS

when run in its invariant measure πS is the process with generator AS for any subset
S with a down-right boundary.

Let Qn
t denote the transition semigroup for n exponentially reflecting Brownian

motions with a wall. Considering the process (Xi j : i + j ≤ n + 1) run in stationarity
leads to an intertwining between Qn−1

t and Qn
t . The intertwining kernel is given by

the transition kernel of a Markov chain constructed from the point-to-line log-gamma
polymer as follows. The log partition functions form aMarkov chain (¸k)1≤k≤n where
¸k = (ξ(k, n − k + 1), . . . , ξ(k, 1)). The Markov property for this chain follows from
the local update rule for partition functions ζi j = (ζi j+1 + ζi+1 j )Wi j and equivalently
for the log partition functions ξi j = logWi j + log(eξi j+1 + eξi+1 j ). We let Pk−1→k

denote the transition kernel for this chain.
We start the process (Xi j )t∈R,i+ j≤n+1 in stationarity and consider two different

ways of calculating the probability density function of the vector

P(Xn−1,2(0) ∈ dxn−1,2, . . . , X1,2(0) ∈ dx12, Xn,1(t) ∈ dzn1, . . . , X1,1(t) ∈ dz11).

(67)

Let x2 = (xn−1,2, . . . , x12) and let z1 = (zn1, . . . , z11).

(i) Calculate (67) by integrating over Xn,1(0), . . . , X1,1(0) as an intermediate step.
When run forwards in time, the evolution of the top row of the X array is inde-
pendent of the rest of the array due to the direction of interactions. Therefore
(Xn−1,2(0), . . . , X1,2(0) and Xn,1(t), . . . , X1,1(t)) are conditionally independent
given Xn,1(0), . . . , X1,1(0). Letting x1 = (xn1, . . . , x11) the probability density
(67) equals

∫
Pn−1→n(x2, x1)Qn

t (x1, z1)dx1 (68)

(ii) Calculate (67) by integrating over Xn−1,2(t), . . . , X1,2(t) as an intermediate
step. When run backwards in time, the evolution of the second row is not
affected by the top row of the X array. Therefore (Xn−1,2(0), . . . , X1,2(0) and
Xn,1(t), . . . , X1,1(t)) are conditionally independent given Xn−1,2(t), . . . , X1,2(t).
Letting z2 = (zn−1,2, . . . , z12) the probability density (67) equals

∫
Qn−1

t (x2, z2)Pn−1→n(z2, z1)dz2 (69)
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The equality of (68) and (69) proves an intertwining between Qn−1
t and Qn

t with
intertwining kernel Pn−1→n . This can be expressed in operator notation as

Qn−1
t Pn−1→n = Pn−1→nQ

n
t .

5.6 Zero-temperature limits

We can take a zero temperature limit of the construction we have considered above.
In the limit, particles follow the coupled system of SDEs: for j = 1, . . . , n,

dX1 j (t) = dB1 j (t) − αn− j+1dt + dL1
1 j (t)

and for i > 1 and i + j ≤ n + 1,

dXi j (t) = dBi j (t) − αn− j+11{Xi j<Xi−1, j+1}dt
+αi−11{Xi j>Xi−1, j+1}dt + dL1

i j (t) − dL2
i j (t)

where (i) L1
i j is the local time process at zero of Xi j − Xi, j−1 for i + j < n + 1, (ii)

L1
i j is the local time process at zero of Xi j for i + j = n, and (iii) L2

i j is the local time
process at zero of Xi j − Xi−1, j for i ≥ 2. This process can be represented by Fig. 1
where the interaction → is now reflection and the interaction � is now a weighted
indicator function. The zero-temperature limit of the field of log partition functions is
the field of point-to-line last passage percolation times {G(i, j) : i + j ≤ n + 1} (see
[5,6]) and it is natural to expect that {G(i, j) : i + j ≤ n+ 1} is the invariant measure
of {Xi j : i + j ≤ n + 1}. However, we do not prove this because the discontinuities
in the drifts means that the conditions for Lemma 6 are no longer satisfied. Instead,
we argue that a second proof of Theorem 2 can be provided as a zero temperature
limit of Theorem 4. We can introduce an extra inverse temperature parameter β into
the definitions of the processes X ,Y and Z given in this section and the results of this
section continue to hold. In particular, Theorem 4 and the time reversal in Sect. 5.1
establish that

