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Summary.
This thesis addresses the problem of the instant-by-instant control of the pow

ertrain of a hybrid heat engine/electric vehicle. In the absence of a prototype 
vehicle on which the work could be carried out. the work has taken the form of 
computer simulation experiments.

In order to develop the powertrain control strategies, a computer model of 
a conceptual hybrid vehicle is then developed, containing components from real, 
production and prototype vehicles. The use of this component based modelling 
approach allows the models to be validated by comparing their predictions with 
the performance of the real vehicles in which the components are used.

The previous work conducted in the field of hybrid vehicle powertrain control 
is then reviewed. It is found that fuzzy logic could potentially provide a means of 
controlling the hybrid powertrain in a realistic manner, in which some of the disad
vantages of previous hybrid powertrain control strategies could be overcome. The 
results of initial simulation experiments are then reported, finding that whilst the 
basic method appears to have the potential to successfully control the powertrain, 
there is a need for an adaptive fuzzy powertrain controller.

A review is then presented of previous work conducted in the field of adaptive 
fuzzy control, finding that none of the reported adaptive fuzzy control methods are 
capable of being easily applied in the case of the hybrid powertrain. An adaptive 
fuzzy controller is then developed, whose rule modification strategy is specifically 
designed to work in the hybrid powertrain control problem.

This initial adaptive powertrain controller is then modified to improve its abil
ity to control the overall performance of a hybrid vehicle, whilst maintaining 
vehicle driveability. It is found that this controller is able to adapt to the different 
driving styles of individual vehicle users within the space of a few simulated urban 
journeys.

Experiments are then performed in which improvements in the overall effi
ciency of the vehicle powertrain are investigated. It is found that significant 
improvements in the operation of the powertrain are impossible, due to some of 
the features of the vehicle model and constraints placed upon the control strategy.

Conclusions are then drawn, for the work done in the field of hybrid vehicle 
powertrain control and, also, for the work done in adaptive methods of fuzzy 
control. The most significant contribution in the field of hybrid powertrain control 
is the development of a controller that can adapt to the habits of different users. 
The most significant contribution in the field of fuzzy control is the form of the 
basic hybrid powertrain controller and the use of small fuzzy controllers in the 
powertrain controller adaptation strategy.
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When I was eighteen I thought my father was a fool, by the time I 
was twenty-one, I was amazed how much the old man had learned

in three years.

Mark Twain





Chapter 1 

Introduction

1.1 Vehicle emissions.

It has become generally accepted that the environmental effects of the way in 

which life is currently lead by the developed world are too severe to be allowed to 

continue. This is causing changes in behaviour at personal and national levels, as 

individuals alter their habits voluntarily and governments implement legislation 

aimed at reducing environmental destruction. In the case of the private passenger 

car, the environmental harm caused by pollution is not immediately obvious to the 

owner and modifications to make vehicles less harmful are expensive. The need to 

reduce the harmful effects of the use of cars is being tackled by the introduction 
of environmental legislation.

The car has been developed over a period of some one hundred years and in 

that time has gone from being the unreliable expensive possession of the very 

wealthy to the reliable and indispensable requirement of the majority of the pop

ulation of the developed world. However, cars have obviously had a considerable 

environmental effect on the world, in their manufacture, use and destruction. It 

has been estimated [1] that approximately 20% of the fuel that can be associated 

with the life of a particular car is used in its manufacture. The procurement and 

processing of raw materials and waste products of manufacturing processes also
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create pollution. When the life of a car is over, many of the metal components 

are recycled, but, much of the interior goes to landfill and more seriously, in the 

U.K., sometimes the lubricants have been simply emptied into the earth, although 
recent regulations make this far less likely.

The largest environmental effect of the use of cars is the emission of harmful 

exhaust gases. For a car with a petrol engine these gases are carbon monoxide, 

carbon dioxide, oxides of nitrogen and hydrocarbons. In the case of the diesel 

engine which is to be found in many cars and most commercial vehicles the variety 

of pollutants is far greater since the combustion process is very inhomogeneous. 

A detailed guide to the this subject can be found in [2].

The following very brief discussion of some aspects of vehicle emission regu

lations is included to give background information and show the external forces 

which are causing research in this area. It should be realised that emissions regu

lations are not the only force acting to cause radical changes in the use of vehicles. 

There are additionally regulations regarding safety, congestion, recycling, manu

facture and so on that all have a bearing on the subject.

Vehicle manufacturers are forced to make their vehicles comply with emission 

regulations which become increasingly stringent as time goes on. The strictest 

emissions have always been mandated by the state of California because a com

bination of geography, climate and very high levels of vehicle usage have lead to 

the formation of a photochemical smog over the basin in which Los Angeles sits. 

Legislation which is enforced in California tends to be adopted by the rest of the 

United States and influences regulations over the rest of the world.

The regulations that have given impetus to the research reported in this thesis 

and a vast amount of other work are embodied in [3]. This regulation sets out 

various emission related types of vehicle and also dictates the proportion of the 

total sales volume which shall be made up of each type, see Tablet. 1.

2



1997 1998 1999 2000 2001 2002 2003
Transitional low 
emission vehicle

73 48 23 0 0 0 0

Low emission 
vehicle

25 48 73 96 90 85 75

Ultra low 
emission vehicle

2 2 2 2 5 10 15

Zero emission 
emission vehicle

0 2 2 2 5 5 10

Table 1.1: Proportion of total sales (in percent) of different emission categories of 
vehicle for the six years after 1997 in California.

The details of the performance of the various types of vehicle can be found in 

[3], the important points are the volume figures for the ultra low emission vehicle 

and the zero emission vehicle. It is currently felt that it may not be possible 

to meet the requirements of the ultra low emission vehicle using a conventional 

internal combustion engine alone for propulsion and that it may be necessary to 

supplement the engine of the vehicle with some other means of propulsion that 

is less emissive. In the case of the zero emissions vehicle it will obviously not 

be possible to use a combustion engine burning fossil fuel at all. Whilst the 

regulations do not state that a zero emissions vehicle will be an electric vehicle, 

there is currently no other practical means of zero emission propulsion.

The ultra low emission vehicle is thought likely to be a hybrid vehicle whose 

power requirements will be met by the combined use of a heat engine and an 

electric motor powered by batteries.

Californian regulations have been structured to improve air quality and this 

has been done by limiting the emissions of the noxious exhaust gases, carbon 

monoxide, oxides of nitrogen and hydrocarbons. In Europe it is proposed that the 

emissions of carbon dioxide will be taxed, see [4], Complete combustion of carbon 

based fuels produces carbon dioxide and water, the other exhaust gases being pro-
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duced by imperfect combustion or undesirable side reactions. A regulation taxing 

the emission of carbon dioxide, therefore, effectively taxes fuel consumption.

Additionally, some European towns and cities are starting to consider imposing 

restrictions on the vehicles that enter their centres. It is felt that such restrictions 

could lead to zero emissions regulations in the future.

The reasons for restricting the emissions of carbon dioxide are different from re

stricting the noxious gases. Carbon dioxide contributes strongly to the greenhouse 

effect, and this motivates a limit to its production. Conversely, regulations that 

have been implemented to limit noxious gas production, to improve air quality, 

have had the effect of increasing carbon dioxide production. The regulatory bod

ies have tended to write emission regulations that moderate the pollution problem 

which they see as being most important. A consequence of the Californian regu

lations is that the emissions which will no longer occur in vehicles will be replaced 

by emissions in electric power generation. Whilst Californian electricity is very 

clean, this is not always the case for the rest of the world. There is considerable 

debate amongst environmental groups, regulatory bodies, vehicle manufacturers 

and electricity suppliers as to the extent of the environmental improvement that 

will be achieved by the various legislative proposals. A comparison of references 

[5] and [6] illustrates arguments that currently exist particularly where there are 

commercial vested interests.

Emission regulations have never been universally accepted as being beneficial 

in all aspects, however, when a proposal becomes law, the regulation has to be 

met regardless of the argument that will inevitably continue. This means that, 

if the regulations that are currently being discussed are adopted, the world wide 

motor industry will be forced to develop electric vehicles and possibly hybrid 

electric/heat engine vehicles.
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1.2 Electric Vehicles.

In the early 1900s road vehicles could be bought powered by internal combustion 

engines, steam engines and electric motors. It is worth noting, in passing, that 

the earliest reference to a hybrid drive system is also around this time [7], Ini

tially, electric vehicles enjoyed greater popularity than internal combustion engine 

vehicles due to their quiet, reliable operation and ease of use [8]. By 1920 a re

versal had taken place and internal combustion engine vehicles were being sold 

in their millions, whilst electric vehicle sales amounted to only a few thousands. 

The reasons for the reversal in fortunes were the increase in reliability of the inter

nal combustion engine and the low performance and range of the electric vehicle. 

Ironically, the electric motor contributed to the downfall of the electric vehicle 

by its use in the electric starting systems of the internal combustion engine, the 

improvement in starting being one of the reasons for the increased popularity of 
the IC engine.

Since this time, the use of electric vehicles has been mainly limited to enthu

siasts, see [9], leisure vehicles and industrial vehicles such as fork lift trucks. The 

main exception to this has been the large scale use of the electric milk delivery 

van in the U.K. which has given the U.K. something of a lead in the use of road 

going electric vehicles.

The reasons why electric vehicles have not been popular are that they are, in 

general, slow and have a very limited range when compared with their internal 

combustion powered counterparts. Additionally, battery lifetimes are short and, 

whilst electric vehicles are cheap to run over their lifetimes, batteries are expensive 

items to replace in one payment. In many other ways the electric vehicle has 

advantages over the IC engine vehicle, being quieter, simpler, more reliable and 
less directly emissive.

The extent of the problems that have to be overcome before electric vehicles are
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comparable in performance with IC engine vehicles is illustrated by considering 

the rate of energy transfer when refuelling an IC engine vehicle. During the minute 

that it usually takes to refuel a conventional vehicle, energy flows into it by means 

o f adding fuel, at a rate whose electrical equivalent is 10MVV, the output of a 

reasonable sized power station [10].

The fundamental limitation of the electric vehicle is that no sufficiently dense 

means of on-board energy storage has yet been found. Sufficient power can be 

generated in an electric vehicle using lead acid batteries to give the vehicle ac

ceptable performance [11], Such a vehicle will then have a very limited range, 

especially if the maximum performance is used continuously. If other types of 

batteries are used which have a higher energy density, a much greater range can 

be achieved (though still inadequate) but the performance of the vehicle is lowered 
unacceptably.

In response to proposed emissions regulations, the electric vehicle, and in par

ticular its battery technology, has been the subject of intense development. De

spite the combined efforts of the motor industry, battery industry and electric 

power generation industry, no feasible technological solution has yet been found 

to overcome the limitations of charging and energy storage, nor is there any sign 

that such a solution will be found.

A further problem that will seriously affect the use of electric vehicles is that 

of heating and air conditioning which requires a power source of at least 5kW. 

Normally, this power is available in the engine coolant for heating or is taken 

off the crankshaft for air conditioning. Electric motors are highly efficient when 

compared with a heat engine, so very little waste heat is available for heating. 

Also, the power requirement cannot easily be met by the batteries as they tend 

to have an installed power of only around 20kW all of which is needed to propel 

the vehicle. Since there is a legal requirement to be able to heat a vehicle, and to
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be able to demist the windows, some early electric vehicles have been fitted with 

diesel fuel burning heaters, which unfortunately prevent the vehicle from being a 
true zero emission vehicle.

Where a regulation requires the use of an electric vehicle the drawbacks will 

have to be accepted. Where a regulation requires the use of a zero emission vehicle 

only in certain regions or requires a vehicle whose emissions are lower than those 

of a conventional vehicle, the concept of a hybrid vehicle has some advantages.

1.3 Hybrid Vehicles.

A hybrid vehicle, as the hybrid electric/heat engine vehicle will be called in the 

rest of this thesis, is powered by a heat engine and an electric motor. The term 

heat engine is used to indicate that the possible sources of power from fossil fuel 

in a hybrid vehicle should not necessarily be limited to reciprocating internal 

combustion engines. The essential feature of this type of vehicle is that it can be 

used without creating any emissions by drawing power from the battery alone. 

When used in this manner, the vehicle will have the low range and performance 

of the electric vehicle. The heat engine can be used, where regulations allow, to 

give the vehicle acceptable range and performance.

This alternative obviously has the advantages of both the electric vehicle and 

the conventional vehicle. It should be pointed out that there are also disadvantages 

to this approach, for example, a hybrid vehicle will be more expensive and complex 

than either a conventional vehicle or an electric vehicle. The extra, physically large 

and heavy components make a hybrid vehicle heavier and more difficult to design.

Attempts have been made to justify the use of hybrid vehicles on grounds other 

than purely as a means of meeting emission requirements [12] but have generally 

met with a lack of interest by the traditionally conservative motor industry. Given 

the above disadvantages, there is no way that, without the use of legislation or a
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very large change in the attitude of the public, vehicle manufacturers would ever 

be persuaded to make hybrid vehicles.

Hybrid vehicles tend to be found in two types, the serial hybrid vehicle and 

the parallel hybrid vehicle, [13] gives a very readable general introduction to the 

two types.

1 .3 .1  T h e  se r ia l h y b r id  v e h ic le .

In the serial hybrid vehicle the heat engine is used to drive a generator which in 

turn feeds power into a circuit consisting of batteries, control electronics and a 

motor which drives the vehicle. There is no direct mechanical connection between 

the heat engine and the wheels of the vehicle. A diagram illustrating this concept 

is shown in Figure 1.1.

The serial hybrid concept has a number of advantages. The heat engine can 

be run at a constant speed since it is not coupled to the wheels. This allows its 

design to be more optimal and its operation to be more efficient in terms of the 

power generated per unit of emission and per unit of fuel. The vehicle designer 

has some freedom over the types of heat engine and generator since the speeds at 

which they rotate are not fixed. Also, the dynamic response of the heat engine 

is not important, again allowing other types to be considered. The absence of a 

linkage between the engine and the wheels of the vehicle allows some freedom in 

the layout of the vehicle and finally, the heat engine does not have to be able to 

meet the instantaneous vehicle power requirements as the battery acts as a “load 
leveller” in transient operation.

The drawbacks of the serial hybrid vehicle are that it will be expensive since 

it has two electric machines and associated power electronics. The control task in 

a hybrid vehicle is complex as two interacting electrical machines, an engine and 

a set of batteries have to be managed. Possibly the largest disadvantage of the
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serial hybrid is the energy path potentially passes through the heat engine, and 

then through two electric machines before reaching the road. The efficiencies of 

the devices are then multiplied together resulting in a low overall efficiency for 
the powertrain.

The serial hybrid concept is most sensibly embodied using a small heat engine 

that can be worked hard in order to operate efficiently in terms of fuel used 

and emissions created. The vehicle is always propelled by an electric motor and, 

consequently, the serial hybrid vehicle can be thought of as a range extended 
electric vehicle.

1 .3 .2  T h e  p a r a lle l h y b r id  v e h ic le .

In the parallel hybrid vehicle both the engine and the motor of the vehicle can 

be used to drive the wheels. This may be done via some shared driveline compo

nents such as gearboxes, differentials and driveshafts or independently by driving 

different sets of wheels. A diagram showing one implementation of this concept 

(there are many) is included as Figure 1.2.

The advantages of the parallel hybrid vehicle include relatively low cost and 

complexity since there is only one electric machine with associated, reasonably



battery

Figure 1.2: Schematic diagram of one type of parallel hybrid vehicle.

simple, electronics. The engine is able to drive the wheels directly, allowing the 

fuel to be used efficiently. A parallel hybrid will be relatively straightforward to 

design since it has a great deal in common with both the conventional vehicle and 

the electric vehicle, and it shares the load levelling ability that batteries give the 
serial hybrid vehicle.

There are only two real disadvantages of the parallel hybrid vehicle. The engine 

turns at a speed dictated by the speed of the vehicle and, as in a conventional 

vehicle, its design must be compromised to work over a large speed range. There 

is little freedom about the location of components since they are all mechanically 
connected to the wheels.

Practical parallel hybrid vehicles have tended to use conventional vehicles with 

additional electric motors. This reflects the fact that parallel hybrid vehicles tend 

to be seen as conventional vehicles which have the ability to operate in a zero 
emission zone.
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1.4 Hybrid vehicle operation.

Under many circumstances, the correct method of operating a hybrid vehicle will 

be obvious. For example, when the vehicle is being used in a zero emission zone 

power should be drawn from the batteries alone. Conversely, when the vehicle 

is being used for long journeys on motorways which require long range and large 

amounts of power, the power for propulsion will be drawn from the fuel. In 

addition to this, there may well be a need to allow the driver of the vehicle to 

force it to operate using only the batteries and thereby obtain the benefits of 

electric propulsion including quiet and cheap operation and possible or perceived 
environmental responsibility.

The previous paragraph discusses the situations that have forced the hybrid 

vehicle to be seriously considered. In general use, there will be situations in which 

the vehicle should make use of both sources of energy simultaneously. This would 

occur, for example, when the maximum acceleration of the vehicle was required 

for overtaking. A further need for simultaneous operation would be if the vehicle 

were approaching a zero emissions zone with a low battery state of charge which 

would need to be increased to allow the vehicle to cross the zone. Increasing the 

battery state of charge could be done by working the motor against the engine, 
whilst the engine powers the vehicle.

Many users of cars tend to have patterns of usage that are essentially the same 

from one day to the next. For such users there may well be optimal ways of using 

the energy stored in the vehicle. In general, electric propulsion provides a cheap 

means of transport and it might therefore be desirable to use the batteries as 

much as possible in daily use.

When the two sources of energy on the vehicle are being used simultaneously 

the driver will not be able to individually control the motor and the engine during 

normal driving. Some means of automatically controlling the powertrain will
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have to be provided. Engine and motor control would be achieved by means of 

controlling the throttle on the engine and the currents flowing in the motor.

This controller should cause the stored energy in the vehicle to be used in some 

energetic or cost optimal way. The control actions should also increase or decrease 

the battery state of charge, as required by the driver. As these requirements 
change, the controller should function such that the vehicle drives in a consistent 

manner and has good driveability at all times. The requirements of various users 

may be such that different control actions should take place, so some adaption of 

the controller may be desirable. Lastly, the controller should allow the vehicle to 

meet the emission regulations of the market into which it is being sold.

1 .4 .1  H y b r id  v e h ic le  p o w e r tr a in  c o n tr o l.

The aim of the work presented in this thesis is to develop methods of controlling or 

managing hybrid vehicle powertrains, in such a way that meets the requirements 

of the items listed in the previous section.

A detailed discussion of the previous work done in the field of hybrid powertrain 

control is given in Section 3.2.4. At this point it is sufficient to note that there 

is no established procedure or technique that has been used in this field. The 

reasons for this are twofold. Firstly, very few hybrid vehicle prototype cars have 

been built and consequently, as a research area, the control of hybrid powertrains 

is in its infancy. Secondly, the commercial success or otherwise of a particular 

hybrid vehicle will be heavily influenced by the performance of the powertrain 

controller, making its form extremely commercially sensitive. Where the research 

has been carried out by industry the results are, therefore, not widely known.

Section 3.2.4 contains a detailed consideration of the form that a hybrid power- 

train controller should take. It is found that, because of the unconventional prob

lem formulation and its highly intuitive nature, the use of fuzzy logic is helpful.



As will be seen in Section 1.5 fuzzy logic is increasingly being used in automotive 

control and this also makes the approach attractive.

1.5 Automotive Control.

The purpose of this section is to place in context, the work that is subsequently 

reported and give background information to assist in its understanding.

1 .5 .1  A p p lic a t io n  A r e a s .

Reference [14] provides an excellent general source of automotive engineering in

formation and would be of use to anyone interested in automotive control.

The most commonplace controller found on vehicles is undoubtedly the engine 

controller or controllers. The modern engine controller or engine management 

system, as it is more commonly known, has evolved over the last ten years or so. 

Petrol engine control operations can be broken down into fuel control and ignition 

control. The first improvement in engine control resulting from the application of 

electronics was the introduction of programmed ignition. Unlike breakerless igni

tion, which switched the ignition using solid state devices, programmed ignition 

also controlled the ignition timing..

Another early improvement was the introduction of devices aimed at improving 

the cold starting and cold running of engines. These devices were normally stepper 

motors which acted on the mixture control and throttle stop of the carburettor. 

Since the control involved was so minimal very little electronic complexity was 

required and this really was a method of increasing the convenience of the car 

rather than improving it.

A very large increase in complexity occurred when the carburettor was replaced 

by fuel injection. The first systems were analogue constant flow systems, whose 

chief advantage was that the air-fuel ratio could be set at any demanded value

13



electronically rather than mechanically by carburettors. Constant flow systems 

were soon replaced by systems in which the injectors fired at intervals, injecting 

a measured quantity of fuel into the air flowing into the cylinder. Initially, fuel 

injection systems were kept separate from ignition systems, and it is interesting 

to note that typically fuel injection controllers had around 20 connections and 

ignition controllers had around 10 connections, giving some idea of the relative 
complexity of the control tasks.

Fuel injection systems and ignition systems were combined to create the engine 

management system. Subsequently, the most significant increase in complexity 

has been the use of closed loop fuelling and the three way catalyst (so called 

because it greatly reduces the amounts of the three major exhaust gas pollutants). 

In practice, an exactly stoichiometric air fuel mixture is required to reduce the 

emission of noxious gases to extremely low levels. Very accurate air fuel ratio 

control is a demanding task because the controller has to maintain an exactly 

stoichiometric air fuel ratio, in the presence of abrupt changes in air flow rate 

caused by the driver suddenly opening or closing the engine throttle. The air fuel 

ratio is indicated by sensing the composition of the exhaust gas using a lambda 

sensor to provide a feedback signal. The control problem is further complicated 

by the evaporation of fuel sitting in the inlet manifold which changes the air fuel 

ratio in the cylinder.

In addition to the control of air fuel ratio, engine management systems control 

the engine idle speed. Again, this takes place in the presence of disturbing loads 

such as power assisted steering pump loads, air conditioning pump loads and 

sudden electrical loads. Recent additions to engine management have included 

turbocharger control, variable cam timing and variable inlet manifold geometry. 

Future engine management systems will have to comply with [15] which requires 

that misfires are detected as the engine is used and the operating conditions
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prevailing at the time are stored. Misfire detection is relatively straightforward 

with engines which have a small number of cylinders at high loads and low speeds, 

but is very difficult to detect in engines with many cylinders at high speeds and low 

loads without introducing additional sensors. A recent advance is the introduction 

of engine management systems to control the fuel injection of diesel engines.

Of the other vehicle control applications the next most complex and common 

are anti-lock braking systems which work by means of calculating the angular 

acceleration o f each road wheel. If the wheel acceleration corresponds to an ef

fective vehicle deceleration of greater than around lg, this is interpreted as the 

wheel locking, and the brake hydraulic pressure to that wheel is then momentarily 

reduced. The function of the anti-lock braking system is sometimes complicated 

by its use in combination with the engine management system to form a traction 

control system that limits wheelspin on slippery surfaces. The torque output of a 

vehicle differential is equal, or very nearly equal, on both sides. If the brakes are 

applied to a spinning wheel then engine torque equal to the braking torque may 

be passed to the other wheel allowing it to drive the vehicle.

Other common areas of control in vehicles are in automatic transmission con

trol, climate control, cruise control and suspension control. Cruise control, climate 

control and transmission control are, when compared to modern engine control, 

relatively straightforward. Suspension control is very dependant upon the types of 

suspension system being considered, and these vary from fully controllable systems 

using active elements to conventional suspension systems containing some variable 

elements. Examples of the latter include variable rate damper systems which are 

being produced by a few manufacturers, including Rolls-Royce. A discussion of 

various suspension systems is given in [16].
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1 .5 .2  A u to m o tiv e  control techniques.

Despite large amounts of research having been conducted, see [17] and [18] for a 

comprehensive list of references, automotive control has seen very few production 

applications of conventional linear or advanced linear control methods. The reason 
for this lies in the nature of automotive control problems. In the application areas 

discussed above, closed loop fuelling, idle speed control, suspension control, cruise 

control and climate control can be posed in the form of a conventional control 

problem. Conventional control being taken to mean controlling the output of a 

system to track a reference value and, in the case of feedback control, using the 

error between the demanded output and the actual output as the control signal.

Cruise control and climate control are generally handled by relatively straight

forward PID type controllers. Conventional control work on suspensions, whilst 
being an area of active research, has not, to the authors knowledge, been used in 

a production vehicle, though it has been used in racing cars. Conventional con

trol could make a practical contribution in the field of engine control, however, in 

this and other areas, conventional linear control methods, especially the advanced 

linear control methods, have a huge disadvantage. Automotive engineers tend 

to be specialists in restricted areas of automotive technology and use heuristic 

methods which reflect their experience and understanding in preference to highly 

theoretical techniques, see [19].

Automotive control applications have therefore tended to use rule based meth

ods or maps, which have been successful because their methods of operation are 

obvious, making them quick to develop and relatively easy to understand. The 

same considerations motivated the development of fuzzy logic and related intel

ligent control techniques and it is therefore unsurprising to see the growth of 

automotive fuzzy logic controllers at both a practical and research level, see [20] 

and [21].
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1 .5 .3  A u to m o tiv e  control hardware.

Emissions regulations have caused huge growth in the number and complexity 

of engine management systems and this, in turn, has added impetus to the de

velopment of the microcontroller. The commercial effect of this should not be 

underestimated since the number of cars with engine management systems must 
make this the largest single control application in the world.

The microcontroller differs from the microprocessor in that as well as contain

ing computational and storage areas it also has, on the same device, functions 

such as analogue to digital conversion, digital to analogue conversion, timers, se

rial communication ports and useful amounts of memory. Whilst these devices 

are not controllers on a chip, they do go a long way towards this. The purpose 

of these peripherals is to allow the processor to restrict its activity to the calcula

tion of output variable values and interpretation of inputs, rather be involved in 

the exact timing of the output actions which is so critical in engine management 

and other applications. As requirements of engine management systems increase, 

the ability of the peripheral devices to run the engine with minimal involvement 

of the processor core, allowing the core to concentrate on more computationally 

intensive tasks, will become ever more important.

The sheer volumes of the automotive industry have meant that microcon

trollers have become tailored to meet certain control requirements, engine man

agement, of course being the most important. Details of one family of microcon

trollers can be found in [22]. Some idea of the increase in complexity that has 

occurred is given by considering that, in around fifteen years, engine management 

systems have gone from using analogue circuits, to 32 bit microcontrollers with 

very large numbers of peripherals on the same device.

The other important advance in automotive control, is the communication 

controller. Details of one of many communication protocols may be found in [23]
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with decsriptions of devices that meet this requirement being found in [22] and 
[24], The purpose of these communication controllers is to allow the interaction of 

co-operating systems such as engine and transmissions controllers. The maximum 

speed of the communication is, in automotive terms, very fast at around 1 Mbit/s 

and this allows genuinely interactive control rather than simple information shar
ing.

1 .5 .4  C o s t s .

It is well known that the automotive industry is very cost driven. In control terms 

this is reflected in the prices of actuators, sensors and controllers. Most automotive 

sensors have a component cost in the region of pence to a few pounds, examples 

including reluctance sensors, pressure sensors and temperature sensors. Actuators, 

which tend to be devices such as solenoid valves, stepper motors, fuel injectors 

and spark plugs are rather more expensive, however, the most expensive of these is 

still only around fifteen to twenty pounds. The exceptions to this tend to be in the 

area of suspension control and it is the high cost of devices such as accelerometers 

and actuators that has contributed to the lack of production applications. The 

control electronics used in vehicles tend to have piece prices from a few tens of 

pounds to a few hundreds of pounds depending on the application.

1.6 Objectives of this thesis.

Research effort in hybrid vehicles has tended to be concentrated in areas such as 

battery technology, motor technology, alternative engine technologies and vehicle 

design and construction. Considerable work has been done on component sizing 

and matching, but this has tended to be at a rather high level. The instant-by

instant operation of a hybrid vehicle has not been the subject of a great deal of 

research, the work that has been done is discussed in Section 3.2. In practice, it is
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impossible to operate a hybrid vehicle without some form of powertrain controller 

and, as hybrid vehicle prototypes are produced in increasing numbers, the need 
for understanding of their operation will increase.

This thesis describes work done in developing control strategies for a partic

ular hybrid vehicle powertrain. The practical aspects of automotive control are 

considered throughout the work reported. This means that the control methods 

considered must be capable of being implemented on a low cost microcontroller, 

they must not involve expensive sensors or actuators and they must be capable of 

being included in an automotive development cycle. The controller decided upon 

must be capable of being developed quickly and robustly. The operation of the 

controller must be easily understood without complex theory both because auto

motive engineers tend to be component specialists and not systems specialists and 

also because straightforward software operation is advantageous from a product 
liability point of view.

The absence of a suitable vehicle on which to develop control strategies meant 

that the work was carried out using computer simulations. During the course of 

the work it has been realised that the correct control approach will vary depending 

upon the type of vehicle being studied. The use of computer simulations allows 

vehicle models to be quickly and easily changed so that control strategies for 

different types of vehicle may be developed. Additionally, all the usual advantages 

of modelling controllers before implementing them in hardware have been gained. 

It is intended that the work described will subsequently be used in hardware on 

the powertrain of an actual hybrid vehicle under development.

It will be seen in Section 3.3 that the control problem has aspects of intelli

gent decision making, and cannot be formulated in a conventional manner. This 

makes fuzzy logic a natural choice for the control strategy. Fuzzy logic also has 

the advantages of being an excellent tool for automotive component and system
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specialists, allowing them to embody their experience and understanding in the 

control strategy. It can be shown, again see Section 3.4.3, that a fuzzy controller 

can be reduced to a form that is identical to the maps used in modern engine man

agement systems, making the method readily implemented by automotive software 

engineers. As a result of the use of fuzzy logic in the controllers, some conclusions 

have been drawn about the role of fuzzy logic in modern control engineering and, 
in particular, in automotive engineering.

A first requirement before controllers could be developed was a suitable simu

lation environment. In order to simulate a hybrid vehicle component models had 

to be developed. These models, their combination to form vehicle models and the 

validation of these vehicle models formed are the subject of the next chapter.
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Chapter 2

Hybrid vehicle powertrain 
modelling.

2.1 Introduction.

This chapter describes the development of a set of hybrid vehicle component 

models whose purpose is to provide an environment in which the control of a 

hybrid vehicle powertrain can be investigated. The aims and objectives of the 

model development are first stated and the modelling approach is explained. A 

potential, practical hybrid vehicle concept is then described which is the basis of 
the modelling work.

Component models are then developed for the major components in the vehicle 

powertrain and the vehicle itself. The completed model is then discussed and 

details of validation exercises are presented. Some of the work discussed in this 
chapter has been published elsewhere, see [25, 26].

2.2 Aims and objectives.

Figure 2.1 is a schematic diagram of a parallel hybrid vehicle in which it is seen that 

the role of the powertrain controller is to interpret the movements of the driver’s 

accelerator pedal and generate demand signals for the engine throttle angle and
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motor
armature current torque

Figure 2.1: Schematic block diagram showing the role of the powertrain controller 
in a parallel hybrid vehicle.

the motor armature current. These signals should blend the operation of the 

motor and the engine so that the vehicle performance meets various requirements 

without the driver being involved in the detailed control of both the engine and 
the motor.

Since emission regulations have forced hybrid vehicles to be seriously consid

ered, a primary requirement of the powertrain controller will be to ensure that 

the vehicle which it controls will meet emissions standards which are defined over 

drive cycles that have durations of tens of minutes. As will be seen in Section 2.4, 

the modelling of heat engine emissions is extremely difficult and involves processes 

that have timescales in the order of tens of milliseconds. In an ECE+EUDC Eu

ropean emissions test, about 70% of the carbon monoxide emissions occur during 

the first two minutes of a twenty minute test. This is because fuel enrichment 

must be used until the engine is warm and the emissions are not closely controlled 

until the catalyst “lights off” , or begins converting, which occurs when it reaches 

a temperature of about 290°C. Currently, very little work has been done on cold 

running emissions or thermal models of engines and catalysts. Also, as described 

below, feedback fuel injection systems have been modelled, but the models that 

result are complex and also give little indication of the transient emissions perfor

mance of the engine. The inherent difficulty in modelling the processes that lead
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to the formation of pollutants, and the mismatch between the process timescales 

and the duration of the test cycles, makes the modelling of vehicle emissions over 

drive cycles excessively complex. A modelling study of very much higher com

plexity than that reported here would be required to predict vehicle emissions or, 

more sensibly, work should be carried out on a prototype vehicle.

This is not as great a drawback as might at first be thought. The type of 

vehicle considered is likely to find itself in either zero emission zones or areas 

in which the heat engine is intended to be the primary source of motive power 

and would therefore be able to meet the relevant emission requirement. Also, 

current petrol engine emissions are dominated by cold starts and cold running, 

which contributes strongly to the difficulty in modelling engine emissions, since 

the actions of the engine controller are very complex under these circumstances, 
again see Section 2.4.

Having removed the impractical aspects of the modelling exercise the more 

tractable tasks of the powertrain controller can now be defined. The vehicle should 

perform so that its energy resources are used in the correct proportions relative 

to one another. For example, for economic reasons, the driver of the vehicle may 

wish the vehicle to obtain most of its energy for propulsion from the batteries 

rather than from fossil fuel. Alternatively, the driver may wish to increase the 

battery state of charge, at the expense of using extra fuel, to allow the vehicle to 
cross a zero emissions zone.

A second requirement of the powertrain controller is to meet the demands of 

the driver in a manner which is energetically efficient. This means that operation 

of the motor and the engine are combined in such a way that the vehicle uses 

a minimum of energy (or cost) to meet the requirements of the journey being 
undertaken.

The last requirement of the powertrain controller is that the vehicle should
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drive in a consistent and smooth manner regardless of the bias in the use of energy. 

The subjective aspects of the way in which a vehicle drives are generally termed 

driveability, a full consideration of which requires an understanding of factors such 

as transmission lash, driveline compliance and other vehicle characteristics which 

are undefined until the vehicle is actually designed. The timescales over which the 

effects that influence driveability occur are, again, very short. The consideration 

given to driveability in this work is that the driveshaft torque in Figure 2.1 should 

be the same for any controller when the same accelerator pedal value is used at 

the same engine speed.

The requirements set out above, and the timescales of journeys, define the level 

of detail of the powertrain component models that should be used. To determine 

whether a vehicle will meet the requirements of a journey, the primary modelling 

requirement is to be able to relate the use of the energy resource to the generation 

of power. As will be seen in Sections 2.4 and 2.5, this can be done without 

considering the dynamic operation of the components. This would not be the 
case if engine emissions were to be considered explicitly.

2.3 Modelling philosophy.

In powertrain modelling, there have generally been two approaches adopted which 

can be described as forward and reverse dynamic models. Figure 2.2 shows, in 

block diagram form, the information flows in the hybrid vehicle model developed 
in this chapter.

2 .3 .1  F o rw a r d  d y n a m ic  m o d e ls .

In the forward dynamic modelling approach, the input-output information flow is 

essentially causal, the inputs to a component model tending to be the equivalent 

input to the component in the real world. An example of this might be an engine
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model, in which the inputs might include throttle angle, engine speed and coolant 

temperature and the outputs might include engine torque and engine fuel flow 

rate. The engine torque would then cause a torque to be applied to the input of 

the gearbox which would cause a torque to appear in the driveshafts and this, in 

turn, would cause the vehicle to accelerate.

In this work, the forward dynamic modelling approach has been taken. This 

is because, at the time the work was begun, the form of the powertrain controller 

was completely unknown, and it was important that the powertrain model did not 

in anyway constrain the type of controller that was subsequently to be developed 

(see Section 2.3.2). Additionally, if the model functions in the forward dynamic 

sense, then so will the controller. This means that the controller used in the 

model will operate in a very similar way to the controller on the vehicle, making 

the vehicle controller design more straightforward. The forward dynamic aspects 

of the model operation are shown, in Figure 2.2, by the arrows moving towards 

the vehicle dynamics block.

2 .3 .2  R e v e r s e  d y n a m ic  m o d e ls .

A reverse dynamic model reverses the causality of the original system. When 

using a reverse dynamic model, the output of the original system is specified or 

calculated by some means, the system model then calculates the physical input 

that would be required to cause the physical output to occur. Taking the exam

ple of the engine once again, the output torque of the engine would need to be 

calculated and then a reverse dynamic model would determine the throttle angle 

required to cause the engine to generate the output torque, at the engine speed 
concerned.

Clearly, coping with dynamic systems is more difficult when using reverse 
dynamic models and, since the aim of much simulation and modelling work is



to address dynamic problems, reverse dynamic modelling is not commonly used. 

However, as will be discussed in Section 2.5, reverse dynamic modelling has been 

used extensively in the simulation of electric and hybrid vehicles by other authors. 

It was not used in this work because it was felt that it might compromise the 
controller design.

Aspects of reverse dynamic modelling appear in Figure 2.2, since the rota

tional speeds of the various vehicle components are propagated back through the 
powertrain.

2 .3 .3  A  c o n c e p t u a l  h y b r id  v e h ic le .

Prototype or production vehicles and components have been used as a basis for 

a conceptual hybrid vehicle, which does not actually exist but which could, rel

atively straightforwardly, be constructed. By using existing vehicles as a mod

elling base, component models can be validated against vehicles by comparing 

performance predictions from the models with actual vehicle performance. The 

imaginary vehicle that forms the basis for the work reported in this thesis is a 

small parallel hybrid vehicle, which would be designed to meet a zero emission 

regulation in towns and cities but which has only to meet a more conventional 

emission regulation elsewhere.

The electric powertrain components are the same as those used in the Metrolec 

electric vehicle which is described below. The heat engine is the engine used in 

the Rover Metro GTi, a 1400cc, 4-cylinder, 16-valve fuel injected petrol engine 

whose emissions are controlled using a 3-way closed loop catalyst. It was chosen 

because of its recent design which makes it as similar as possible to an engine that 
might be found in a hybrid vehicle of the future.

The Metrolec electric vehicle is described in detail in [27], It is a Rover Metro 

car that has been converted to run on electric energy. The vehicle is propelled

26



Figure 2.2: Block diagram of complete hybrid vehicle model.
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using a separately excited brushed DC motor of a type described in [28]. The 

operation of the motor will be discussed in detail in Section 2.5.

A novel feature of the Metrolec is its use of sodium sulphur batteries which 

were first investigated in 1967 see [29]. It is a measure of the development effort 

brought about by Californian regulations that this technology has only recently 

started to be used in prototype applications. The major disadvantage of the 

batteries used in the Metrolec [30] and other high temperature battery types, 

[31, 32] is that they must be maintained at a temperature of around 300°C. At 

the time at which the Metrolec was built, and the work described here was begun, 

high temperature batteries looked quite promising, however, recently the safety 

and reliability of these battery systems has been questioned.

2.4 Hybrid vehicle engine model.

Engine models vary enormously in complexity and method of operation, due to 

the differing applications for which they are developed. At the most numerically 

intensive end of the spectrum, there are models which simulate combustion by 

modelling the gas flows in the cylinder head and combustion chamber. This 

can then be used as a tool in the design of the cylinder head, camshaft and 

so on. Some of these models use computational fluid dynamics techniques, and 

models of combustion and pollutant formation, to calculate the properties of each 

cell in a mesh that covers the combustion space. Such models are extremely 

numerically expensive, involving varying meshes of upto a million cells and having 

an integration step size of one degree of crankshaft rotation. Simulating three 

hundred degrees of crankshaft revolution takes in the order of days on modern 

supercomputers. See [33] for a description of this approach. There are other less 

numerically expensive methods of flow prediction that were used before computers 

advanced to the stage which made computational fluid dynamics feasible, see
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[34, 35].

Another reason for the development of engine models has been to assist in 

the design of engine controllers. A comprehensive review of the models used 

in this application is given in [36], whilst [37] also includes a discussion of the 

subject. The models described in these references have tended to be used for the 

optimal calibration of engines over driving cycles, a typical requirement being to 

minimise the use of fuel in the presence of pollutant inequality constraints whilst 

maintaining acceptable driveability, [38, 39, 40]. Models used for controller design 

tend to be less numerically intensive than flow and combustion models and are 

often continuous time or discrete time models with between two and ten degrees 
of freedom.

Since the work that was reviewed in [36, 37], emissions regulations have been 

made much stricter so that very different emission control methods have been 

required. Emission control methods using three way catalysts require a degree 

of accuracy in air fuel ratio control that was previously completely unachievable 

and unnecessary. Much of the current engine modelling work has been motivated 
by this need to improve air-fuel ratio control. Inlet manifold wall wetting and 

subsequent fuel evaporation form a complex fuelling dynamic, and there are also 

dynamics in the air flow into the manifold. These effects have been modelled by 

work such as [41, 42]. An alternative low emission engine management strategy is 

lean-burn technology and an example of modelling and control work in this area is 

given in [43]. Another major current engine control problem is idle speed control, 

an example of engine modelling used to design idle speed controllers being found 
in [44].

Recently, the use of turbochargers to give performance improvements has be

come popular. However, turbocharged petrol engines have an inherent lag problem 

and [45] describes modelling and simulation work that attempts to reduce lag to
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improve the engine transient response.

In [46], which describes engine modelling work used in hybrid vehicle mod

elling, the accurate closed loop control of engine torque was felt to be important. 

Since measurement of engine torque on a practical vehicle is very difficult, a dy

namic model of the engine was developed for identification purposes and predicted 

transient responses that compared well with observations. The transients intro

duced by sudden throttle openings had a duration of around 200 ms.

This degree of detail was not considered necessary in the engine model used 

in this work for the reasons given in Section 2.2 and, because the engine used in 

the work reported here uses fuel injection rather than carburetion, which makes 
its transient response quicker.

The engine modelling approach adopted in this work uses static engine maps 

and has previously been used in [47, 48]. Of the vehicle fuel consumption predic

tions given in [47], the least accurate agrees with the official figure for the vehicle 

concerned to within 10%, the next worst being 3%. Similarly accurate results 

have been achieved by vehicle manufacturers using the same approach.

The case for the use of this method for the hybrid vehicle engine model is 

improved because of changes in engine technology since the work reported in [47] 

was carried out. The engine used in [47] had a carburettor, whereas the engine 

which forms the basis for this work had a closed loop fuel injection system. The use 

of feedback fuel injection means that variations in air-fuel ratio between different 

engines are almost eliminated. A possible source of errors in using the map based 

engine model are that the map is obtained at steady state operation but the engine 

undergoes considerable transient operation on fuel economy cycles. In the case 

of the carburettor engine, these transients result in air-fuel ratio variations which 

would not be predicted using the steady state map. The purpose of the closed 

loop fuel injection system is to maintain close control over air-fuel ratio under all
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conditions and, consequently, better results should be expected by the model in 

this work, than that in [47].

The engine torque, Tc and fuel flow rate, ihj are functions of engine speed, u>e 
and throttle angle, 6.

T, =  f(u.,0)  (2.1)

mf =  g(uic,6) (2.2)

The data used to form the static Metro GTi engine maps which represent these 
functions are shown in Figures 2.3 and 2.4.

The data in these maps was obtained by measurements from engines. When 

mapping engines there are often areas in which measurements are not taken be

cause of instability of engine operation or because data is not needed in that 

particular area. In the case of the maps used in this work, the low throttle angle- 

high engine speed area of the map had no data. In order to populate the matrices 

used in the simulation work the data in this area was fitted by eye. This simple 

method of adding data can be justified because, in practice, engines hardly ever 

enter the low load high speed region. When an engine does enter this region, 

the car is usually being slowed down by the brakes and so the small amounts of 

negative torque (known as overrun torque) produced in this area are not impor

tant. Furthermore, in this area of operation, the fuel flow rate is generally very 

low and is zero above a certain engine speed, when the throttle is closed because 

the engine management system chooses not to fire the fuel injectors under these 
conditions.

The engine load axis is expressed in terms of throttle angle. A more conven

tional way of expressing engine load is inlet manifold pressure, which is generally 

preferred because it is independant of the throttle body fitted on the engine and, 

also, is used as input information in some engine management systems. However, 

inlet manifold pressure cannot be easily manipulated as a controlling input be-
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Figure 2.4: Engine fuel map for K-series 1400cc 16 valve engine.
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cause it is a function of engine speed as well as throttle angle. Throttle angle 

can be easily and directly controlled by a simple position controller, and this is 
frequently done in vehicle cruise control systems.

It can be seen that the “origin” of the maps is a throttle angle of zero degrees 

and an engine speed of 1000 r/m in. This condition is intended to represent the 

engine at idle and, as such, is a considerable simplification. At idle, the throttle 

is a few degrees open, and this opening will vary, depending on the idle speed 

demand (idle speeds are higher at low coolant temperatures), additional loads at 

idle (such as power steering, electrical loads, air-conditioning and engine internal 

friction) and will also vary from engine to engine, being dependant upon fine 

mechanical dimensions. Using a notional throttle angle of zero at idle allows an 

evenly spaced vector of throttle angle values to be used in the definition of the 

space over which the engine map is defined and, in practice, the actual idle throttle 

angle could be used as an offset into the throttle angle input value. Also, the idle 

speed is generally lower than the 1000 r/min implied in Figures 2.3 and 2.4 but the 

same arguments apply for the engine speed aspect of the idle condition as for the 

throttle angle. The important aspects of idle in this work are the engine torque 

of zero and the idle fuel consumption, both of which are adequately represented 

by this method.

Interpolation is used to obtain output variables from the maps, taking engine 

throttle angle and engine speed as input variables. These two input variables 

form a model input space which is segmented using vectors of throttle angle, and 

engine speed, and form a grid over which the output variables are defined. Once 

the region of the grid in which the operating point is defined has been determined, 

bilinear interpolation, see [49] is used to obtain an output estimate. A smoother 

method oi interpolation would be given by bicubic interpolation, however, the data 

in the maps was obtained from engine tests and, therefore, contains measurement



noise. Using bicubic interpolation would be inadvisable when there may well be 

very poorly conditioned data for polynomial interpolation, and the improvement in 

accuracy would be negligible when it is borne in mind that considerable variations 

between the full load torque of individual engines, are typically around 5%. The 

data used in the engine model is included in Appendix A.

2.5 Hybrid vehicle traction motor modelling.

The majority of work in the area of electric and hybrid vehicle powertrain mod

elling has used a map of the motor as the motor model. Use of efficiency maps is 

made in [47, 48, 50, 51, 52, 53], and use of torque maps is made in [54, 55], while 

[56] uses a combination of the two types of map. However, [57, 58, 59, 60] use a 

method that considers the physical processes that take place in the motor, though 

only [60] describes the model in any detail. In [60], the work was motivated by 

the desire to be able to predict the motor torque in order to be able to accurately 

control it. Attention was paid to representing the dynamic aspects of the model 

and, when compared with measured values, the results are very encouraging. The 

motor takes about 300 ms to settle after responding to a step change in set point. 

For the reasons set out in Section 2.2, it was decided not to attempt to model the 

dynamic aspects of the motor operation in this work.

Much of the material below is similar to [60] but it differs in that the actions of 

the motor controller are different and the traction batteries appear in the model. 

Also, the regenerative actions of the motor are considered in more detail in this 

work. An excellent general text on DC machines is [61].

The purpose of the traction motor model described below is to predict the 

steady state torque generated by the motor and also the total current that the 

motor draws from the battery. The inputs to the model are a demanded armature 
current and the motor speed.
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The fundamental equations that govern the operation of a DC motor are:

Tg =  km4>(If)Ia (2.3)

E  =  fcm$ ( / / )w m (2.4)

where Tg is the motor gross torque (the torque developed in the armature before 

any mechanical losses), <&(//) is the field flux, which is a non linear function of 

field current, Ia is the armature current, E  is the armature voltage, u>m is the 

motor speed and km is the motor constant. If all the quantities are measured in 

SI units, then km is the same in both equations.

The function $ ( / / )  is non-linear because of magnetic saturation of the mate

rial that makes up the armature and the field cores of the machine. In practice, 

obtaining values for $ ( / / )  is very difficult, and unnecessary, since the term $ ( / / )  

does not appear on its own in Equations 2.3 and 2.4. Conversely, the measure

ment of km<b(Ij) is relatively straightforward, and is done by spinning the motor 

at various speeds whilst applying a field current to the field winding and mea

suring the armature voltage, Va, which is the same as the back EMF, E for zero 

armature current. Using Equation 2.4, the function km<b(Ij) can be obtained. 

This procedure, and various other measurements, were carried out on the motor 

fitted to the Metrolec vehicle and are described in [62]. The function km$(Ij) is 

plotted against If in Figure 2.5.

The motor model in this work is, really, a model of the entire electric powertrain 

and has been developed by considering the circuit formed by the motor, the motor 
controller and the batteries. This circuit is shown in Figure 2.6.

The symbols in Figure 2.6 are explained as follows. The battery voltage and 

internal resistance are V, and R,, and C is a smoothing capacitor. The field and 

armature winding resistances and inductances are represented by R/, Lf, Ra and 

La. The values of these components in the Metrolec are given in Table 2.1. The
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Figure 2.5: km$(I} ) against field current for Metrolec motor.

Figure 2.6: Diagram of the circuit formed by the motor, the motor controller and 
the batteries.

36



Component Value
v. 148.9V
R, 280 mil
c 12.0 mF
Rf 5.93 if
Lf 399 mH
Ra 59 mil
La 0.76 mH

Table 2.1:

back EMF is represented by E. There is a resistance associated with the brushes 

and the commutator which is non-linear, and tends to fall as the current through 

the commutator rises, giving a voltage drop that is roughly constant at around 2 

to 2.5 V, and is represented by Vi,. /„  and If are the currents in the armature and 

field windings of the motor. The functions of the power field effect transistors T l, 
T2 and T3 will be explained below.

The brushed, separately excited, DC machine can be used either as a motor 

or a generator. Motoring action will be considered first.

2 .5 .1  O p e r a t io n  o f  th e  D C  m a c h in e  w h e n  a c t in g  as a  m o 
t o r .

On Metrolec, the input signal for the motor controller comes from a potentiometer 

on the accelerator pedal and is interpreted as armature current demand. At low 

motor speeds (less than around 470 rad/s, about 4500 r/min) the field current is 

set to be the nominal field current of 13.5 A. This field current is controlled by 

the motor controller by applying a pulse width modulated (PW M) signal to the 

gate of T l. T3 is turned off, and the armature current is controlled by PVVM 

applied to the gate of T2 to meet the armature current demand. This is known 

as armature control. In practice, T2 and T3 are banks of transistors since they 

have to switch currents in the order of a few hundred amperes.
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As the motor speed rises, with the field current set at its nominal value, the 

back EMF increases in proportion to the speed. At a certain speed, the back EMF 

and the voltage drops in the rest of the circuit reach the battery voltage. When 

this occurs, a technique called field weakening is used to allow the motor to rotate 

faster. In field weakening, the field current is reduced in order to reduce the back 
EMF, so that the demanded armature current can continue to flow. The motor 

is now being controlled by the field since T2 is on continuously. This technique is 

used until the motor speed reaches its maximum value (6700 r/min) which is set 
to limit sparking in the commutator.

The operation of the circuit for low motor speeds will be considered first. The 

problem is most easily approached by first considering the armature circuit during 

field weakening, when the following equation holds:

Vl — (la + I])Ri + Vb + IaRa + E (2.5)

This can be rearranged equating voltages on either side of the fully on transistor 
T2:

V. ~  (h  +  I/)R. =  Vh +  IaRa +  E ( 2 -6)

During armature control, T2 is used to control the armature current by PWM. 
The armature PWM ratio, aa is given by:

V), +  IaRa +  E
V , - ( I a+ Ij)R , (2.7)

Calculating the motor torque is straightforward using Equation 2.3, in which the 
field current is set to the nominal value, the value of km$(Ij) being obtained from 

/ /  by table look up and linear interpolation. The current drawn by the motor is 
simply the sum of the armature and field currents.

In order to model field weakening operation, the first task is to determine 

whether field weakening is required to meet the armature current demand at the
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current motor speed. The most straightforward way of doing this is to evaluate 

Equation 2.7 with the field current at the nominal value. If the value of aa is 

greater than one, then the motor should be in field weakening. In field weakening 

operation, T2 is on continuously, therefore, Equation 2.5 holds and has to be 

solved for If. Combining Equations 2.5 and 2.4 yields:

I/R . +  km<t>(If)ujm =  V, -  Ia(Ra +  R,) -  Vb (2.8)

which has to be solved for If. Since km$(If) is not analytic, a numerical method 

is used to find the value of field current, involving calculating the value of the 

right hand side and creating a vector of values of the left hand side corresponding 

to the values of If at which the function km${If) has been evaluated. Linear 

interpolation is then used within the vector to obtain a solution to 2.8. Again, 
knowing If allows the motor gross torque and the battery current to be calculated.

2 .5 .2  O p e r a t io n  o f  th e  D C  m a c h in e  w h e n  a c tin g  as a  g e n 
e r a to r .

Pressing the brake pedal on the Metrolec vehicle is interpreted as a demand for 

negative armature current. Since Equation 2.3 holds for both positive and neg

ative values of negative motor torques are generated when negative armature 

currents flow. Negative armature currents will obviously flow when the armature 

voltage exceeds the battery voltage, however, as seen in the previous section, this 

only occurs at high motor speeds. At lower motor speeds a circuit called a step up 

chopper is used to cause negative currents to flow into the battery. This circuit is 

created by T3, which is controlled by pulse width modulation. For regeneration, 

the T2 transistors are turned off, the current path back to the battery being via 

free wheel diodes incorporated in the devices.

When E is high enough for the demanded current to flow back into the battery 

without the use of the step up chopper the operation of the circuit is analogous to
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Figure 2.7: Simplified circuit diagram used in the development of the motor re
generative model.

field weakening, the correct field excitation being applied to cause the demanded 

current to flow. A similar numerical method is used to solve the circuit in this 

case as in the motoring field weakening case.

When the step up chopper is used, a detailed consideration of the actions of 

the T3 transistors is needed. Figure 2.7 is a simplified circuit diagram including 

T3 which is shown as a switch.

The objective of the work described below is to derive a steady state description 

of the motor operation when the step up chopper is used. In order to be useful 

in simulations lasting hundreds of seconds in real time, a detailed model of the 

chopper, whose PWM frequency is 15.6 kHz, would not be appropriate. However, 

the action of the chopper is considered in detail in order to derive a simple steady 

state description.

The state Equations for the armature circuit are as follows. With T3 off and 

the diode conducting:

la
Vc - E -  /„ft, 

La (2.9)

ve = ( V . - V c
V R, ( 2 . 10 )

With T3 off and the diode no longer conducting:

ia =  0 ( 2. 11)

40



( 2 . 12)Vr = V .- V c
R.C

With T3 on Equation 2.12 still holds and:

■, —E — IaRa
*a — r (2.13)

In order to simplify the circuit the approximation Vc =  Ks is made. This can be 
justified as follows. From Equation 2.10, if Vc =  V,:

Ve (2.14)

With the component value for C given in Table 2.1 the most negative value of /„ 

(-200A) would result in a change in Vc of just over IV if it were to flow for one 

PWM period. In practice, the current in C would not flow in the same direction 

for a whole period and, since IV is small when compared with the battery voltage, 
the assumption Vc =  Vs is valid.

In the steady state the current profiles that the armature current follows are 

shown in Figures 2.8 and 2.9. The total steady state current that flows will be the 

integral of the current flowing over one PWM cycle divided by the PWM period. 

T3 is on for a period 6t and off for a period r — 6t. In the case shown in Figure 

2.8, the maximum current flows when E is — V, (this is found by differentiating 

the expression for the current with respect to E). The current which flows is then 

1.58 A, however, because of the action of the chopper only half of this current flows 

into the battery. This means that the case where the current falls to zero can be 
neglected.

In the case where the current does not fall to zero, the contribution to the 

total current flowing from the area beneath the dashed horizontal line in Figure

2.9 is even less (the same procedure as above indicates that, as /„ increases, the 

contribution from this part of the area becomes smaller). The current flowing 

in the armature when the step up chopper is used is dominated by the current
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Figure 2.8: Current profile when /„ Figure 2.9: Current profile when /„
falls to zero. does not fall to zero.

flowing above the dashed horizontal line in Figure 2.9. Effectively, the dashed line 
is at the value /„ . The current flowing for time less than St is flowing in the loop 

formed by the step up chopper, the rest flowing back into the battery. The ratio 

of the gradients is used to determine the amount of the current that flows back 

into the battery and, combining Equations 2.9 and 2.13, the battery current, Ibat, 
is found:

Ibat =  -----y f -^ Ia  (2.15)

The motor gross torque is found using Equation 2.3.

2 .5 .3  M o d e l l in g  th e  m o t o r  m e c h a n ic a l lo s s e s .

The motor gross torque, or the airgap torque, is greater than the actual output 

torque, or the nett torque, Tn, because of mechanical losses. These losses tend 

to be divided into friction losses, such as bearing drag, commutator brush drag 

and aerodynamic drag and “iron losses” , which arise from magnetic hysteresis and 

eddy currents. The report [62] contains an investigation into these losses for the 

Metrolec motor. The upper plot in Figure 2.10 is taken from [62] and shows the 

friction power losses in the motor which are determined by measuring the power 

required to spin the motor at various speeds with no armature or field currents 

flowing. The lower plot converts the data to radians per second and the lost power 

to lost torque, since torques are used in the rest of the modelling.

The friction torque can be represented by a cubic polynomial in the motor
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Figure 2.10: Power and torque lost to friction in the Metrolec motor.

speed. It is interesting to note that, as the speed increases, the friction torque 

decreases. A possible explanation for this unexpected result is that at high motor 

speeds aerodynamic forces cause the commutator brushes to press less firmly on 
the commutator, see [63, 64].

The iron losses in the motor are shown in Figure 2.11 and arise from the mag

netic field caused by the field current. They are therefore measured by spinning 

the motor whilst various different values of field current flow .

In [61] it is stated that the power loss due to hysteresis, Ph, and the power loss 

due to eddy currents, Pc, may be expressed:

Ph =  kkukm9 x(If ) (2.16)

Pe =  k'U2kmQ2(If ) (2.17)

where 0.8 < x <  2.3. The constants of proportionality, k* and jfcs, can be found 

by finding least squares best fits of the following function for all three field current 
values:

P/t =  q2w2 +  QiU> (2.18)
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Figure 2.11: Iron losses in the Metrolec motor.

in which Pfe is the total power of the iron losses and c*i and a2 are again constants. 

Note that the curves in Figure 2.11 have a shape that will fit Equation 2.18 well. 
Combining Equations 2.16, 2.17 and 2.18, gives:

Qi =  kkkm9 x(If ) (2.19)

«2 =  kckm&(Ij) ( 2.20)

By using least squared error fits again, on the values of / / ,  and the corresponding 

values of ou and a 2, estimates for kk, kc and x are found. The intermediate results 

in this process are not particularly good. This is, possibly, due to the small number 

of field current data points that are available. Also, in [62] it is stated that the

instrument that was used to measure the loss powers was not well matched to the

powers it was used to measure, leading to the introduction of experimental errors 

which are unspecified. However, when estimates for the values of kk, kt and x 

are found they can be used to predict the iron losses. Figure 2.12 compares these 
predictions with the measured values.
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Figure 2.12: Comparison of measured iron loss values (shown with crosses) and 
predictions from iron loss modelling (shown with solid lines).

The predictions are very good for Ij =  10A, and acceptable for Ij =  16A. 

For If =  6A the results are rather poor, however, field currents of 6A are only 

generally used at motor speeds above 650 rad/s (about 6300 r/min) and this 
condition occurs very infrequently.

2.6 Hybrid vehicle transmission models.

In general, the subject of transmission modelling has received very little atten

tion, especially when compared to engine modelling. Some modelling work has 

been done for the purposes of controlling automatic shifting, [65] and [66] being 

examples which address the issue of how to change gear using a novel gear chang

ing mechanisms. A more pressing problem has, generally, been the scheduling of 

gear changes which has tended to be achieved either using hydraulic control or 

a mixture of both electronic and hydraulic control. This problem has seen little 

use of modelling work, perhaps due to the very subjective nature of gear change
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timing. Reference [67] considers the problem of controlling a continuously variable 

Perbury transmission to optimise vehicle driveability and emissions in which both 
the “how to shift” and “when to shift” issues are considered.

In this work, it is important that the torque losses in the transmission are 

accurately modelled. Again, this area of transmission modelling has received very 

little attention in the literature. In the case of manual transmissions, the power 

lost in the transmission is very low compared to the power of the engine, so 

the effect is not felt to be particularly important. Also, manual transmissions 

are relatively straightforward and knowing the losses in the transmission has not 

been felt to be useful when there is no obvious method of reducing them by design 

improvements to the unit. Note, that exactly the reverse is true for engines.

Automatic transmissions are known to be relatively inefficient due to the use 

of a torque converter, instead of a clutch, to couple the engine and transmission. 

Improvements in this system have been made by locking up the torque converter 

once the vehicle has reached a certain roadspeed. For the most part, though, poor 

fuel economy and acceleration has been accepted as a necessary consequence of 

the convenience of using an automatic transmission.

The introduction o f zero emissions legislation and carbon dioxide incentives 

has made the issue of transmission efficiency much more important. In an electric 

vehicle, the motor power is frequently less than a third of the power of the petrol 

engine that would normally be installed in the same vehicle, whilst the batteries 

tend to store less than a seventh of the energy that is available from burning 

the fuel stored in a conventional car. This has meant that some measure of 

transmission efficiency is important in the modelling of electric vehicles.

In some cases, the transmission efficiency used in electric vehicle modelling 

work is ignored and, presumably, set at a fixed value of 100%. More commonly, 

the transmission efficiency is set at a fixed value over all operating conditions, ex-
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amples of work taking this approach include [48, 56, 51]. A more refined approach 

is given in [53], in which tables of efficiency value are used and in [47], where an 
efficiency function is used.

The results of two studies that limit their attention to the efficiency of trans

missions are to be found in [68] and [69]. Reference [68] is of particular interest, 

since it includes the results of experiments carried out on a transmission very sim

ilar to the R65 type transmission used in the electric vehicle and the conventional 

vehicle, whose components make up the hypothetical hybrid vehicle on which this 

study is based.

The modelling approach taken in this work could have used raw efficiency 

data, interpolated by some means as a model of the transmission. However, it 

was felt that analysing the results presented in [68] might give some physical 

insight into the efficiency data and would also allow the losses in the transmission 

to be expressed as torques rather than efficiencies. Using torques in this manner 

would be more closely aligned with the philosophy of forward dynamic modelling 
than the use of raw' efficiency data.

The author is very grateful to Leo van Dongen for allowing him to use the 

material first published in [68]. The purpose of the following analysis is to take 

the results presented in [68] and express them in terms of transmission input 

torque, transmission input speed and gear ratio selected. The resulting model can 

then be used for any transmission of the type considered in [68] if the ratios of 

the specific transmission being considered are known.

The ratios that are used in [68], and in the work described here, are defined 
as:

engine speed
gear ratio — — - — ------------------

wheel speed
This means that high values of this ratio indicate low gears (in the sense of first 
gear, second gear, etc).
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In the conclusions to [68], it is stated that the losses in a manual transmission 

consist of losses due to oil churning and bearing and seal drag, and losses that are 

due to friction between gear teeth. A frictional torque will be present between the 

gear teeth in the transmission even at no load since the input shaft has to transmit 

torque to the other shafts (the layshaft and the output shaft) in order to overcome 

the frictional torques that are present at these shafts. However, this torque will 

be very small, compared to any real input shaft torques, and is neglected in the 

next part of the analysis.

Modelling the transmission no load torque loss.

The curves in Figure 2.13, reproduced from [68], show the no load power losses 

in a manual passenger car transmission, and can be approximated by a quadratic 
function of the form:

PL =  k2bj2 +  kl w (2.21)

w'here Pi is the power loss, u> is the transmission input speed, in revolutions per 

minute and k\ and k2 are the coefficients of the quadratic function. Note that 

there is no k0 term, by definition, since this would imply a power loss at zero 

speed. Equation 2.21 can be replaced by:

Ti =  c2 u> +  Ci  (2.22)

where 7) is now the torque loss. Also, ct and c2 are not the same as kt and k2 

because of the non-SI units in which gearbox input speed is expressed, for which 

the author apologises, (rad/s being almost unheard of in the automotive industry).

Estimates of the input power loss at various transmission input speeds and 

gear ratios were obtained by measurements taken from Figure 2.13, and were 

then converted into torques which have been plotted with crosses in Figure 2.14.
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Figure 2.13: No load power losses in manual transmission.

The lines on Figure 2.14 are least squared best fits of functions of the form of 

Equation 2.22, and the coefficients of these lines are, therefore, the values of C\ 

and ci for each gear ratio. In general, the crosses on Figure 2.14 lie close to 

the best fit straight lines. Better fits would obviously have been achieved using 

higher order polynomials, however, since the points for the graphs were obtained 

by taking measurements by hand, the use of more complex functions could not be 
justified.

In order to relate transmission no load torque loss to the gear ratio, it would 

be sensible to relate the coefficients obtained for Equation 2.22 to the gear ratios 

in the transmission. The coefficient values, and ratio values, are given in Table 

2.2, which suggests that the reciprocal of gear ratio might be approximated by a 

linear relationship to the coefficient values.
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Figure 2.14: No load torque losses for manual transmission using data taken from 
Figure 2.11.

gear ratio c2 value (Nm/rpm) ci value (Nm)
13.45 0.127 x 10"3 0.299
7.57 0.151 x 10"3 0.529
5.01 0.238 x 10"3 0.676
3.77 0.248 x 10"3 1.128

Table 2.2:
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Figure 2.16: C2 against reciprocal of gear ratio.
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Figures 2.15 and 2.16 show the values of c\ and c2 plotted against the reciprocal 

of gear ratio. They also include best least squared straight line fits constrained 

to pass through the origin for each set of data, shown by the solid lines. This 

allows the coefficient values to be related to the reciprocal of the gear ratio by 

the gradient of the graph. In the case of Figure 2.15, the fit is really quite good 

and it is obvious that an unconstrained best line fit would pass close to the origin. 

The solid line fit obtained in Figure 2.16 is not as good, and an unconstrained fit, 

shown by the dashed line, actually passes some distance from the origin. However, 

the physical consequence of the gear ratio approaching infinity (and its reciprocal 

approaching zero), is that as the transmission input shaft turns the output shaft 

remains still. It therefore seems reasonable that the term relating lost torque to 

input shaft speed should be zero at this value of gear ratio, since, as the input 

shaft speed increases, the output shaft speed remains zero. From the Figure 2.15 

the following relationship is found:

ci =
3.95

gear ratio 

and using the solid line in Figure 2.16:

1.071 x 10~3 uj
c2 =

(2.23)

(2.24)
gear ratio

A final expression for the lost torque is then obtained by combining Equations 

2.22, 2.23 and 2.24 to get:

T, =  ( 1-071 x l O - W  3.95)

gear ratio

The values that this function predicts are compared with the measured data in 

Figure 2.17, from which it is seen that the predictions of Equation 2.25 agree very 

well with the measured data for the lower three gear ratios. For the ratio of 13.45, 

the reason for the poor agreement is found in Figure 2.16 where the point for c2 

for the this gear ratio does not lie close to the line. Note, that in Figure 2.15 the
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Figure 2.17: Comparison of the measured torque loss values and the values pre
dicted by the torque loss model.

value for ci is close to the line. The no load torque loss model is derived from 

experimental data which has been subsequently measured by hand, and there are 

good physical reasons why the line in Figure 2.16 should pass through the origin. 

The error that was introduced by constraining the line in this way was, therefore, 

felt to be acceptable.

The no load torque loss modelling work has obtained expressions for Cj and 

c2. Some physical insight is gained by noting that ci relates the gear ratio to 

the torque losses in bearings and seals, which will be largely invariant with input 

speed. Also, c2 relates the gear ratio to the torque losses due to oil churning, 

whose power will be proportional to a power of the input speed. Further work 

in this area might be able to relate these values to the internal design of the 
transmission.
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Modelling the gear friction torque loss.

Figure 2.18 shows the measured efficiency characteristics for the manual trans

mission, again reproduced from [68]. The frictional loss in the gear teeth was 

investigated using these plots and the expression derived in the previous section 
for no load torque loss. The output torque Ta can be written:

where rj0 is the overall transmission efficiency, T, is the input torque and gr is 

the gear ratio. An imaginary torque, Tlm, that is equal to the input torque, less

transmission. Any losses between the point at which this imaginary torque acts, 

and the transmission output shaft, should then be due to friction in the gear teeth. 

This allows an estimate of the teeth efficiency, r/(, to be calculated:

Using the transmission efficiency curves in the graphs presented in Figure 2.18, 

it is possible to calculate a transmission output torque, for any input speed and 

torque, and any gear ratio. The torque loss model can then be used with Equation 

2.28 to calculate an estimate for i)t. This calculation was carried out for each gear 

ratio, and each speed, at input torque values taken every 12.5 Nm, from 12.5 

Nm to 87.5 Nm. It was found that the values obtained at 12.5 Nm could not be 

trusted (in one case the value of t)t was greater than unity). This was because 

values of t]0 could not be measured accurately from the graphs due to the shape 

of the curve in this region. Having discarded the points obtained at 12.5 Nm, 84 

points remained at which the value of r]t had been estimated. The average value

(2.26)

the no load lost torque, could be considered to act on the input shaft of the

(2.27)

or:

(2.28)
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Figure 2.18: Manual transmission efficiency.
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for each of the twelve traces was then found, and these averages lay in the range 

0.957 to 0.977, with all but three values lying in the range 0.960 to 0.972. Given 

the nature of the technique used to obtain these values, a result quoted to more 

than two significant figures cannot be justified. A value of 0.96 was chosen as the 

tooth efficiency because of the clustering of the results around this value.

An expression for the output torque of the transmission can then be written:

T0 =  (Ti -  Ti)ri,gr (2.29)

2.7 Vehicle dynamics.

The purpose of modelling the vehicle dynamics is to be able to predict the acceler

ation of the vehicle. Clearly, the forward acceleration of the vehicle will be equal 

to the overall forward force on the vehicle divided by the mass of the vehicle. The 

forward force on the vehicle is equal to the tyre forward force, less the drag forces 

due to tyre rolling resistance and aerodynamic drag. The tyre rolling resistance, 

Frr, is given by:

Frr =  rngcT (2.30)

where cr, the coefficient of tyre rolling resistance, relates the drag force caused 

by the tyre to the vertical load on the tyre. The coefficient of rolling resistance 

is a function of many variables such as tyre inflation pressure, tyre temperature, 

vehicle speed and the nature of the road surface, which are largely impossible to 

model. Generally, acceptable results are obtained without the need to consider 

these effects. Typical values for tyre drag are between 0.015 and 0.020, though 

the Metrolec vehicle had special low rolling resistance tyres that have a cr value 

of about 0.010. The aerodynamic drag is given by the well known equation:

Fae =  -pcjAv2 (2.31)
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where Fac is the force due to aerodynamic drag, p is the density of air, is the 

drag coefficient of the vehicle, A is its frontal area and v is its velocity. The 

acceleration of the vehicle is then:

F] -  F„  -  Fa,
W lef

(2.32)

where mcj is the effective mass of the vehicle and Fj is the forward force in the 

tyre. The effective mass of the vehicle is greater than the actual mass of the 

vehicle, because of the rotational inertias of the engine and the drivetrain.

Considering the conventional vehicle, the acceleration of the engine is obtained 

from the acceleration of the vehicle, v, since the engine and the wheels of the 

vehicle are assumed to be rigidly coupled. The following Equation of motion for 

the engine acceleration can then be written:

T, =  +  Ti
rT (2.33)

where Jc is the engine inertia, v is the vehicle acceleration, gT is the gear ratio as 

defined in Section 2.6, rr is the tyre rolling radius (which is slightly larger than the 

loaded radius) and T, is the transmission input torque. The transmission output 

torque, Ta, can be related to the input torque by:

T0
T ,=

9 r V tr
(2.34)

where Tjtr is an approximate transmission efficiency, used only for the purposes of 

calculating me/, and has a value of 0.96. The transmission output torque passes 

via driveshafts to the wheel and, equating torques at the wheel gives:

rp Jdv  ^  „T0 =  ----- +  r f ri
r.

12.3535)

where Jj is the rotational inertia of the wheels, tyres and driveshafts and /•/ is the 

rolling radius of the tyre. The overall acceleration of the vehicle is then found:

Ft — Frr — F.. = (2.36)
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where m is the mass of the vehicle. Combining Equations 2.33, 2.34, 2.35 and 
2.36 and rearranging gives:

Equation 2.37 is now in the familiar, F =  ma, form in which the force on the

the tyre less the drag forces, and the right hand side is a mass multiplied by the 

vehicle acceleration. The effective mass of the vehicle is then given:

and can be used in Equation 2.32. The additional effective mass of the rotational 

inertias is surprisingly important, amounting to about 250-300 kg in first gear 

which, on a vehicle whose mass is around 1000 kg, is very significant. Equation 

2.38 has been developed around the conventional vehicle, for the hybrid vehicle 

the inertia of the motor would have to be added to that of the engine. If there are 

any gear ratios between the motor and the engine then the motor inertia would 

have to be multiplied by the square of the gear ratio before being added to the 

engine inertia.

2.8 Completed vehicle model.

Figure 2.2 is a schematic diagram of the completed hybrid vehicle model. The 

engine, motor, transmission and vehicle dynamics blocks all implement the models 

described above. The driver and controller blocks are described below. The 

components are all assumed to be rigidly coupled to the wheels of the vehicle 

from which their speeds are derived. It is assumed that the wheels do not slip and 

their speed is derived from the vehicle speed.

In the hybrid vehicle that was initially considered, the motor and the engine 

had very similar maximum speeds (though the engine has an effective minimum

(2.37)

left hand side is the transmission output torque divided by the loaded radius of
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speed of around 1000 r/min while the motor has no minimum speed). The engine 

and the motor both turn at the same speed, their output torques being added 
together at the input to the transmission.

2 .8 .1  C o n tr o lle r  b lo c k .

The controller block is used to interpret the signals from the driver block and 

generate demand signals for the engine and the motor. The signal for the motor 

is demanded armature current and the signal for the engine is demanded throttle 

angle. It is assumed in this work that the engine has an electronic throttle con

troller whose dynamics are sufficiently fast to be neglected. There is, therefore, 

no mechanical link between the accelerator pedal and the engine or the motor. 

The purpose of this thesis is to develop control strategies that can be used in this 
controller.

2 .8 .2  D r iv e r  b lo c k .

The purpose of the driver block is not to model the actions of a human driver 

but, simply, to apply the required pedal values such that the vehicle follows a 

desired speed-time profile. Driver modelling has been done using fuzzy logic, [70], 

and using traditional control theoretic techniques, [71]. Generally, the emphasis 

in this sort of work is in steering control and the effect of the driver on the overall 

directional stability of the vehicle, though [70] includes some consideration of 
speed control.

The driver actions used in this work were implemented using a simple pro

portional plus integral controller which takes, as its input, the error between the 

vehicle speed in m /s and a demanded reference speed in m/s. Originally, the 

driver block was developed around the conventional vehicle and was first used in 

the validation work described in Section 2.9.1. Suitable proportional, and inte-
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gral, gains were found to be 15.0, and 8.0. These gains were decided upon by 

comparing the simulated vehicle speed profiles over drive cycles with real vehicle 

speed responses over drive cycles using human drivers. It was found that the same 

gains could be used in all the different gears, though a different gain was needed to 

implement braking. Braking control was implemented by taking negative values 

from the driver output as meaning zero throttle angle, and multiplying the output 

by a further gain of 120.0 to get the braking torque at the wheel in Nm.

The reference data describing the speed profile that the vehicle has to follow 

also defines which gear should be selected in a manual transmission. This gear is 

then passed to the transmission model.

The integration step size of the simulations carried out using this vehicle model 

was 0.1 second and was determined empirically by conducting simulations during 
the development of the vehicle model.

2 . 8 . 3  R e p r e s e n t in g  th e  a c t io n  o f  th e  c lu tc h .

In a conventional vehicle with a manual transmission, the engine is coupled to the 

transmission input by means of a friction clutch, allowing its speed to differ from 

that of the transmission input at low vehicle speeds and, also, allowing the engine 

to be decoupled when gear selection takes place. The actions of a driver when 

controlling the clutch of a vehicle are extremely difficult to model, the approach 

taken in this work is as follows. When the vehicle is stationary, the throttle 

angle is zero, the engine is at idle and the engine speed and fuel flow rate are 

as described in Section 2.4. To simulate the vehicle moving away from rest the 

following condition is detected. The vehicle speed is lower than the reference 

speed, first gear is selected and the transmission input speed is lower than 1200 

r/m in. Under these circumstances, the engine speed is set to 1200 r/min and 

the throttle angle is taken from the FI controller as usual. When the vehicle
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has accelerated to such a speed that the transmission input speed reaches 1200 

r/min, the engine speed is then set equal to the transmission input speed. When 

the vehicle is slowing down, and the transmission input speed is lower than 1200 
r/min, the engine is declutched and at idle.

The modelling of manual gear changes in performance predictions is extremely 

difficult, since the effectiveness of a gear change is very dependant upon driver 

technique. The approach taken in this work is to instantaneously change the 

gear ratio and this, instantaneously, changes the engine speed. In reality, sudden 

changes in engine speed of this type produce uncomfortable jerks, see [72], but, as 

the function of the simulation is to predict fuel consumption rather than accurately 

simulate transients, this approach is acceptable.

2 .8 .4  D r iv e  c y c le s .

The reference speed profiles, that the vehicle is made to follow by the driver block, 

define the speed of the vehicle and the gear selected over the duration of the cycle. 

The cycles chosen can be arbitrary, however, certain defined emissions and fuel 

consumption test cycles are used regularly. The most important of these, for 

this work, is the European ECE-15 test cycle, part of which is shown in Figure 

2.19. Each of the speed excursions shown in Figure 2.19 is, somewhat incorrectly, 

known as a “hill” , although obviously no gradient is involved. The full ECE-15 

cycle consists of the three hills performed four times.

First gear is, obviously, used to start to ascend each hill, the crosses indicate 

where the cycle specifies that the driver should change from first to second gear, 

and the circle indicates where third gear should be used. The gears are not 

specified for descending the hills, although, third gear should be used until the 

top of the final descent on the third hill.
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Figure 2.19: Speed profile for the first three “hills” of the ECE-15 driving cycle.

2.9 M odel validation.

As stated in Section 2.3.3, an advantage of the use of real vehicles as a base for 

modelling work is that the model predictions can be compared with the perfor

mance of the vehicles. The validation work for each type of vehicle is described 
in the next two sections.

2 .9 .1  P e t r o l  e n g in e  v e h ic le  m o d e l  v a lid a tio n .

Performance evaluation.

An obvious performance figure that is quoted for production vehicles is the 0-60 

mph acceleration time. However, this performance value is strongly affected by the 

way in which the vehicle accelerates from rest and, then, the way in which the gear 

changes are performed, both of which are only modelled approximately for reasons 

explained in Section 2.8.3. Performance prediction using in-gear acceleration times 

is a much better means of investigating the model validity in this case.
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The parameters of the in-gear acceleration simulations are shown in Table 2.3. 

The engine inertia includes the inertia of the flywheel, ancilliaries and transmission 

components that rotate at the speed of the engine. The wheel inertia includes the 

inertia of the wheels and tyres, braking components, driveshafts and CV joints, 

and transmission components that rotate at the same speed as the wheels.

The simulation results, and comparison with the official performance figures 

for the Metro GTi, are shown in Table 2.4. It is seen that the model predicts 

the acceleration times in fourth gear for all the tests, except the fastest one, to 

within an accuracy that is acceptable. The last test result could be inaccurate 

because of inaccuracies in the engine model, since this is the only test that uses 

engine speeds above 5900 r/min (the fastest fifth gear test takes the engine speed 

to 5300 r/min). There is no immediately obvious reason why the results for the 

simulations using fifth gear are consistently too fast by about the same amount. 

Since the overall gearing in the simulation exactly matches the correct value, an 

error could be present in the transmission losses. The gear ratio of fifth gear is 

outside the range of the gear ratios used in the development of the model and, 

also, the transmission model is based on a four speed transmission, rather than a 

five speed transmission as used on the vehicle. The combination of these factors 

could explain why the errors are generally about 3% more negative in fifth gear 
than in fourth gear.

Fuel consumption prediction.

A further validation of the conventional vehicle models is fuel consumption pre

diction over standard drive cycles. This is really a more meaningful validation, 

since it is closer to the purpose for which the models were developed, and exercises 

them over a wide range of conditions. The validation chosen for this purpose was 

the prediction of the fuel consumption of the Metro GTi over the ECE-15 fuel
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Parameter. Value.
Vehicle mass 1021 kg
Engine inertia 0.15 kgm2
Wheel inertia 3.2 kgm2
Tyre coefficient of 
rolling resistance 0.015
Aerodynamic 
drag coefficient 0.36
Frontal area 1.78 m2
Tyre rolling radius 0.259 m
Tyre loaded radius 0.245 m

Table 2.3:

economy cycle. The results of this simulation are shown in Figure 2.20.

The top plot in Figure 2.20 is the vehicle speed over the simulation, the ref

erence speed is shown dotted. The second plot shows the pedal values that the 

PI controller in the driver block applied to cause the vehicle to follow the cycle, 

the positve values are throttle angle, the negative values are the braking torque 

signal before the gain of 120 is applied. The lowest plot shows the engine speed 

and illustrates how the engine speed is held at 1200 r/min until the transmission 

input turns synchronously.