1

β
log

∫

0=s0<s1...<sn<∞
eβ

∑n
i=1 B

(−αi )
i (si )−B

(−αi )
i (si−1)ds1 . . . dsn

d= 1

β
log 2

∑

π∈Πflat
n

∏

(i, j)∈π

W (β)
i j

where {W (β)
i j : i + j ≤ n + 1} are random variables with inverse gamma distributions

and rates β−1(αi + αn− j+1). As β → ∞, the left hand side converges almost surely
by Laplace’s Theorem and the right hand side converges by [5,6] to give,

sup
0=s0≤···≤sn<∞

n∑

i=1

B(−αi )
i (si ) − B(−αi )

i (si−1)
d= max

π∈Πflat
n

∑

(i, j)∈π

Wi j .
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The time reversal in Proposition 2 allows the distribution of the left hand side to be
identified as Y ∗

n . This argument is easily extended to prove Theorem 2 in its entirety.

6 Further randommatrix interpretations

We now discuss an alternative version of Theorem 1 that connects two families of
random matrices. Let X be a symmetric complex matrix of size n×n where for i < j
the entries Xi j are independent complex Gaussian with mean zero and variance given
by 1

2(αi+α j )
and the entries along the diagonal Xii are independent complex Gaussian

with mean zero and variance 1
2αi

. We call the matrix X∗X a perturbed symmetric LUE
matrix. In the case when the αi are distinct, we will show the eigenvalues of X∗X have
a density with respect to Lebesgue measure given by

f (λ1, . . . , λn) =
∏n

i=1 αi
∏

i< j (αi + α j )
∏

i< j (αi − α j )
det(e−αiλ j )ni, j=1. (70)

When some of the αi coincide this can be evaluated as a limit and in the case when all
αi are equal it agrees with the eigenvalue density of LOE. Our interest in this random
matrix ensemble arises from the connection of its eigenvalue density to point-to-line
last passage percolation. In the case when the parameters are equal, a similar case
appears in Theorem 7.7 of [3] but with a different variance along the diagonal for the
random matrix model and different rates along the diagonal for the exponential data
– that the variances and rates along the diagonal can be tuned is a property of RSK
(for example, see Chapter 10 of [22]) and that the sum of diagonal entries is the trace
of a matrix. Point-to-point last passage percolation with inhomogeneous rates for the
exponential data was related to random matrices with inhomogeneous variances in
[12,19].

To calculate the eigenvalue density we compute the Jacobian (see Chapter 1 of [22]
for related examples),

dX ∝
∏

j<k

|λk − λ j |
∏

j

dλ j dΩ

of the transformation from matrix elements X to the eigenvalues λ and angular
variables Ω . The choice of parameters ensures the distribution on matrices can be
expressed as a trace,

P(X) = cn

n∏

i=1

αi

∏

i< j

(αi + α j ) exp

⎛

⎝−
n∑

i=1

αi |xii |2 −
∑

i< j

(αi + α j )|xi j |2
⎞

⎠ dx

∝ exp
(−Tr(AX∗X)

)
dx

where dx is Lebesgue measure on the independent (complex) entries (xi j : i ≤ j) of
the matrix X , the matrix A = diag(α1, . . . αn) and cn is a constant. Let the singular
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value decomposition be given by X = UDUT whereU ∈ U(n) the set of n×n unitary
matrices, D = diag(

√
x1, . . . ,

√
xn) is the diagonal matrix consisting of the singular

values of X and the singular value decomposition takes this form due to the symmetry
of X (also referred to as the Autonne-Takagi factorisation). Let V = UT ∈ U(n) and
Λ = D2 = diag(x1, . . . , xn). The joint density of eigenvalues is given by

f (λ1, . . . , λn) =
∫

V∈U(n)

e−Tr(AVΛV ∗)Δ(x)dV

=
∏n

i=1 αi
∏

i< j (αi + α j )
∏

i< j (αi − α j )
det(e−αiλ j )ni, j=1

where the integral over the unitary group is calculated by theHarish-Chandra-Itzykson-
Zuber formula.

This agrees with the density of the output of RSK when applied to last passage
percolation with symmetric exponential data with modified rates along the diagonal
as described in Sect. 2. Therefore we obtain the following extension of Theorem 1:

Proposition 7 Let ξmax denote the largest eigenvalue of a perturbed symmetric LUE
matrix with parameters αi , let (H(t) : t ≥ 0) be an n×n Hermitian Brownian motion,
let D be an n×n diagonal matrix with diagonal entries α j > 0 for each j = 1, . . . , n
and let ei j be an independent collection of exponential random variables indexed by
the lattice N2 with rate αi + αn+1− j . Then

2 sup
t≥0

λmax(H(t) − t D)
d= 2 max

π∈Π
flat
n

∑

(i j)∈π

ei j
d= ξmax.

There does not appear to be any process level equality between a vector of last pas-
sage percolation times and the largest eigenvalues of minors of either (i) the perturbed
symmetric LUE or (ii) the Laguerre orthogonal ensemble (nor does the connection
between last passage percolation and LOE generalise to non-equal rates).

7 Distribution of the largest particle

In this section we consider the distribution of the largest particle of the system of
reflected Brownian motions with a wall in its invariant measure. This has a number
of alternative representations from Theorem 2, Propositions 2 and 7 in particular as a
point-to-line last passage percolation time. A variety of expressions have been found
for this in [3,6,11,23,30] which are convenient for asymptotic analysis. The expression
that arisesmost naturally fromProposition 4 is an expression in terms of the τ -function
of a Toda lattice given in Forrester andWitte, Section 5.4 of [23] (also see Proposition
10.8.1 of Forrester [22]). Their result is part of a more general and powerful theory
developed in a series of papers (see [23] and the references within); however, it is
natural to see how expressions in terms of a Toda lattice arise from Proposition 4 in
an elementary manner.
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Proposition 8 Let F(x) = P(Y ∗
n ≤ x) = P(G(n, n) ≤ x).

(i) When the drifts are equal α1 = · · · = αn, this is given by a Wronskian

F(x) = det( f ( j−2)
i−1 (x))ni, j=1

where the functions f ( j)
i are defined in Eq. (21) and f (−1)(x) = ∫ x

0 f (u)du.
Furthermore, this is the τ -function for a Toda lattice equation,

F(x) = 1

Z
e−nx x−n2/2+n/2det

((
x
d

dx

)i+ j−2 √
2

π
sinh(x)

)n

i, j=1

where Z is a normalisation constant.
(ii) When the drifts are distinct,

F(x) = e−∑n
i=1 αi x det

⎛

⎜⎜
⎜
⎝

f1(x) Dα1 f1(x) . . . Dα1,...,αn−1 f1(x)
f2(x) Dα1 f2(x) . . . Dα1,...,αn−1 f2(x)

...
...

. . .
...

fn(x) Dα1 fn(x) . . . Dα1,...,αn−1 fn(x)

⎞

⎟⎟
⎟
⎠

n

i, j=1

where fi (x) = eαi x − e−αi x .

For the interpretation in terms of the Toda lattice equation we let g[n](x) =
det((x d

dx )i+ j−2
√

2
π
sinh(x))ni, j=1 and observe that g solves the Toda lattice equation,

(
x
d

dx

)2

log g[n] = g[n + 1]g[n − 1]
g[n]2

with g[0] = 1 and g[1](x) =
√

2
π
sinh(x). The Toda lattice equation is often

expressed in terms of I1/2 the modified Bessel function of the first kind by I1/2(x) =
(
√
2/πx) sinh(x).

Proof (Proposition 8) In the homogeneous case we obtain from Proposition 4 that

P(Y ∗
n ≤ x) = P(Y ∗

1 , . . . ,Y ∗
n ≤ x) =

∫

x1≤...xn≤x
det( f ( j−1)

i−1 (x j ))
n
i, j=1dx1 . . . dxn .

We perform the integral in xn which leads to an integrand given by a determinant
where the last column in the determinant above has been replaced by f (n−2)

i−1 (x) −
f (n−2)
i−1 (xn−1). The second term can be removed from the last column by column oper-

ations. This procedure, of integration and column operations, can be applied iteratively
to the variables xn−1, . . . , x1 and leads to the required formula. In the inhomogeneous
case we apply the same steps: in particular, we obtain from Proposition 4 that
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P(Y ∗
n ≤ x) = P(Y ∗

1 , . . . ,Y ∗
n ≤ x)

=
∫

x1≤···≤xn≤x
e−∑n

i=1 αi xi det(D
α1,...,α j
x j fi (x j ))

n
i, j=1dx1 . . . dxn .