The fuel consumption predicted by this simulation is 32.1 miles per gallon, 

whereas the vehicle achieves 33.4 mpg over the test, a difference of 3.9% between 

simulation and test. In reality, this result is not quite as good as it might at first 

seem, since the engine map used in the model is fully warm, whereas the vehicle 

starts at 20°C in the test. The vehicle will, therefore, run with an air fuel ratio that 

is richer than usual until it is warm. The engine is not fully warm until about 100 

seconds into this test, and recalling that the three hills are performed four times 

in the real test, the effect of using a fully warm map over the entire simulation 

is low. Using a fully warm engine map throughout the simulation should result 

in the fuel consumption prediction being about 2% too low. This is complicated
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Figure 2.20: Simulation variables obtained during conventional vehicle fuel con
sumption validation.
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Speed range 
(mph)

Gear Simulation
time

lest
time

%
difference

30 - 50 4 6.70 7.0 -4.3
40 - 60 4 6.93 7.2 -3.7
50 - 70 4 7.38 7.5 -1.6
60 - 80 4 7.94 8.2 -3.2
70 - 90 4 9.12 9.1 +0.2
80 - 100 4 12.68 11.9 +6.6
30 - 50 5 8.89 9.6 -7.4
40 - 60 5 9.14 9.8 -6.7
50 - 70 5 9.84 10.5 -6.3
60 - 80 5 11.06 12.0 -7.8
70 - 90 5 12.75 13.6 -6.3
80 - 100 5 15.44 16.5 -6.4

Table 2.4:

by the fact that, during cold running the engine tends to produce slightly more 

power due to the low air fuel ratio and this effect is completely unmodelled.

This validation indicates that the models can be used to predict fuel consump

tion to within around 5% over ECE-15, and similar, cycles.

2 .9 . 2  E le c tr ic  v e h ic le  m o d e l  v a lid a t io n .

An electronic instrumentation system was developed to validate the electric ve

hicle models by measuring the intermediate variables such as driveshaft torque, 

motor currents, and so on, as the vehicle was driven. Unfortunately, when the 

instrumentation was completed the vehicle was very unreliable for a considerable 

time and then became unusable due to faults in the high temperature batteries. 

This means that the only performance validation that could be carried out was 

the simulation of some in-gear acceleration tests that were done on a test track, 
whose results are shown in Figure 2.21.

The first gear test seems to indicate reasonable accuracy after the first two 

seconds of simulation. At the time at which the test work was done, the rate of
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Figure 2.21: Comparison of Metrolec acceleration tests and simulations.

change of current was limited by the motor controller software. The maximum ar

mature current of 160A was reached after around 0.5 seconds, additionally, other 

lags, such as the delays involved in causing currents to rise in the motor induc

tances, and the delays of the motor control loops that have not been modelled, 

will tend to make the car slower than the simulation as it moves from rest.

The results obtained in second gear agree well with the test. However, tests 

performed in higher gears, at higher speeds, did not agree as well with the simula

tions. A possible reason for this is that the tests were not performed on a flat track 

(normally acceleration tests are repeated in opposite directions on a reasonably 

flat track). Even very small gradients have a very large effect on the performance 

of an electric vehicle at speeds approaching its maximum speed, therefore errors 

in the high speed tests are to be expected.

The maximum speed of the Metrolec was calculated by plotting the driveshaft 

torque, at the maximum armature current, against road speed on the same plot as 

a plot of the driveshaft torque required to maintain constant roadspeed. The point
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at which the two lines meet is the maximum speed prediction. This technique 

produces a maximum speed estimate of 64.02 mph and, in use, the maximum 

speed of the vehicle was found to be between 65 and 70 mph. The mass used in 

these calculations was 1127 kg, and the tyre coefficient of rolling resistance was 

0.011.

Current consumption tests, leading to battery state of charge predictions, could 

not be carried out due to problems with the vehicle. Such predictions would be 

extremely difficult because the vehicle has electrical loads which are significant, 

but essentially unpredictable, such as battery heaters and coolers and other normal 
vehicle electrical loads, such as windscreen wipers and demisters.

2.10 Conclusions.

This chapter has stated the reasons for the development of the hybrid vehicle 

powertrain models and defined a hypothetical vehicle on which to base the mod

elling studies. This vehicle is based on an existing prototype electric vehicle and 
a production petrol engined car.

Two different approaches to powertrain modelling, forward and reverse dy

namic modelling, are described and it is found that forward dynamic modelling is 

the most appropriate for this application. Models are then developed for a petrol 

engine, an electric motor, a vehicle transmission and the vehicle dynamics. The 

petrol engine model uses static engine maps of torque and fuel flow rate. The 

electric motor model is derived considering the circuit formed by the motor, its 

controller and the batteries of an electric vehicle. The transmission model is de

rived from the numerical analysis of experimental results from transmission tests. 

The vehicle dynamics are modelled by considering the balance of the tractive and 

drag forces on the vehicle and by calculating the total inertia of the vehicle, and 
its rotating inertias.
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Validation exercises are described in which the predictions of the models are 

compared with the performance of the real vehicles. It is seen that a model of a 

production petrol engine vehicle predicts its in-gear accelerations to within 5%, in 

the areas of interest, and the fuel consumption over a defined emissions and fuel 

consumption cycle also to within 5%. A complete validation of the electric vehicle 

models was not possible, howëver, the reliable tests that were done indicated that 

the simulation results modelled the vehicle performance acceptably.

Having developed a set of hybrid vehicle component models the performance 

of a hybrid vehicle cannot yet be simulated, since, this requires a powertrain 

controller, the form of which is currently unspecified. The development of such 
controller is the task of the rest of this thesis.

69



Chapter 3

An initial application of fuzzy 
logic in the control of a hybrid 
vehicle powertrain.

3.1 Introduction.

The role of the powertrain controller in a hybrid vehicle has been described in 

detail in Section 2.2. Previous work in the area of hybrid powertrain control will 

be described and considered in the context of automotive and control engineering 

in the early 1990s. The engineering issues of the specific hybrid vehicle powertrain 

control task addressed in this work are then considered and this leads to a problem 

formulation. It will be seen that fuzzy logic is ideally suited to this problem 

whereas other, more conventional, control methods are less well suited.

The way in which the fuzzy logic is used is then considered in some detail. The 

information that the fuzzy logic relates is defined, and suitable units of measure

ment for the variables used to describe the fuzzy information are obtained. The 

detailed operation of the fuzzy logic is then considered, and the techniques that 

were used in early work in the field of fuzzy control are applied and found to have 

drawbacks. In the light of these drawbacks, the fuzzy implication method, the 

defuzzification method and the set shapes used arc then revised, these revisions
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being justified on philosophical grounds. It is found that, having been justified in 

this manner, the revised methods result in a controller with a lower computational 

burden.

These revisions allow some conclusions about the role of fuzzy logic in control 

engineering to be drawn and these are briefly considered. The results of simulation 

experiments using the fuzzy controllers derived previously are then presented and 

discussed. Some individual results are considered in detail and the general form of 

the overall results obtained is also discussed. The simulation experiments highlight 

some important hybrid vehicle operation points which are not specific to the way 

in which the controller operates and these are described. Some aspects of this 

work have been published elsewhere, see [73].

3.2 A  review of previous work in hybrid vehicle 
powertrain control.

The powertrain controller in a hybrid vehicle is not only fundamental to the 

operation of the vehicle but also, to a large extent, determines how well the 

vehicle performs, in terms of the way in which the vehicle uses energy and its 

driveability. It is, therefore, surprising that relatively little work in the area of 

hybrid vehicle powertrain control has been reported. Possible reasons for this are 

that much of the work reported has used simulation studies and it is possible 

to neglect the powertrain control issues in a simulation study more than in a 

vehicle, where the practical aspects are immediately obvious. Also, as stated 

in the introduction, relatively few prototype hybrid vehicles have been produced 

and the form of the powertrain controllers used is very commercially sensitive 

information. Interestingly, [7] recognised the problems of component control in 

hybrid powertrains almost 90 years ago!
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3 .2 .1  H y b r id  p o w e r tr a in  c o n tr o l s tr a te g ie s  u s in g  o n /o fF  
e n g in e  o p e r a t io n  o r  s im p le  fu n c t io n s  o f  p e d a l v a lu e .

Most of the hybrid vehicle powertrain control studies identify regions in the ve

hicle speed/pedal value space and define control actions for those regions, based 

on considering the efficiency maps of the components and the current controller 

objectives. The work that uses this approach will be described by first consid

ering controllers implemented on vehicles and then controllers that have been 

investigated using computer simulation studies.

Reference [74] describes practical hybrid vehicle controllers for four vehicles. In 

each of these examples the actions taken by the controller are relatively straight

forward. In the first example, applied to a city taxi, the controller uses only the 

electric motor of the vehicle when in towns, but starts the engine outside towns. 

Where the engine power exceeds the instantaneous demands of the vehicle, the 

motor absorbs the power to recharge the batteries. The powertrain is designed 

with a single transmission gear ratio. In another application described in [74], the 

engine is normally used to power the vehicle. However, when the accelerator pedal 

is released, if it is not depressed again within 0.5 seconds, the engine is switched 

off. When the accelerator pedal is pressed again, the electric motor is used. If 

the demands of the driver are not met by the motor, the engine is restarted and 

used to supplement the motor. There are two possible drawbacks to such an ap

proach. The first is that if the engine is not used reasonably frequently then the 

emissions controlling catalyst will cool down and stop converting the pollutants. 

This would have a great effect on the emissions of the vehicle. From the point of 

view of catalyst operation, the engine should either be run continuously or not at 

all. The second problem is restarting the engine. If the engine does not fire imme

diately, unburnt fuel is emmited which would have a disastrous effect on vehicle 

emissions. Also, there is the problem of the driveability effects of restarting the
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engine and controlling its speed to be synchronous with the vehicle speed before 

it can be used. A loss of driveability is, necessarily, implied in the operation of 
this powertrain control strategy.

A third example is a very elegantly constructed hybrid vehicle whose motor 

is on the end of the engine, in the place that would normally be occupied by the 

engine flywheel. Some slight mechanical rearrangement is required because the 

motor, whilst very short, is longer than the thickness of the flywheel. Again, this 

hybrid has a very simple control policy which results in poor driveability, though, 

having a diesel engine, the other disadvantages of on/ofF engine operation are 

lessened, see [75]. The last example reported in [74] is a vehicle adapted from a 

conventional four wheel drive vehicle in which the layout of the drivetrain allows 

the rear wheels of the vehicle to be driven by an electric motor and the front 

wheels to be driven by the petrol engine. No details of the control actions are 
given for this vehicle.

Reference [12] describes five hybrid vehicle concepts and gives details on the 

control strategies used. The first vehicle described uses two motors, an engine, 

a separate flywheel and an epicyclic gearbox. This high component count and 

cost would make the vehicle unlikely to be produced commercially. The control 

strategy that is used is very dependant on the unusual vehicle configuration and 

involves varying the ratio of the gearbox and the speed of the flywheel. The sec

ond example from this work is a delivery van with a very small diesel engine and 

an electric motor in a simple hybrid configuration. Where the diesel engine has 

insufficient power to meet the requirements of the driver, the motor is used, in 

addition, to power the vehicle. The reduction in the battery state of charge caused 

by this motor effort is replaced, to a certain extent, by regenerative braking in 

which the motor is used, as well as the mechanical brakes, to stop the vehicle, 

thereby increasing the charge in the battery. This simple idea achieved consider-
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able improvements in fuel consumption if the range of the vehicle was relatively 

small, about 100 km. The third example involved simulating a passenger car in 

which the engine torque passed through an electric motor before driving a conven

tional transmission. The control strategy used in this case is to make the motor 

assist the engine at high throttle angles but to work against the engine at low 

throttle angles. The reasons for this approach, which would appear to cause very 

poor driveability, are not clear. The other vehicles which are simulated in this 

work are a high performance passenger car and a 10 tonne bus, both of which use 

rather unusual components and have control strategies that specifically make use 
of them.

A very early report on the control of a hybrid vehicle in which the engine 

torque passes through the motor is given in [76]. This vehicle has only a single 
gear ratio in its transmission and uses the motor when the car accelerates from 

rest. When the vehicle speed reaches 20 km/h the engine is started and is used 

to propel the vehicle. The powertrain controller then uses the electric machine 

as a generator for low pedal values and as a motor for high pedal values. Whilst 

the performance of the vehicle in terms of the maximum speeds and accelerations 

was quite comparable to the original Ford Escort estate on which the vehicle was 

based, the part-load driveability must have been worse because of the way in 

which the motor drives the vehicle from rest and acts against the engine at low 
pedal values.

A hybrid powertrain test facility is the subject of references [77] and [78] which 

describe the data acquisition equipment and the low level control actions that are 

required in order to control the powertrain in real time. The control actions 

taken at a higher level on the test bed are described in [79] (discussed below) but, 

disappointingly, the implementation details are not described in the practical work 

reported in [77] and [78]. Reference [80] is also from the same body of work and
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describes the control of a gearbox, engine and motor to allow the transmission on 

the powertrain test facility to be automatically controlled.

Reference [79] describes a simulation study in which a reverse dynamic model 

of a parallel hybrid vehicle is used to investigate the correct control strategy. As 

explained previously, the reverse dynamic modelling approach involves finding the 

torque required in the vehicle driveshaft to meet the speed/acceleration operating 

point of the vehicle. Emissions drive cycles define the gear that should be used 

at each instant in the cycle, but in this work this constraint was relaxed and the 

objective of the work was to determine the values of gear ratio and torque split 

that minimised a cost function:

F  =  X\E\ +  X2E2 (3.1)

where E\ and E? are the amounts of electrical and fuel energy used, and Aj and 

A2 are weights used to influence the relative amounts of energy used. At each 

time instant, the requirements of driveshaft torque and speed are defined and a 

direct search technique in the gear ratio/torque split space is used to determine 

the values of gear ratio and torque split that minimise F. However, this search 

would be very difficult for a vehicle to carry out on an instant-by-instant basis 

so a suboptimal technique is used that could be implemented in real time. This 

technique defines a box in the transmission input torque/engine speed space which 

is in the region of the most efficient operation of the engine. When the operating 

point of the powertrain falls inside the box the engine alone is used. Below the 

minimum torque line the electric motor only is used (and it is implied that the 

engine is switched off). Above the maximum torque line the engine and the motor 

are used together to meet the high torque demand. The speed limits on the box 

are the minimum speed of the engine and a disallowed high speed operation region. 

Where more than one gear can be used, the gear that places the engine nearest 

its most efficient operating point is used.
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One disadvantage of this method is that the box that is used will vary as 

different values of A! and A2 are used, though this in itself is not a large problem 

since any controller will have to vary its policy as its performance requirements 

change. What is more worrying is that the controller switches the engine off and 

this will have poor effects on the emissions performance of the vehicle and also on 

its driveability. A further problem is that there might be frequent changing of the 

gear ratio selected since the method does not seem to have any hysteresis around 

the switching lines. However, the method has the very great advantage of being 

motivated by the desire to look for the optimal control point in the control space.

It should be noted that it was possible to derive this control policy because of 

the vehicle modelling approach it would have been extremely difficult to do this 

using a forward dynamic model because the transmission input torque required 

value is not known. However, the use of reverse dynamic models has resulted in a 

control policy that has aspects that would be difficult to implement on a practical 

vehicle. The extent of of these difficulties could only be determined by a practical 

implementation of the controller.

Reference [81] considers the operating cost of a parallel hybrid vehicle. The 

method of operating the hybrid vehicle is that the engine is not used beneath 

3km/h, above this speed two different control strategies are used, dependant upon 

the battery state of charge. These strategies are defined by considering the power 

split between the engine and the motor. The real difference between these two 

strategies is that, at constant vehicle speeds, for high battery states of charge 

the motor provides all the power, whilst, at low battery states of charge the 

engine provides all the power. During acceleration, the motor and the engine 

work together. The study varies the power split during acceleration, the speed 

threshold that defines when the engine will be used and the capacity of the vehicle 

battery. I he effect that these parameters have on the vehicle operating cost is
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then calculated. Again, these control strategies have the effect of introducing 

sudden bursts of engine use which would cause problems on a practical vehicle.

Another study that is driven by the economics of car ownership is presented 

in [82], in which the powertrain control policy is not a central feature. The details 

that are given of the control policy include on/off engine operation, use of the 

electric motor only at low speeds, sharing of power requirement at high power 

demands and cruising under the power of the heat engine. This powertrain control 

strategy is very similar to a strategy described in [83] and to the other examples.

3 .2 .2  H y b r id  p o w e r tr a in  c o n tr o l  s tr a te g ie s  u s in g  c o n s ta n t  
p o w e r  e n g in e  o p e r a t io n .

Reference [84] describes the control strategy used to control the operation of a 

very small parallel hybrid vehicle. In this work the accelerator pedal is taken 

to be a vehicle speed demand. Knowing the power required to meet the speed 

demand, the engine throttle is set to generate this power from the engine. Power 

for transient operation and for speed regulation on gradients is drawn from the 

electric motor. A serious problem associated with this approach is determining the 

correct power required to meet a given road speed, since the mass of a production 

vehicle in every day use can vary by around 30%, due to varying the number of 

passengers and other loads. The controller used in this work is unusual in that it 

made use of conventional linear control methods to control the speed of the vehicle 

and to provide the correct motor currents. A similar approach is described in [55] 

in which the performance of a variety of types of vehicles, including serial hybrid 

vehicles and buses, are simulated. It is found in this work that the parallel hybrid 

vehicle is upto 40% more efficient than an equivalent serial hybrid vehicle.

The motivating principle of this approach is the low fuel consumption and 

low rate of pollutant production of the heat engine when used at constant power. 

However, by making the control policy so prescriptive, the ratio of use of fuel
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and electric energy cannot be changed and no real account is taken of efficient 

operation of the electric motor.

3 .2 .3  S e r ia l h y b r id  p o w e r tr a in  c o n tr o l s tr a te g ie s .

Reference [85] contains a very theoretical technique to determine the constant 

operating power required of the heat engine in a passenger bus with a serial hybrid 

powertrain. The method is very complex and contains algorithms that are not 

necessarily convergent. It also has the advantages and disadvantages of constant 
power operation.

In [86] a serial hybrid vehicle using a natural gas engine is considered. The 

most efficient way of operating the engine and the generator is established and a 

control policy based on this is used. Since the paper concentrates on the interface 

between the engine, the generator and its associated control electronics, and this 

interface does not exist in a parallel hybrid vehicle, the work is not useful in the 
parallel hybrid vehicle arrangement.

3 .2 .4  D is c u s s io n  o f  p r e v io u s  w o r k .

The major drawback associated with the majority of the previous work is that 

the controllers that were used almost always switched off the engine reasonably 

frequently. This was probably not considered a great problem in previous work 

because the engines used were not fitted with a catalyst, or were diesels which 

do not have such large difference in operation between cold and warm running. 

However, the catalyst in a modern car will cool to a point where it stops converting, 

or “goes out” if the engine is merely left at idle for too long. Clearly, the catalyst 

will not work at all well when the engine is only being used intermittently.

The other major disadvantage associated with these controllers was that they 

did not consider the effects of the control actions on the driveability of the vehicle.
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In the cases where the controllers were developed on real vehicles, the control 

actions have, in some cases, been shown to cause driveability problems. Where 

simulations have been used, the effect of driveability has tended to be ignored. A 

possible reason for this is that the simulations performed to date have tended to 

assume that the torque can be accurately set for any of the components without 

considering the control actions needed to schedule engine or motor torque. If 

there are regions in which the majority of the tractive effort swings rapidly from 

one prime mover to the other over small regions of pedal value, then the throttle 

angles and motor currents will have to change rapidly as the pedal value changes. 

In a practical vehicle, maintaining a smoothly changing output torque could be 

difficult where the components are not well behaved computer models but have 

unmodelled effects that will vary from one unit to the next.

3,3 Problem formulation and contrast with con
ventional control.

Figure 2.1 shows the role of the powertrain controller and it is seen that no aspects 

of feedback control, disturbance rejection or reference tracking are involved. In 

effect, this is not a conventional control application, though clearly, the hybrid 

powertrain is being controlled.

Referring to Figure 2.2 it is seen that the prime movers, whose actions are 

dictated by the powertrain controller, each have a torque output, the engine has a 

fuel flow rate output and the motor has a battery current output. On a production 

vehicle, shaft torques are not measured. This is partly because the measurement 

task is difficult and partly because measuring torques does not provide very much 

useful information on production vehicles. In this work, it is assumed that the 

engine output torque, the motor output torque and the driveshaft torques cannot 

be measured. Conversely, the battery current and the engine fuel flow rate are
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very easily measured.

The controller has, therefore, to provide control actions whose effects cannot 

be completely measured or observed. The actions of the engine vary non-linearly, 

with both speed and throttle angle and this, the lack of observable outputs and the 

essential problem formulation have made the application of conventional control 

methods very rare in hybrid vehicle powertrain control. In the reported cases 

where conventional methods have been applied, they are only used in the low level 

dynamic control actions and are not part of the high level energy management 
strategy that is used.

The lack of applicability of traditional control methods is reflected in the high 

level powertrain control strategies that are used. In the practical examples these 

strategies were probably obtained by using engineering knowledge of the operating 

characteristics of the components. They have a form which is generally expressed 
by simple line diagrams or linguistic statements.

The hybrid powertrain controller could be made to work by the use of maps 

of the engine performance which would relate the generation of torques, the use 

of fuel and the battery current to the controlling inputs. This would allow the 

powertrain controller to choose the best control action at any instant, since, in 

theory, it would be fully aware of all the consequences of its actions. However, 

this would involve the storage of large amounts of data and would not take into 

account variations between individual components and variations due to ageing.

The nature of control strategies described in the previous section reflects the 

understanding of the engineers designing the vehicles. This is borne out by the 

ways in which these strategies are described. This sort of control system design 

approach in which the basic understanding of an engineer is embodied in a con

ceptually straightforward manner which is easily implemented in a vehicle is very 

common in the motor industry. There is no finer example of this than the design

80



of engine management systems, but other examples would include the design of 

transmission controllers and chassis control systems.

The nature of the hybrid vehicle powertrain control problem, past experience in 

hybrid powertrain control and the current working practices of the motor industry 

all indicate that the use of fuzzy logic in this application would be beneficial.

3.4 Application of fuzzy logic to hybrid vehicle 
powertrain control.

The central idea that lies at the origin of fuzzy logic is the usefulness of the vague 

way that humans think. In 1965 Lotfi Zadeh proposed the fuzzy set, [87], which 

was intended to represent the vague ways in which human beings handle concepts, 

particularly quantitative concepts such as “big” , “fast” and “furry” . In [88] and 

[89] the idea is extended to a method of reasoning that makes use of fuzzy sets 

and it is this idea that is the basis of fuzzy logic and fuzzy control.

Readers unfamiliar with fuzzy logic are referred to [90] and [91] for an in

troduction to the subject. For the complete novice [92] provides a very useful 

introduction to fuzzy control and an excellent coverage of a great deal of more 

advanced material.

3 .4 .1  F o r m  o f  t h e  fu z z y  c o n tr o lle r .

Figure 2.2 shows the inputs that the powertrain controller uses and the outputs 

that it will generate. The function of the controller is to relate the demanded 

throttle angle and demanded armature current to the pedal value. The real time 

control of the throttle angle and the armature current are achieved by lower level 

controllers that simply track the values generated by the fuzzy logic.

The fuzzy rules therefore have the following form:

IF pedal value is V THEN throttle angle is 0
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rule base

fuzzification inference defuzzification

Figure 3.1: Fuzzy controller block diagram.

AND armature current is I.

where V, 0  and I are fuzzy sets defined on the pedal value, throttle angle and 

armature current universes of discourse. The rules, therefore, have a one input, 
two output form.

3 .4 .2  In it ia l in fe r e n c e  m e t h o d , d e fu z z ific a tio n  m e t h o d  a n d  
fu z z y  s e t  s h a p e s .

When constructing a fuzzy controller, having determined the information on which 

the controller is to act and the information that is to be generated, the method 

of obtaining the output information from the input information has then to be 
defined.

The processes that are traditionally assumed to go on inside a fuzzy controller 
are shown in Figure 3.1.

The process of fuzzification involves taking a number from the outside world 

and making it fuzzy. Inference, as the term is used here, is the method of obtaining 

the inferred output fuzzy sets from the input fuzzy sets and the fuzzy rules. 

Defuzzification is the process of obtaining a crisp output value (a number) from 
the output fuzzy sets that were inferred by the fuzzy rules.

The first controllers that will be considered use the max-min method of impli

cation in inferring the output fuzzy sets and take the centroid of the fuzzy union
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of the output sets as the defuzzified output value.

The max-min method of implication used in the compositional rule of inference, 

as defined by Zadeh in [89], was used in the early applications of fuzzy logic for 

control. These early studies used a mean of maxima method of defuzzification, in 

which the defuzzified output is the value of the output universe of discourse which 

has the highest grade of membership in the union of the inferred output fuzzy 

sets. Where more than one output has the same maximum grade of membership 

a mean of these values is used. Examples of work using max-min implication and 

mean of maxima defuzzification include [93, 94, 95, 96, 97, 98, 99, 100, 101, 102].

The motivation for the mean of maxima defuzzification method is that it 

chooses the value in which the fuzzy logic most strongly believes. A serious dis

advantage of this method of defuzzification is that it tends to produce output 

values that switch instantaneously between one output value and another value 

elsewhere. The reason for this is that normally, when fuzzy logic is being used, 

more than one rule will have non-zero grades of membership of its input variables 

in its antecedent fuzzy sets. Therefore, more than one output fuzzy set will be 

inferred over the output universe of discourse. As the input variables change, their 

grades of membership in the input fuzzy sets change, and the maximum grades of 

membership of the inferred, corresponding output fuzzy sets change accordingly. 

If, for example, two rules are inferred, then as the input values change, first one 

output fuzzy set and then the other will have the highest grade of membership. 

At the point at which the grades of membership are equal, the output value of the 

fuzzy logic swings immediately between the points with the maximum grade of 

membership of the output fuzzy sets. This discontinuity in the input-output rela

tion of a set of fuzzy rules can be advantageous in applications where an actuator 

is being used which has only discrete output values, see [103], but is otherwise 
undesirable.
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The defuzzification method that will be considered in the following sections is 

the centroid of the union of the output fuzzy sets implied by each of the rules. 

The principle advantage of this defuzzification method over the mean of maxima is 

that the output value of the fuzzy logic varies continuously as the input variables 

change. An early example of this method of defuzzification is [104], after which 

its use grew steadily. It is now used in the majority of fuzzy control applications. 

Reference [105] includes a detailed comparison of the two main defuzzification 

methods, finding the centroid method more advantageous.

Practical implementation.

This section will consider the issues that arise when implementing max-min infer

ence and the centroid defuzzification method in a practical, automotive controller. 

The constraints of automotive control will be borne in mind. This means that the 

controller would have to be implemented on a conventional automotive microcon

troller so that the performance aspects of the code in terms of time and memory 

requirements must be considered, see Section 1.5.

Appendix B .l shows a pseudo-code implementation of max-min inference and 

centroid of the union of the output fuzzy sets defuzzification on a single input, 

single output (SISO) fuzzy controller. The upper loop obtains the grades of mem

bership of the input variable in each of the input fuzzy sets and the two nested 

lower loops simultaneously generate and defuzzify the output fuzzy set. The in

put and output universes of discourse are defined by arrays that have points at all 

values that fuzzy sets are defined to have values. This limits the available fuzzy 

sets to piecewise linear sets, but, since alternative fuzzy set definitions tend to 

use exponents, see [90] and [106] for examples, or polynomials, see [92], [107] and 

[108], which are less easily implemented on real time control hardware, this im

poses no real restriction in automotive control. Generally, functions will produce
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triangular sets trapezoidal sets

Figure 3.2: Four commonly used fuzzy set shapes.

a smoother output surface and in practice, a balance has to be struck between 

smoothness and numerical expense for each individual application. Figure 3.2 

shows three examples of piecewise linear set shapes and one example of smoother 
fuzzy sets.

A modification that would allow the code to use less memory can be made 

if the fuzzy sets used over a particular universe of discourse all have the same 

basic shape. This allows the fuzzy set to be stored only once, but requires the 

use of offsets that define the position of the set in the universe of discourse. This 

procedure is used in [109]. The fuzzy sets (and hence the fuzzy rules) can then 

be stored as a series of offsets. In the case of the SISO controller, two single 

dimensioned arrays would then describe the controller. This modification would, 
however, make the code run slightly more slowly.

Linear interpolation is used within the arrays defining the input fuzzy set to 

obtain the exact grade of membership of an arbitrary input value in the set. Before 

the interpolation can be carried out, the location of the points that bracket the
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input value in the universe of discourse array must be found, in the pseudo-code 

this is represented by the subroutine getind. The array can be searched from one 

end taking an average of n /2  iterations to find the bracketing indices, where n is 

the length of the array. Alternatively, for large arrays the vector can be searched 

using a variant of the subroutine lo ca te  in [49], taking rather less iterations, on 

average log2 n. A further refinement would be to use a search that started from the 

last element used and searched out from that point. This is because, in practice, 

the current value of an input to a fuzzy controller should move relatively slowly 

compared with the sampling interval and is, therefore, strongly correlated with 

the last value. These refinements would be used dependant upon whether the 

particular application justified the additional complexity, bearing in mind that 

each algorithm has overheads that are associated with deciding upon the next 

point for the search. Further discussion of a microprocessor implementation of a 

fuzzy controller is given in [109] and [110].

Having defined the code that will perform the processes of inference and de

fuzzification, it is necessary to define the fuzzy sets that will be used. When 

piecewise linear fuzzy sets are used in reports of practical applications of fuzzy 

control, the sets are generally either triangular, trapezoidal or bell-shaped. An 

important feature that determines the operation of the rules is the overlap be

tween the fuzzy sets and the nature of the fuzzy sets in the region of the overlap. 

It has become common practice to use input fuzzy sets that overlap with their 

nearest as far as the point at which the nearest neighbour has its highest grade of 

membership, see Figure 3.2. The effect of this pattern of overlap for the triangular 

sets and bell-shaped sets, as drawn in Figure 3.2, is that for any value of input 
two rules are normally implied.

Trapezoidal sets, when used as shown in Figure 3.2, have the property that, in 

the region of the plateau, the grade of membership of the set does not vary as the
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input varies. This means that the output sets will not vary and neither, therefore, 

will the output. In control terms, the effect of this is that, for these regions of 

input, controllability is lost. For this reason, unless a deadband is specifically 

desired, trapezoidal sets should be avoided. A more sensible way of maintaining 

the output at the same value, should this be desired, is to have two adjacent rules 
with the same output fuzzy set.

Each of the plots in Figure 3.2 shows lowest and highest fuzzy sets that have 

grades of membership that extend outwards at a value of 1. The highest and lowest 

sets should always extend far enough over the input universe of discourse to cover 

all the values of the input variable that will occur. Where the sets extend at ends 

of the universe of discourse, as shown in Figure 3.2, only one rule will be inferred. 

However, this rule will normally have the effect of, for example, demanding an 

extreme value from an actuator, which would be its maximum or minimum value.

The fuzzy sets that were initially used in the control of the hybrid vehicle 

powertrain are shown in Figures 3.3 and 3.4 together with the linguistic labels 

given to each set. The engine throttle angle can very between 0° and 90° so the 

universe of discourse was defined accordingly. The motor armature current can 

take values from -200 A to 200 A so the demanded armature current universe of 

discourse was defined to cover this range. The above discussion indicates that only 

piece-wise linear, non-trapezoidal sets should be used and accordingly bell-shaped 
sets were used initially.

There are no convenient, meaningful units of pedal value. The physical dis

placement of the pedal could be used, but, this in itself is not a particularly in

tuitive measure of pedal movement. Alternatively, on a hybrid vehicle, the pedal 

value will operate a potentiometer, rather than directly operate the throttle on 

the engine and the voltage on the potentiometer will ultimately be the input to 

the fuzzy controller. Initially, there is nothing very intuitive about the voltage on
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Figure 3.3: Fuzzy sets defined on the throttle angle and pedal value universes of 
discourse.

Figure 3.4: Fuzzy sets defined on the armature current universe of discourse.
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triangular i/p, bell-shaped o/p triangular i/p. triangular o/p

Figure 3.5: Plots of throttle angle against pedal value for an example hybrid 
powertrain fuzzy controller. The plots show the controller responses for different 
shaped input (i/p ) and output (o/p) fuzzy sets.

this potentiometer either.

The units of pedal value that are used are “original degrees of throttle angle” , 

which again, appear to have little immediate validity. The advantage of using this 

measure is that it allows a baseline controller to be defined whose performance is 

then readily compared with other controllers. The baseline controller demands a 

throttle angle equal to the pedal value and demands zero armature current. This 

has the effect of making the vehicle operate as a conventional heat engine vehicle. 

Pedal values from other controllers are then readily and intuitively compared with 
the pedal values for the baseline vehicle.

Figure 3.5 shows a comparison of the controller pedal value-throttle angle 

responses for the controller with the following four rules.

IF pedal =  ZERO THEN throttle =  ZERO AND current = ZERO

IF pedal =  VSML THEN throttle =  VSML AND current =  ZERO

IF pedal =  SML THEN throttle =  MED AND current =  VSMN
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IF pedal =  MED THEN throttle =  LGE AND current =  VSMN 

The triangular sets used in the generation of Figure 3.5 have the same centres 

and degree of overlap as the bell shaped sets shown in Figures 3.3 and 3.4. The 

input set centres are at 0, 6, 12, and 18 and the output set centres are at 0, 6, 18 

and 24. The four plots show clearly how fuzzy logic, when implemented in this 

manner, is really only a method of interpolation between the input and output set 

centres. The variations in the resulting responses indicate the arbitrary nature of 

the interpolation function that results from the use of differently shaped sets. The 

shape of the output sets used has relatively little effect on the controller response, 

when compared with the effect of the shape of the input sets. The bell-shaped 

input sets have the effect of smoothing the response as it passes through the set 
centres at the expense of introducing kinks elsewhere.

When triangular shaped input sets are used, the degree of inference of one 

rule or another changes linearly as the input point moves between the input set 

centres of the rules. Any non-linearities in the controller response are, there

fore, introduced by the defuzzification process. If the centroid of the fuzzy union 

defuzzification method is considered geometrically, for output sets that do not 

overlap, it is readily shown to produce a non-linear output as the input grades of 

membership vary. Furthermore, when the output sets overlap, the form of this 
nonlinearity will change.

The conclusion of the above discussion is that when the max-min method of 

inference is used with the centroid of the fuzzy union of the output sets defuzzi

fication technique, the choice of the set shapes that should be used is somewhat 

arbitrary. Different shaped sets generate different responses, however, the inter- 

polative effects of fuzzy logic remain the same. Since varying the set shapes has no 

global effect on the controller response, improvements in the system performance 

when fuzzy control is used, which are achieved by different set shapes, must be
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due to the localised effects of a system operating in a particular region of the 

control space for extended periods.

When the fuzzy rules have more than one input, as will be the case in sub

sequent sections of this work, the method used to determine the extent to which 

a particular rule is inferred, when max-min inference is used, is to take the min

imum of the grades of membership of the inputs in their respective fuzzy input 

sets as the extent to which the rule is inferred. This means that changes in the 

less significant input do not affect the output of the rule being considered (though 

they may affect the output of other rules). This means that there is a loss of 

controllability for the less significant input for any particular rule, though not 

necessarily for the complete set of rules. A further, well known, consequence of 

taking the minimum is that the output control surface is not smooth, see [111].

3 .4 .3  R e v is e d  in fe r e n c e  m e t h o d , d e fu z z ific a tio n  m e t h o d  
a n d  fu z z y  se t  s h a p e s .

The methods of inference and defuzzification described in the previous section 

are far from the only ones that have been considered for use in fuzzy logic. In 

fact, in [112] 72 different versions of the strongly related implication operator are 

considered, [113] is similar. In addition to the minimum operator, engineering 

applications have generally restricted themselves to one other inference operator, 

the product operator, in which the grades of membership of the inferred output 

fuzzy set are multiplied by the grade of membership of the input in the input 
fuzzy set.

An advantage of this inference method is that the shape of the output fuzzy set 

is maintained. Intuitively, for the fuzzy logic purist, the inferred fuzzy set contains 

the same information as the original fuzzy set, but conveys this information less 

strongly. Comparing the product operator with the minimum operator, since the 

minimum operator changes the shape of the fuzzy set by truncating it, different
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information is contained in the set. Whilst this is a rather conceptual distinction it 

does have a practical implication, if the mean of maxima method of defuzzification 

is to be used, because the output of the logic has to take discrete values.

The most significant advantage of product inference is found when using rules 

with more than one input. In this case, the accepted method of inferring the 

output fuzzy set, for any given rule, is to multiply the grades of membership of 

the input variables in the corresponding input fuzzy sets for that rule, and use the 

value obtained to infer the output set using the product operator. This method 

has the advantage of giving the inputs that have a lower grade of membership 

some influence over the consequences of the rule. This means that, in general, 

controllability will not be lost for the less important inputs and the output surface 

of the fuzzy controller will be smoother.

Another revision to the fuzzy methods outlined above is to use a modified 

defuzzification method in which the area of each inferred fuzzy set is used in the 

defuzzification procedure rather than the area of the union. Again, intuitively, 

there is an advantage in doing this because, in defuzzifying the sets shown in Figure 

3.6, the shaded portion of the diagram will be counted twice, having been inferred 

twice. Additionally, in forming the fuzzy union of output sets, it is possible that a 

small set could be inferred that lay completely within the union of the other fuzzy 

sets. In this case, the information from this set would be lost by simply using the 

centroid of the output set union. This modified method of defuzzification will be 

called the moment of area method of defuzzification and is equivalent to forming 

the union using the summation operator.

This method of defuzzification can be stated mathematically as:
n n

O =  5Z « .a .« ./ a<Q' (3.2)
> = i  ¿ = 1

where O is the output of the defuzzification, there are n rules, o, is the centroid 

of the ¿-th fuzzy output set, a, is the area of the i-th fuzzy output set and a* is



Figure 3.6: Shaded area is counted twice in modified centre of area method of 
defuzzification.

the extent to which the ¿-th rule is inferred. If the output fuzzy sets all have the 

same area, then Equation 3.2 reduces to:
n n

o  =  Q< (3.3)
1=1 1=1

At this point it should be noted that the output of the defuzzification procedure 

is independant of the shape of the output fuzzy sets. If triangular input fuzzy sets 

that extend to the centres of the adjacent fuzzy sets are used, ai will always 

equal 1 and for any inferred rule, i, a, will vary linearly with the input value. The 

defuzzification output value is, therefore, a linearly weighted sum of the output 

set centres and the complete process of inference and defuzzification reduces to 
linear interpolation.

The price paid for the use of triangular input sets is a reduction in the smooth

ness of the controller output as the input passes through the input set centres. 

Figure 3.7 shows the input-output responses of two controllers to two different sets 

of rules. The continuous bell-shaped sets that were used were generated by the use 

of a quadratic polynomial. It is seen that, in this case triangular input sets cause 

the controller to generate more sensible values than continuous bell-shaped sets. 

Both responses for the bell-shaped sets are continuous in both value and deriva-
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Figure 3.7: Comparison of controllers using continuous bell-shaped fuzzy input 
sets and triangular input sets with revised methods of inference and defuzzifica
tion.

tive, but this is achieved by enforcing a gradient of zero at the location of the rule. 

Note, it is impossible for controllers of this form to really closely approximate the 

curve that rule locations define since this would require the interpolation result 

to be influenced by points outside the current interpolation region. This could be 

achieved by the use of fuzzy sets that overlap to a greater extent so that more 

than two rules are inferred at any instant. However, this would interfere with the 

interpolative nature of fuzzy logic and it would not then be possible to guarantee 

that, in general, the input output relationship of a set of rules would pass through 

the points defined by the highest grades of membership of the input and output 

fuzzy sets. From the point of view of product liability this is a considerable dis

advantage. If the fuzzy rules used have weights as suggested in [92], then it is 

possible for the combined rule set to have an output that is manipulated by the 

weights as well as the output set locations. This would allow the input-output 

relation to pass smoothly through the output set centres, at the considerable ex

pense of making the controller very much more difficult to adjust. At this stage, 

the use of such rules was not considered.

The above discussion indicates that, in terms of input-output response, there is
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pedal value in “ original degrees of throttle angle” .

Figure 3.8: Input fuzzy sets used on the pedal value universe of discourse.

no clear advantage or disadvantage in using triangular input fuzzy sets. However, 

the use of triangular input sets allows the complete process of product implica

tion and moment of area defuzzification to be reduced to n-dimensional linear 

interpolation, (where n is the number of inputs), see [114]. This gives these sets a 

very considerable computational advantage in a practical, particularly a real time, 

automotive, application.

Accordingly, the fuzzy input sets for pedal value that were used in the remain

der of the work described in this chapter were the triangular sets shown in Figure 

3.8. As previously stated, the shape of the output sets is immaterial and they are 

most straightforwardly defined as fuzzy singletons. For the throttle angle, these 

sets are located at the peaks in the pedal value fuzzy sets and, for the armature 

current, are located at the peaks of the sets shown in Figure 3.4.

The peaks in the input sets are at 0, 4, 12, 24, 40 and 90. The sets are non- 

linearly distributed in the input space because virtually all the torque from the 

engine being modelled was available at about 40° of throttle angle. This meant
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that small pedal values would be required to drive a conventional vehicle with 

this engine. Since one of the aims of the controller would be to make the vehicle 

feel consistent in use, accurate control in this region was needed. Early simulation 

experiments indicated that around six sets were required to get reasonable control 

of the powertrain and that, in order to get the vehicle model to behave well when 

moving from rest, particular attention had to be paid to very low pedal values.

3.5 Simulation results.

This section describes the results obtained using controllers of the type outlined 

in the previous section in the modelling environment described in the previous 

chapter. The parameters of the vehicle model are as given in Table 2.3, with the 

exception that the vehicle mass used is 1200 kg. There is an additional inertia 

for the hybrid vehicle since the inertia of the motor has to be added to that of 

the engine. The motor inertia used was 0.025 kgm2. For the most part, the sim

ulations were carried out using the European ECE-15 cycle as the vehicle speed 

reference data. Other simulations were carried out using Japanese drive cycles 

for comparison. The simulations continued to use an integration step size of 0.1 

seconds and this was also chosen as the sampling frequency of the hybrid pow

ertrain fuzzy controller. This time was chosen for the sampling interval because 

a practical vehicle controller could easily achieve an update time of 100ms and, 

if the sampling rate were to be reduced, the driver of the vehicle might start to 
notice the sampling interval.

3 .5 .1  B a s e lin e  c o n tr o lle r  v e h ic le  s im u la t io n .

As stated in Section 3.4.2, the units of pedal value, namely “original degrees of 

throttle angle” are chosen because they allow a baseline controller to be defined, 

in which the throttle angle is equal to the pedal value and the armature current is
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zero. The form o f the fuzzy sets used allows any controller to be defined by three

vectors of numbers. The baseline controller can be described by the vector triple:
[0 4 12 24 40 90]
[0 4 12 24 40 90]
[0 0 0 0 0 0]

in which the first vector represents the location in the input universe of discourse 

of the point at which input fuzzy set has a grade of membership of 1, see Figure 

3.8. The second vector represents the locations of the corresponding fuzzy output 

set singletons in the throttle angle universe of discourse and the third vector is the 

corresponding vector for the demanded armature current universe of discourse.

Since the same input sets are always used the controller can be represented
more concisely, using just the output sets, by the vector pair:

[0 4 12 24 40 90]
[0 0 0 0 0 0]

Using vectors to describe the controller removes the linguistic side of fuzzy control, 

however, the vector values soon become as meaningful as the linguistic terms and 
are a much more concise form of notation.

Figure 3.9 shows the values of five variables plotted against time for a sim

ulation of the vehicle using the baseline controller (which causes the vehicle to 

behave as a conventional vehicle) over the ECE-15 drive cycle. The fuel con

sumption achieved by the vehicle over this cycle was 9.09 l/100km or 31.05 mpg. 

The negative values of pedal value shown in the second plot occur where the PI 

controller, that causes the vehicle to follow the reference speed (representing the 

driver of the vehicle in the simulation) applies the brakes to make the vehicle slow 

down. Positive values of pedal value are used as input to the fuzzy controller 

to generate the throttle value and the motor current demand. The action of the 

baseline controller is demonstrated in the third and fifth plots which show the 

throttle angle equal to the positive values of the pedal value and the demanded 

armature current equal to zero.
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Figure 3.9: Parameter values against time for vehicle with baseline controller over 
ECE-15 fuel consumption cycle.
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The fourth plot shows the fuel flow rate against time for the cycle showing the 

base value of the idle fuel flow rate (0.178 g/s), the peaks occurring as the vehicle 

accelerates and the steady flow rates as the vehicle maintains a constant speed.

3 .5 .2  C o n tr o lle r  d e s ig n  p r o c e d u r e .

Having defined the baseline controller, many different controller combinations 

were used. The values of fuel consumption and change in battery state of charge 

obtained using these controllers over ECE-15 are given in Figure 3.11 and in Ap

pendix C. In total around 40 different controller designs were investigated over 4 

different cycles. The controllers were designed by considering the relative amounts 

of engine and motor activity that would cause the vehicle to have a desired fuel 

consumption and battery state of charge depletion. Simulation time histories 

were examined to determine modifications in controller design. Essentially this 

procedure is a fuzzy controller being designed and developed by a system expert. 

Figure 3.10 shows the simulation time histories of a typical controller whose fuzzy 
output sets are defined by the vectors:

[0 4 4 12 24 90]
[0 0 33 99 132 165]

This controller uses the motor to assist the engine in powering the vehicle. Con

sequently, lower throttle angles are used than in the baseline controller, giving 

rise to lower fuel flow rates, and significant demanded armature currents cause 

positive battery currents to flow.

It was noted, in performing these simulations, that the maximum engine speed 

was just over 2600 r/min. The motor operates with low efficiency at low speeds 

such as this. It was, therefore, decided that a gear ratio between the engine and 

the motor, called m2egr, should be introduced. This gear ratio took the values 

1 or 2. If m2egr is 2, the motor turns twice as fast as the engine and its output 

torque is multiplied by two before being added to the engine torque to give the
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Figure 3.10: Parameter values against time for vehicle with a typical fuzzy con
troller over ECE-15 fuel consumption cycle.
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Figure 3.11: Simulation results obtained using different controllers over the 
ECE-15 drive cycle.

transmission input torque.

In general operation, it is desirable to use as little fuel as possible and to deplete 

the battery state of charge as little as possible, therefore, simulation results in the 

top left hand corner of Figure 3.11 are more desirable than results in the bottom 

right hand corner. In order to illustrate the points o f interest arising from the 

simulation experiments, the two different types of results, those in which the 

motor assists the engine and those in which the motor works against the engine, 
are discussed in the next two sections.

3 .5 .3  C o n tr o lle r s  th a t  d e c r e a s e  th e  b a t t e r y  s ta te  o f  c h a r g e .

The results in which the battery state of charge is depleted by the controller 

(results to the left of the baseline result in Figure 3.11) are considered below.

The position of the baseline result with respect to the top left hand corner 

of the plot, would indicate that its performance from the standpoint of energy 

utilisation was the best. The poorer performance of the results to the left of the
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baseline result can be explained by considering the efficiencies of the motor and 

the engine. When the demanded motor armature currents are low, the motor 

efficiency is low because a field current is required which will often be the nominal 

field current of 13.5 A. If the demanded armature current is in the order of a few 

tens of Amps, then the field current makes up a very significant proportion of the 

battery current and consequently the motor draws a high current but generates 

very little torque. This explains why, on the left hand side of the plot, the results 

move away from the baseline result in a direction parallel to the vertical axis, 

indicating a depletion in battery state of charge before a significant reduction in 
fuel consumption is achieved.

A further reason why the overall efficiency of the left hand results is low is that, 

when the motor assists the engine, there is a reduction in the fuel flow rate. Since 

the engine runs continuously, the lowest value that the fuel flow rate would fall 

to is the idle fuel flow rate. The two leftmost results in Figure 3.11 are achieved 

with the engine at idle throughout the cycle and the vehicle using electric energy 

alone for propulsion (in fact the m2egr =  1 result does not actually quite meet 

the demands of the cycle). These electric only results indicate the limitations 

imposed by the continuous operation of the engine. The form of the points shown 

in Figure 3.11 indicates that the combined effect of the field current and the idle 

fuel consumption is to cause a depletion in the battery state of charge that is 

never outweighed by the reduction in the fuel consumption.

Figure 3.11 serves only to qualitatively illustrate the effects of different con

trollers, since an absolute figure of merit for each controller is difficult to obtain 

because the usefulness of any given controller would depend upon the circum

stances under which the vehicle operated. This would include the cost of fuel and 

electricity, the presence of emission regulations, the length of the daily journey 
and so on.
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50

Figure 3.12: Motor efficiency against 
motor speed and output torque.

Figure 3.13: Contour plot of motor ef
ficiency (solid lines) and motor power 
output (dashed lines).

One effect that is clearly indicated in Figure 3.11 is the value of using a motor 
to engine gear ratio of two rather than one. The reason for this is shown in 

Figures 3.12 and 3.13 which show the efficiency of the motor (including losses in 

the batteries) against its speed and output torque. The cascade of contours in 

Figure 3.13 is a result of the efficiency of the motor being calculated and stored 

in an array before the contours were calculated. The contours are close together 

because field weakening prevents the motor from operating in the region to the 

top right of the plot and the efficiency in this area was set at zero. The contours of 

constant power and efficiency in Figure 3.13 indicate that the motor will operate 

much more efficiently at higher speeds than lower ones, an improvement of 25-30% 

being possible for increasing the motor speed by a factor of two.

For any given controller, using m2egr =  2 results in twice as much torque 

going from the motor to the gearbox and this means that smaller pedal values are 

required to meet any given operating point. The smaller pedal values give rise 

to lower armature currents but also lower throttle angles and, therefore, the fuel 
consumption is reduced.

The battery state of charge is better for m2egr =  2 than for m2egr =  1 because
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the system efficiency is a stronger function of motor speed than armature current 

and points of equivalent output power operate at higher efficiencies at higher 
speeds, see Figure 3.13.

The disadvantage of using m2egr =  2 is that at high engine speeds the motor 

could be damaged by exceeding its maximum speed. The main conclusion to be 

drawn from these results is that, since no controller clearly gives better results than 

other controllers giving similar results, the “best” controller will be determined as 

much by the requirements of a particular user as by considerations of the efficient 

operation of the powertrain.

3 .5 .4  C o n tr o lle r s  th a t  in c r e a s e  th e  b a t t e r y  s ta te  o f  c h a r g e .

The results of simulating controllers that increase the state of charge of the battery 
are shown to the right of the baseline result in Figure 3.11.

The results that are close to the baseline value move away from it in a direction 

that is parallel to the fuel consumption axis, indicating that there is an increase in 

fuel consumption before any useful increase in the battery state of charge. Again, 

this is because before any armature current can be made to flow into the battery, a 

field current has to applied by the battery. Where a negative current is demanded 

but a positive current flows, the model of the motor and motor controller assumes 

that the motor controller would not apply any currents, a consequence of which 

is that no torque is generated by the motor.

In contrast to the results which reduce the state of charge of the battery, there 

is no great improvement in the performance of the controllers for m2egr =  2 as 

opposed to m2egr =  1. The reasons for this are shown in Figures 3.14 and 3.15, 

in which it is seen that the contours of constant power, in regeneration, follow the 

contours of constant motor efficiency. Consequently, little advantage is gained by 
the use of higher motor speeds.
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Figure 3.14: Motor efficiency against 
motor speed and output torque for pos
itive armature currents.

Figure 3.15: Contour plot of motor ef
ficiency (solid lines) and motor power 
output (dashed lines) for positive arma
ture currents.

Possibly the most interesting results are the two marked with circles in the 
dotted box in Figure 3.11, in which one result has both very slightly better fuel 

consumption and a considerably better battery state of charge than the other. 

This is one of only two instances of both performance measures improving simul

taneously and the parameter values for the simulation are shown in Figure 3.16. 

The controller whose performance is shown with the solid lines (controller A ) has 

the following output throttle angle and demanded armature current sets:

[0 4 12 24 40 90]
[0 0 -33 -99 0 165]

The other controller, (controller B) is described by the vectors:

[0 12 24 24 40 90]
[0 -33 -66 0 0 165]

The first point to note from Figure 3.16 is that the pedal values required to cause 

the vehicle to follow the reference speed are very different and they are also very 

different from the pedal values required for the baseline vehicle. This implies that 

the vehicles would feel extremely different to drive even though they actually have 

the same ultimate performance. The large difference from the pedal values used
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by the baseline controller would make them unacceptable from this point of view. 

The variation in the required pedal values is caused by the limitation imposed by 

restricting the available output sets to predefined values. The resulting control 

actions cannot then be finely adjusted to give an improved system performance.

Some early simulation experiments were carried out using fuzzy controllers of 

the type discussed in Section 3.4.2. Some of the controllers that were used in these 

experiments resulted in regions in which the controller caused the driveshaft torque 

to fall as the pedal value increased, or even, in extreme cases, generated negative 

driveshaft torques for positive pedal values. A disadvantage of applying fuzzy 

control in the manner described here is that there is no way that the driveability 

of the vehicle can be maintained when hand tuning the controllers.

The reasons for the improved performance of the controller with the solid line 

are also shown in Figure 3.16. On the third hill controller A demands a more 

negative current than controller B and, because the motor is operating relatively 

efficiently at this point, generates a large negative battery current at the expense 

of a small increase in the fuel flow rate. Conversely, on the first hill controller B 

demands a higher armature current but, because the motor is operating relatively 

inefficiently at this stage, has to increase the fuel flow rate a disproportionate 

amount for the improvement in the battery state of charge that is gained. By 

making efficient use of the motor in this way, controller A is able to increase the 

battery state of charge 10% more than controller B whilst using less fuel. In 

the other two points which display a similar improvement in both performance 

measures the improvement occurs for similar reasons.

It should be noted that it was not possible to predict which controllers would 

do well and which would do badly. To some extent, this is due to the effects of 

the fuzzy interpolation method since, occasionally, a controller might happen to 

be very efficient in a region which was used frequently by the cycle. Where the
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cycles have large periods of steady state operation this is particularly likely. A 

further consequence of this is that controllers that did well on one cycle might 

not do well on another, the next section briefly looks at results obtained on other 
cycles.

The main reason why some controllers are very much better than others for 

m2egr =  2 but not for m2egr =  1 is that, as seen in Figure 3.15, motor efficiency is 

much more dependant on motor output torque (and therefore armature current) 

at high motor speeds than at low motor speeds. Since the controllers vary the 

armature current demand, this accounts for the variation in the efficient utilisation 
of the energy resources of the vehicle.

3 .5 .5  O t h e r  r e m a r k s .

In order to investigate whether the performance of the controllers was dependant 

upon the nature of the drive cycle used, the simulations whose results are shown 

in Figure 3.11 were repeated for three Japanese drive cycles also represented by 

straight line speed-time profiles. It was found that, for one of the cycles, the 

same two instances of both performance measures for one controller being an 

improvement over another occurred. For the other two Japanese cycles this did 

not occur because, at the pedal values that demand the correct armature currents 

for the potentially increased efficiency, the motor was not operating at a speed 

at which it has markedly different efficiencies for the different controllers. This 

indicates that different results will be obtained over different drive cycles and also 

that in order to improve the efficiency of the combined powertrain operation it 

might be useful to have a second fuzzy input of powertrain speed. However, if this 

second input were included, the tedious task of hand tuning the controller would 
be further complicated.

Some work was done in which the powertrain controller acted on both positive
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and negative pedal values to allow the vehicle to make use of regenerative braking 

to increase the battery state of charge by using the motor in addition to the 

mechanical brakes. In order to make this work the brake torque had to be brought 

under control as well and so a further fuzzy output, demanded braking torque, was 

created. The creation of this output assumes that in a practical vehicle braking 

torque could be controlled and this is current practice in the automotive industry 

in anti-lock braking systems and slip-reduction or traction control systems. By 

using regenerative action in this way it was possible to improve the battery state 

of charge by around 0.17 Ah/km. The control of the regenerative action o f the 

motor during braking represents an interesting sub-problem, but is less complex 

than the combined operation of the engine and the motor. The regenerative 

operation of the motor during braking could hide some effects of the actions of 

the controllers during accelerations and cruises and, in order to focus attention on 

the engine-motor interaction, regenerative braking is not used in the remainder 

of this work. It should be borne in mind that regenerative braking is the only 

instance of “something for nothing” in the hybrid vehicle because the energy 

regained by regenerative braking would otherwise be lost as heat in the braking 
system of the vehicle.

Finally, a revision was made to the model, in that the actions of a one-way 

clutch on the output to the engine were simulated. Without this clutch, if the 

fuzzy controller demanded 0° throttle angle and positive armature currents at the 

motor, the motor has to supply the power for propelling the vehicle along the road 

and turning the engine. The need for this clutch was realised early in the work 

and the results discussed above were obtained using a vehicle model including a 
one-way clutch.
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3.6 Comments on the role of fuzzy logic in con
trol engineering.

The recent surge in interest in fuzzy control has lead to the production of vari

ous VLSI devices which implement the inference and defuzzification processes in 

analogue parallel hardware, see [115, 116, 117]. Some of the fuzzy hardware was 

developed from digital signal processing devices which are discussed in [118]. The 

use of fuzzy hardware would allow some of the disadvantages described in Section 

3.4.2, particularly the slow operation of the code, to be overcome when the meth

ods described in that section are used. Similarly, some simulation tools now offer 

fuzzy control simulation facilities, see [119]. As has been shown in the previous 

section, no particular disadvantages are attached to a straightforward implemen

tation of fuzzy control that would not require specific hardware or simulation tools 

which will, inevitably, be relatively expensive.

It has been shown in the previous sections that fuzzy logic can really be thought 

of as an interpolation method between fuzzy sets. In fact, this interpolative prop

erty was made use of in [103], when crisp rules for a discrete system where extended 

using fuzzy logic to control a continuous system. This interpolative nature has im

portant consequences when considering commonly held beliefs about fuzzy logic. 

There is no reason why, when used in feedback reference tracking control, a fuzzy 

controller should be robust, unless the rules in the controller have been specifically 

designed to be tolerant to plant variations and sensor noise. Even when account 

has been taken of these factors in the design o f the rule base, the fuzzy approach 

would give no indication of the degree of robustness. Fuzzy control makes use 

of expert understanding, and generally, experts will have a very good qualitative 

understanding of the operation of their system. However, when considering is

sues such as robustness and stability an accurate quantitative knowledge of the 

system is required and, for applications suited to fuzzy control, this knowledge is
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unlikely to be available. These comments apply only to fuzzy control that makes 

use of expert knowledge to design and tune the rule base, they do not apply to 

the various forms of adaptive or learning fuzzy control that are discussed in the 

next chapter.

Once the limitations and advantages of fuzzy control are understood, it is 

sensible to try to define the sorts of control problems that would benefit from 

its application. The most obvious class of problems that would benefit from the 

application of fuzzy control are those for which there are no other control solutions, 

a good example of which is the hybrid powertrain control problem.

A second group of potential fuzzy control problems are problems in which the 

relevant input information is not obvious if conventional control methods are ap

plied. Examining a control problem from the standpoint of a human being, rather 

than a controller, may reveal that relevant control information is obscure and 

clarify its nature. This is borne out by the number of novel, and apparently ideal, 

applications o f fuzzy control that involve the use of new types of sensors. Having 

been identified, and then instrumented, this information can then be used, with 

benefit, in other control methods. A further advantage of fuzzy control is that, in 

some applications, it may generate a hardware controller very quickly and with

out the involvement of a specialist control engineer. This is because fuzzy control 

can be viewed as simply a method of allowing a component specialist to express 

control ideas to a software engineer in a concise manner. Fuzzy logic, when ap

plied in this manner, fosters involvement, team working and shared responsibility, 

which are increasingly important in competitive industrial engineering. It is this 

aspect of fuzzy control that may be its greatest single advantage in commercial 

applications.
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3.7 Conclusions.

This chapter began by reviewing previous work in the area of automotive hybrid 

vehicle powertrain control and found that the control methods adopted were de

veloped largely with the powertrain efficiency in mind. In the simulation studies 

that were reviewed it was felt that some difficulty might be found in implementing 

the work reported in a practical vehicle. In the work that was conducted on vehi

cle prototypes some driveability problems were encountered because of the on-off 

operation of the engine and the motor. In the light of petrol engine emission 

control methods on-off engine operation is no longer feasible and other control 

methods that take this into account should be found.

The powertrain control problem was then considered in detail and it was 

pointed out that the lack of applicability of conventional control methods and 

the tendency of automotive engineers to favour techniques which have a practical 

orientation and make use of their experience makes this problem a good candidate 

for fuzzy control. The exact form of the fuzzy logic controller was then considered 

and it was found that inference methods, defuzzification methods and fuzzy set 

shapes that could be justified by considering the nature of their resulting input- 

output relations could be implemented in compact, fast code that could be used 

in a real-time automotive application.

The results of simulations which used the models described in the second 

chapter and the fuzzy controllers developed in this chapter were then presented 

and discussed. The objectives of the powertrain controller are set out in Section 

2.2. The first requirement, was that the controller should make use of the energy 

resources of the vehicle in the correct ratio. This requirement was partially met. 

In practice, when deciding to use a particular controller, the author had some idea 

of the possible effects of the controller but was unable to make more than vague 

predictions about the relative amounts of fuel or electrical energy that would be
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used.

The second requirement, that the demands of the driver be met in an ener

getically efficient manner was occasionally achieved, though more by luck than 

judgement. It was found that efficient use of the powertrain depended not only 

upon the demanded armature currents and throttle angles, but also on the pow

ertrain speed. It would seem sensible to take account of the speed in the control 

actions, however, hand tuning such a controller would be impractical.

The last requirement, that of ensuring a consistent response to changes in 

pedal value was not met at all. These comparisons of the performance of the con

troller with its requirements indicate that some method of automatically tuning 

the controllers so that they maintain vehicle driveability, use the energy resources 

of the vehicle in the correct ratio and result in efficient operation of the powertrain 

should be used. Also, in use there are variations in the performance of individual 

engines and also variations in the way in which the motor will perform as the bat

tery discharges and it would be desirable for controllers to adapt to these changes 

as they occur. Lastly, different users have widely different patterns of vehicle us

age, and the controller that is correct for one user may well be inappropriate for 
another.

In order to develop a controller that is able to adjust itself to better meet 

its performance requirements, some familiarity with self-organising, adaptive and 

learning fuzzy control methods was felt to be important and, to that end, the next 

chapter reviews work that has been done in this field.
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Chapter 4

Methods of fuzzy controller 
tuning, adaptation and learning.

4.1 Introduction.

The previous chapter described the implementation of a fuzzy controller used in 

the management of a hybrid vehicle powertrain in simulations of a hybrid vehicle 

over drive cycles. This controller was tuned by hand and some representative sim

ulation results have been presented. It was seen that, whilst fuzzy logic provided 

an excellent tool for tackling the control problem, the three requirements of the 

controller were difficult to meet when the controllers were manually tuned. It 

was also pointed out that a more effective controller would include the powertrain 

speed as an input and that, whilst hand-tuning the single input controller had 

been difficult and only partially successful, hand-tuning the two input controller 
would be completely impractical.

These observations motivate the use of some automatic controller modification 

scheme to both assist in the design of the fuzzy controller and to modify it to 

improve its performance in use. This chapter will survey work in the field of 

fuzzy control that addresses the issue of automating the modification of fuzzy 

controllers. This is not intended to be an exhaustive review of this area of work 

as the production of such a document would be an almost never ending task. The
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object of this survey is to cover the major techniques and methods that have been 

used and to discuss their relevance in the control of a hybrid vehicle powertrain.

4 .1 .1  T e r m in o lo g y .

The definitions of the terms used in the title of this chapter have been the subject 

of considerable attention. The large number of different definitions, used to cover 

the same term, was discussed as early as 1977 in [120], which emphasized differ

ences in opinion at a time when the subject of adaptive control (for want of a more 

general term) was not very mature. As recently as 1989, Astrom and Wittenmark, 

[121], still felt that formal definitions were absent and adopted a pragmatic def

inition for adaptive control. It would seem sensible that, when using terms for 

which no universally accepted definition is available, definitions appropriate to the 
context of the discussion at hand should be stated and used.

The term “tuning” , as it is used here, means the adjustment of a controller 

whose basic method of operation has been established (fuzzy, PI, etc.) in order to 

improve its performance in a particular application. The adjustments would be 

necessary because of time invariant and unmodelled uncertainties in the system 

to be controlled. Tuning would, therefore, not include an automated continual 

process of on-line controller modification.

The terms “adaptive” controller and “ learning” controller are more difficult 

to define but, for the purposes of this discussion, would both include controllers 

which are automatically modified in use to improve their performance in spe

cific circumstances for particular applications. The systems being controlled by 

these controllers would have uncertainties which were time variant or non-linear 

structures that would require a different controller in different regions of plant 

operation. As stated previously, attempts have been made to define rigorously 

the terms “adaptive” and “learning” , but none have really gained universal ac-



ceptance. Possibly, a reason for this is that the exact definition of such terms 

is not actually useful. Perhaps, in this case, it is useful to make a distinction 

between them based upon dictionary definitions for adapt: “to adjust (someone 

or something, esp oneself) to different conditions, a new environment, etc.” and 

for learn: “to gain knowledge of (something), to acquire skill in (some art or prac

tice), ... to commit to memory” , see [122]. The main difference between the two 

definitions being that learning involves knowledge acquisition and remembering, 

but adapting really only means changing. The distinction that can, therefore, be 

made between adaptive controllers and learning controllers is that an adaptive 

controller will change its actions from one circumstance to another but, being 

incapable of benefitting from experience, would have to use the same process to 

go back to the first situation. On the other hand a learning controller would make 

use of previous experience to determine, as it moves from one situation to another, 

why the control actions need to be modified. In this way, it is more likely to per

form well in situations which it has not previously encountered. For a detailed 
consideration of this distinction see [123].

When looked at in this manner, tuning could be considered to be a subset of 

adaptation, adaptation a subset of learning and learning a subset of true intelligent 

control, although, given the vagueness with which these terms are understood and 

used, they are clearly fuzzy subsets!

4.2 The Self-Organising Fuzzy Logic Controller.

Early reports on fuzzy control [93, 98, 99, 100] indicated that, having designed a 

fuzzy controller, it was normally necessary to tune it by some means to improve 

the performance of the original controller. This need to modify the controller 

was indicated as early as 1975, by Mamdani and Baaklini, [94], which describes a 

“rule-modification algorithm” .
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Figure 4.1: Structure of the single input single output self organising fuzzy logic 
controller.

The first widely adopted method of automatically modifying a fuzzy controller 

is given by Procyk in [124], the important details of which are summarised in

[102] and [125]. This method will be known as the Self Organising Fuzzy Logic 
Controller (SOFLC).

4 .2 .1  S e lf  O r g a n is in g  F u z z y  L o g ic  C o n tr o lle r  s tr u c tu r e  a n d  
o p e r a t io n .

The structure of the SOFLC, for single-input single-output (SISO) plants is shown 

in Figure 4.1. The fuzzy controller itself is defined to have inputs of plant output 

error, and change in output error, and to generate an incremental output which 

is the change in desired plant controlling input. It operates in discrete time, and 

on discrete universes of discourse, using three gain coefficients which scale the two 

inputs and the output, and which are akin to the gain coefficients in a linear PI 

controller. Using an incremental controller output has the effect of integrating the 

controller input values, making the controller analogous to the linear PI controller.
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In order for a controller to improve its performance, it has to be able to measure 

its current performance to determine if it is improving. The SOFLC designer 

defines a decision table called the performance index and, in doing so, effectively 

defines the closed loop performance that will be obtained from the controller 

and the plant when in use. Since, clearly, the closed loop system cannot have 

instantaneous transients and perfect tracking, the performance table will have to 

incorporate some expectations of the achievable performance of the system. The 

performance table is an instantaneous view of the performance of the system. 

That is to say, if the output is away from the setpoint, but the change in error of 

the output is such that the error is being reduced, the performance table should 

indicate adequate performance. It is, therefore, possible to coarsely define the 

damping, overshoot and so on using this performance measure.

A further feature of the SOFLC is the inverse plant model. In the case of 

SISO plants, this model is simply a number that inverts the “gain” from the plant 

input to the plant output. Having determined the desired plant output from the 

performance measure when particular values of error and change in error occur, 

the inverse plant model can then be used to determine a plant input value that 

should be used for those values of error and change in error. Since the controller 

relates error and change in error to plant input, the effect of the performance 

measure and the inverse model is to suggest “correct” controller output values. 

Should the controller output values differ from the suggested values, the suggested 

values can then form the basis of a controller modification.

The knowledge of the control engineer is also needed in making some assess

ment of the dynamics of the plant. When the controller determines that the cur

rent closed loop system performance is poor, there is a need to relate the control 

actions that caused the current poor performance to the modifications suggested 

by the performance measure and the inverse plant model. Since the plant has
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lags and delays, the control actions that lead to poor performance will have been 

taken some time in the past and should be modified so that, when similar circum

stances are encountered in the future, more appropriate control actions will be 

taken. The method by which this is achieved is termed credit assignment. The 

fuzzy control action that should be modified is determined by a delay (called the 

delay in reward). The delay in reward is the number of samples in the past that 

the most significant incorrect control action is judged to have occurred. Workers 

extending Procyk’s ideas subsequently applied the modifications to more than one 

incorrect control action in the past. The function of the buffer in Figure 4.1 is to 

store the rules upto the delay in reward for later modification.

If the delay in reward is m, T is the sampling time and the current time is nT, 
then the past control action:

e((n -  m)T) —► c((n — m)T) —► u((n -  m)T) (4.1)

should be replaced by the control action:

e((n — m)T) —* c((n — m)T) —> u((n — m)T) +  r(nT) (4.2)

where e(nT) is the plant error, c(nT) is the plant change in error, u(nT) is the 

plant input, r(nT) is the output from the performance index and the inverse plant 

model (known as the reinforcement), and m is the delay in reward. The symbol 

—♦ indicates the process of implication.

The method by which the replacement is effected is by modification of the 

relation matrix. Procyk’s original idea was to use a linguistic statement that would 

effectively remove the incorrect rule from the matrix and insert the new rule using 

fuzzy set operations such as union and intersection. In practice, this involved the 

manipulation of large amounts of data so that instead of modifying the relation 

matrix the fuzzy rules themselves were modified using De Morgan’s Theorem. A
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further saving was achieved by only modifying the rules if a sufficiently different 
rule was created.

4 .2 . 2  A d ju s t in g  t h e  p e r fo r m a n c e  o f  t h e  s e lf-o r g a n is in g  fu z z y  
c o n tr o lle r .

Experimental work performed on the above structure indicated that there are 

some fundamental compromises in this approach to self-organising fuzzy control. 

The overall performance obtained after a period of learning is determined by 

the performance index, the plant and by the gain factors GE, GC and GO. In 

particular, the gain factors are important as the most easily “tunable” parameters 

of the system as a whole.

The effect of the gain parameters is most easily understood in terms of the 

effect that they have on the signals reaching the performance index table. As the 

scale factors GE and GC change, the same values of error and change in error will 

be mapped into different areas of the performance table and will, consequently, 

cause different values of reinforcement to be generated. In turn, this will affect 

the controller modifications to more closely reflect the effect of the scale factors 
on the performance index.

For example, by changing the gain factors the “tolerance band” , as it is known 

in [102], is adjusted in size, relative to the external error signals before GE and GC 

are applied. The tolerance band is the area of the performance index in the region 

of zero error, in which the control actions taken are modest since the plant is in 

the region of the set-point. Outside the tolerance band, the the control outputs 

are chosen such that the error is driven towards zero. Consequently, by changing 

the scale factors, different values of the error before scaling will be mapped into 

the tolerance band. This has the effect of modifying the ability of the controller 

to cause the plant to track a reference point and to approach the reference point 

from areas outside the tolerance band.
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The non-linear nature of the performance table should, effectively, allow the 

gains of the closed loop system to be scheduled in order to achieve a rapid transient 

response and good set-point tracking. However, in many examples of reported 

work which use this basic method of self-organising fuzzy control [102, 126, 127, 

12S, 129, 130, 131] the same compromise occurs. Transient performance and set 

point tracking are traded off against one another in adjusting the gain factors. 

This is possibly due to the fact that simple linear gains where used to map the 

real error variables into the performance index, whereas a non-linear mapping 

might have allowed a more optimal compromise between tracking and response.

Generalising to multivariable SOFLC.

The structure outlined above is easily generalised to multivariable systems by 

the use of an inverse of the Jacobian of the plant model. This is illustrated in 

[102, 124, 126, 127] and also in work presented by Linkens and Hasnain [132].

Additions and extensions.

In addition to the original work, there have been additions and extensions as 

other workers have tried to improve the SOFLC. The important improvements 

are discussed briefly below.

The original work of Procyk was extended by Yamazaki and Sugiyama in 

their PhD theses [105] and [133]. Yamazaki investigated the use of different meth

ods of implication and defuzzification, finding that product implication and the 

fuzzy centroid method of defuzzification have advantages in smoothness of output 

response and ability to make decisions in the absence of complete information. 

Previously, Procyk had used max-min implication and mean of maxima defuzzi

fication. Yamazaki also attempted to optimise the performance of the controlled 

transients. Possibly the most important addition came with the use of the multi
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delay in reward, in which the modifications to the controller are applied to more 

than one rule that was executed in the past. This had the effect of reducing the 
sensitivity of the system to noise.

Sugiyama did further work on the implication method and extended the tech

nique to consider the use of continuous inputs. The PI controller was extended 

by the use of an additional non-fuzzy term to become a PID controller, allowing 

the method to be more convergent for plants of high order. Possibly the most 

interesting feature of the work reported in [133] is the adaptation of the delay 

in reward, and GO scaling factor, as variations in the plant time delay and gain 

occur. These adaptive actions were achieved by the use of higher level fuzzy rules, 

representing the use of human intelligence in observing the state of the system. 

This leads naturally to the subject of hierarchical control with which Sugiyama 
concludes his thesis.

The work of Daley and Gill, reported in [126] and [127], is an application of 

the self-organising fuzzy controller on a plant with considerable complexity. In 

[127] they use a method of switching the scale factors in order to get the benefit 

of good transient performance and also good set point control. This method was 

later adopted by Linkens and Abbod in [130]. Both [127] and [130] report a 

considerable improvement in performance.

In [129] Shao “compiles” the relation matrix to produce a decision table or 

map. The map is then adjusted in order to avoid recomputing the entire relation 

matrix. The purpose of this extension is to facilitate easier implementation in 

hardware. Further, in order to improve the set point control, the error signals 

pass through a non-linear process to give the system more sensitivity for low 
values of error.

Farbrother, Stacey and Sutton and Sutton and Jess report the use of over-rules 

in [131] and [134], which assist in the convergence of the controller and, whilst in
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[134] they are expressed in terms of the specific problem, they are generically ap

plicable. One of these over-rules enforces the generation of a symmetric controller, 

allowing the controller to converge more quickly. Sutton and Jess also made use 
of the continuous variables proposed in [133].

4 .2 .3  C o m m e n t s  o n  th e  s e lf -o r g a n is in g  fu z z y  lo g ic  c o n 
tr o lle r .

SOFLC in feedback control.

The SOFLC is now a well understood control method and, as has been seen above, 

has been the subject of considerable development. Furthermore, SOFLC has now 

been used in hardware, [128, 129, 130, 135], demonstrating its value in practical 

situations. The high numerical burden of SOFLC has caused some problems and, 

in one case, use was made of transputers in order to obtain sufficient processing 

speed for a real time application, see [130].

A considerable disadvantage of the SOFLC is that it only operates on error 

signals rather than absolute signals and, therefore, is unable to distinguish between 

one region of the plant operating space and another. When operating around a 

particular set-point, it has been shown, see [133], that the SOFLC will adapt 

to the non-linear features of the plant operation in the region of the set-point. 

However, if the set-point is changed, then the SOFLC will have to adapt again in 

the new region of operation. Additionally, if the plant is returned to a set-point 

that has been previously used, the same process of adaptation must be undergone 

before the control performance previously achieved can be obtained once more. 

This reveals the adaptive rather than learning nature of the SOFLC.
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SOFLC in the management of a hybrid vehicle powertrain.

SOFLC is not readily applied to the control of a hybrid vehicle powertrain as it 

is considered here, because hybrid powertrain control does not belong to the class 

of feedback control problems. In this respect, SOFLC is no more applicable than 

conventional linear control methods. It is possible that it might find application 

in the lower level control actions in a hybrid powertrain, or, in other feedback 

control applications in the automotive industry. Unfortunately, the numerical 

burden and memory requirements of SOFLC, see [92], would be very prohibitive 

in any automotive application. In this respect, the work by Shao, [129], in which 

the compiled decision table, rather than the relation matrix, is modified, achieving 

savings in the amount of memory and numerical expense of the method, is useful.

4.3 Adaptive and learning indirect fuzzy control 
using model inversion.

In this method of fuzzy adaptive or learning control the controller carries out a 

process of identification on the system to be controlled. The identified model is 

then used to control the system. This approach is described by Harris with co

workers Moore, Brown and Fraser [92, 136, 137], Graham and Newell [138], and 
Togia and Wang [139, 140].

In the work presented in [136] the comparison is drawn between fuzzy and 

linear methods of adaptive control. The adaptive fuzzy control method described 

in Section 4.2 is said to be analogous to the model reference adaptive controller 

as found in [121] whilst the indirect method, see [136], described in this section 

is analogous to the self-tuning regulator from the same text. The term indirect 

is used because it makes use of a model which is separately identified and then 

used to adapt the controller. Having obtained a plant model, this model can then 

be causally inverted and used in the control of the plant. Two methods of fuzzy



model causal inversion are explained in the following sections which are based on 

[136] and adopt the notation used in that paper.

4 .3 .1  R e la t io n  m a t r ix  c a u s a lity  in v ersio n  in  c lo se d  lo o p  
a d a p t iv e  c o n tr o l .

Relation matrix causality inversion.

An n-dimensional relation matrix is used to relate n variables which range over 

n discrete universes of discourse. Each dimension of the relation matrix will 

have a length where /, is the number of discrete elements in the i-th universe 

of discourse. Each location in the relation matrix, therefore, corresponds to a 

particular combination of variable values. The number stored at each location is 

the grade of membership of the information represented by the location in the 
n-dimensional fuzzy relation that the relation matrix represents.

When using the relation matrix, n — 1 fuzzy sets representing the input in

formation are combined with the relation matrix using the compositional rule of 

inference. This generates a fuzzy output set which can then be defuzzified to 

generate the output information.

The relation matrix is simply an n-dimensional matrix of numbers, relating 

n universes of discourse with no specific dimension having any particular signif

icance. This means that, no matter what physical causal relationship exists in 

the data from the system being identified, the relation matrix can be used in any 

direction. If the relation matrix representing the input-output relation of some 

system is known, then it can be used to infer the value of the input which would 

cause a given output to occur, even if the data in the matrix were obtained by 

applying input values and measuring output values. Put more simply, given an 

output variable value, the relation matrix can generate the input variable value re

quired to cause the output to occur. This is known as relation causality inversion
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Figure 4.2: Relation causality inversion by prediction.

and takes place by simply reading the matrix in different directions.

When taking this view, the relation matrix can be thought of as an autoasso- 

ciative memory [136, 92], or fuzzy associative memory [141].

If the relation matrix is stored in such a manner that makes causality inver

sion by this method difficult, an alternative method of inversion, called causality 

inversion by prediction, see [136, 138], can be used and is shown diagrammati- 

cally in Figure 4.2. In this case, the relation matrix relates an output derivative 

to an input value. Using other information, see below, the controller is able to 

determine a desired output derivative and requires the input value which causes 

the output to have the desired derivative. This is accomplished by the controller 

guessing a few input values and using interpolation, or extrapolation, from those 

guesses to get the value of input that causes the desired value of output to occur. 

Clearly, for this method of causality inversion, the plant model need not be a 

fuzzy relation matrix and any method of identification (be it fuzzy or not) can be 

used. However, given the nature of the method, a technique which is reasonably 
numerically inexpensive would be sensible.
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Figure 4.3: Closed loop controller and desired closed loop performance.

The use of causality inversion in closed loop control.

Figure 4.3 shows a plant being controlled by a fuzzy controller and, also, the 

desired closed loop response of the controlled system. The capital letters refer to 

fuzzy relations embodied as relation matrices. In this case, the description uses 

discrete time with sampling time T. The following analysis is, again, taken from

[92, 136]. For the plant itself, the following fuzzy relation holds:

Y{t  +  T) =  G o {U(t) x F(<)} (4.3)

The o operator denotes the compositional rule of inference.The fuzzy relation 
expressing the controller is as follows:

U(t) =  C o {D{t) x Y(t)}  (4.4)

The desired closed loop performance relation is expressed as:

Y(t +  T) =  P o { D ( t ) x Y ( t ) }  (4.5)

The combined effect of the controller and the plant may be written:

Y(t + T) = Go { Y{ t )  x Co { D( t )  x K(i)}} (4.6)

Combining Equations 4.5 and 4.6 gives:

P o {£>(*) x Y(t)}  = G o {Y(t) x C o  {D(t)  x K(<)}} (4.7)
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from which the controller relation matrix is obtained:

C  o { D(t) x T(i)} =  G~l o {F(i) x P  o {D(t) x T(<)}} (4.8)

It can therefore be seen that the controller relation matrix is obtained from the 

inversion of the identified system model and the closed loop performance descrip
tion.

The advantages of this method are, firstly, the controller contains a description 

of the system and the required closed loop performance in forms which are easily 

understood. Secondly, the controller formed by this method uses absolute values 

of input and output and will, therefore, behave differently in regions of the space 

where the system behaves differently. Controllers that use error signals have no 

indication of the region in the control space in which they are operating and so 

have to adapt, losing information as the system moves from one region to another. 