We perform the integral in xn which replaces the last column of the determinant
by e−αn x Dα1,...,αn−1 fi (x) − e−αn xn−1Dα1,...,αn−1 fi (xn−1). The second term can be
removed from the last column by column operations and the results follows by itera-
tively applying this procedure in the variables xn−1, . . . , x1.

We now show the second expression in part (i) is equal to the first expression in (i)
by a series of row and column operations. We observe that applying a series of column
operations shows that

e−nx x−n2/2+n/2det

((
x
d

dx

)i+ j−2 √
x I1/2(x)

)n

i, j=1

= det

(
d j−1

dx j−1

(((
x
d

dx

)i−1 √
x I1/2(x)

)

e−x

))n

i, j=1

(71)

where we can apply column operations to the left hand side in order to obtain that
the application of (x d

dx ) j−1 in the j-th column is equivalent to the application of

x j−1 d j−1

dx j−1 , and after this observation, the x j−1 term in each column can be brought
outside of the determinant to cancel the polynomial prefactor. The exponential pref-
actor on the left hand side can be brought inside the determinant and, using column

operations, inside the derivative operators d j−1

dx j−1 .
We prove by induction on i that we can add onmultiples of rows (1, . . . , i−1) to the

i-th rowof thematrix on the right hand side of (71) to obtain equalitywith the thematrix
( f ( j−2)

i−1 (x))ni, j=1.Weonly need to check this for the entry in the first column since both
sides of (71) share the same derivative structure in columns. We observe that equality
holds (without any row operations) for the first row:

√
x I1/2(x)e−x = f (−1)

0 (x).
Assuming the inductive hypothesis, for each i ≥ 0 the entry in the (i + 2)-nd row and
2-nd column on the right hand side of (71) is given by x fi (x) + x f ′

i (x) + fi (x) +∫ x
0 fi (u)du by using the relationships between the entries of the matrix – in particular,
we assume the entry in the (i+1)-st row and 2-nd column is given by fi ; then integrate
to find the entry in the (i + 1)-st row and first column; we then find the entry in the
(i + 2)-nd row and first column as e−x x d

dx (ex f (−1)
i (x)) = x fi (x) + x f (−1)

i (x), and
differentiate to find the entry in the (i + 2)-nd row and 2-nd column stated above.
To simplify this expression, we prove the following identity: there exist constants
c1, . . . , ci such that

x fi (x) + x f ′
i (x) +

∫ x

0
fi (u)du = (i + 1) fi+1(x) + ci fi (x) + · · · + c1 f1(x)(72)

which shows that after applying row operations the matrix will be in the required form
(the factor of (i + 1) can be absorbed into the normalisation constant). We note that
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the function f0 is not used on the right hand side. After applying these row operations
the entry in the (i + 2)-nd row and 1-st column will be given by f (−1)

i+1 by using an
additional boundary condition: that the entries in the first column of the matrix on the
right hand side of (71) are all zero at zero. We prove Eq. (72) by induction and let

hi+1(x) = x fi (x) + x f ′
i (x) +

∫ x

0
fi (u)du

For the base case of the identity, observe that f1(x) = x f0(x)+ x f ′
0(x)+ ∫ x

0 f0(u)du
from f0(x) = e−2x and an explicit expression for f1(x) = −xe−2x + 1

2 − 1
2e

−2x . For
the inductive step, observe that

G ∗hi+1(x) = xG ∗ fi (x) + xG ∗ f ′
i (x) + G ∗

∫ x

0
fi (u)du + f ′′

i (x)

+2 f ′
i (x) + fi (x) = hi (x) + fi (x) + 2 fi−1(x)

where the second equality follows by using the defining property of the fi , namely
that G ∗ fi = fi−1, and G ∗ ∫ x

0 fi (u)du = ∫ x
0 fi−1(u)du by an additional bound-

ary condition that both sides are zero at zero. The inductive hypothesis means there
exists constants such that hi = i fi + c̃i−1 fi−1 + · · · + c̃1 f1. Therefore G ∗hi+1 can
be expressed in terms of the functions f1, . . . , fi , and we can choose the constants
ci , . . . , c1 in Eq. (72) such that the operator G ∗ applied to the right hand side of (72)
agrees with G ∗hi+1. The boundary conditions hi+1(0) = h′

i+1(0) = 0 also agree with
the right hand side of Eq. (72). Therefore this completes the proof of the identity and
in turn this identity then proves the Proposition. �	
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