The crucial advantage of using absolute signals is that the controller becomes, to 

a certain extent, a learning controller. Obviously, the controller cannot “learn” 

about things for which it has no information, for example, variables which are not 

seen, formally, as plant inputs but which have an effect on the plant operation. The 

advantage of a learning approach over an adaptive approach will vary depending 

upon the situation, but, the comparison of the SOFLC and the relation causality 

inversion controller serves to illustrate the difference.

A drawback to the causality inversion approach is the computational expense 

of performing on-line identification of the relation matrix, inverting it and then 

combining it with the performance index for every time step in real-time. Also, 

the relation matrix has to store information for the entire control space but the 

SOFLC only stores information for the region in which the controller is currently 

operating. In order to obtain the same control performance in the region of a 

particular set-point, the relation matrix will have to store much more information 
than the SOFLC for the same degree of non-linearity.
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4 .3 .2  R e la t e d  W o r k .

Similarities to the approach outlined above can be found in other reports. In [106], 

Batur and Kasparian use an adaptive fuzzy technique that uses a model of the 

process which is not actually inverted but which predicts the next error value of the 

process using the current controller and the process model. If the controller has 

confidence in the model predictions, but finds that the predicted error is not small 

enough, then the controller is modified. This method departs from those outlined 

above, since the process model is not then used to determine the correct controller 

modification which is carried out by means of varying the membership values of 

the output fuzzy sets. The method of process identification is also different from 

that used in [136], using coefficients to relate the current output to past values of 

output and input, the coefficients being adjusted by means of a least square fit.

In [138], Graham and Newell describe adaptive control of a first order process 

which uses two methods of fuzzy process identification. The first method is as 

defined by Pedrycz [142], and uses the relation matrix in almost exactly the same 

way as in [136], with the addition of a confidence in relation matrix modification 

that can be used to determine whether modifications should take place. The 

second method is a rule-based method, developed by Tong, in which the rules are 

either introduced, if no similar rule exists, or modified, if a similar rule is present. 

The adaptive control method that is used simultaneously identifies and controls 

the process. The process is controlled by making use of the model in a similar way 

to that used in [136]. Successive input values are tried on the model and the one 

that results in the smallest subsequent process output error is chosen and applied.

Jager, Verbruggen, Bruijin and Krijgsman report, in [143], the use of an expert 

system that controls a process using feedback on the error between the reference 

signal, and the output signal and the change in error. A line in the phase plane 

formed by the error, and change in error, is drawn between the current plant
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position and the origin (the origin being the desired next position of the process). 

A line is also drawn through the last position of the process and the current 

position of the process representing a prediction of the process behaviour. Clearly, 

the process should move along the line towards the origin and two lines are drawn 

either side of the line towards the origin indicating the fastest and slowest tolerable 

movements toward the origin. Control actions are then considered which move 
the predicted process behaviour within the tolerable band.

4 .3 .3  F u z z y  s y s t e m  id e n tific a tio n .

The method of fuzzy control described above requires a relation matrix model 

of the system if relation matrix inversion is to be performed by an associative 

memory method. A means has, therefore, to be found of obtaining this relation 

matrix for the system being controlled. In [136], the fuzzy union of the current 

system relation matrix and fuzzy sets centred on the values of the current data 

is formed at each instant to give a new system relation matrix. This allows the 

matrix to acquire new information provided that this information lies “outside” 
the information learnt so far.

Clearly, if the current data is already contained in the relation matrix, then 

the relation matrix will not be modified by the formation of the union. However, 

if the data in the relation matrix is no longer correct because the system being 

identified is changing, then taking the union will not remove the old, incorrect, 

information. In order to do this, at each stage, the relation matrix is multiplied 

by a forgetting factor causing all the old information to be reduced in importance. 

A disadvantage of this technique for system identification is that, if the system 

does not enter a certain region of operation very frequently, then that area of the 

relation matrix can become entirely forgotten. There are methods that are used 

to prevent this from occurring, details of which are given by Brown, Fraser, Harris
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and Moore in [137].

Other work on relation matrix identification and control has been done by 

Pedrycz [142], and by Czogala and Pedrycz [144, 145], in which the concepts of 
quality and optimality were considered. Xu and Lu, [146], developed an iterative 

method in which referential sets are used to produce an optimal model.

Other methods of fuzzy identification that do not involve manipulation of the 

relation matrix have also been considered. Takagi and Sugeno [147], demonstrate 

a method of fuzzy identification in which the rules infer a function that links the 

output variable to the input variable, rather than inferring the output variable 

itself. This work is significant in that it not only defines a further identification 

method, but also a new form for fuzzy rules. Kandel [148], develops fuzzy differ

ential equations and uses them to describe fuzzy systems. In [149], Shen, Ding 

and Mukaidono use a set of fuzzy rules to describe the system being identified. 

The method of fuzzy identification modifies either the input sets, the output sets 

or the fuzzy rules themselves, dependant upon the error in the model prediction. 

These other techniques and methods that do not involve the relation matrix could 

be used for inversion by prediction, along with many other general identification 
methods.'

4 .3 .4  A p p lic a t io n  o f  th e  in v e rse  c a u s a lity  r e la tio n  m a t r ix  
m e t h o d  to  th e  m a n a g e m e n t  o f  h y b rid  v e h ic le  p o w 
e r tr a in s .

As stated above, this method of control is numerically expensive which will tend 

to make its use unattractive in automotive applications. It is also a closed loop 

setpoint control technique which, again, makes it difficult to apply, in hybrid 

vehicle powertrain control, for the reasons given in Section 4.2.3. However, an 

extremely attractive aspect of this method is the modularity that is inherent in 
its approach.
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throttle angle

Figure 4.4: Fuzzy relation matrix showing those values of armature current and 
throttle angle that develop the same combined output torque.

throttle angle

Figure 4.5: Fuzzy relation matrix showing those values of armature current and 
throttle angle that meet some combined energy use objective.

Q .

throttle angle

Figure 4.6. Intersection of torque and energy use objectives.
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Figure 4.4 shows two dimensions (or one layer) of a three dimensional fuzzy 

relation matrix. The third dimension is transmission input torque (combined 

engine and motor output torque) which can be imagined to be constant over the 

layer shown. The complete three dimensional relation matrix would be composed 

of layers similar to Figure 4.4 vertically above one another, each corresponding to 

a different transmission input torque, giving a vertical axis of transmission input 

torque. Clearly, in this case, grade of membership would be stored in each location 

and could not be visually interpreted, as this would require a fourth dimension. 

The “hill” in the grade of membership shows those values of armature current and 

throttle angle that produce the value of torque that corresponds to this layer of 
the relation matrix.

There is at least one other dimension to the fuzzy relation describing the hybrid 

powertrain, since the relation matrix described above represents the powertrain 

at a particular engine speed. In order to completely represent the powertrain, a 

further dimension along which engine speed varies, would be required. This would 

result, effectively, in a vector of relation matrices such as the one described in the 
previous paragraph, each one obtained at a different engine speed.

Figure 4.5 shows a layer from a similar relation matrix to that shown in Figure

4.4 but, in this case, the vertical axis, that is not shown, is some control objective 

that can be varied. This control objective relates the relative amounts of throttle 

and armature current, and, therefore, the relative amounts of fuel and electrical 

energy that are used. For example, at low battery states of charge the controller 

might chose to apply regenerative currents. This would manifest itself by the 

controller picking a value for the objective axis that caused a bias, in the shape 

of the grade o f membership ridge, towards negative armature currents and large 

throttle angles. The appropriate control action would then be represented by 

the fuzzy intersection of the relation matrix for the correct torque value and the

133



objective value, with the pedal value now demanding transmission input torque. 
This intersection would be as shown in Figure 4.6.

This approach is similar to that taken by Bellman and Zadeh in [150], in 

which the constraints and goals of an optimisation procedure are described by 

fuzzy sets and the solution that best meets the optimal requirements is given by 

the intersection of the fuzzy goals and constraints.

If the powertrain elements are assumed to be unchanging, an invariant 4- 

dimensional relation matrix, obtained by measurements, can be used to predict 

transmission input torque. Alternatively, if some means can be found of measuring 

or observing transmission input torque, then the relation matrix predicting this 
quantity can be identified on-line.

Clearly, the idea outlined above has a number of difficulties to overcome, in

cluding the numerical expense of the method, the amount of data to be stored 

and the dimensionality of the problem. If each of the two 4-dimensional relation 

matrices is defined on a 10x10x10x10 grid, and each number can be stored using 

one 8-bit byte, just under 20kbytes will be required to store the relation matrices. 

This is about one order of magnitude higher than the amount of memory which is 

generally taken up by the data for current automotive control applications. If the 

number of indices goes up to 15x15x15x15, the amount of memory goes up to 

about 50k. Also, the program would need, in automotive terms, a fair amount of 

“scratchpad” , in order to perform implication using the current powertrain speed 

value, current controller objective and required transmission input torque, and 

then defuzzify the result onto two universes of discourse. A further drawback 

to this procedure is that most of the memory that is apparently needed by the 

associative memory would be unused, since as illustrated in Figures 4.4, 4.5 and 

4.6, relation matrices are very sparse.

The practical side of the problem would be considerably worsened by attempt-
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ing to identify the engine and motor on-line as this would require random access 

memory, having a far higher cost than either a masked permanent memory or 
a one time program memory. Also, computationally, the control problem would 
become very much harder.

In the light of the problems outlined above, this method would be unlikely to 

be adopted for practical hybrid powertrain control. However, the development of 

genuine multidimensional associative memories might make the approach feasible, 

if the devices were produced at reasonable cost and were capable of meeting an 

automotive temperature specification. The development of such devices would be 

a considerable breakthrough, since the above manipulation of relation matrices 

indicates the general applicability of the associative memory concept.

4.4 Neurofuzzy control.

The actions of human beings in performing tasks such as control and decision 

making were the inspiration for the development of fuzzy logic. One of the early 

objectives of fuzzy control was to replicate the conscious, reasoned actions of 

humans when performing control tasks such as driving and chemical plant control. 

The linguistic form of fuzzy rules makes this obvious. Over a similar time period, 

the parallel science of neural networks has been developed, in which the original 

objective of the network was to model the instinctive, subconscious acts of humans 

such as recognition of faces and limb movement.

In fuzzy logic, the central concept of the fuzzy set and the methods of ap

proximate reasoning formed the framework of the decision making environment, 

the link with human beings being purely conceptual. In the case of neural net

works, the form of the network was inspired by observations of the structure of 

the human brain, making the link with biology more direct. However, ultimately, 

both fuzzy logic and neural networks simply relate an input space to an output
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space in a non-linear way (recursive neural networks could be thought of as an 

exception to this, since the output side of the network is fed back into the input 

side of the network, but the mapping between the input and the output is still 
simply a non-linear mapping).

Under some circumstances, certain classes of fuzzy logic rule bases and neu

ral networks can be shown to be equivalent, see [151], and the close relationship 

between the two forms of network is exploited by Nie and Linkens, in [152], and 

Chien and Teng, in [153]. Two more examples of the application of neural meth

ods in fuzzy networks are considered in some detail below. The chief attraction 

of combining neural networks and fuzzy logic is that a network whose topology 

combines aspects of neural networks and fuzzy logic can be initialised using fuzzy 

rules, to have some basic capability, and then subsequently trained using training 
techniques developed for neural networks.

Comments on the applicability of these controller modification methods will 
be made at the end of this section.

4 .4 .1  N e u r o fu z z y  c o n tr o l u s in g  th e  C M A C .

The Cerebellar Model Articulation Controller (CMAC) was first suggested by 

Albus [154, 155], in 1975, as a neural network topology that was suitable for con
trolling the joints in a robotic manipulator. One of its most attractive properties 

is that the network globalises locally, which has two advantages. Firstly, similar 

inputs produce similar outputs, and secondly, training the network is relatively 

straightforward. For any particular input, only part of the network is used because 

of the localisation, therefore, only those output weights being used in that par

ticular region of the input space need to be adjusted. In other neural topologies 

such as the multi-layer perceptron, the parameters that are used in computing 

the output value for any input, are not localised. Therefore, adjusting the output
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weights for a better output match for a particular input will affect the output 

match for other inputs and, as a consequence, training is rather slow. The radial 

basis function neural network is very similar to the CMAC and is often used in a 

similar way in neurofuzzy control and identification, see [156].

Another attractive feature of the CMAC is the compact way in which the 

weights are stored. By the use of a generalisation factor p, and a pseudo-random 

hashing technique, the computational cost of an n-dimensional network does not 

increase exponentially with the dimension, but only linearly. Each input in a 

discrete CMAC is mapped, by means of the CMAC mapping algorithm, to p cells 

in a virtual association cell space. The nearest neighbour inputs will share p — 1 

cells with the first input and inputs more than a distance p — 1 apart will share 

no cells, leading to local generalisation. Originally, the CMAC association cells 

had only a binary output, giving a piecewise constant network output, but higher 

order basis functions, see [92], or kernal functions, see [157], can be used to give 

a smoother output. When higher order functions are used, the CMAC becomes 
equivalent to a fuzzy network.

Two methods, the Least Mean Square method and the Normalised Least Mean 

Square method, are generally used to train a CMAC network, on-line, using in

stantaneous information. Using sets of data, allows batch training to be used and 

further gradient descent training methods are available, see [111], for details.

Reported applications of the use of the CMAC in control include [158, 159], 

with Majors, Stori and Cho describing the use of a CMAC in automotive engine 

control in [160]. These three papers were all presented at a recent conference, 

showing the current interest in combining the CMAC and fuzzy control.
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4 .4 .2  L e a r n in g  V e c t o r  Q u a n tis a t io n .

Learning vector quantisation (LVQ), was first introduced by Kohonen [161, 162], 

and is a technique used in pattern recognition and classification feedforward neural 

networks whose neurons have sigmoidal activation functions. Each first layer 

neuron has an n-dimensional vector of synaptic links with the n inputs. At each 

stage of learning, the synaptic vector which has the closest Euclidean distance 

with the input vector is adjusted, to more closely represent the input vector, by 
use of the formula:

mAt + 1) = mj(t) +  c,(x(<) -  mj(t)) (4.9)

where m j(i) is the vector of synapse values for the first layer neuron j,  at time t, 

x (i) is the input at time t and c( is a monotonically decreasing scalar gain. This is 

known as unsupervised competitive learning and will tend to make an individual 

neuron fire if the input vector is close to the pattern represented by that neuron’s 

synapse vector. An extension to this is to apply the learning procedure to the N 
nearest synaptic vector neighbours of the input vector.

The network is trained using samples representative of the different fuzzy clas

sifications that are to be distinguished. After a period of training, the synapse 

vectors will cluster around the distinct patterns that are present in the training 

data. This first layer then corresponds to the “ IF” side of fuzzy rules, since the 

first layer neurons will fire to differing degrees dependant upon the extent to which 

the input matches the pattern classification that they represent. Since the neuron 

activation function is sigmoidal, it is important to note that the output from each 

neuron is only the extent to which a particular fuzzy set is inferred. The probabil

ity density function of the class into which inputs are clustered, effectively, forms 

the fuzzy set in this approach, rather than the activation function of the neuron 

itself, see [141]. This is fundamentally different from the way in which the radial
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basis function and CMAC neural networks are used with fuzzy logic.

The subsequent layers of the network effectively perform the fuzzy process of 

inferring the output and, therefore, represent the “THEN” side of fuzzy rules. 
Accordingly, unsupervised competitive learning will only affect the “IF” side of 
fuzzy rules.

The process of inferring the output is often achieved by the use of various 

forms of associative memories, see [141]. Examples of this method include work 

by Yamaguchi, Takagi and Mita [163], by Yamaguchi, Tanabe, Kuriyama and 
Mita in [164], and by Pacini and Kosko [165].

4 .4 .3  A p p lic a t io n  o f  th e  u se  o f  n e u r o fu z z y  c o n tr o l to  th e  
m a n a g e m e n t  o f  a  h y b r id  v e h ic le  p o w e r tr a in .

Neurofuzzy control cannot really be classified as either an adaptive method or a 

learning method, since this will depend on the nature of the input information 

and the subsequent use to which it is put. It is generally fair to say that methods 

which deal with error information are less likely to involve learning behaviour than 

methods which use absolute signals.

The principle problem of using neurofuzzy control in the management of a 

hybrid vehicle powertrain is that of training. Neural methods rely either upon the 

existence of a set of input-output training data, that is representative of the data 

that the network will encounter in use, or on-line network training by comparing 
the network output with a desired output.

In the hybrid vehicle powertrain problem, correct network outputs are not 

known and it is desirable that the method of adaptation, or learning, determines 

the correct outputs. Network modification will have to be based on observa

tions of the performance of the network in controlling the hybrid vehicle. It was 

noted earlier, that an essential feature of the powertrain control method was the 

maintenance of a constant driveshaft torque, which would ensure that the vehi



cle performed in a consistent manner. If some measure of "correctness” could 

be found, allowing on-line, unsupervised learning to be carried out, there is no 

guarantee that, as the controller evolved, it would maintain vehicle driveability. 

Since it is hoped that the controller might be able to adapt to individual vehicles, 
it must allow them to be continuously driven.

For these two reasons, it is unlikely that neurofuzzy control methods will prove 

useful in the hybrid vehicle powertrain control problem as it has been formulated 
in this work.

4.5 Fuzzy modification of linear control meth
ods.

The work discussed in this section uses some means other than fuzzy sets and 

inference to generate the controller output value. Use is made of fuzzy sets in the 

modification of the lower level controller in order to improve its performance. The 

interesting observation, here, is the hierarchy that is applied by allowing the fuzzy 

controller to modify a lower level controller. If it is accepted that the adaptive, or 

learning level, would generally involve more “intelligent” actions than the lower 

level controller, then it is perhaps appropriate that a fuzzy controller, designed 

using expert knowledge, should be at the higher level.

4 .5 .1  F u z z y  s lid in g  m o d e  c o n tr o l.

In sliding mode control, as defined by Utkin [166], the state space of the system 

being controlled is partitioned into two spaces by a sliding surface which passes 

through the origin, which is assumed to be the point to which the system should be 

controlled. Different control actions are then defined in each of the two state space 

regions, each having the effect of driving the system towards the sliding surface. 

The phase trajectories of the controlled system in the region of the sliding surface
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must be such that the system is moving towards the origin as it approaches the 

sliding surface. The combined action of both controllers will then be to drive the 

system towards the sliding surface and then along it, if, as the system states pass 

through the sliding surface, the control action is switched to the control demanded 

by the other part of the state space. Whilst this approach is not limited to the 

control of linear systems, linear systems are sometimes controlled in this way.

As the system slides along the sliding surface, the control action is continuously 

switched to keep the system on the surface. This results in rapidly changing 

control action that is undesirable. In order to prevent this rapid switching of 

the control action, a boundary layer may be defined along the switching surface, 

in which the actions are smoothly blended rather than abruptly switched. Palm 

[167], describes an implementation of the boundary layer and goes on to analyse 

the actions of the blending controller, as a subcontroller keeping the system on 

the surface, using a method originally proposed by Slotine and Sastry [168]. Palm 

is then able to show that the controller that brings the system towards the sliding 

surface, and then keeps it within the boundary layer, can be implemented using 

fuzzy logic. The use of fuzzy logic increases the speed with which the system 

approaches the sliding surface, and its smoothness within the boundary layer. 

These benefits are analogous to the improvements that fuzzy logic often brings 

when applied to conventional setpoint control. Vepa and Nowe [169, 170], extend 

this idea to include identifying a model of the system in the region of the sliding 

surface, using a neural network. This network is subsequently inverted and used to 

form a fuzzy controller whose objective is to keep the system on the sliding surface. 

Nam, Lee and Yoo [171], apply fuzzy sliding mode control to the regulation of 

air-fuel ratio in an automotive engine. The air-fuel ratio measurements have an 

unavoidable time delay, and predictive fuzzy control is used to keep the system 

on the sliding surface, to minimise the effects of the time delay.



4 .5 .2  F u z z y  m o d if ic a t io n  o f  lin e a r  c o n tr o lle r  d a t a .

In this section, controllers that are essentially linear, but whose inputs are modified 

by a higher level fuzzy controller, are considered. A particularly hierarchical 

applied approach to this was given by Saridis and Stephanou in [172], whilst 

Saridis and Lee [173] provide a more theoretical and generic viewpoint.

In [172], which considers the problem of the control of a prosthetic arm, various 

methods, including grammars, parsing algorithms and a fuzzy learning automa

ton, see [174], are used to learn the correct means of mapping the signals from 

the nerves of the amputee to the subcontroller inputs. A fuzzy reinforcement 
learning method is used to reward those mappings which result in improved con

trol. The role of the learning fuzzy automaton in this work is the interpretation 

of imprecise control objectives to generate more precise commands for the lower 

level controllers. This approach is very numerically expensive and specific to the 

particular control problem considered.

Kim, Park and Lee [175], considered the control of a system using an actuator 

with a dead zone. Originally, PD control was used, leaving a steady state error. 

To remove this error, a PID controller was used, however, this controller had 

poor transient response. A fuzzy precompensator was then used, with the PD 

controller, to allow the steady state error to be reduced and to achieve good 
transient response.

4 .5 .3  C o m b in e d  fu z z y  a n d  lin e a r  c o n tr o lle r s .

Yeung and Sum [176], address the problem of controlling the tension in yarn as it 

is wound onto a bobbin. It was found that, in the area of the setpoint, adaptive 

linear controllers could not adapt quickly enough to avoid a process control failure 

resulting in the yarn breaking. For large process disturbances, a fuzzy algorithm is 
used to bring the process quickly towards the setpoint. As was stated in [133], the
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control action when far away from the setpoint is not critical, since the controller 

should apply a large input to move the output quickly towards the setpoint, with 

more accurate control being required to control the output around the set point. 

In the region of the setpoint, a self-tuning regulator can take over the control of 

the process and adapt to system changes with sufficient speed to prevent a failure 
of process control.

The attractive aspect of this work is that linear methods are used, where their 

operation is adequate and are supplemented, by fuzzy control actions, where fuzzy 

logic has something to offer.

4 .5 .4  F u z z y  tu n in g  o f  a  P I D  c o n tr o lle r .

Ollero and Garcia-Cerezo [177] describe two methods in which the gains of a PID 

controller are adjusted by an external fuzzy controller. In the first method, the 

controller varies the gains according to the current position of the controller in the 

input space. In the second method, the controller gains are adjusted as an external 

variable, which is known to affect the plant operating characteristics, changes. It 

can be argued that this is like gain scheduling but it is likely to be more effective 

than straightforward gain scheduling since it makes use of the intelligence of the 

designer.

In [178] Litt also applies an expert system to the tuning of a PID controller. 
The expert system applies modifications to the controller gains based upon the 

Ziegler-Nichols time domain adjustment procedure. Whilst the method used here 

is an expert system, and the paper refers to around 10 other applications of expert 

systems in similar roles, it also states that this is an excellent application for fuzzy 

logic.
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4 .5 .5  A p p lic a t io n  o f  m ix e d  fu z z y  a n d  lin ea r c o n tr o lle r s  to  
th e  h y b r id  p o w e r tr a in  c o n tr o l p r o b le m .

The major impediment to the use of the above methods in the control of a hybrid 

powertrain is that they are essentially feedback control methods that operate on 

the error between an output and a reference signal and, as previously stated, 

the hybrid powertrain controller does not easily fit into this framework. Since 

the methods described above tend to involve the use of error signals, the fuzzy 

logic tends to be used in an adaptive, rather than a learning manner. A possible 

exception to this might be [172], in which some learning could be said to take 

place. Some of the methods used, such as [90], could really be called tuning since 

they automate the human process of controller design.

4.6 Miscellaneous adaptive fuzzy methods.

This section will cover several reported pieces of work that were not discussed in 
earlier sections.

4 .6 .1  H e u r is t ic  m o d if ic a t io n  o f  fu z z y  c o n tr o lle r s .

This section will discuss various, seemingly ad-hoc, methods of adapting fuzzy 

controllers in heuristic ways which work for the controllers and processes con
cerned.

Gain coefficient tuning.

One method of gain coefficient tuning is described by Mallampati and Shenoi, 

in [179]. A simulated annealing technique is used which is an enhancement to 

the Monte Carlo method and involves the variation of parameters that influence 

some objective function. Simulated annealing involves always accepting modifi

cations to the parameters that improve the objective function and also accepting,



with a decreasing probability, some parameter changes that worsen the objective 
function. This reduces the possibility of being trapped in local minima.

Another approach to fuzzy gain tuning is given by Bare, Mullholland and 

Sofer, in [ISO]. In this method, a fuzzy two input two output control problem is 

decomposed into two SISO problems by, effectively, decoupling them in time. Ad

justments are made to one loop and the results are observed, and the other loop 

is adjusted less frequently. The method of adjustment is heuristic but phrased, 

in a crisp numeric manner, using the ratio between successive errors to determine 

whether the process and controller combination required “speeding up” or “slow

ing down” , allowing the designer to use knowledge of the process operation in 
modifying the controller. The methods chosen are derived from human controller 

tuning which has traditionally been used.

Heuristic adaption followed by performance evaluation.

Bartolini and others [107], used an automated method of heuristically modifying 

the output sets in a fuzzy controller by means of five adaptation actions. The 

action to be taken was determined by the evaluation of six performance measures, 

which were functions of the error in the control of the level of liquid metal in a 

tundish which was part of a casting process. Two of the actions were associated 

with either the level being too high, or too low. Two more actions were associated 

with improving the controller sensitivity, and the last was to leave the controller 
unmodified.

Reference [181] describes how Murayama, and others, carried out an optimal 

fuel calibration exercise of a marine diesel engine in an attempt to minmise its use 

of fuel. This is complicated by an extremely noisy fuel flow rate signal. Previously, 

the optimisation had been carried out by a stochastic method known as evolutional 

operation. The method used here is essentially a gradient descent technique that



involves use of the designers common sense. Using this method, the engine was 

calibrated in one thirtieth of the time that had previously been taken using non- 

fuzzy methods.

4 .6 . 2  G e n e t ic  A lg o r it h m s .

Genetic algorithms (GAs) emulate the process of genetic evolution in the natural 

world. Genetic algorithms are optimisation procedures that have the advantage 

that there is no need to directly relate the cost function of the optimisation prob

lem to the parameters of the system that are varied in the optimisation.

In formulating an optimisation problem for the use of a GA, the parameters 

that are varied must be represented in a binary manner. The various binary pa

rameter values are then concatenated to form a single long binary string, known 
as a chromosome. The task to be optimised is then carried out for all individuals 

in a “population” , evaluating the cost function for each individual. Individuals 

performing well are used to produce the next population by a process of combi

nation, known as crossover, which causes some of the offspring to inherit good 

properties from the parents and others to inherit bad properties. To add a degree 

of randomness to the process, that effectively stops it from being trapped in local 

minima, bits are inverted in the strings with a low probability. This is termed 

“mutation” . Having established a new population of individuals, the process is 

repeated until little variation is seen in the population and the cost function value 

has reached the global minimum.

This procedure, and many enhancements to it, are explained by Goldberg 

in [182]. To evaluate a given population, the task must be performed for each 

individual, and, since GAs generally take thousands of iterations to converge, 

computer simulations are used to gain repeatability and speed. In the case of 

the hybrid vehicle, the control adaptation strategy must be made to work on an
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actual vehicle in real time whilst driving. Whilst recent developments such as 

micro-GAs, see [183], have improved performance, GAs are not likely to be useful 

for hybrid vehicle control because of their slow rates of convergence. Also, the 

random nature of the algorithm might generate individuals that made the vehicle 

undriveable. Examples of fuzzy controller modification using GAs include work 
by Karr [183], and Foslien and Samad [184], whilst Tascillo and others combined 

the use of neural nets, fuzzy logic and GAs in [185].

4 .6 .3  F u z z y  c e ll -t o -c e ll  m a p p in g .

The cell state space concept was developed by Hsu [186], to control non-linear 

systems in discrete time, using cells that are defined over discrete state spaces. 

The effect of applying control actions will be to move the system from one cell 

to another. Since the number of control actions is limited, only certain cells can 

be reached from any individual cell and a set of cell-to-cell mappings can then be 

defined. A cost function is then used to determine, for a given control objective, 

which mapping, and therefore which control action, is most appropriate at any 
instant in time.

Smith and Corner [187], extended Hsu’s ideas by using state space cells, similar 

to those used by Chen and Tsao [188], to define an optimal control action. A fuzzy 

controller then uses these optimal control actions to train a set of fuzzy rules, of 

the Takagi and Sugeno form, using a method derived from Widrow-Hoff least 

square learning, see [189]. This gradient descent based method is also used by 

Nomura, Hayashi and Wakami [190], in the adaptation of a controller for a mobile 
industrial robot that is able to avoid obstacles.

Vepa and Nowe also combine the use of fuzzy logic and state space cells in 

[191]. Their technique is based upon a cell state space partition on which a 

reinforcement learning method, called Q-learning, is used, as originally defined
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in [192], Use of fuzzy logic is made by replacing the cells with fuzzy sets and 

defining nine output fuzzy sets for each of three input fuzzy sets. Each o f the 

output fuzzy sets is modified by using a modification of the reinforcement method 

that takes into account the “safety” of the system control actions. Once again, 

these techniques are useful for feedback control but would be difficult to apply in 
hybrid vehicle powertrain control.

4 .6 .4  A d a p t iv e  fu z z y  r e p r e s e n ta t io n  o f  in fo r m a tio n .

Two very theoretical papers by Lakov [193], and Blishun [194], investigate the 

representation of controller input information by the use of fuzzy sets. The adap

tive aspect of the work reported is that the sets used to represent the information 

are modified, the controllers which subsequently make use of the information are 
static.

4 .6 .5  O t h e r  m e t h o d s .

This section discusses other reports of adaptive fuzzy control which do not fall 
into any of the previous groups.

Handelman and Stengle [195], describe the adaptive control of an aircraft by 

means of an expert system that uses a series of blank template rules that it 

“recruits” . The information in these rules is represented by fuzzy sets.

In [196], Borges de Silva and Oliver consider the control of a power converter. 

At the lowest level, four rules of the type proposed in [147] are used, which are 

adapted by two higher levels of fuzzy automata. Although the work discussed 

contains considerable detail on the converter itself, the fuzzy part is generally 
applicable.

Adaptive control is not, itself, the subject of the work reported by Andersen 

and Nielsen [197], which considers the representation of fuzzy rules. Their repre-
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sentation of the rules is very similar to that used in Chapter 3 of this thesis and 

is claimed to be very efficient in terms of memory. This representation is useful 

for adaptive control where the adaptive action may cause a large increase in the 

number of rules.

Peng Xian-Tu constructs a fuzzy controller, in [198], by means of a series of 

input and output sets that are related to one another by mappings. In the MIMO 

case considered in this paper, the mappings take the form of matrices of scale 

factors which are then adjusted to meet some conditions for optimality by the use 

of the simplex algorithm.

4.7 Discussion of adaptive and learning fuzzy 
control survey.

The work described in the early sections of this chapter is not immediately ap

plicable, because the control tasks considered were feedback reference tracking 

control problems and the problem addressed in this thesis is clearly not in this 

form. In some respects, this concentration on conventional control problems has 

been unfortunate for fuzzy control, since it has merely added a further competing 

method in an area in which there are already well established techniques. One of 

the principle attractions of fuzzy control must surely be its breadth of applicability. 

It should be noted that some of the most commercially successful applications of 

fuzzy logic are not in feedback control, but are in areas such as automotive trans

mission control, airport management and the operation of consumer products such 

as cameras and washing machines.

Despite the preoccupation of fuzzy control with feedback, reference following 

control, some of the work surveyed in this chapter contains ideas which can be 

made use of in the adaptive control required in this work. These ideas will be 
briefly discussed below.
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The work by Shao, [129], in which a fuzzy controller is “compiled” to form 

a decision table and the adaptation process acts directly on the decision table 

makes a considerable contribution. When fuzzy logic is used in the way described 

in Section 3.4.3, the decision table is the same matrix as the rule output set off

sets. Also, it should be remembered that automotive control engineers frequently 

make use of decision tables in the form of maps, which they are accustomed to 

heuristically modifying during the process of controller development. An impor

tant consequence of this is that an adaptive method that simply modifies maps 

will be readily accepted by automotive development engineers.

The greatest contribution that this chapter makes comes from Section 4.6, 

in which numerous different strategies are used to adaptively control various pro

cesses. Section 4.6 contains many different strategies, because each of the methods 
has been specifically designed to work on a particular plant. Examples of this are 

the work of Bare, Mullholland and Sofer [180], Bartolini, et al [107], and the work 

of Murayama, et al [181], in which expert knowledge in diesel engine calibration is 

directly implemented in rules which generate an optimal engine calibration. These 

examples are encouraging because they indicate that fuzzy logic provides a useful 

framework, in which many methods of adaptive control may be applied.

The work o f Bellman and Zadeh [150], might, at first, seem to make a signif

icant contribution to the work undertaken here, and the concept of the optimal 

decision being the union of the goals and constraints is obviously a valuable idea. 

However, [150] considers the task of taking a process from a particular starting 

point, to a particular finishing point. Since there are no specific start and end 

points for a hybrid powertrain control task (unless one considers the optimal use of 

energy over a specific journey) this aspect of the work is not particularly helpful.
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4.8 Comments on adaptive and learning meth
ods of fuzzy control.

The creation of the fuzzy set was motivated by the observation that vagueness and 

imprecision are useful concepts in complex control or decision making tasks. In 

certain respects, this has been borne out by the recent proliferation of products 

in which fuzzy logic is used. The commercial success of these products can be 

attributed to fuzzy logic, however, to what extent fuzzy logic gives these products 

a performance, rather than a marketing advantage, is not always clear.

A vast number of reported research applications of fuzzy control have drawn 

the conclusion that the original controller design had to be modified in order to 

perform satisfactorily. This is hardly surprising, when it is borne in mind that 

humans very rarely get anything right first time. The task of modifying a fuzzy 

controller has spawned the various adaptive and learning techniques that have 

been surveyed in this chapter. It can be seen that some of the methods discussed 

above actively embody human insight, experience and intuition in the controller 

modification process, [107, 167, 176, 181] are examples taken from Sections 4.5.4 

and 4.6.

In contrast, in the work considered in Section 4.3, in which the fuzzy relation 

matrix is identified and then inverted as an autoassociative memory, the fuzzy sets 

are merely providing a general non-linear functional representation. Other than, 

perhaps, being able to short cut the identification procedure a little, by initialising 

relation matrices, no explicit use is made of the ability of fuzzy sets to represent 

the vagueness of human thinking.

The work discussed in Section 4.2 is somewhere between these two approaches, 

in that the performance index relation matrix is used to specify the closed loop 

system performance. However, the fuzzy operations, at a lower level, that involve 

modifying the relation matrix do so, again, without explicitly using experience
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and insight.

The appropriate conclusion to be drawn from this short discussion is that the 

fuzzy set is no longer simply a means of representing vague, ill-defined information 

(although its utility in this role is, clearly, still of great value), but has also become 

a general method of non-linearly relating variables. This continuum of roles of 

fuzzy sets and fuzzy logic will ensure that fuzzy techniques will be used at various 

levels for the forseeable future in control applications.
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Chapter 5

An adaptive fuzzy hybrid vehicle 
powertrain controller.

5.1 Introduction.

In Chapter 3 it was seen that the hand-tuned fuzzy controllers used did not 

meet the requirements set out in Section 2.2. It was found that hand-tuning the 

controllers was a laborious task that would possibly only be applicable to the 

specific task considered, the simulation of a hybrid vehicle over a particular drive 

cycle. Some method of automatically generating the correct control values for the 

powertrain controller was shown to be required. This method of generating the 
controller could be considered on various levels.

Firstly, an automated method of changing the controller values would be useful 

during the development of a hybrid vehicle which was to be sold with a fixed 

controller. This would allow the vehicle to be developed quickly and should be 

transferable from one engineering project to another.

Secondly, the controller might be made to change to meet the requirements of 

individual users, such that different patterns of usage resulted in the controller 

learning control actions that were most appropriate for any particular user.

Thirdly, the method could be extended to modifying the controller in use, 
allowing the characteristics of the individual vehicle to influence the control actions
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that are taken. This would account for variations between vehicles and the effects 

of ageing.

In Chapter 4 adaptive and learning fuzzy control methods were surveyed and 

it was seen that none of the methods discussed were suitable for the modification 

of a hybrid vehicle powertrain controller. Accordingly, this chapter will describe 

a method of controller modification, specific to the hybrid vehicle control prob

lem, that attempts to improve the performance of the vehicle with regard to the 

requirements set out in Section 2.2. The following sections will describe the struc

ture of an adaptive hybrid vehicle powertrain controller and will then present early 
results arising from its use.

The hybrid vehicle powertrain controller can either use the motor to assist 

the engine or oppose the engine. In Chapter 3 it was seen that the potential for 
improving the efficiency of the powertrain operation was greater when the motor 

was operated against the engine. Also, the vehicle driveability is more difficult to 

maintain when the motor operates against the engine. Accordingly the adaptive 

hybrid powertrain controller was developed for the mode of operation in which 

the motor works against the engine.

5.2 The development of an adaptive hybrid pow
ertrain control concept.

It will be recalled from Section 3.5 that the controller can be described in terms of 

three vectors. Figure 3.8 shows the form of the input sets used on the pedal value 

universe of discourse. Each input fuzzy set overlaps with its nearest neighbour 

as far as its nearest neighbour’s maximum grade of membership. This allows the 

input fuzzy sets to be defined as a vector whose values are the locations of the 

maximum grades of membership of each fuzzy set. The corresponding output 

fuzzy sets on the throttle angle universe of discourse are all fuzzy singletons. The
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vector of pedal value fuzzy set maximum grades of membership, 0 , the vector of 

throttle angle fuzzy singletons, $  and the vector of demanded armature current 

fuzzy singletons, A, are defined as follows:

0  = [ o 4 12 24 40 90
$  = [ <t> i 4>i <t> 3 <t>4 4> 5 <t> 6
A = [ ai a2 <*3 a4 «5 «6

In Section 3.4.3 it was seen that the inference method and the defuzzification 

method used in this work reduce to linear interpolation, within the vectors, 0 , $ 
and A , when the input sets are as shown in Figure 3.8.

In Section 2.2 it was seen that the controller had essentially three require

ments. It had to use the energy resources of the vehicle in the correct ratio and 

as efficiently as possible. It also had to maintain a suitable relationship between 

the pedal value and the driveshaft torque. The adaptive controller will attempt 

to meet the first two requirements by observing the performance of the vehicle. 

The powertrain controller has no knowledge of the relationship between its control 

actions, the fuel flow rate and the battery current. There is the implicit assump

tion that battery current increases monotonically as demanded armature current 
increases and that the fuel flow rate increases monotonically as the throttle angle 

increases. The third requirement is met by a constraint in the rule modification 

procedure, in which the vectors $  and A are modified, whilst 0  remains constant.

References [199, 200] are examples of the modification of fuelling control maps 

in engine controllers. Since use of these maps involves interpolation, their auto

matic modification is, at first sight, a similar problem to the modification of the 

hybrid vehicle powertrain controller. However, as a result of a separate feedback 

control action, the fuelling controller is able to determine the “correct” values for 

the fuelling maps. In the case of the hybrid powertrain controller, the adaptation 

process does not know the correct value to adapt to but has to find it out.
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Figure 5.1: Schematic of an adaptive fuzzy hybrid powertrain controller.

5 .2 .1  A n  a d a p t iv e  fu z z y  h y b rid  v e h ic le  p o w e r tr a in  c o n 
tr o lle r  s tr u c tu r e .

Figure 5.1 shows the manner in which an adaptive hybrid powertrain fuzzy con
troller would work.

In order to observe the performance of the vehicle, two performance measures 

are used which operate on the values of the fuel flow rate and the battery current. 

The method by which these performance measures are evaluated is explained in 

the next section. The controller essentially functions by estimating the unknown 

performance measures over a period of time called the adaptation interval, T„, and 

then making modifications to the controller based upon the performance measure 

values obtained over this interval.

Performance measurement.

As stated above, the modification procedure will address the problem of using 

the energy resources of the vehicle in the correct proportions and in an efficient 

manner. Two performance measure functions F(h<xt,™j) and G(hat, m /), which 
operate on the instantaneous values of the battery current and the fuel flow rate 

are used to determine the performance of the vehicle with respect to the two
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objectives of using the energetic resources of the vehicle in the correct ratio and 

using them efficiently. T  measures the relative use of the two sources of energy 

and Q measures the total amount of energy used. They will be considered in more 

detail in subsequent sections.

The values of /¡,o1 and rhj will vary as the powertrain operates at different 

speeds and different pedal values and also as the rules change. To determine the 

performance of any given set of controller rules in different speed-load regions of 

powertrain operation, the functions T(hat,mj) and Q{hat,rhj) should, therefore, 
be distinctly evaluated at various different operating speeds and pedal values. The 

vectors P =  [pi,p2, •••,?„] of pedal values and fi =  • • ,u>m] of powertrain

speed values, are used to partition the powertrain speed-pedal value space into an 

n x m grid, as shown in Figure 5.2. Each point in the grid formed by P and SI 

represents the performance in the region shown inside the dashed box in

Figure 5.2.

The elements of two matrices F and G, of size n x m, store estimates of 

the values of and Q(h^t, rhf) under different powertrain operating
conditions. Each element, / ¡ j ,  in F stores an estimate of the value of T(hat,rn¡) 
in the region 5(p.>u/j).

If the partitioning vector P is set equal to 0 ,  making the point (p,-,u>j) = 

the powertrain speed-pedal value space is partitioned by the vector of 

pedal values which have grades of membership of 1 in the input sets and the 

vector fi. The pedal value fuzzy sets are then as shown at the top of Figure 5.2. 

It is seen from Figure 5.2 that the performance in each region, <S(PliWj), which 

is now *S(0liW;), will be strongly influenced by the rule whose fuzzy input set has 

its maximum grade of membership at 6,. Therefore, the matrices F and G will 

contain several estimates of the values of the functions and G(Ibat,™f)

for each pedal input rule, each of these estimates being taken from data close to
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Figure 5.2: Method of clustering performance measure values.
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the speed values, uij.

Consider the performance measure that attempts to measure the overall effi

ciency of the powertrain at any instant, Q(hat, m/) . This would involve measuring 
the total use of energy at any instant by a function such as:

& =  atlbat +  0mf (5.1)

The purpose of the performance measure matrices F and G is to store estimates 

of the performance of the vehicle in the regions ). However, it is readily

seen that, within each region, as shown in Figure 5.2, different amounts of

power are developed by the powertrain, more power being developed in the top 

right hand corner than the bottom left hand corner. As the vehicle is used, the 

values of pedal value and powertrain speed will vary, causing the operating point 

to enter numerous different regions, <£(«,,UJ). If, during a period of operation, such 

as an adaptation interval, for a particular region, the operating point is

frequently in the higher power area of the region, then high values of the example 

performance measure, given in Equation 5.1, will result. Conversely, the opposite 

could occur, and the performance measure values would then be low. Before the 

modifications are made to the controllers, the average of the performance measure 

values obtained over the adaptation interval is required. Clearly, in the two cases 

described above, the average value obtained would not be representative of the 

performance that would have been obtained had the operating points been more 
uniformly spread over the entire region To overcome this problem, before

the fuel flow rate and the battery current are used, they are adjusted by referring 

them to the point (0,-,Wj), allowing (0,,Wj) to be representative of the region, 

<S($, ,u/,)-The method by which the values of the fuel flow rate and the battery 

current are referred to the point (0,,w¿) is now explained.

Two reference maps are used, the first relates the engine fuel flow rate to the 
throttle angle and the engine speed, and the second relates the battery current

159



to the demanded armature current and the engine speed. In Chapter 3 it was 

found that the motor was far more efficient if it turned at twice the speed of the 

engine, than at the same speed as the engine. At high engine speeds, turning 

the motor twice as fast as the engine would exceed the maximum speed of the 

motor. Therefore, the motor to engine gear ratio was set to be 2 at low engine 

speeds (below 3250 r/min) and 1 at higher engine speeds. The cost of a mech

anism to implement this on a vehicle was felt to be justified by the considerable 

improvement in the resulting vehicle performance. The battery current reference 
map is defined over engine speed rather than motor speed because, in use the 

motor speed is determined by the engine speed. These reference maps are used to 

account for variations in individual components and were obtained by a process 

described in Section 5.2.2.

As explained in Section 3.5, the powertrain controller has a sampling interval 

of 0.1 seconds and the performance measure values are evaluated at each sampling 

interval. The method by which operating points are referred or “clustered” to the 

points (9i,u>j) is shown graphically in Figure 5.3. The method used assumes that, 

whilst there will be variations in the magnitude of, for example, the engine fuel 

flow rate from one engine to another, the rate of change of the fuel flow rate with 

respect to the throttle angle and the engine speed will be similar for different 

engines in any region of operation.

The method by which points in the region 5 ($,,*,) are clustered to the point 

is now explained for the engine fuel flow rate (an analogous procedure is 
used for the motor).

1. Take the current pedal value and, using the current controller rules, deter

mine the throttle angle that was inferred.

2. Using this throttle angle and the current engine speed, determine the ref

erence fuel flow rate, m /rj, at the current operating point using bilinear
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Figure 5.3: Diagram indicating the performance measure clustering procedure, 

interpolation in the reference fuel flow rate map.

3. Determine the closest point, (0,,u>j), in the performance measure space to 
which the fuel flow rate will be clustered.

4. Using the values 0, and the current controller rules and the reference 

fuel flow rate map, determine a second reference fuel flow rate, m /r2, at the 
point (0i,u>j).

5. Add to the second reference fuel flow rate the difference between the first 

engine fuel flow rate and the actual engine fuel flow rate, rhjcng, calling the 
result rh/ci.

6. Output the clustered fuel flow rate, rh/c(, and the indices i,j of the point in 
the performance measurement grid.

Having obtained clustered values for both the engine fuel flow rate and the 
battery current, the performance measure values stored in the F and G matrices
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can then be updated. On each occasion that the operating point is found in the 

space 5 (0,,^) the element cu] of an n x m matrix, C , of counters is incremented. 

The value of the performance measures, P  {hatch m/„/) and Q[hatch mjci), are then 

calculated using the clustered values of battery current and fuel flow rate. The 

element of the matrix F at time NT  is then updated using the formula:

rNT _  r(N—\)T {ci,j ~  1) 
r. + F {  h a t c h  t h / c i )  

C'.l
(5.2)

which has the great advantage of producing an exact, unbiased average of any 
number of data points, without the need to store each individual value. The same 

procedure is carried out on the element gtj in the matrix G using the function 

G(hatch ™ciu3t)- Each element f{jT and ĝ J7, is, therefore, an average value of 

the performance of the vehicle, as measured by the functions F(hahrii/) and 
G(hat,rh/), in the region 5(0,,^).

The controller is then modified using the matrices F and G after the adaptation 

interval has passed. The matrices F, G and C are then cleared and the process 
is repeated.

Rule modification.

The rule modification procedure is responsible for modifying the fuzzy rules to 

improve the vehicle performance. As mentioned in the previous section, the input 

fuzzy sets remain fixed and the output fuzzy sets are moved. This movement 

could cause variations in the relationship between the pedal value and the drive- 

shaft torque, so a method of moving the output fuzzy sets that maintains this 

relationship is required. It is assumed in this work that the driveshaft torque 

cannot be measured and its effects cannot be observed. In the absence of any 

information, some assumptions have to be made about the generation of engine 

and motor torque. The approach taken here is to use an estimate of the way in
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8

Figure 5.4: Controller output space, defined by throttle angle universe of discourse 
and demanded armature current universe of discourse.

which the engine torque changes, with respect to the throttle angle, and the mo

tor torque changes, with respect to the demanded armature current. The reason 

for this is that the magnitude of the engine torque will vary between individual 

engines, but the rate o f change of engine torque with respect to throttle angle 

should remain similar in any particular region of engine operation.

The performance of the electric motor is less sensitive to very small dimensional 

variations than the engine and so, in this sense, is more straightforward to control. 

However, the performance of the motor will be dependant upon variations in the 

circuit in the vehicle, particularly variations in the battery. Since the battery 

voltage can be measured directly, some of the variations can be directly accounted 

for. The rates of change of motor torque with respect to the demanded armature 

current could be varied as the battery voltage falls. At this initial, investigative 

stage, this was not done.

Since the rule input sets are fixed, the performance of the rules is determined
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by the positions of the output sets. Considering the output space formed by the 

throttle angle and demanded armature current universes of discourse is helpful. 
A diagram of this output space is included in Figure 5.4.

Each of the crosses in Figure 5.4 represents the location of the output sets 

of a fuzzy rule, (d>,, a;), for which there is a corresponding input fuzzy set whose 

maximum grade of membership is at 6,. Since, the method of fuzzy inference 

and defuzzification can be reduced to linear interpolation, the throttle value and 

demanded armature current will move along the line linking the crosses as the 

pedal value increases. Also shown in Figure 5.4, are the contours of constant 

combined engine and motor output torque, obtained at a particular engine speed. 
Considering this engine speed alone, in order to maintain a constant driveshaft 

torque, the output set whose locations are marked 2 in Figure 5.4, could be moved 
in the direction shown by the arrow.

When the rule is modified it moves to a location (<j>i +  Afc, a, +  Aa,). For the 

relationship between the pedal value and the driveshaft torque to remain constant 

the following expression should hold:

(5.3)

where is the rate of change of engine torque with respect to the throttle angle 

and is the rate of change of the motor output torque with respect to the 

demanded armature current. To move the rule being considered a distance, A m„, 
the following constraint is applied:

A t f  +  A  a] =  A L  (5.4)

The rule offsets should then be moved as follows:

A  <t>, =  +  l/<72 (5.5)

A a , =  A m„ /v / l  +  a 2 (5.6)
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where:

dlad dthr
dTg ,dTc

flit, (5.7)

The value that is used for A mv is determined by the performance measurement
values and the desired performance of the vehicle. It will readily be seen that 

this approach moves the locations of the output sets by simple Euler integration. 

The methods used to determine A mv will be covered in subsequent sections that 

describe the simulation experiments that were carried out using the method.

store the values of the partial derivatives at locations in a grid of points. The

J m, at vertices in a grid in the demanded armature current space. Once again,

The generation of the matrices Je and Jm is covered in the next section.

5 .2 .2  G e n e r a t io n  o f  th e  re fe re n c e  m a p s .

rithm during performance measurement and also to create the matrices J„ and 

J m. A requirement of the clustering algorithm is that the reference maps are 

smooth, preventing local irregularities in the reference maps from influencing the 

clustering algorithm. A requirement of the rule modification algorithm is that the 

partial derivatives are smooth. Since these partial derivatives will be obtained 

by numerical differentiation of the reference maps the reference maps must be 
smooth in both value and derivative.

The values and ffA are obtained by interpolation within maps which

values of are stored in a matrix, J„, using vertices in a grid in the throttle 

angle-engine speed space, and the values of are stored in a similar matrix,

bilinear interpolation is used to determine values of the partial derivatives at the 

location of the rule. A problem arises when evaluating these partial derivatives, 

since the value of, for example will vary as the engine speed changes. The

problem of selecting the correct value will be addressed in Section 5.3.

The generation of the reference maps is required for use in the clustering algo
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The generation of the maps for the engine will be considered first. 

Generation of engine data reference maps.

Maps of and |2*, the partial derivative of engine torque with respect to the 

engine speed, obtained by numerical differentiation of the raw engine data, are 
shown in Figure 5.5.

It can be seen that the process of numerical differentiation has resulted in an 

extremely uneven surface, particularly for Use of such surfaces in the rule 

modification algorithm would result in a rather erratic progression of the rules 

across the rule output space. Also, there are regions in the map which have 

negative values, indicating that the torque would decrease as the throttle value 

increased. This would cause problems in the rule modification strategy and also 

would, clearly, not be representative of the actions of the engine. This situation 

might be improved by smoothing the surface before differentiating it. Consider a 
portion of the engine map:

ci 61 c2
b 2 CL 63 

C3  6 4  C 4

in which it is desired to adjust the value a, to obtain a “smoother” new value, a',
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by application of the formula:
4 4

a '= \ a  +  ( l -  A) n ^ 6 , / 4  +  (1 -  ft) ^ c , / 4 (5.8)
1 = 1 1 = 1

where:
V2

(5.9)

and is used to weight the 6, values more than the c, values in the estimate of 

the new value, a'. The value is obtained by considering the differing distances 

between the elements 6, and a and the elements c, and a. The coefficient A takes 

values between 0 and 1 and is a measure of the extent to which the value a is 

being adjusted, high values of A leaving a largely unchanged. To avoid the effects 

due to starting in a particular location, the new values a' are placed in a separate 
matrix.

This algorithm was applied to the engine torque map before differentiation and 

the resulting partial derivative maps are shown in Figures 5.6 and 5.7 for A =  0.7 
and A =  0.3.

The smoothing actions in Figure 5.6 with A =  0.7 are insufficient. However, 

the effect of smoothing the engine map using lower values of A such as A =  0.3 is 

to change the shape of the derivative map. Also, there are still negative values in 

some regions in the map. Smoothing the derivative maps after differentiating

the raw engine data was also attempted, generating the maps shown in Figures

5.8 and 5.9.

with Figure 5.5 indicates that this map has changed shape significantly. Also, it 

still contains negative values. The lack of success in using smoothing methods 

to modify the maps obtained by simple numerical differentiation indicates that a 

more sophisticated method of obtaining the Je matrix is required.

Whilst the map in Figure 5.9 is quite reasonable, comparing the map

Linear regression is technique that can be used in such a way that the produc

tion of maps that can be guaranteed to be continuous in both value and derivative
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Figure 5.6: Mesh and contour plots of and ^  obtained by numerical differ
entiation of smoothed engine data (A =  0.7).

Figure 5.7. Mesh and contour plots of gj* and obtained by numerical differ
entiation of smoothed engine data (A =  0.3).
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Figure 5.8: Smoothed (A =  0.7) mesh and contour plots of and obtained 
by numerical differentiation of smoothed engine data.

throttle angle in degrees.
20
throttle angle ii degrees.

Figure 5.9: Smoothed (A =  0.3) mesh and contour plots of and obtained 
by numerical differentiation of smoothed engine data.
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is possible. Reference [201] gives a comprehensive introduction to the subject. Lin

ear regression uses a linear combination o f functions to approximate an unknown 

function and can be used to obtain “clean” values of a function in the presence of 

noise or to investigate the form of, for example, experimental test results.

Suppose it is desired to approximate a function, H(xi, . . .  ,x „). Consider the 
following expression:

n ( x u . . . , x n) «  a ! W i ( x i , . . . , x n ) +  ••• + a mH m( x 1.........xn) (5.10)

The linear regression technique is used to obtain the values a x, . . . ,  am that make 

the values generated by the right hand side a least mean square error approxima

tion of the function 'H{x\,. . . ,  x„). The success of a linear regression exercise is 

determined by the careful selection of functions that are used to approximate the 
values on the left hand side.

Both the engine torque and fuel flow rate maps were regressed in this manner, 

torque map regression will be considered first. The engine torque map is defined 

to be a function of two variables, engine speed and engine throttle angle. The 

values of engine torque are stored at throttle angle intervals of 5°, between 0° 

and 90° and engine speed intervals of 250 r/min, from 1000 r/min to 6500 r/min. 

Vectors and R, with elements ipt and r,, o f lengths 19 and 23, are used to refer 

to the throttle angles and engine speeds that define the points at which the torque 
values were measured.

Estimating functions of two variables that will satisfactorily approximate a two 

dimensional surface is far from easy. One method of approaching this problem is to 

consider how the data to be regressed vary with just one variable whilst the other 

is held fixed. It was felt that engine torque was likely to be a more complicated 

function of throttle angle than engine speed and accordingly, the engine speed was 

fixed and the torque data was regressed against the throttle angle.

Figure 5.10 shows plots of engine torque against throttle angle at engine speeds
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Figure 5.10: Plots of engine torque against throttle angle at engine speeds of 2500 
r/min and 6000 r/min. Dashed lines show regression function fits for low throttle 
angles and dash-dot lines show regression fits for high throttle angles.

of 2500 r / min and 6000 r/min. No single function could be found that would give 

a reasonable fit to the throttle angle-engine torque relationship for all values of 

throttle angle. It was decided that different regression functions would be used for 

low throttle angles and high throttle angles and that these functions would then 

be blended. The relationship between the throttle angle and the engine torque 

was plotted at each engine speed at which engine torque data was available and 

regression fits were obtained for low throttle angles using the cubic:

Tc =  ai'Tj +  Qj,rjrp +  a 3,r,rl>2 + a4,rjti>3 (5-11)

For high throttle angles the following function was used:

Te =  a4,rt + a ilTJ/il>* (5.12)

where tp is the general variable representing throttle angle. The values, Qi rj, etc., 

are returned by the linear regression method, for the particular engine speed, rj, 

being considered. The distinction between high and low throttle angles was made 

by defining an index, 6, and an element, V>6, in the throttle angle vector, tf, which 

formed a boundary between the two regions at each engine speed. The low throttle 

angle regression was then performed using the throttle values [Vq,. . . ,  and

171



the corresponding engine torque values, the high throttle angle regression was per

formed using the throttle values , >̂19] and corresponding engine torque

data. There is, therefore, an overlap between the two regions, [V>6- i ,  04, ^6-n], 

which influences the regression values, a, returned. The region, [V’i- i , V’M-i],

is, however, the region which will be blended rather than regressed, the use of the 

overlap tends to make the blending action more straightforward.

The value, ?/>(,, for each engine speed value was determined by examining the 

regression fits for candidate values, ipb, to determine which ¡/»¡, gave the best re

gressed fit. In general, this was not a difficult task since there were only one or 

two candidate values. The regressed data are shown in Figure 5.10 by the dashed 

and the dash-dotted lines. The plots also show the value of ipb- In general, the 

value V>6, increased as the engine speed increased. Figure 5.11 shows the values of 

engine speed and throttle value in which the engine operates, the straight, solid 

black line segments showing the values that were chosen for tpb for different engine 
speeds.

At this stage, the regression exercise had related the engine torque to the throt

tle angle for all engine speeds considered. The objective of the regression exercise 

was to find analytic functions of throttle angle and engine speed to represent the 

engine torque. By considering the way in which the values c*i,rj, a 2>r, , etc varied, 

as the engine speed varied, candidate functions of throttle angle and engine speed 

were obtained. This was carried out by plotting the values ai,rj,a 2,r,, etc against 

the values rj, as shown in Figures 5.12 and 5.13 for the two regression coefficients, 

&4,rj and a 5,rj. By examining the shape of the plots, functions of engine speed 

could then be used to approximate the values of ai,rj,a 2,rj, etc. In Figures 5.12 

and 5.13 the values of and a 5,rj are shown with solid lines and the regression 

function approximations are shown with the dotted lines. The functions chosen
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Figure 5.11: Plot showing the different regions used in the first stage of the engine 
torque map regression.

were:

a4,r, w fo +  for, +  for) +  for) (5.13)

Qs.r, »  fo +  for, +  for) +  for) (5.14)

This procedure was carried out for all the a values to obtain functions of both

throttle angle and engine speed that could be used to approximate the engine

torque at low throttle angles and at high throttle angles. By considering the 

variation of Qi,rj> a2jj and a3,rj as r, varied, the functions obtained at low throttle 
angles were:

«  7! +  72/ r 2 +  730 +  74 ^ / V r  +  7502 +  7e02/r  +  7t0 3 +  7s03/r  (5.15)

By considering the variation of on.r,, and 0:5, as r, varied, the functions obtained 
for the high throttle angles were:

T' ®= 79 +  7ior +  lu r2 +  -n2r3 + 713/ 0 2 + 7 iW 0 2 +  7is',20 2 +  7i6r3/ 0 2 (5.16)
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Figure 5.12: Plot of the value of a 4,r> Figure 5.13: Plot of the value of a 5,rj 
against the engine speed values, rr  against the engine speed values, r3.

where i> and r are the general variables representing throttle angle and engine 

speed. Having obtained the 7 values, functions relating the engine torque to the 

throttle angle and engine speed were obtained for the low and high throttle angle 

regions. Their combined effect is shown in Figure 5.14.

The next task is to blend the two regions. In order to do this, for each speed 

value, a cubic spline relating the engine torque to the throttle angle was calcu

lated. The use of the cubic spline is advantageous because it can be guaranteed 

that the engine torque-throttle angle relationship will be continuous in value and 

derivative through the low throttle value region, the blending region and into the 

high throttle value region. In order to ensure that the engine torque-speed rela

tionship is continuous in value and derivative, additional steps must be taken. The 

cubic splines are evaluated by using the values and derivatives of the regression 

functions at the edge of the blending region. However, the edges of the blending 

region are not smooth, therefore, the coefficients of the blending splines will not 

vary smoothly with the engine speed and the resulting engine torque-speed rela

tionship will not be smooth in value and derivative. In order to overcome this 

difficulty, the blending splines are evaluated along the two dotted lines in Figure

174



Figure 5.14: Plot of the surface ob
tained by regressing the engine torque 
data using different functions of throt
tle angle and engine speed for low and 
high throttle values.

Figure 5.15: Plot of the regressed data 
with the blending function. Note that 
the values of throttle angle at which 
the new torque data is stored have 
been redistributed.

5.11. The values of throttle angle along these dotted lines vary smoothly as the 

engine speed varies. By evaluating the blending spline coefficients along these 

lines, the coefficient values will also vary smoothly as the engine speed varies. 

This will cause the engine torque-speed relationship to be smooth in value and 
derivative.

In order to obtain the dotted lines, the curved solid line was first obtained 

by fitting another cubic polynomial to the solid line with straight sections. The 

dotted lines are placed 5° of throttle angle either side of the smooth curved line. 

The last point to be made is that all the engine torque values within the dotted 

lines should be obtained using the blending splines and all the engine torque points 

outside the dotted lines should be obtained using the regression functions. In some 

cases this involved replacing regressed data with blended data. At this stage, an 

alternative vector of throttle angles, 'P', whose values were spaced every 2.5° of 

throttle angle upto 40° and every 10° of throttle angle above this was used. The 

use of this new vector of throttle values allowed the important parts of the engine 

map to be represented in more detail, without storing any more information. The
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Figure 5.16: Plot of the map of Figure 5.17: Plot of the original engine 
obtained by numerically differentiat- torque data, 
ing the data shown in Figure 5.15.

regressed and blended data was then evaluated at these new throttle angles using 

the regressed and blending functions. The engine torque map obtained by this 
process is shown in Figure 5.15.

The map of shown in Figure 5.16 was obtained by numerically differen

tiating the map shown in Figure 5.15. Comparing this map with that shown in 

Figure 5.5, it is seen that the objective of producing a smooth derivative map has 

been achieved, however, some of the detail in the shape of the surface has been 

lost. This is due to a slight ripple, probably due to inlet manifold “pulsing” , that 

can be seen in the engine torque map shown again in Figure 5.17.

The second “hump” in this ripple is larger than the first and it was found that 
a function of the form:

rcos((r -  5000)^/1125) (5-17)

was able to introduce the ripple into the regressed data. To restrict the action of 

the function shown in Equation 5.17, and the upper part of Figure 5.18, to the 

regions of the engine map in which the ripple is present, it was multiplied by the 

bump function shown in the lower part of Figure 5.18. Repeating the regression 

process produced the map shown in Figure 5.19, from which the derivative maps
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Figure 5.18: Upper plot shows trigono
metric function used to include the rip
ple in the torque map, lower plot shows 
the bump function used to restrict the 
ripple function application.

Figure 5.19: Plot of the regressed en
gine torque data including the ripple 
function.

shown in Figures 5.20 and 5.21 were obtained. There are still negative values in 

the map. However, they are around an order of magnitude smaller than the 

negative values in the map shown in Figure 5.5, obtained from the raw engine data. 

These values arise during the regression involving two independant variables and 

constraining the regression to remove this problem was not felt to be worthwhile.

The engine fuel flow rate map also has irregularities due to measurement noise 

associated with testing real engines. The partial derivatives of the engine fuel 

flow rate with respect to the engine speed and throttle angle are not required, 

since the fuel flow rate map is used in the clustering algorithm and not in the 

rule modification algorithm. However, the clustering algorithm relies upon the 

reference map being locally smooth and the partial derivatives of the engine fuel 

flow rate will give a good indication of the local smoothness of the map. The 

partial derivative maps obtained from numerical differentiation of the fuel flow 

rate maps are shown in Figures 5.22 and 5.23.

A very similar procedure to that employed in regressing the engine torque
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Figure 5.20: Plot of the map ob
tained by numerically differentiating 
the regressed engine torque map in
cluding the ripple function.

Figure 5.21: Plot of the map ob
tained by numerically differentiating 
the regressed engine torque map in
cluding the ripple function.

Engine speed in r/min. Fhrottle angle in deg. Engine speed in r/min.

Figure 5.22: Plot of the map 
obtained by numerically differentiat
ing the measured engine fuel flow rate 
map.

Figure 5.23: Plot of the map 
obtained by numerically differentiat
ing the measured engine fuel flow rate 
map.
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Figure 5.24: Plot of the original engine Figure 5.25: Plot of the regressed en- 
fuel flow rate map. gine fuel flow rate map.

maps was used in regressing the engine fuel flow rate maps. Again, the map was 

regressed using two separate regions of throttle angle and subsequently blended. 

Similar numbers of functions were used and a cubic spline was used to blend 

the two regions. The blending region was a slightly different shape for the fuel 

rate map than for the torque map. There is no great significance in this, since 

the shape of the blending region will depend upon the functions used to regress 

the data. The engine fuel flow rate map that was developed in this manner is 

shown in Figure 5.25. Figure 5.24 shows the original fuel flow rate map for the 

purpose of comparison. The partial derivative maps are shown in Figures 5.26 and 

5.27. The final modification that was made to the maps was to set the minimum 

negative torque developed by the engine to be 0. This is because, in the model of 

the powertrain used is this work, as described in Section 3.5.5, the output of the 

engine is passed through a one-way clutch. This aspect of the engine operation 

has to be accounted for in the engine reference maps, by setting the minimum 

torque value to be 0 Nm. This makes very little difference to the derivative maps.

The data stored in the engine reference maps is included in Appendix D.
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Figure 5.26: Plot of the dm *
dap m a P

obtained by numerically differentiat
ing the regressed engine fuel flow rate 
map.

Figure 5.27: Plot of the d m  f

~dih m a P  
obtained by numerically differentiat
ing the regressed engine fuel flow rate 
map.

Generation of motor data reference maps.

In Chapter 2, a model of the traction motor was developed by considering the 

actions of the circuit formed by the motor, its controller and the batteries. Test 

data for the reference maps was not available, so the reference maps and partial 

derivative maps were generated by using the model to predict the performance of 
the motor over the range of conditions of interest. The motor maps stored motor 

output torque, and battery current, over a grid of values of engine speed and 

demanded armature current. It will be recalled that the motor speed is twice the 

engine speed for engine speeds below 3250 r/min and equal to the engine speed at 

engine speeds above this value. Engine speed is used to define the regions in the 

clustering algorithm and, for this reason, engine speed, rather than motor speed, 

is used to define the motor performance maps.

A map of the motor output torque against motor speed is shown in Figure 

5.28 and a map of the motor output torque against the engine speed is shown in 
Figure 5.29.

Partial derivative maps, and are shown in Figures 5.30 and 5.31.
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«mature current in amps. • * * >  u Motor speed in r/min.

8000

Engine speed in r/min.

Figure 5.28: Plot of the motor out- Figure 5.29: Plot of the motor out
put torque against demanded arma- put torque against demanded arma-

Clearly, the derivative maps are not very smooth. The irregularities on these 

maps are due to the decision taken when first modelling the motor, that if a nega

tive armature current is demanded, but a positive battery current flows, then the 

motor controller will apply no currents at all. In Figure 5.28, it is seen that, as the 

demanded armature current becomes increasingly negative, a point is reached at 

which the battery current becomes negative. At this point, a significant negative 

torque is generated, causing the step in the motor torque map at this point. This 

causes the discontinuities in the derivative maps. It should also be noted that by 

turning the motor twice as fast as the engine this effect is reduced, since the engine 

has a minimum operational speed of 1000 r/min. The discontinuities were left in 

the motor derivative maps because they represent an actual, acute non-linearity 

that the adaptation process would have to take into account.

The battery current maps are shown in Figures 5.32 and 5.33. The corre

sponding derivative maps are shown in Figures 5.34 and 5.35. The data stored in 

the motor reference maps is also included in Appendix D.

ture current and motor speed. ture current and engine speed.
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Figure 5.30: Plot of against de
manded armature current and engine 
speed.

Demanded * 1UO —•— 2000
•n n ilu re  current in am ps. *200 0  Motor w eed  in r/mta.

Figure 5.32: Plot of the battery cur
rent against demanded armature cur
rent and motor speed.

Figure 5.31: Plot of against de
manded armature current and engine 
speed.

Figure 5.33: Plot of the battery cur
rent against demanded armature cur
rent and engine speed.
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8000

min.

Figure 5.34: Plot of against de- Figure 5.35: Plot of against de
manded armature current and engine manded armature current and engine 
speed. speed.

5.3 Initial adaptive fuzzy hybrid vehicle power- 
train controller.

The adaptive control methods developed here are applicable over the entire range 

of powertrain operation, however, they will be developed using controllers in which 

the motor works against the engine. This is because the experimental work de

scribed in Chapter 3 indicated that there was a greater opportunity for improving 

the efficiency of the powertrain in this region of operation. Also, variations in 

the torque response of the powertrain are more difficult to minimise when one of 

the prime movers develops negative torque and this will be a greater test of the 

constant torque rule modification procedure.

5 .3 .1  D e t e r m in in g  th e  c o r r e c t  s iz e  a n d  d ir e c t io n  o f  ru le  
m o d if ic a t io n .

The rule modification procedure effectively moves the rules along contours of 

constant output torque. This should cause controllers to be developed which 

attempt to maintain the driveshaft torque-pedal value relationship. The other 

aspect of the powertrain performance to be addressed in this initial adaptive

Demanded __
armature current in amps. "200 0 Engine speed in r/

Demanded -100
armature current in amps. *200 0 Engine speed in r/min.
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controller is that of using the stored fuel of the vehicle and its stored electrical 
energy in a ratio that can be controlled.

where ke is a constant that defines the equivalence of fuel and electrical energy. By 

examining the shapes of the results presented in earlier work, see Figure 3.11, the 

value of ke was set at 120 A /(g /s ). The fuel flow rate appears in the denominator 

of the performance measure because its clustered value can never be zero, whereas 

hat can be zero. The first adaptive fuzzy controllers used the difference between 

a desired value, and the performance measure value evaluated over a learning 

interval, to give the rule modification step size, A m„,, for the ¿’th rule

where T x is the value of the performance measure for the ¿’th rule evaluated over 

the last adaptation interval, Ta, and kp is a constant that determines the rate

average of the elements f xj  taken over the ¿’ th row of the matrix F. The values, 

c,j, which count the number of times that an operating point enters a clustering 

pedal value-engine speed region, stored in the ¿’th row of the matrix, C , are used

Tx is then set equal to / , .

A restriction is placed on the values of A mVl which is that, if a rule has not been 

fired over the learning interval, then A m„, =  0. This limits the rules being modified

The performance measure used to assess the ratio of the use of electrical energy 
to fuel is

■ F  —  h a t / ( , ^ e ^ f ' ) (5.18)

A mxi{ =  kp(Td — Fi) (5.19)

at which the controller adapts. The value of Jr, for any particular rule is the

to weight the average value of the performance measure. In forming the average, 

over the row the following formula is used

(5.20)
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Figure 5.36: Plot of average value of 
over all engine speeds (including 

action of one-way clutch).
Figure 5.37: Plot of average value of 

over all engine speeds.

to those whose performance has been measured. It will be seen in Chapter 6 that 

there is a further large advantage to restricting the rule modification procedure in 
this way.

In Section 5.2.1, it was stated that the values of and are stored in 

matrices J e and Jm. Having decided upon the step size to be taken by the rule 

modification procedure, the values of and have to be obtained from J„ 

and Jm in order to calculate the changes in the rule output sets. The values of 

ancl §u5 at the values of throttle angle and demanded armature current of 

the rule being considered should be used. However, both and vary with 

engine speed. There remains the task of selecting single values of and J 

at the particular throttle angle and demanded armature current values, from the 

range of values corresponding to the range of engine speeds.

Initially, the method of selecting the particular values was to pick the average 

value of the partial derivatives over all engine speeds. These average values of 

and are shown in Figures 5.36 and 5.37.
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Figure 5.38: Plot of the results and controller values obtained by running suc
cessive simulations of the initial adaptive hybrid powertrain controller over the 
ECE-15 drive cycle.

5 .3 .2  In it ia l  s im u la t io n  r e s u lts .

The performance of the adaptive powertrain controller was investigated by simu

lating successive ECE-15 cycles. At the end of each cycle the performance of the 

rules was measured, and the rule output set locations were then modified using 

the measured values of the rule performance over the last cycle. This procedure 

effectively sets the adaptation interval to be 196 seconds, which is the length of 

the portion of the ECE-15 cycle that is used in the simulations. By simulating 

whole cycles between between adaptations, the performance of the controller can 

be evaluated by the fuel consumption and change in battery state of charge ob

tained over each cycle. These values are shown in the upper plot of Figure 5.38 

and the fuzzy output set locations that were generated by the adaptation process 

are shown in the lower plot of Figure 5.38 for the rules whose input sets have their 

maximum grades of membership at 4° and 12° of pedal value. The values of kp
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Figure 5.39: Pedal value time histories for the baseline controller (dashed line) 
and the adapted controller (solid line).

and of Ti were 50 and -0.2.

The ECE-15 cycle does not require large amounts of effort from the controller 

so that only the rules whose input sets have maximum grades of membership at 

4° and 12° of pedal value are changed. The controller converges after around 13 

ECE-15 cycles to the following values:

$  [0 7.91 14.67 24 40 90]
A [0 -28.15 -42.28 0 0 0]

Figure 5.39 shows a comparison of the pedal value time histories between 

the adapted controller and the baseline controller. The object of the adaptation 

strategy is to vary the relative use of the stored energy resources of the vehicle, 

whilst keeping the relationship between the pedal value and the output torque 

the same. Figure 5.38 illustrates how the relative use of the energy resources is 

varied by the adaptation strategy, and Figure 5.39, which is discussed in more 

detail below, gives an indication of how well the relationship between the pedal 

value and the driveshaft torque is maintained.

It can be seen from Figure 5.38 that the rule initially located at 4° of throttle 

angle converges before the rule that was originally located at 12°. This is because 

at 12° of throttle angle the fuel flow rates are higher than they are at 4° and, 

to get the same performance measure value, /,-, the rule originally at 12° has to
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move further. Since the rules move at a similar rate, the lower pedal value rule 

converges first. Comparing the results of the simulations presented in the upper 

plot of Figure 5.38, with those presented in Figure 3.11, it is seen that the adapted 

controllers use roughly similar amounts of fuel and electrical energy as the hand 

tuned controllers. In the sense of efficiency, the results are no better than the 
earlier results.

An interesting aspect o f the clustering algorithm is revealed by considering a 

portion of the F matrix when the controller had converged. The top 8 rows of 

the F matrix together with the vector defining the pedal value input set locations 

and the speed values to which the points are to be clustered are shown below.

pedal value input set locations (0 )

0 4 12 24 40 90

r  l o o o r  o 0 0 0 0 0 1
1250 0 -0.0549 -0.0890 0 0 0

engine speed 1500 0 -0.1417 -0.1299 0 0 0
values to 1750 0.0160 -0.2186 -0.1563 0 0 0

which points 2000 0 -0.2639 -0.1820 0 0 0
are clustered 2250 0.0326 -0.4421 -0.2077 0 0 0

(« ) 2500 0.0086 -0.4200 -0.2200 0 0 0
2750 0 0 0 0 0 0

L : ■ : -
F

It can be seen from Figure 5.38 that the rules of the converged controller should 

not cause positive armature currents to flow. The positive values appear in the 

F matrix because of the actions of the clustering algorithm and are illustrated in 
Figure 5.40.

As explained previously, if low negative values of armature current are de

manded, but the battery current is positive, no motor currents flow at all. The 

abrupt change in the motor action as the controller suddenly applies the cur

rents will not be modelled in the battery current reference map, and the situation
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Figure 5.40: Example of clustering algorithm clustering a negative battery cur
rent value to the zero demanded armature current rule location and causing the 
clustered value to be positive.

shown in Figure 5.40 can occur, which results in the clustered value being positive. 

There is nothing particularly alarming or undesirable about this consequence of 

the clustering algorithm since it only occurs for the rule which is never moved.

Figure 5.39 shows the pedal value time histories of the baseline vehicle and 

the adapted controller. Compared with Figures 3.10 and 3.16 it is seen that the 

pedal value time history of the adapted controller is far more like the pedal value 

time history of the baseline controller than those of the hand tuned controllers. 

In this sense, the adaptive controller proves to be quite advantageous. The most 

obvious difference between the two time histories shown in Figure 5.39 is the dip 

in the adapted pedal value response at about 33 seconds. This dip is caused by 

the adaptive fuzzy controller failing to generate driveshaft torques similar to the 

torques generated by the engine at this instance.
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Figure 5.41: Plots of engine and mo
tor output torque against pedal value 
for initial adaptive controller, (upper 
2 plots at 1000 r/min, lower 2 plots at 
1500 r/min).

Figure 5.42: Plots of hybrid power- 
train driveshaft output torque against 
pedal value, adaptive controller solid 
line, baseline vehicle dashed line, (up
per plot at 1000 r/min, lower at 1500 
r/min).

Figure 5.43: Plots of engine and mo
tor output torque against pedal value 
for initial adaptive controller, (upper 
2 plots at 2000 r/min, lower 2 plots at 
2500 r/min).

Figure 5.44: Plots of hybrid power- 
train driveshaft output torque against 
pedal value, adaptive controller solid 
line, baseline vehicle dashed line, (up
per plot at 2000 r/min, lower at 2500 
r/min).
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5 .3 .3  I n it ia l  a d a p tiv e  c o n tr o lle r  d r iv e a b ility .

Figures 5.41, 5.42, 5.43 and 5.44 show the torque outputs for the engine and 

the motor, and the driveshaft torque, for the adapted controller. The driveshaft 

torque outputs for the baseline vehicle are also shown. The driveshaft torques 

give an indication of the vehicle driveability. In general, the driveshaft torques 

are maintained reasonably well. From the point of view of driveability, the rate 

of change of driveshaft torque with respect to the pedal value is probably as 

important as the magnitude of the pedal value itself. In this respect, the plots 

in Figure 5.44 are quite satisfactory. Plots in Figure 5.42 are less satisfactory 

in both value and derivative. The plot at 1000 r/min is by far the worst, but, 

from a practical point of view, the poor torque response at this speed is of little 

consequence because the powertrain never operates under load at this low speed.

The other major problem is illustrated by the motor suddenly starting to gen

erate significant amounts of negative torque, causing a sharp dip in the driveshaft 

torque response, which would undoubtedly give poor driveability. In some re

spects, this appears worse than it actually is, since, on a conventional vehicle, the 

engine will develop significant negative torque at the low pedal values at which the 

dips occur. This negative engine torque is not shown in these plots because of the 

actions of the one way clutch. In use, it would be desirable for the powertrain to 

develop negative torque at zero throttle angle, since this would mimic the action 

of “engine braking” in a conventional vehicle. However, the rule at zero pedal 

value has to demand zero throttle angle and armature current, for those occasions 

when the vehicle is at rest with the engine at idle. This motivates the need to use 

an additional input of engine speed.

The other feature of the plots in Figures 5.42 and 5.44 is the sudden increase 

in torque as the motor stops operating, when the demanded armature current falls 

at a pedal value of about 20. This causes less of a problem in driveability because
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the overall driveshaft torque is higher and the consequences of a step up in torque 

are not as great as those for a step down in torque. The real points of interest 

in these plots are the locations of the rules themselves. The rules are located at 

pedal values of 4 and 12. The driveshaft torques at the rule locations will only be 

different from the base vehicle driveshaft torques if the rules have been moved to 

incorrect locations. In between the rule locations, the driveshaft torque may differ 

from the base vehicle driveshaft torque due to sharp fluctuations in the motor or 

engine output torques as discussed above. The fact that the baseline driveshaft 

torque and the adapted controller driveshaft torque are not the same at these 

locations indicates that the rules have been moved to incorrect locations. This 

will be because the directions in which the rules are moved are calculated using 

partial derivative values that are average values taken over the complete range of 

engine speeds.

In an attempt to improve the performance of the controller adaptation in this 

respect, a different set of values of shown by the dotted line in Figure 5.37 

was used. This modification had very little effect on the accuracy with which 

the adaptive controller torque outputs matched the baseline vehicle torque out

puts. Final attempts at improving the torque matching involved forming different 

weighted average values of and This was done by taking all the values,

over the range of engine speeds, of and for each rule and weighting their 

average by the number of times that a particular speed region was used by the 

vehicle. A further refinement to this was to weight the average for each rule by 

the number of times that the vehicle was operated in each speed region, whilst 

the rule being modified was used. These modifications had a slight improvement 

in the pedal values used over the cycle but very little effect on the torque response 

plots. The reason for the lack of improvement in the torque response plots was 

that the directions of the modifications were still being determined by a range of
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engine speeds but were applied at specific engine speeds. The torque responses 

are a better way of determining the success of the rule modifications than the 

pedal value trace, because the latter type of graph simply shows how good the 

controller is over the ECE-15 cycle, whereas the torque response indicates how 

well the controller will perform in general. This is particularly important when 

it is considered that the ECE-15 cycle does not cover a large range of operating 
conditions.

Again, these observations motivate the use of engine speed as a second input, 

because each rule can then be moved using values of and that are correct 

for the location of that rule.

5 .3 .4  C h a n g in g  t h e  a d a p ta t io n  in te rv a l.

Various simulation experiments were tried with the adaptation interval set at 20, 

40, 60, 80, 120 seconds. Figure 5.45 shows the values of the throttle angle set 

location for the rule originally located at 4° of throttle angle when the learning 

interval was set at 20 seconds. It can be seen that the controller does not converge 

but the performance measure value for that rule oscillates around the desired 

performance measure causing cyclic changes to be made to the rule output set 

location. The data in Figure 5.46 is the same as that in Figure 5.45. The results 

obtained at 40, 60 and 80 second adaptation intervals were also oscillatory, but 

the causes of the oscillation are most easily understood by considering the results 

obtained with a 20 second adaptation interval.

Making reference to Table 5.1, the oscillatory behaviour is explained as follows. 

At modification number 15, the value f 2 is more negative than the desired value, 

fd and the rule is accordingly moved back towards 4°. Note that the values, C2,i...7, 

show that during the last adaptation interval, when the second rule was used, the 

engine was operating at high speeds where more negative values of / 2 are easily
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number o f rule modifications

Figure 5.45: Upper plot shows the pro- Figure 5.46: Detail from previous Ag
gression of the rule originally located ure. 
at 4° of throttle angle, lower plot shows 
performance measure values for that 
rule.

Engine speeds in r/m in

m od. tim e in
no. cycle f 2 1000 1250 1500 1750 2000 2250 2500

15 80 -0.246 0 2 . 1  -7 0 33 6 0 0 0 59

f l . l  7 0 -0.041 -0.114 0 0 0 -0.373

16 100 -0.356 0 2 , 1 - 7 0 0 0 0 0 2 6

h , i  7 0 0 0 0 0 -0.383 -0.347

17 120 0 02. 1 - 7 0 0 0 0 0 0 0

f l . l —7 0 0 0 0 0 0 0

18 140 0.022 0 2 . 1 7 0 34 3 0 0 0 0
fl .  1 7 0 0.025 0.001 0 0 0 0

19 160 0 0 2 , 1 - 7 0 0 0 0 0 0 0

f l . l  7 0 0 0 0 0 0 0

20 180 -0.239 0 2 , 1 - 7 0 0 0 76 0 0 13

/ 2 . 1  7 0 0 0 -0.206 0 0 -0.433

Table 5.1: Performance measure values shown in Figures 5.45 and 5.46
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achieved. At modification 16, the value, / 2, is far too negative and the rule is, 

again, moved towards 4°. At modification 17, the rule has not been used and is 

not modified. At modification 18, very low engine speeds have been used when 

this rule fired and the value of f 2 is actually positive due to the operation of the 

clustering algorithm as described above. This causes a large increase in the rule 
throttle angle and the cycle is subsequently repeated.

This oscillatory effect is most marked when very short adaptation intervals of 

20 seconds are used. The effect disappears completely when 120 second adaptation 

intervals are used and would, in general, be less likely to occur on more random 

drive cycles. However, the existence of such oscillatory action, due to assessing 

powertrain performance over small ranges of engine speeds and then applying 

changes over all engine speeds, provides a further justification for the use of an 

additional input of engine speed to the powertrain controller.

5.4 Conclusions.

This chapter began by describing the basic functional objectives of an adaptive 

hybrid vehicle powertrain controller, motivated by the three performance require

ments of hybrid powertrain control. An adaptive fuzzy hybrid powertrain con

troller structure was then described in terms of a block diagram, and the various 

tasks within the diagram were described in more detail. Two performance mea

sure functions were considered, one assessing the performance of the powertrain 

with respect to its relative use of the two energy resources of the vehicle, the other 

measuring the overall efficiency of the powertrain.

In order to assess the merit of each individual rule, these performance measures 

were separately evaluated in the regions of operation in which each rule is dom

inant. Furthermore, in order to assess the merit of each rule at different engine 

speeds, the performance measure for each rule was separately evaluated in the
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region of several different engine speeds. This performance measurement process 

required the use of à clustering algorithm to make the performance measured at 

individual points in a rule-engine speed region representative of the entire region.

The rule modification procedure was then described. In order to maintain 

the vehicle driveability, this procedure attempts to move rules along contours of 

constant driveshaft torque, starting from the rule locations of the baseline vehicle. 

Some information about the powertrain has to be used to move the rules and this 

is supplied by the use of reference maps of the derivatives of output torque with 

respect to the throttle angle and the demanded armature current for the engine 

and the motor.

The preparation of the engine reference maps involved the use of regression 

analysis in order to obtain smooth maps capable of being used to drive the rule 

modification procedure. The map generation for the motor being more straight

forward because of the analytic nature of the motor model.

Results of early simulation studies were then presented. These studies show 

that, in principle, the adaptive controller is able to influence the relative use of 

fuel energy and electrical energy by the vehicle. When the pedal values for the 

adaptive controller are compared with the hand tuned controller, it appears that 

the adaptive controller maintains vehicle driveability very much better than the 

hand tuned controllers. However, a closer inspection of the driveshaft torques 

revealed that there was still a requirement for some improvement. Since only the 

performance measure which assesses the relative use of energy was used, no indi

cation has yet been given of the suitability of the adaptive controller for improving 

the efficiency of the vehicle.

Three instances were found in which the operation of the adaptive controller 

would have been more effective, and straightforward, if a second control input of 

engine speed had been used. Additionally, since the controllers are now automat-
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ically tuned, the daunting task of hand tuning a two input fuzzy hybrid vehicle 

powertrain controller has been removed.

The next chapter will, therefore, extend the ideas of this chapter into two input 

controllers and will investigate improving the powertrain efficiency.
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Chapter 6

Refinements to the adaptive 
fuzzy hybrid vehicle powertrain 
controller.

6.1 Introduction.

The previous chapter described the basic method of operation of an adaptive fuzzy 

hybrid vehicle powertrain controller. It was seen that the significant differences 

between the hand tuned controllers of Chapter 3 and the adaptive controllers of 

Chapter 5 lay in performance measurement and in rule modification. Methods 

of carrying out these two tasks were developed and implemented generating an 

adaptive controller.

The adaptive controller successfully adapted each rule so that its performance 

in terms of the relative use of energy matched a demanded value. However, the 

controllers did not always maintain a constant powertrain output torque for any 

given pedal value. The major reason for this was that the controllers used only 
pedal value as their input.

In this chapter, an additional powertrain controller input of engine speed is 

introduced, allowing more accurate modification of the controller output set loca

tion. The disadvantage of the increased complexity in tuning a two input controller
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is not important when the modification process is automated.

The research material covered in this chapter investigates the use of small 

fuzzy controllers that control various aspects of the rule modification process. 

This allows conclusions to be drawn regarding the relevance of fuzzy logic as a 

tool in adaptive and learning control applications.

Having established methods of using the extra input in the adaptation method, 

the rule modification technique goes on to use the overall performance of the 

vehicle, as well as the performance of each rule, for controller modification. The 

driveability of the resulting controllers is then improved and studies are carried 

out to investigate the possibility o f improving the efficiency of the powertrain 

operation.

It was realised that the ECE-15 drive cycle was no longer an appropriate cycle 

to be assessing the performance of adaptation methods and, accordingly, data 

taken from an instrumented vehicle driven in an urban area, was used to exercise 

the vehicle model and the adaptive controllers described in this chapter.

6.2 A  two input adaptive hybrid vehicle power- 
train controller.

The addition of an extra input of engine speed in the hybrid powertrain controller 

is very straightforward when the controller is implemented as described in Section 

3.4.3. When triangular fuzzy input sets, which overlap as far as their maximum 

grades of membership, are used with product implication, and the union of the 

output sets is formed using the summation operator, the overall input-output re

lation reduces to bilinear interpolation. The points within which the interpolation 

takes place are defined by the values in the input universes of discourse which have 

maximum grades of membership in the fuzzy input sets and by the centres of the 

output sets.
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Figure 6.1: Fuzzy input sets initially used on engine speed universe of discourse.

In order to use a second input of engine speed, a series of input fuzzy sets must 

be defined on the engine speed universe of discourse. These sets were initially 

defined to have maximum grades of membership at the values 1000, 2000, 3000 

and 7000 r/min and are shown in Figure 6.1. These set locations were decided 

upon by considering the range of speeds over which the engine usually operates.

The same pedal value sets were retained from the work described in the pre

vious chapter. In the earlier work, the output fuzzy sets for the throttle angle 

and the demanded armature currents had been represented by a vector of values 

representing the locations of the fuzzy singleton output sets for each fuzzy rule. 

When generalising the method to include two input controllers, a matrix of output 

set singletons is required for each output. The original controller, from which the 

adaptation process started, was the baseline controller. It will be recalled from 

Section 3.5 that the baseline controller demands a throttle angle equal to the pedal 

value and no armature current. The matrix used for the initial locations of the 

output sets for the throttle angle was, therefore:

' 0 4 12 24 40 90 '
0 4 12 24 40 90
0 4 12 24 40 90
0 4 12 24 40 90

The equivalent matrix for the demanded armature current output set locations 

was:
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■  0 0 0 0 0 0 '

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The adaptation procedure is easily applied to the two input hybrid powertrain 

controller. In fact, in some respects, the implementation of the adaptation proce

dure is more elegant in the case of the two input controller. The vector ft, used 

to partition the range of vehicle powertrain operating speeds can be set equal to 

the vector of locations with maximum grades of membership in the engine speed 

input sets. When the operation of the powertrain is clustered to the vertices of 

the performance measurement grid, each performance measure value in the per

formance measurement matrix then represents the performance of one rule in the 

fuzzy controller.

When the rules are modified, the derivatives of engine torque with respect 

to throttle angle, and motor output torque with respect to demanded armature 

current, can be evaluated at the powertrain operating speeds for each rule. Previ

ously, average values obtained over all engine speeds had been used to determine 

the direction in which rules should be modified, leading to difficulties in maintain

ing a constant driveshaft torque as the controller adapted.

6.3 Alternative drive cycles.

The ECE-15 cycle is useful as a benchmark cycle over which to evaluate the 

fuel consumption and emissions performance of vehicles. However, it is not ideal 

as a cycle to exercise an adaptive control strategy, since the vehicle performance 

required to follow the cycle is not very large, few points of operation are visited on 

the cycle and much of the time is spent at idle. Essentially, the data contained in 

ECE-15 is not “rich” enough to exercise an adaptation strategy and the duration
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o f the cycle is rather short so that, during adaptation using successive simulation 

runs over the same cycle, effects due to repetition of the data occur.

6 .3 .1  D a t a  a c q u is it io n .

In order to overcome these difficulties, the remainder of the adaptive controller 

work described here used data obtained by driving an instrumented vehicle over 

data acquisition test routes. During the data acquisition exercises, the engine 

speed, vehicle speed and time were stored using a sampling interval of about

1.1 seconds. The software and hardware used to carry out this task were not 

developed by the author, although use was made of previous work by the author, 

in the development of instrumentation for the Rover electric Metro.

The engine speed was measured by interrogating the vehicle engine manage

ment system via its serial communication channel. The vehicle speed was obtained 

by the use of a rotational transducer placed between the differential speedo cable 

drive and the speedo cable. This transducer emits 16 pulses per revolution, and 

the vehicle speed is calculated by measuring the time interval between each pulse.

Various drivers then drove the instrumented vehicle around a twenty minute 

urban journey in Coventry. An additional journey involving the use of dual car

riage ways and extra urban roads was also used, but this data was not used in 

exercising the adaptive controllers, being less typical of general passenger car us

age in Europe, see [202].

Figure 6.2 shows the measured engine speeds against the measured vehicle 

speeds. The theoretical “ingear” linear relationships between engine speed and 

vehicle speed have been shown by the straight lines. It can be seen that not all 

o f the points lie on, or even in some cases, near the lines. These points occur 

during gear changes. It will be recalled, from Chapter 2, that the model requires 

the vehicle speed and gear selected as reference signals. Accordingly, the most
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Figure 6.2: Engine speed against vehicle speed for the raw data from the measured 
cycle. Straight lines show the theoretical “ingear” relationship between the engine 
speed and the road speed.

Figure 6.3: Reference speed against time for the measured urban drive cycle.

203



appropriate gear was calculated for each instant in the time history.

Figure 6.3 shows the vehicle speed against time for the cycle used to develop 

the adaptive controllers. Note the clustering of the vehicle speed values around 

the urban speed limits o f 30 mph, 40 mph and 50 mph encountered on the journey.

6.4 Initial experiments with the adaptive two in
put hybrid powertrain controller.

6 .4 .1  C o n t r o l le r s  u s in g  a  s in g le  v a lu e  o f  Td•

The migration of the fuzzy output singletons for a series of simulation runs repre

sentative o f the early results is shown in Figure 6.4. The procedure for updating 

the rules was to use a modified version of Equation 5.19:

& m v ij  — k p i 'F i  !Fi j )  (6.1)

where Td =  -0.08, kp =  50 and the adaptation interval, Ta =  200 seconds. As 

in the adaptive single input controllers, if a rule has not been fired in the last 

adaptation interval, then it is not modified. Also, a mask matrix the same size 

as the matrices of rule output set locations consisting of the values 1 or 0 was 

included. The purpose of the mask was to fix the rules whose locations in the 

matrices o f output singletons corresponded to the value 0 in the mask matrix. By 

this means, the rules at 0° and 90° of pedal value were fixed, whilst the other rules 

were allowed to be modified.

The simulations were run repeatedly over the cycle shown in Figure 6.3, the 

results shown in Figure 6.4, representing around 7000 seconds of vehicle usage. 

Four main points arise out of the work that Figure 6.4 represents:

• After a period of adaptation, many of the rule output set locations con

verge to final values where they remain. In some cases, some oscillatory 

behaviour occurred, for example, two distinct clusters of values are present
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Figure 6.4: Progression of output set locations as the two input adaptive controller 
adapts.

in the locations of the rule whose output sets were originally located at 24° 

of throttle angle and OA, at 3000 r/min. More sophisticated adaptation 

methods described later in this chapter were able to reduce the extent of 

such oscillations. However, when simulations over the same cycle are re

peatedly used, in practice, it is extremely difficult to remove some form of 

cyclic variation. This is because there will, inevitably, be regions in any real 

cycle, in which individual rules perform well and other regions in which they 
perform badly.

• Some of the rules do not converge at all. The most obvious examples of 

this are the rules whose input sets are located at 3000 r/min, 12° of pedal 

value, 2000 r/min and 24° of pedal value, 2000 r/min and 40° of pedal value 

and 3000 r/min and 40° of pedal value. The reason why these rules do not 

converge is shown in Figures 6.5, 6.6 and 6.7, in which contours of constant 

powertrain output torque (calculated using the regressed engine map and
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Figure 6.5: Contours of constant powertrain output torque in the throttle an
gle-demanded armature current space at a powertrain speed of 1000 r/min. 
Dashed lines are contours of constant performance measure value. Crosses show 
positions of fuzzy rule output sets as adaptation takes place.

Figure 6.6: Contours of constant pow- Figure 6.7: Contours of constant pow
ertrain output torque at 2000 r/min. ertrain output torque at 3000 r/min.
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the motor model) are shown as solid lines. The dashed lines are contours 

of performance measure ratio (calculated using the raw engine data and the 

motor model). The reason that some of the locations of the output sets do 

not converge is that the path along which these locations move does not 

cross the contour representing performance measure values equal to -0.08. 

Figure 6.7, also shows that the rate at which output set locations converge is 

strongly affected by the angle between the path along which the set locations 

move and the contours of constant performance measure.

• The output sets that were originally located at 4°, 0A do not converge 

exactly to a performance measure value of -0.08. The reason for this is that 

the engine changes most rapidly in this region of operation. It is, therefore, 

most difficult for the clustering algorithm to represent the action of the 

entire rule operation. Also, the contours of constant performance measure 

are most closely spaced in this area. In Figure 6.7 the locations of the output 

sets whose corresponding input sets are at 3000 r/min and 24° can be seen 

to oscillate either side of the performance measure =  -0.08 contour.

• In Figure 6.4 the very different paths of the output sets originally at 24° 

and 2000 r/min and 3000 r/min are obvious. Figures 6.6 and 6.7 show that 

this is because the contours of constant powertrain output torque are quite 

divergent at these two powertrain speeds.

6 .4 .2  C o n tr o lle r s  u s in g  d iffe r e n t  v a lu e s  o f  T& fo r  e a c h  ru le .

In order to overcome the problem caused by the lack of convergence of the output 

set locations for some rules, it was decided to have a matrix, H, the same size as 

the matrices of controller output set offsets whose elements were the values Td for 

each fuzzy rule. This allows much greater control over the converged rule output 

set locations. As before, the output sets were not moved if the rule had not been

207



fired or if they were fixed by the mask.

More negative values of T& can be used for those rules with output set loca

tions which can be moved a long way and still remain in a region in which the 

performance measure changes as the sets move. However, using a simple pro

portional control to adjust the location of the output sets will cause much larger 

steps to be taken when the performance of the rule is very different from the Ti 

value for that rule. When these larger steps were taken it became apparent that 

the simple Euler integration method of rule movement was inadequate and could 

cause the rules to move in quite the wrong direction. To overcome this problem, 

second order Runge-Kutta integration, as described in [49], was used.

The rule modification is performed as follows. The distance which the rule 

is to be moved is still calculated using Equation 6.1. Intermediate output set 

locations are first calculated, using Equations 5.5 and 5.6, setting A mVl equal to 

half the value given by Equation 6.1 and the values of and at the current 

location of the rule output sets. New values of and J are then calculated 

at the intermediate location of the output sets and these values, and the full value 

for A mU|> given by Equation 6.1, are then used to move the output set locations 

from the current locations of the output sets (not the intermediate locations) to 

the next locations of the output sets. This procedure caused the paths taken by 

the output sets to more closely follow the contours of constant output torque, and 

also allowed the use of much larger step sizes in the adaptation process.

By adjusting the values stored in the H  matrix, it is possible to have far 

greater control over the movement of the output sets during adaptation, and the 

values to which they converge. By plotting combined engine and motor output 

torque against pedal value, for both the baseline controller and the adapted con

troller, it is possible to study how well the adapted controllers maintain a constant 

powertrain output torque after adaptation.
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It was quickly discovered that it is extremely difficult for an adapted controller 

to maintain the driveshaft torque of the baseline controller at 1000 r/min. This is 

because the operation of both the engine and the motor varies in an extreme way 

at such low speeds. At 1000 r/min the engine is very responsive to changes in the 

throttle angle. Also, the consequences of preventing motor currents from flowing, 

when the demanded armature current is negative but the battery current would 

be positive, are at their most severe at low speeds. It was, therefore, decided to 

fix the rules at 1000 r/min using the mask matrix and add an additional rule at 

1500 r/min. This is a useful addition, since, from the point of view of the engine 

it is desirable that, as the engine comes off idle, it does not have the motor acting 
against it.

It was also found that the fuzzy rules whose input sets were located at 4° of 

pedal value caused significant problems in driveability. This is because of the 

sudden step of negative torque, which occurs as the conditions for motor currents 

to be applied are met. At higher engine speeds, this step of negative torque tended 

to occur as the engine itself was producing negative overrun torque, leading to 

some very negative powertrain output torque values. The contours of constant 

powertrain output torque are very closely spaced at low pedal values and this 

further hinders the maintenance of good driveability. To overcome these problems, 

the rules located at 4° were also fixed using the mask. Again, from a practical 

point of view, pedal values as low as 4° will only tend to be used as the engine 

comes off idle, and it is desirable to restrict the operation of the motor under these 
conditions.

During the controller development it was often found that the combined engine 

and motor output torque matched the torque output of the baseline controller very 

well, when the inputs were at the maximum grades of membership of the input 

fuzzy sets, but less well between the rules. This effect was reduced by adding two
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more fuzzy input sets on the pedal universe of discourse. Figure 6.8 shows the 

progression of the output set locations, during adaptation, of the controller whose 

input sets and H matrix are shown below:

pedal value input set locations

0 4 8 12 18 24 40 90 ]

engine ' 1000 ' 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
speed 1500 0.00 0.00 -0.25 -0 .15 -0.05 -0.02 0.00 0.00
input < 2000 0.00 0.00 -0.40 -0 .30 -0.05 -0.02 0.00 0.00

set lo- 3000 0.00 0.00 -0.60 -0 .50 -0.25 -0.08 -0.01 0.00
cations 7000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

H
The other simulation parameters that were used in obtaining the results shown 

in Figure 6.8 were kp =  50 and Ta =  50 seconds. The simulation was stopped after 

50 rule modifications. The output sets for the rules at 7000 r/min were only very 

slightly modified since they are fired very infrequently in the urban cycle used 

to exercise the controller. A feature to note from the upper two plots of Figure

6.8 is that few modifications were made to the output set locations of the rules 

whose input sets are at 1500 r/min and 24°, and 2000 r/min and 40°. This is 

because at low engine speeds, low pedal values are used predominantly and, since 

the rules are not fired, the adaptation scheme does not move the output sets. In 

use, the consequences o f the rules overtaking one another are that, as the pedal 

value increases, the engine throttle angle decreases. However, this is not as much 

of a problem as it might at first seem, because, at the throttle angles used under 

these conditions, the rate of change of engine torque with respect to the throttle 

angle is very low. Also, at about this stage, the motor stops applying negative 

torque and the change in the motor torque is the most dominant effect. This is 

shown by the plots comparing baseline controller powertrain output torque and 

adapted controller powertrain output torque, in Figure 6.9.
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Figure 6.8: Progression of controller output set locations using two input adaptive 
hybrid vehicle powertrain controller.
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1750 r/min 2000 r/min

Figure 6.9: Plots comparing baseline controller powertrain output torque (dashed 
line) and adapted controller powertrain output torque (solid line) against pedal 
value.
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In general, the torque responses of the adapted controller compare very well 

with the baseline controller torque responses, particularly at the points of max

imum grade of membership of the input sets, as the lower two plots show. It 

should also be noted that the responses are also good between the engine speed 

input fuzzy sets, as the plots on the left of Figure 6.9 show.

The use of individual values of Ta allow the output sets to be placed by hand.

However, the method has significant disadvantages. Firstly, the controllers have 

still not converged. This is shown by the fact that some output sets appear to 

have reached an appropriate position, but this was achieved by setting the T a 

values such that, over the period of time that the adaptation took place, the sets 

reached these positions. Had a different number of rule modifications been made, 

they would have reached different positions.

The method also suffers from the disadvantage that, if the rule is not fired, its 

output sets are not modified, causing vastly different amounts of output set modi

fication for different pedal values at the same speed. Additionally, this method of 

controller adaption requires a large number of values to be set, all of which need to 

be changed if more rules are added. Lastly, this method of setting the values gives 

no indication of how the vehicle will perform overall. The adaptation procedure 

described in the next section was developed to overcome these difficulties.

6.5 A  controller adaptation procedure driven by 
the overall performance of the vehicle.

The controller adaptation procedure described in this section modifies the output 

sets of the rules of the controller by using the error between the performance of the 

vehicle, and the desired performance of the vehicle, in the controller adaptation.

The modification of the output sets of each individual rule is then affected by the *

performance of the rule set rather than that individual rule.
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6 .5 .1  D e f in in g  d iffe r e n t  t y p e s  o f  fu z z y  r u le s .

When the controllers were modified by setting different values in the H  matrix it 

was realised that there were essentially two types of rule. The rules at relatively 

low throttle values tended to be able to affect the overall performance of the 

vehicle strongly because they could be moved to regions of operation where the 

performance measures had relatively negative values. Also, these rules were fired 

relatively often and so their performance has a strong effect on the overall effect 

on the vehicle. In contrast, it has been seen that the rules at higher pedal values 

are used relatively infrequently and, because of the path that the output sets 

take when being modified, do not achieve particularly negative values of the first 

performance measure. However, the rules with input fuzzy sets at higher pedal 

values need to be placed such that the controller driveability is maintained. This 

leads to a conceptual distinction between the two types of rules, those that should 

drive the rule modification process, and those that follow the modification process. 

The primary distinction between these two types is that the first type of rule is 

moving in a gradient of the performance measure and the second type of rule is 

not moving in a gradient of performance measure.

The controller modification strategy should then be to modify the rule output 

sets moving in a performance measure gradient, using the error between the vehicle 

performance and the desired vehicle performance. The rules whose output sets 

are not moving in a performance measure gradient should be modified according 

to the overall shape formed by the complete set of rules.

In order to implement this rule modification strategy, the gradient of the per

formance measure, in the direction in which the rule is moved, has to be evaluated. 

To do this, the performance measures for the controller rules are evaluated over an 

adaptation interval, Ta. The performance measure gradient for a particular rule 

is obtained by dividing the difference between two performance measure values,
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for that rule, obtained over consecutive adaptation intervals, by the step size of 

the output set modification taken between the intervals.

The evaluation of the performance measures is affected by the actions of the 

clustering algorithm, which estimates the performance of the vehicle in the region 

of operation of each rule. The estimates provided by the clustering algorithm will 

have some statistical variation, because, in any adaptation interval, the operation 

of the powertrain is very unlikely to be spread uniformly over the region of op

eration of a particular rule. Generally, in any adaptation interval, the more time 

that the powertrain spends operating in the region of a particular rule, the more 

accurately the performance measure will reflect the true performance of that rule. 

Figure 6.10 shows the percentage accuracy of the performance measure estimates 

for a particular rule, plotted against the number of times that the powertrain op

eration was clustered to that rule. During the simulations used to generate these 

results, a fixed controller, which had been generated over earlier simulations, was 

used and was not allowed to adapt. The “correct” value of the performance mea

sure, used to calculate the percentage error, was calculated by taking the average 

of all values of that performance measure during the simulation. Different values 

of Ta were used to obtain a range of maximum values of the count of the number 

of times that the performance was clustered towards a particular rule.

Figure 6.10 shows the results for the rule whose input sets had maximum 

grades of membership at 2000 r/min and 8° of pedal value, which is one of the 

more frequently used rules. If the region, in which the output sets of a rule in an 

adaptive fuzzy controller are moving, has a small gradient then, when the output 

sets are modified, the change in the true performance measure of the rule will quite 

small. When the controller is close to converging, small changes in the rule output 

sets will be made causing small changes in the true value of the performance 

measure. These small changes would be swamped by the statistical variations
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Figure 6.10: Plots of the performance measure values for the rule with fuzzy input 
sets at 2000 r/min and 8° of pedal value against the count of the number of times 
that the performance was clustered towards that rule.

between one performance measure estimate and the next, making the gradient 

estimate based upon the difference between successive values very inaccurate. As 

can be seen, the use of longer adaptation intervals tends to reduce this effect, but 

will cause the adaptation of the controller to be slow.

At this stage, the rules that drive the modification process were still only mod

ified if they had been selected by the clustering algorithm during an adaptation 

interval. It was noticed that, for the most part, the same rules were fired as were 

moving in a gradient of performance measure. The calculation of the gradient of 

the performance measure involves the use of two additional matrices to store the 

step size and the gradient, and extra computations. Since the gradient calculated 

has an accuracy that can only be quantified at further computational and storage 

expense, a rule was treated as a driver, rather than a follower, if it had been se

lected by the clustering algorithm, at some stage in the adaptation interval, and 

the estimation of the gradient was dropped.
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6 .5 . 2  D r iv in g  ru le  a n d  fo llo w in g  ru le  m o d if ic a t io n  s c h e m e s .

Having established that a particular rule should have the effect of driving the rule 

modification process, the location of the output sets is then modified by the use of 

a simple proportional law, similar to that used in the adaptive controllers described 

above. In this case, the error between the current performance of the vehicle and 

the desired performance of the vehicle is used. This raises the issue of measuring 

the current performance of the vehicle. The instantaneous performance of the 

vehicle, as measured by the first performance measure given in Equation 5.18, is 

shown in the upper plot of Figure 6.11 for a vehicle with a fixed controller being 

driven over the urban cycle. The lower plot shows two moving average estimates 

o f the performance of the vehicle, calculated using the following formula:

7 «  -  ^ n - i (l/ ~ :) +  r -  (6.2)

where T n is the moving average value of the instantaneous performance measure, 

J7, at time index n. The parameter v can be used to adjust the rate at which 

the average is influenced by new information. In the lower plot in Figure 6.11 the 

solid line represents a moving average obtained using v =  5000 and the dashed line 

represents a moving average obtained using v — 2500. The values o f u are very 

high because the moving average is updated every 100 ms and the instantaneous 

measure has such a large amount of variation. The performance measure value 

used to adjust the driving rules of the controller is calculated using Equation 6.2.

The modification of the rules that are following the adaptation process, rather 

than driving it, is carried out separately for each row of the matrices of output 

set locations. Within each row, corresponding to a particular powertrain speed, 

the relationships between the pedal value and the throttle angle, and the pedal 

value and the demanded armature current are then adjusted. The shape formed 

by the output set values of the rules following the adaptation process should be
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Figure 6.11: Upper plot shows an example plot of the instantaneous values of 
the first performance measure for a particular controller, whose output sets were 
fixed. Lower plot shows two moving average estimates of the same performance 
measure (solid line v =  5000, dashed line v — 2500). Note change in axis scales.

such that the powertrain output torque is maintained and the values of throttle, 

and demanded armature current, vary smoothly as the pedal value changes.

During any adaptation interval none, some, or all of the rules, at a particular 

engine speed, may be used. It is often the case that the rules are used over ranges 

or, more frequently, a range of pedal values which does not span the entire universe 

of discourse of pedal values. In these cases, the rules which have been used are 

adjusted by the proportional law used previously. The rules which have not been 

adjusted in this manner normally, also, lie over a range of pedal values.

Figure 6.12 shows example rule output set locations after the driving rules 

have been modified using the proportional law. The output sets of the rules 

which have been modified in this way, or which have been fixed by the mask 

matrix, are shown with crosses. The circles indicate the locations of the output 

sets which have not yet been modified, which will follow the movement of the
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Figure 6.12: Diagram showing the modification of rule output set locations that 
follow, rather than drive, the rule modification process.

driving rules. The dash-dotted lines show the directions in which the unmodified 

output sets are constrained to move in order to maintain a constant powertrain 

output torque. An obvious method of modifying the output sets following the 

adaptation process would be to apply a modification based on the modification 

that was applied to the driving rule output sets. However, this would not take into 

account the differing directions in which the output sets have to move in order 

to maintain the output torque and the effect these different directions will have 

on the overall shape formed by the rules in this row. Clearly, if the output sets, 

at about 70° of throttle angle and -20A demanded armature current, were moved 

very much further, the throttle output set location would go past 90°, which is 
very undesirable.

The dashed line, marked line A, in Figure 6.12 links the output sets one rule 

to either side of a range of sets that have yet to be modified. Since the mask 

always fixes the sets at the ends of the pedal value universe of discourse this line
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is always defined. The rules which follow the adaption process are adjusted along 

the dash-dot lines towards the points marked “+ ” where the dash-dot and dashed 

line intersect. The points to which the output sets are moved are calculated by 

a weighted average of the current locations of the output set and the intersection 

point. The weights used in the average are calculated by a small fuzzy controller. 

The linguistic statement that originally described the actions of the fuzzy con

troller was “If your confidence in the current locations, of the output sets of the 

rule being considered, is high, then leave the sets where they are, otherwise move 

them towards the intersection point” .

This statement was used because occasionally the rules at a particular engine 

speed region of operation would be fired in an unusual manner. If, during a 

period of adaptation, the low pedal value rules are not used, but the high pedal 

value rules are used, then the line towards which the sets would be moved might, 

for example, be as shown by the dotted line in Figure 6.12. If the other sets 

were moved back towards this line, the effect on the overall shape of the output 

sets would be disastrous. The purpose of the above linguistic statement is to 

limit the movement of the rules to reflect the general operation of the powertrain, 

rather than just the operation over the last adaptation interval. For this reason, 

a measure of the confidence that might be placed in the location of a rule would 

be the length of time since that rule was last used. If the rule was recently used, 

the confidence in its current location should be high, whereas, if the rule has not 

been used for some time, the confidence in its location is low. This measure of 

confidence is appropriate because, if the rule has been used, then its output sets 

will have been adjusted by the proportional law and, consequently, its location 

would have, to a certain extent, been influenced by the recent performance of the 

vehicle.

Fuzzy sets were then defined over the universes of discourse “number of adapta-
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tion intervals since last modification as a driving rule” and “confidence in current 

rule location” . Given the simple nature of the controller, only two rules were used. 

Since the fuzzy controller was implemented in the same manner as the main pow

ertrain controller, it was reduced to two vectors of length 2 within which linear 

interpolation was carried out. The first fuzzy input set has its maximum grade 

of membership at 1. The position of the maximum grade of membership of the 

second fuzzy input was seen as a tunable parameter, known as nad. The output 

set locations were at 1 and 0. The overall effect of this was that, if only one adap

tation interval had passed since the rule was modified as a driver, the confidence 

value was 1 and the rule was not altered. If the number of adaptation intervals 

since the rule was last modified was greater than or equal to the position of the 

maximum grade of membership of the second fuzzy set, then the rule output sets 

were moved immediately to the intersection. In practice, this second case is very 

extreme, since nad =  20 adaptation intervals was eventually used. The main effect 

of the location of the second fuzzy set is to modify the behaviour of the adap

tation scheme for rules that have not been modified as driving rules for perhaps 

five or six adaptation intervals. This illustrates the importance of considering the 

cumulative effect of the rule modification scheme, rather than the exact action 

that occurs at any individual stage in the modification process.

One further addition to the modification process was required at this stage. It 

is possible that the line linking the ends of a series of output sets to be modified 

can be almost parallel to the direction in which the rule output sets are moved. In 

this case, the location of the intersection, can be a great distance from the current 

locations of the output sets. In order to prevent rules from being moved too far 

towards this intersection, a limit was set on the maximum step size of any output 

set movements. This limit was normally set at 5.

Figure 6.13 shows the progression of the windowed average performance mea-
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Figure 6.13: T  against time with Figure 6.14: T  against time with 
kp =  50, v =  5000 and nad =  20. kp =  100, v =  5000 and nad =  20.

Figure 6.15: T  against time with Figure 6.16: T  against time with 
kp =  50, v =  3000 and nad =  20. kp =  50, u =  5000 and nad =  10.

sure towards a demanded value of -0.1. For the purposes of comparison, Figures 

6.14, 6.15 and 6.15 show similar responses in which the principle adaptation pa

rameters have been changed. The simulation exercises were performed by repeat
edly using the urban cycle shown in Figure 6.3.

Figure 6.17 shows the locations of the output set offsets of the controller as 

it was at the end of the simulation whose performance measure time history is 

shown in Figure 6.13. The controller output set locations have been linked with 

lines to emphasise the shape formed by the adaptation process.
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Figure 6.17: Output set locations for controller whose adaptation parameters were 
kp =  100, u =  5000 and nad - 20.

A  comparison of Figures 6.14, 6.15 and 6.16 with Figure 6.13 illustrates the 

effect that the adaptation parameters have on the performance measure progres

sion. Firstly, it should be noted that, using values of v in the order of a few 

thousand, a poor compromise is reached between controller responsiveness and 

reducing the periodic variations in the performance measure, caused by operating 

a vehicle over different regions of a cycle. It is seen that increasing kp, which is 

effectively the gain on the adaptation process, increases the overshoot and cyclic 

variations. The cyclic variations are increased because of the lag between changes 

to the controller and resulting changes in the performance measure, due to the 

actions of the moving average. Clearly, the greater these variations are, the more 

the controller will be adjusted over the course of an individual cycle. Reducing v 

causes the performance measure to become far more responsive and, again, this 

causes much higher cyclic variations. Changes in nad make relatively little dif

ference since the primary function of this part o f the adaptation procedure is to
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Figure 6.18: Plots of baseline controller output torque and adapted controller 
output torque against pedal value. The adaptation parameters were kp =  100, 
v =  5000 and =  20.

prevent rare, and disastrous, rule modifications. In some circumstances, reduc

ing naj can have a similar effect to increasing kp, since it allows the output sets 

following the adaptation process to move more quickly.

The effects of the three principle adaptation parameters can be summarised as 

follows: v is a measure of the ability of the controller to recognise new performance 

data, kp is a measure of the controller’s desire to improve its performance and naj 

is a measure of the reluctance of the controller to forget old controller values.

Figure 6.17 shows the locations of the output sets generated by the simulations 

whose performance measure values are shown in Figure 6.14. It can be seen that 

the adaptation process has moved the output sets for the rules whose input sets are
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at 7000 r/min in the opposite direction to the rules at other speeds. This is simply 

because these rules are chosen by the clustering algorithm very infrequently. On 

the occasions when they are chosen, the performance of the vehicle is such that 

the rules are moved in the opposite direction from those at other speeds.

Figure 6.18 compares the torque responses of the baseline controller and the 

adaptive controller whose output set locations are shown in Figure 6.17. The 

responses are reasonable and would not, at first sight, appear to cause many 

problems in the operation of the vehicle. However, the output torque is not 

maintained particularly accurately and there are small spikes in the responses, 

most noticeably at powertrain speeds between the powertrain speed input fuzzy 

sets. Theses spikes are caused by the angular nature of the shapes formed by the 

fuzzy output sets. They do not appear to be very significant in these plots, because 

the match between the engine, and motor, maps and the component models is 

quite accurate. However, on real vehicles, they are potentially more significant due 

to variations between components due to ageing and manufacturing tolerances. 

Output sets causing smoother shapes would be less likely to cause problems in 
the torque responses.

The modifications to the adaptation process described in the next section 

attempt to reduce the cyclic variation of the performance measures, obtaining 

controllers which converge rather than exhibit cyclic variations. The adaptation 

process will also be modified so that output sets are placed at locations which 

form a smoother curve in the throttle angle-demanded armature current output 
space.
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6.6 Varying the moving average measure of per
formance and producing smoother controllers.

6 .6 .1  A u t o m a t i c a l ly  c o n tr o l lin g  u.

In order to improve the compromise between the responsiveness of the controller 

and its ability to converge, the value of v was brought under the control of an 

algorithm. This algorithm set low values for v, when the performance of the 

vehicle was some distance from the desired value, and much larger values, when 
the performance was closer to the desired value.

A series of five decreasing threshold values, ei,...,s are defined. These values 

are used to represent proportions of the value T&- When the difference between 

the moving average of the performance measure, and demanded value of the per

formance measure, is less than these proportions of Td, different values of the 

parameter u are used, these values being stored in a vector i/i,...,5. As the thresh

old values become smaller, the corresponding v values increase. The motivation 

behind this is that, as the performance measure value is close to the desired value, 

then the requirement for it to be responsive is reduced, but the requirement for 

it to represent the performance of the vehicle over longer time scales is increased. 

Let i be the current value of the indexing variable used to address the elements 

of the vectors ei,...,s and If the condition

XFi -  7\ <  «.'+1 ?d  (6.3)

is met for a continuous period of time Tav, then the indexing variable, i is incre

mented. If the condition

IFi ~ T \ >  f-x^i (6.4)

is ever met, the indexing variable is decremented. These changes are made within 

the restriction 1 <  i <  5 and are tested every control interval (0.1 sec).
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Figure 6.19: Upper plot shows the value of the moving average performance mea
sure against time when the value of v is varied throughout the simulation de
pendant upon the error between the actual vehicle performance and the desired 
performance. Lower plot shows the value of the indexing variable used to address 
elements in the vector U\,...,s of 1/ values. T& =  -0.1.
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The upper plot in Figure 6.19 shows the value of the moving average perfor

mance measure against time when the vectors and i/lt...i5 have the following 

values:

=  [ 2500 5000 10000 20000 40000 ]
£i,...,s =  [ 1 0.3 0.15 0.1 0.04 ]

The parameter Tav was set to 500 seconds and Td =  —0.1. The horizontal 

lines on the plots are drawn at the values, (1 ±  u)Td, of performance measure. 

The lower plot in Figure 6.19 shows the value of the indexing variable used to 

address the elements of the vectors £i ,...,5 and against time. By successively

increasing the value of i/, the average performance measure can be made to follow 

the desired value with decreasing cyclic variation. This reduction in the variation 

of the performance measure has the desirable consequence of reducing the variation 

in the locations of the controller output sets, as shown in Figure 6.20.

A further example of the operation of the algorithm that adjusts the value of 

v is shown in Figures 6.21 and 6.22, in which the same controller parameters were 

used, but with a value of Td =  -0.14.

Figure 6.23 shows the output set locations produced by the controller whose 

performance measure progression is shown in Figure 6.19. It is seen that the 

shapes formed by the set locations are similar to those without the adjustment 

of v and are, therefore, still rather angular. Since the driving sets are chosen by 

the statistical variation in the use o f the pedal value input sets, it was felt that 

increasing the number of pedal value input sets might improve the smoothness of 

the shape formed by the output set locations. In fact, one of the output sets was 

still used very much more than its nearest neighbours, but, because its neighbours 

were now closer to it, the overall shape formed by the output set locations was 

worse than the shape produced by the controller with fewer rules. The next task 

in the development of the adaptive controller was to generate smoother output 

set locations.
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Figure 6.20: Upper plot shows the progression of the demanded armature current 
output fuzzy set over the duration of the simulation for the rule whose input sets 
have maximum grades of membership at 2000 r/m in and 12° of pedal value. Lower 
plot shows the same information for the rule whose input sets are at 3000 r/min 
and 12°. Ti =  -0.1.
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Figure 6.21: Upper plot shows the value of the moving average performance mea
sure against time when the value of v is varied throughout the simulation de
pendant upon the error between the actual vehicle performance and the desired 
performance. Lower plot shows the value of the indexing variable used to address 
elements in the vector i'i,...ls of u values. Ti — -0.14.
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Figure 6.22: Upper plot shows the progression of the demanded armature current 
output fuzzy set over the duration of the simulation for the rule whose input sets 
have maximum grades o f membership at 2000 r/min and 12° of pedal value. Lower 
plot shows the same information for the rule whose input sets are at 3000 r/min 
and 12°. T d =  -0.14.

Figure 6.23: Final output set locations for the controller whose values of v were 
varied throughout the simulation dependant upon the error between the actual 
vehicle performance and the desired performance.
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6 .6 .2  A d ju s t i n g  th e  m o v e m e n t  o f  th e  d r iv in g  ru le s  to  p r o 
d u c e  s m o o t h e r  o u t p u t  s e t  lo c a t io n s .

The movement of the rules that drive the modification process is affected by 

two factors, the error between the vehicle performance and the desired vehicle 

performance, and the usage of the rules. It is the relative amounts of rule usage 

that determine the shape that the output set locations form, and it was seen, in 

the previous section, that the manner in which the driving rules were used did not 

cause the output set locations to form a smooth curve. It is, therefore, necessary 

to modify the manner in which the rules are moved when they are driving the rule 

modification process, to take account of the shape which they form.

In order to get controllers whose output sets form a smooth curve, some con

sideration of the angle caused by the current location of the rule output sets is 

needed. If the output sets in Figure 6.23 are considered, it is seen that the con

troller output shapes would be smoother if, where the angles at the output sets 

are relatively large, the output sets were moved outwards. Conversely, where 

the output sets form small angles, either they should be moved inwards or their 

outward movement should be restricted.

Consider the angle formed by the location of the output sets of a particular 

rule. Two vectors, a and b, can then be defined as shown in Figure 6.24. The 

cosine of the angle formed at the output sets of the rule being considered can then 

be found by the use of the scalar product of the the vectors a and b.

The value of cos and the error value Ti — T  can then be used as the inputs 

to a two input fuzzy controller whose output is then used in the modification step 

size calculation instead of the term {JFi — T). Let the modified error output of the 

two input fuzzy controller, for the rule whose output sets are on row i, column j ,  

of the output set matrices, be etiJ. The output set modification step size is then
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Figure 6.24: Calculation of the angle formed by the location of the output sets of 
a particular rule.

calculated:

(6.5)

The smoothing fuzzy controller uses four input sets on the cos ip universe of dis

course and two input sets on the error universe of discourse. Using the notation 

and implementation adopted previously for fuzzy controllers in this thesis, this 
controller can be expressed:

( * -  -  F)
input set 
locations

cos ip input set locations

- 1  « n  Kp  1

Am t»3 5 5 A mVt

modified error value, e, j

The values /cp, A m„,, A mV2, A mV3 and A mt<4 are tunable parameters whose 

functions will now be explained. If the value of cos ip lies between Kn and kp then, 

for values of ( T d  — T) which lie between -5 and 5, the output is {Td — T ) .  For 

values of { T d  — T )  outside the range -5 to 5, the output is restricted to -5 or 5. 

The values nn and kp, therefore, define a range of values of cos ip within which the 

adaptive actions are unaffected. The values A mPl, A muj, A m„3 and A m„, are used
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to modify the adaptive actions taken by the controller when the angles are very 

large or very small (note the fuzzy statement). When the angle is very large (cos ip 

is close to -1) the output sets of the rules should tend to be moved outwards more 

and inwards less. When the angle is very small the reverse should occur. The 

following conditions should, therefore, apply to the values of A m„,, A mV2 A m„3 
and A mv, :

- 5  < AmVl < 0
A m t/2  — ^

5 — A mU3
0 <  A mui <  5

The values of kp, A mVl, A m„2, A m„3 and A mvt were chosen by a process 

of tuning by observing the actions of the adaptation process. The values A m„2 

and A mvt were set to the relatively aggressive values of -10 and 0. These values 

were used because they would only occur for very small angles. The overall effect 

on these small angles was adjusted by the parameter kp. For the larger angles, 

the rules concerned are, generally, following rules and the purpose of adjusting 

the angle is to make the transition from the driving rules to the following rules 

smoother. Since large angles themselves have no adverse effect on driveability, the 

value of /c„ was set relatively close to -1 and the values of A mVl, and A mV3, were 

used to adjust the controller actions.

Two further conditions have to be applied to A m„,, A mV2, A mt,3 and A mv<:

A m„, ( 5) — A m„3 5
b A mt/2 =  5 A m„4

These are, essentially, symmetry conditions and are used to ensure that the 

smoothing action does not bias the controller towards moving inwards or, out

wards.

Figure 6.25 shows the progression of the performance measure when the adap

tation process was implemented using the smoothing fuzzy controller whose pa

rameter values were as follows:
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Figure 6.25: Averaged performance measure against time when the adaptation 
process includes the smoothing fuzzy controller. Powertrain fuzzy controller uses 
8 fuzzy input sets on the pedal universe of discourse.

-1 .0 0 -0 .95 0.30 1.00 ]

-4 .2 -5 .0 -5 .0 -10 .0  '
5.8 5.0 5.0 0.0

The locations of the output sets generated by this adaptation process are shown 

in the four plots on the left hand side of Figure 6.26, in which it is seen that the 

smoothing fuzzy controller greatly reduces the angular nature of the controller 

output set locations. The output set locations at 7000 r/min have moved in the 

opposite direction. However, this is not significant since movements of the rules 

at 7000 r/min happen very infrequently and the direction of these movements will 

depend upon the sign of the error when the output sets are moved.

The right hand four plots of Figure 6.26 show the output set locations that 

were generated when two additional pedal value input fuzzy sets were added. 

These input sets had maximum grades of membership at 6°, and 10°, of pedal
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Figure 6.26: Output set locations after controller convergence using the smoothing 
fuzzy controller. Four plots on left hand side use 8 input sets on the pedal universe 
of discourse, four plots on right hand side use 10.

value and have been moved such that, in the area where the shape formed by the 

output set locations is most critical, they define a smooth curve.

6 .7  Experiments with the adaptive hybrid pow
ertrain controller.

6 .7 . 1  V a r y in g  th e  d e m a n d e d  p e r fo r m a n c e  m e a s u r e  v a lu e .

In order to investigate the variation in the performance of the controller, in terms 

of use of fuel and electrical energy, when the value of Td was varied, the adaptive 

controllers were allowed to adapt over six urban cycles (about 8000 seconds). 

They were then fixed, and the performance of the vehicle and adapted controller 

was measured over a single urban cycle. The results obtained by this method 

are shown in Figure 6.27 for a range of values of Td from 0 to -0.16. Td =  - 

0.16 approaches the limit of operation of the adaptive controller, as values more 

negative than this demand armature currents close to the capacity of the motor.

When the controller is adapted in this manner, there does not seem to be any 

huge advantage, in terms of efficiency, in using any particular value of Td-, though
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Figure 6.27: Change in battery state of charge against fuel consumption for Td = 
0, -0.04, -0.08, -0.10, -0.12, -0.14 and -0.16.

in the case of individual users, there may well be advantages in one value over 

another.

Also, after the adaptation process, for the fixed controllers, it was observed 

that :

The reason for this difference, which was generally small, is that the performance 

measure calculates the moving average version of

mance of the vehicle using a fixed controller over a cycle, is very slight. It could be 

overcome by calculating moving averages of both the battery current, and the fuel

( 6 .6 )

(6.7)

k ' f r h j  k e r h ]

The difference between the demanded performance of the vehicle, and the perfor

m s)
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Figure 6.28: Averaged performance measure against time for a simulation using 
the data from Driver B.

flow rate and then using these values in the calculation of instantaneous values of 

the performance measure.

6 .7 .2  U s i n g  d a t a  fr o m  d iffe r e n t  d r iv e r s .

The route whose speed-time data is shown in Figure 6.3 was driven by two drivers. 

Let the data shown in Figure 6.3 represent the results obtained when Driver A 

drove the route. Figure 6.28 shows the progression of the performance measure 

value for a simulation of the vehicle being driven round the route by a second 

driver, Driver B. Figure 6.29 shows the progression of two of the output set loca

tions during the adaption process for the same simulation, and Figure 6.30 shows 

converged output set locations for the controller after the simulation. Comparing 

Figure 6.28 with Figure 6.25, it is seen that the progression of the performance 

measure is far more oscillatory for Driver B, than for Driver A. Also, comparing 

Figure 6.30 with Figure 6.26, it is seen that the controller demanded armature 

current output sets have converged to values that are far lower for Driver B, than
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time in  seconds

Figure 6.29: Upper plot shows the progression of the demanded armature current 
output fuzzy set over the duration of the simulation of the cycle driven by Driver 
B for the rule whose input sets have maximum grades of membership at 2000 
r/min and 12° of pedal value. Lower plot shows the same information for the rule 
whose input sets are at 3000 r/min and 12°. T& =  -0.1.
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Figure 6.30: Output set locations for the controller having been adapted over the 
data taken from Driver B.

for Driver A. The reason for these surprisingly large differences is shown in Fig

ure 6.31, which compares the engine speeds used by Drivers A, and B, over the 

same route. It should be borne in mind that Driver B takes 1452 seconds to do 

the route, whereas Driver B takes only 1361 seconds. The engine speeds used by 

Driver B are much more closely gathered around one particular value than for 

Driver A.

Figure 6.32 shows the same information as Figure 6.31 but uses the locations 

of the maximum grades of membership of the engine speed input fuzzy sets as 

the bins for the histogram. These plots, therefore, show the number of occasions 

that the operating points are clustered towards a particular engine speed input 

set. The relative number of times that the clustering algorithm selects the engine 

speed input set at 2000 r/min, as opposed to the other input sets, is far greater for 

Driver B, than for Driver A. The motor speed that is used when the set at 2000 

r/min is selected by the clustering algorithm will always be relatively high, because 

the motor turns twice as fast as the engine at these speeds. As the motor turns
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Figure 6.31: Comparison of the engine speed values used by Drivers A and B over 
the same urban route.

Figure 6.32: Comparison of the engine speed values used by Drivers A and B over 
the same urban route, using the locations of the maximum grades of membership 
of the engine speed input fuzzy sets as the bins in the histogram.
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faster, it will generate larger regenerative currents for any demanded armature 

current. Conversely, less negative demanded armature currents are required to 

cause the same value of the performance measure Td, resulting in the adapted 

controller having to demand less negative values of armature current.

The frequent use of the engine speed set at 2000 r/min causes the correspond

ing output sets to be adjusted frequently, and, since these output sets are very 

influencial in determining the value of the averaged performance measure, the 

averaged performance measure value is very much more oscillatory. The frequent 

use of one particular engine speed by the clustering algorithm has the same effect 

as increasing the gain, kp, o f the adaptation algorithm.

Figure 6.33 shows the averaged performance measure value, and the value of 

the indexing variable used to select the value of j/, for a simulation in which the 

data from Driver B was used for 8000 seconds and then the data from Driver 

A was used for 8000 seconds. Figure 6.34 shows the movements of two of the 

demanded armature current output sets during the same simulation. These plots 

show how the controller, having converged for Driver B, readapts to give the 

correct performance for Driver A. It is therefore seen that the controller is able to 

adapt to different driving styles, of different users, which was one of the features 

that was felt to be desirable in an adaptive hybrid powertrain controller.
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Figure 6.33: Upper plot shows the value of the moving average performance mea
sure against time when the first 8000 seconds of the simulation use data from 
Driver B and the second 8000 seconds of the simulation use data from Driver A. 
Lower plot shows the value of the indexing variable used to address elements in 
the vector of v values. Ti =  -0.1.
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Figure 6.34: Upper plot shows the progression of the demanded armature current 
output fuzzy set over the duration of the simulation for the rule whose input sets 
have maximum grades o f membership at 2000 r/min and 12° of pedal value. Lower 
plot shows the same information for the rule whose input sets are at 3000 r/min 
and 12°. Urban cycle data taken from Driver B for the first 8000 seconds and 
from Driver A for the second 8000 seconds. Ti — -0.1.
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6.8 Investigating improving the efficiency of the 
adaptive hybrid powertrain controller.

The earlier material in this thesis has developed an adaptive hybrid powertrain 

controller that modifies the matrices of fuzzy output set locations, on a row-by

row basis, to achieve a desired overall performance measure, whilst maintaining 

the vehicle driveability. After the powertrain controller has adapted, the final 

converged controller is not unique. By moving one row of output set locations 

inwards, and another outwards, the same overall vehicle performance, in terms 

of the first performance measure, could be achieved. This section will investigate 

whether it is possible to improve the efficiency of the vehicle operation by varying 

the positions of the rows relative to one another.

By varying the positions of the rows of the matrices of output set locations, 

the same basic modification procedure can be used for each row, as has been used 

previously. The difference in this work will be the values that are used to drive 

the row-by-row modification procedure.

6 .8 .1  M a k i n g  u se  o f  th e  s e c o n d  p e r fo r m a n c e  m e a s u r e .

It will be recalled from Chapter 5, that the second performance measure, Q, is 

intended to be a measure of the efficiency of the powertrain operation. Equation

5.1 gives the basic form of this performance measure. More specifically, Q is 

defined:

Q =  hat +  kerh/ ( 6 - 9 )

in which ke is the equivalence of fuel and stored electrical energy, and takes the 

same value of 120 A /(g /s ), as in Equation 5.18. When the rows are to be adjusted 

to improve the efficiency of the powertrain, the ratio of the use of electrical energy 

to fuel should be maintained. Therefore, the way that the rows should be moved, 

relative to one another, has to take account of the differing amounts that both
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Figure 6.35: Values of gij plotted against demanded armature current output set 
location for four controller rules whose engine speed input sets have a maximum 
grade of membership of 2000 r/min. Maximum grades of membership of pedal 
value input sets are shown on the plots

performance measures will change as the rule output sets, in a particular row, 

are moved. This implies that some measure of the gradient of the performance 

measure for any given rule, with respect to the location of the rule, is important.

It will also be recalled from Chapter 5, that the matrix G  is used to store the 

values gij of the performance measure Q, for each rule. Figures 6.35 and 6.36 show 

example values of gij plotted against the demanded armature current output set 

locations for eight rules, as the controller is modified by the adaptation algorithm.

The plots in Figure 6.36 display some variation in the values of gij, because 

the rules whose engine speed input sets have a maximum grade of membership 

at 3000 r/m in cluster operating points from engine speeds of 2500 r/min to 5000 

r/min. If the clustering algorithm chooses a particular set when engine speeds 

towards the top of this region are used, and this set is chosen by the clustering 

algorithm only once or a few times, then some variation in the value of gij is seen.
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Figure 6.36: gij for four controller rules whose engine speed input sets have a 
maximum grade of membership of 3000 r/min. Maximum grades of membership 
of pedal value input sets are shown on the plots

Once the output set location has moved beyond a certain, fairly low, nega

tive value, there is very little change in the trend followed by the values of gij. 

However, the specific values of gij exhibit variations due to the operation of the 

clustering process. Establishing the value of a gradient in ĝ j with respect to the 

output set location would, therefore, be extremely difficult using this data. Before 

developing a complex adaptive algorithm that attempts to improve the efficiency 

of the powertrain, it would seem sensible to attempt to quantify the improvements 

that such an algorithm could possibly achieve, and this is the subject of the next

6 .8 .2  C o n t r o l l in g  t h e  a d a p t a t io n  o f  e a c h  ro w  o f  th e  c o n 
tr o lle r  in d iv id u a lly .

The purpose of this section is to determine whether worthwhile improvements in

section.

the efficiency of the controller operation could possibly be gained by improvements
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to the adaptive powertrain controller. One very straightforward way in which 

efficiency of the powertrain can be improved is by restricting the use of the motor 

at speeds where its efficiency is known to be low. To a certain extent, this has 

already been achieved by the use o f the clutch, allowing the motor to spin twice 

as fast as the engine, at low engine speeds, or at the same speed as the engine, 

at higher engine speeds. However, a further improvement might be possible by 

preventing the controller from demanding armature currents for the fuzzy rules 

with engine speed fuzzy input sets at 1500 r/min. This is easily achieved by 

modifying the mask matrix to prevent the movement of the output sets for the 

fuzzy rules whose engine speed fuzzy input sets are at 1500 r/min.

The results obtained by the controllers adapted in this way are compared with 

the previous results in Figure 6.37, in which it is seen that a small improvement 

in the overall powertrain efficiency has been achieved by constraining the rules 

at 1500 r/min. In some places, the battery state of charge could be improved by 

around 5% for the same use of fuel.

It would seem, from these results, that a small improvement in the con

troller performance can be achieved straightforwardly. To investigate whether 

any greater improvement in the overall efficiency can be made, the adaptation 

procedure was modified to move each row of the controller output set location 

matrices according to some performance measure which was specific to that row. 

In order to do this, it was necessary to estimate the performance of each row of 

the controller. The F matrix can be used for this purpose, since it includes a 

performance estimate, fij for each rule. These performance estimates should be 

combined across the row to give an overall estimate for the performance of the row. 

This row performance measure is obtained by forming a mean of the performance 

measure values of all the rules across the row, and by weighting this mean by the 

frequency with which the rule is used, relative to the frequency with which the
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Figure 6.37: Comparison of results obtained by the adaptation process with the 
output sets for the rules at 1500 r/min unconstrained (shown with crosses) and 
fixed (shown with circles).

row is used. This mean is then used, in a moving average algorithm, to generate 

moving average performance measures for each row of the controller output set 

matrices, analogous to the overall moving average performance measure for the 

entire vehicle. The average performance measure value for the r ’th row, F̂r, is 
found:

t ------------ U t  1  1  =  l  f r , j C T,.
• ' T n  •' m - 1 i Vr ¿Zj— l  CrJ

( 6 . 10)

The value of i/r is selected from a vector of values i/rl,...,8, in a similar way to the 

value of v used in the overall moving average performance measure, and np is the 

number of pedal value input fuzzy sets.

The rule modification process is analogous to the modification process for the 

overall performance measure. For each row, r, a row demanded performance mea

sure Tdr is used. The difference {!FdT — 7^) is used as the input to the smoothing 

fuzzy controller that generates the modified error value eTj. This modified error
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value is then used to calculate the change in the output set location using:

A m v r j  ~  kpr Cr,j ( 6 . 11)

The value kPr is chosen from a vector of values kPl 5, addressed using the same 

indexing variable as is used to address i/rl ... 5. Different values of kp are required 

because, when large values of u are used, the output can only change slowly. 

Consequently small errors between demanded and actual values of performance 

measure can exist for long periods. These small values would lead to large con

troller modifications if the value of kp were not decreased as the value of v were 

increased.

One of the rows is not modified using the error (Tdr — 7r), but uses the error 

(̂ Td—T). This ensures that the controller will tend to give the vehicle a determined 

measure of overall performance. The manner in which this performance is achieved 

can be varied by the use of the various values Td,-

Figures 6.38 and 6.39 show the results of two simulations in which separate 

values of Tdr are used to adjust the output set locations. The values of kPl 5 

were 40, 40, 20, 20, and 10. In both cases the mask is used to prevent the 

output sets of the rules with engine speed input sets at 1000 r/min, and 1500 

r/m in, from moving. The sets for the rules at 3000 r/min are adjusted by the 

overall performance measure. In Figure 6.38, =  —0.158, which is the value

o f that the controller would arrive at when adapting purely on the overall 

performance measure value, which was set at -0.1. In Figure 6.39, Tdz =  —0.2 

and it is seen that, in order to make the overall vehicle performance remain at -0.1, 

a much lower value of Td\ is required. In running these simulations, it was found 

necessary to increase the gain for the row of output set locations that is used to 

adjust the overall performance of the controller. This is because the performance 

o f the vehicle, as a whole, is less responsive to adjustments made to just one row 

of output set locations, than to adjustments made to all the output set locations.
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Figure 6.38: Plot of the overall vehicle averaged performance measure and row 
averaged performance measures for the controller whose output sets are modified 
by separate values of T&r. Solid curve is the overall vehicle performance measure, 
dashed curve is the performance of the rules at 3000 r/min, dash-dot is the per
formance of the rules at 2000 r/min and the dotted curve is the performance of 
the rules at 1500 r/min. The solid straight line is the performance of the rules at 
1000 rmin. !Fd3 =  —0.158
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Figure 6.39: Plot of the overall vehicle averaged performance measure and row 
averaged performance measures for the controller whose output sets are modified 
by separate values of Tir. Line types as previous plot. TdS =  —0.2

In order to investigate whether improvements in the controller efficiency were 

possible by individually controlling the output set adjustments for each row of 

the controller, a sensitivity study whose results are shown in Figure 6.40 was con

ducted. In this study, the value of T d . was fixed and the controller adapted using 

various values of Tdz, in a similar way to the two examples described above. Hav

ing been adapted the output set locations were then fixed and a further simulation 

was carried out to assess the performance of the static controller. The points plot

ted on the graph show the results of the sensitivity study and the dashed line is 

drawn between the results previously obtained with the output sets for rules at 

1500 r/min fixed, shown in Figure 6.37.

From the results presented in Figure 6.40, it would seem that there is little 

justification for attempting to improve the powertrain operating efficiency using 

the adaptive controller. The results obtained in Chapter 3 had indicated that there 

was the possibility for some powertrain efficiency improvement. The reasons why
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Figure 6.40: Results o f sensitivity study investigating the variation of powertrain 
operating efficiency by the use of separate performance measure at different pow
ertrain operating speeds.

no improvement has been possible concern the nature of the drive cycle used in 

Chapter 3, and the vehicle model used in the later work. The ECE-15 cycle is 

short and does not greatly exercise the vehicle. It is also composed of straight line 

segments that cause the vehicle to visit relatively few sites during a simulation.

In order to improve the apparent efficiency of operation over ECE-15, it is 

necessary to perform well over just a few sites. In order to improve the efficiency 

over the urban cycle acquired from a real vehicle, it is necessary to improve the 

operation of the powertrain over a much greater range of operating conditions 

and this seems to have been very difficult. The other reason for the difficulty in 

improving the efficiency of the vehicle is that the addition of the clutch allowing 

the motor speed to be set equal to the engine speed, or twice the engine speed, 

removed the less efficient regions of motor operation and made the potential for 

subsequent performance improvement considerably less. The conclusion of this 

sensitivity study is that, with the vehicle model including variable motor speed
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operation, there is some justification in constraining the movement of the rules 

at low engine speeds as this does give a small performance benefit. However, at 

this stage, it is hard to justify further complicating the adaptive controller in the 

attempt to improve the vehicle efficiency.

6.9 Conclusions.

The basic adaptive fuzzy controller described in Chapter 5 was extended to include 

the use of an additional input of engine speed. It was seen that the inclusion of 

this input made the implementation of the adaptive fuzzy controller more elegant. 

Initially, the movement of the output set locations was controlled for each indi

vidual rule. However, this was laborious, caused problems in the convergence of 

the output set locations and gave little overall control of the vehicle performance.

The next stage in the development of the controller was to modify the rules 

of the controller for each engine speed input fuzzy set together, in response to 

changes in the overall vehicle performance. Each rule was modified as a rule 

modification driver, or a rule modification follower, depending upon the way in 

which that rule had been used. Originally, it was proposed to use rate of change of 

the performance measure of each rule, with respect to the location of the output 

set, to  distinguish between driving and following rules. However, in practice, 

establishing this gradient proved difficult and the driving and following rules were 

distinguished simply by their use over the last adaptation interval.

The smooth, robust movement of the following rules required considerable 

development and was achieved by implementing parts of the rule modification 

process using small fuzzy controllers. The final adaptive controller was then used 

in a number of experiments.

The adaptive action of the controller could be used to control the relative 

amounts of fuel, and electrical energy, used very straightforwardly. Possibly, the
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most significant aspect of the performance of the adaptive controller was its ability 

to adapt to the differing driving styles of more than one user, even when adapting 

using data taken from the same route.

Finally, a sensitivity study was undertaken in which the controller adaptation 

was controlled using performance measures for each engine speed as well as an 

overall vehicle performance measure. It was found that some improvements were 

possible by restricting the movements of rules at low engine speeds, but beyond 

this, developing the controller to achieve further improvements was unlikely to be 

worthwhile.

The conclusion from this sensitivity study is that there seems to be no re

quirement to measure the performance of individual fuzzy rules on a production 

vehicle, since the overall performance of the vehicle is used to modify the con

troller. However, the performance measures for each rule have been useful in the 

development of the adaptive controller and could also be useful in the development 

of prototype vehicles, and further hybrid vehicle research.

The largest contribution that this chapter makes in the more general field of 

fuzzy control is that of the use of small fuzzy controllers in the adaptation of other 

controllers. The smoothing fuzzy controller used in the adaptation process worked 

very quickly, and was easily implemented and tuned. It also proved robust in use, 

since the original controller parameters were used with varying numbers of output 

sets and different modification procedures. In this sense, the design method that 

fuzzy control forces is robust. This does not imply that fuzzy control is robust in 

the stricter sense that robustness has in the context of feedback control. These 

observations support the view that feedback control, whilst being an obvious area 

of application of fuzzy logic, is not, perhaps, its most natural area of application.

The linguistic statements that were used during the design of a particular 

fuzzy controller have been included because they illustrate the manner in which
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the controllers were designed. The linguistic statement is useful in both stating 

the problem to be solved, and in identifying the information required to solve 

it. When the method of implementing fuzzy logic is straight forward, as it is in 

this thesis, a controller can then be quickly developed and implemented. In this 

sense, the ways in which fuzzy logic has been used in the adaptation procedure 

were motivated by the original philosophical beliefs about fuzzy control, but have 

been implemented in a manner suitable for use in a modern real time control 
application, using conventional hardware.
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Chapter 7 

Conclusions.

This thesis has considered the application of the theory of fuzzy logic to the 

practical automotive engineering problem of the management of an automotive 

hybrid vehicle powertrain. Conclusions and recommendations for further work 

will be drawn separately for hybrid vehicles and fuzzy logic.

7.1 Hybrid Vehicles.

Throughout the work described in this thesis, there have been three primary, 

customer related, requirements of the hybrid powertrain controller. These were 

to use the energetic resources o f the vehicle in the correct amounts relative to 

one another, to use these resources efficiently and, also, to allow the vehicle to 

be driven in a consistent and sensible manner. Other, less directly customer 

related, requirements were that the work make use o f existing automotive control 

technology and be technically feasible, from a cost and engineering development 

point of view.

In order to investigate the control of a hybrid powertrain, it was felt necessary 

to develop computer models o f the components that make up such a vehicle. 

The modelling approach taken used forward dynamic models and attempted to 

embody some understanding of component operation. The use of efficiency maps
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was avoided where possible, although the engine model used did make use of fuel 

flow rate and torque maps. In the case of the motor, the modelling approach 

was sufficiently general to allow the use of the same motor model in vehicles with 

different batteries, indeed this model has been used in other engineering projects 

within the Rover Group. Without doubt, there is a considerable advantage in 

the circuit based motor modelling approach taken in this work, over the efficiency 

map based models, because the motor model is more generally applicable and a 

far greater understanding of the vehicle operation is gained. For the fully warm 

engine, there is no analogous external factor that affects the performance in the 

same way as the battery affects the performance of the motor.

The difficulty in modelling various aspects of the engine enforced a constraint 

on the operation of the hybrid powertrain. Previous work in this field has not made 

use o f an engine whose emissions are controlled by the use of a catalyst and this has 

meant that on-off engine operation has been feasible. In this work, the engine was 

left running at all times, because in a real vehicle, if the engine is left at idle, the 

catalyst stops converting, leading to disastrous emissions performance. To avoid 

this, on-off engine operation has not been used, and consequently, improving the 

efficiency of the powertrain operation has been much more difficult. It has also 

been apparent that the operation of the controller of a hybrid powertrain will be 

dependant upon the exact form of the powertrain. This is significant, since there 

are many ways in which the parallel hybrid vehicle powertrain can be implemented 

on a vehicle.

It was realised early in the work that the control of a hybrid vehicle powertrain 

was not a reference tracking feedback control problem, and in this sense, it may 

well not be what the control engineering community would call a “control” prob

lem at all. As far as automotive engineering is concerned, there is no doubt that 

the problem is a “control” problem, and it was seen that none of the generally
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accepted control methods were suitable because of the problem formulation. The 

lack of an appropriate conventional control technique, and the flexible nature of 

fuzzy logic, made it an obvious choice for the control of the hybrid powertrain. It 

should be borne in mind that the motivation for this work came from an industrial 

requirement and not from an interest in a particular control methodology. It has, 

therefore, been satisfying that the more work was done on the problem, the more 

fuzzy logic seemed to be an appropriate aid in its solution.

The first attempt at the use of fuzzy logic in the control of the powertrain was 

very much in line with the way in which fuzzy logic was originally intended for 

use. This exercise generated a great deal o f understanding and experience in the 

operation of the powertrain, in the light of which, modifications were made to the 

vehicle model. These modifications included the inclusion of a one way clutch on 

the engine output to prevent the engine overrun torque from opposing the motor 

operation and, also, the inclusion of two discrete gears between the motor and 

the transmission input. These two gears allowed the motor to turn at either the 

same speed as the engine, or at twice the speed of the engine. This is an example 

of how the control strategy for a hybrid powertrain should reflect the nature of 

the components used, since, if a motor whose efficiency was less dependant upon 

speed were to be used, these gears would probably be unnecessary. Whilst this 

initial application of fuzzy logic generated considerable understanding, it was felt 

that there was a need to use adaptive methods to assist in the control of the 

powertrain of the vehicle.

In the introduction to Chapter 5, it was seen that an adaptive hybrid power- 

train controller could be useful at three levels. The controller’s adaptive capability 

could be used in the development of a vehicle, to generate a “production release 

tune” for a fixed controller. Alternatively, the controller might be able to adapt 

to the requirements of a particular user in service, and lastly, the controller might
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be able to adapt to compensate for ageing of the vehicle components.

To assess the extent to which the adaptive controller is useful in these three 

requirements, it is sensible to consider the ways in which a hybrid vehicle would 

be used. Firstly, two major modes of operation would include the use of just 

the electric motor, because of its low cost of operation and perceived lack of 

environmental impact, and just the heat engine, for long journeys at high speeds 

where the electric side of the powertrain can clearly make very little contribution. 

Two other modes of operation also seem to exist. During general day-to-day use, 

the owner of a hybrid vehicle may wish to use as much electricity as possible, 

since this is a cheap source of energy. Many users will have performance, or 

range, requirements that will not be easily met by the use of purely the electric 

side of the powertrain and will therefore need to supplement the operation o f the 

motor with power from the heat engine. The last mode of operation is a further 

combined mode of operation, in which the electric motor acts against the engine 

in order to raise the battery state of charge. This mode of operation would only 

be needed when approaching a region in which there was an emissions restriction 

that would require a battery state of charge higher than the current battery state 

of charge.

The adaptive controller was developed around the fourth mode described above 

since the engineering problems faced here are at their most severe. However, in 

practical vehicle operation, this mode will be used infrequently and, consequently, 

there will be little opportunity for adaptation in service. The adaptive controller 

would, therefore, only be useful for developing the production tune for this mode. 

Conversely, many users will spend considerable amounts of time using their ve

hicles in the other combined mode of operation in which the adaptation strategy 

would still work and might be implemented as follows. The user of the vehicle will 

clearly have to select one of the four basic modes of operation. If the combined
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mode of operation in which the motor and the engine work together is selected, 

then a further control which indicates the relative split between the two power 

sources could also be adjusted. The vehicle user could set this control such that 

over the course of their daily motoring the most effective use is made of the electri

cal energy stored on the vehicle. The experiments reported in Chapter 6 indicate 

that the controller should be able to adapt to changes in the route or user easily 

within two or three days of motoring. There is also the possibility of a vehicle 

adapting to the requirements of more than one user, since modern methods of ve

hicle access allow the vehicle to distinguish easily between different drivers. The 

ability of the adaptive controller to adapt to the requirements of individual users 

is the largest contribution that this thesis makes to the field of hybrid vehicle 

engineering.

Further hybrid vehicle powertrain control work.

In the opinion of the author, little value will be added by further simulation studies 

using this vehicle model and controller approach. The work has reached a point 

where the simulation studies should be validated by experience with a vehicle. 

Additionally, some of the parts of the adaptation strategy require the evaluation 

of square roots, which is starting to be considered in engine control but which has 

not generally been done before. Engine control is characterised by the need to 

respond to events which occur every few hundred microseconds and whose real

time aspects are very severe. In contrast, the controller being considered here is 

only required to output a control value every 100 milliseconds and, consequently, 

will have large periods of time in which the adaptive calculations can be carried 

out. Experience with a real vehicle will be required to determine the degree 

of processing power that will be needed to implement the adaptation strategy, 

though some indication of its effectiveness in use has been gained through these
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simulation studies.

Further work on the simulation of the hybrid vehicle powertrain considered 

here should only be carried out to investigate some of the thermal effects that 

have limited the control strategy to this date. The most important of these effects 

is the temperature of the catalyst and the engine. If these effects were realisti

cally modelled, control strategies taking into account vehicle emissions could be 

developed. This would clearly be a very useful contribution, since any production 

vehicle, once developed will have to pass some kind of emissions test. Also, more 

general control strategies, utilising on-off engine operation, could be developed 

allowing a considerable reduction in the fuel used. These improvements would 

really come about as a result of improvements in the science of engine modelling, 

which is a separate, very active field of research.

The control strategy described here is able to respond to ageing effects of the 

engine and motor in their use of fuel and electrical energy. However, it is not 

able to respond to ageing effects in the generation of torque. In an engine with a 

modern closed-loop fuelling system, the torque generated and the fuel used should 

be related to one another. It might be possible to infer variations in the torque 

output of the engine, from easily observed variations in the engine fuel flow rate. 

This represents a further possible avenue of future research.

7.2 Fuzzy logic.

As stated in the previous section, the work described here was motivated by an 

industrial engineering problem, rather than by a desire to conduct research in 

the subject of fuzzy logic. It was soon realised that fuzzy logic provided a natural 

framework in which the subject of hybrid powertrain control could be investigated, 

this has allowed conclusions to be drawn about the use of fuzzy logic in modern 
engineering.

262



The experiences gained from the first application of fuzzy logic to the hybrid 

powertrain were, in some respects, typical of the experiences reported on many 

occasions previously. These would include the ease of setting up a solution to 

a relatively complex problem, and the subsequent requirement for “tuning” a 

controller whose performance was unsatisfactory.

In this early work, considerable attention was paid to the implementation of 

fuzzy logic from the point of view of the efficiency of the operation of the code. 

The interpolative effects of fuzzy logic, noted by many researchers, were exploited 

by using fuzzy logic in a particular way. The fuzzy sets used were triangular 

and overlapped with their nearest neighbours as far as their maximum grades of 

membership. Product implication was used and the union of the output sets was 

formed by the summation operator. This output set was defuzzified using the 

centre of area. Under these circumstances, fuzzy logic reduces to linear interpola

tion. This discovery came as something of a surprise and almost a disappointment 

to the author, who, being familiar with the extensive use of maps in automotive 

control, felt that there ought to be something very new, and somehow different, 

about fuzzy logic. However, it was soon realised that the constraints put on the 

implementation method are quite minor and that they can be justified on philo

sophical grounds. The sets, when drawn, still represent vaguely held beliefs and 

this type of fuzzy set can convey linguistic concepts. They also logically divide 

an input universe of discourse and, to some extent, formalise the development of 

the controller, as well as giving a fast, computationally compact fuzzy controller.

This method of implementing fuzzy logic has the further advantage that the 

output can be guaranteed to pass through the centres of area of the output sets. 

This is an extremely important result from the point of view of product liability 

which poses real limitations on many industries, with aerospace and automotive 

being obvious examples. A further advantage of this characteristic of the output
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is that it allowed the rule modification process, developed later in the thesis, to 

ensure that the controller maintained a constant output torque. The major criti

cism of this method of implementing fuzzy logic is that the input-output relation 

is not continuous in gradient. In this application, the discontinuous gradient poses 

no great problem.

Having attempted a basic implementation of fuzzy logic it was found, at the 

end of Chapter 3, that there was a need to develop some adaptive method of 

placing the controller output sets. Accordingly, the work conducted to date in the 

field of adaptive fuzzy control was reviewed. It was found that very little of the 

work carried out previously was directly applicable. The most significant obser

vation that came out of this section of the work was the very generic nature of the 

adaptive fuzzy problems tackled to date, and the very specific nature of the hybrid 

vehicle powertrain control problem. This observation highlights a very important 

issue concerning the original motivation of the subject of fuzzy control and areas 

in which research is currently being conducted. The original premise of fuzzy 

control, that of a human operator being able to successfully control plants with 

which little success had been enjoyed using automatic control, implies that there 

is something specific to the engineering task at hand that the human recognises. 

The majority of the adaptive fuzzy work done to date abandons this concept. This 

is illustrated by the fact that, in most adaptive fuzzy controllers, the fuzzy set 

does not convey a notion of some vaguely described quantity, but is part of a series 

of fuzzy sets, which when subjected to fuzzy operations, describe some function. 

It is really this function that is adapted rather than any concepts embodied in the 

fuzzy sets. This is as true of the basic hybrid powertrain fuzzy controller that is 

adapted in the work reported here, as it is of other adaptive fuzzy controllers.

The change in the use of fuzzy sets from representing vaguely held notions, 

to collectively representing functional relationships seems to be a consequence of
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seeking for generic solutions to the generic class of feedback control problems. It 

seems, therefore, that the fuzzy set is useful as a means of representing functions 

in generic types of problems, and as a means of representing vaguely held beliefs 

in specific types of problems. It is interesting to note that the original motivations 

for the use of fuzzy logic are not generally used once the step is taken of adapting 

a controller whose basic operation is unsuitable.

In this work, it was felt that producing an adaptive controller whose adaptation 

process contained aspects of fuzzy logic would be an interesting task for a number 

of reasons. Firstly, there is a parallel with the reported work in which fuzzy 

controllers are used to tune PID controllers. This is a seemingly ideal application 

of fuzzy control, building on the vast human experience in tuning this type of 

controller. Secondly, implementing the adaptation process is likely to be successful 

if the premise that fuzzy logic really does describe the way humans think is true, 

since it is surely the adaptive and learning properties of human behaviour that 

are seen to be so attractive in adaptive and learning control.

To claim that the controller used in this work is adapted by a higher level fuzzy 

controller would be perhaps overstating the case, since the root of the adaptation 

controller is a simple proportional adjustment. However, two of the aspects of 

the adaptation procedure are implemented using small fuzzy controllers and the 

success of these methods should be considered in some detail.

Firstly, the two controllers were both very small. One had one input, one 

output and two rules, the other had two inputs with four fuzzy sets on one universe 

of discourse and two fuzzy sets on the other universe of discourse and, again, one 

output. This meant that the number of different situations that the controller 

could distinguish was limited to a small number that the human controller designer 

could also distinguish. This helps the human in suggesting appropriate output 
values.
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The nature of the adaptation problem was relatively complex and reflected the 

ideas and understanding of the author and also the desired final performance of 

the adaptation algorithm. The controllers that were eventually developed carry 

out extremely specific tasks within the overall process of adaptation. It seems 

very unlikely that the specific controllers developed would have any use elsewhere 

in control engineering, but their success in this particular application recommends 

a similar approach in similar problems.

In order to determine the nature of the required adaptive action, linguistic 

statements were used. Initially, this was done to determine whether linguistics, 

which have not been used a great deal in recent work, had any real relevance. It 

was found that, for these small controllers, linguistic statements, which were not 

in the form of a set of fuzzy rules, but tended to be a simple statement, were 

extremely valuable. Their value lay in their ability to identify the correct infor

mation required for any control or decision making task. Once this information 

has been identified, effort was directed towards obtaining it and making use of it. 

A strong conclusion from this work is that, in some circumstances, linguistics are 

invaluable, not simply as an addition to fuzzy sets in the representation of vague 

concepts, but, more generally, as a vital stage in the controller development. It 

seems to the author that the more colloquial and natural the linguistic statement, 

the more likely it is to contain valuable insight into the control task at hand.

The method by which fuzzy logic was implemented, allowed these controllers 

to be developed and tuned extremely quickly, and once tuned, they were generally 

left unattended as successive layers of the adaptation algorithm were developed 

above them. In this sense, these small controllers were robust, though as stated 

previously, this in no way implies that fuzzy logic is robust in feedback control 

applications.

At an early stage it had been felt that the ability to measure the performance
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o f each rule in a set of fuzzy rules was important. As the research was conducted, 

it was realised that this aspect of the fuzzy controller was not really useful for 

production hybrid vehicles, though it had been useful in the research carried out 

in this thesis. This rule performance measurement technique may, perhaps, be 

useful in other applications of fuzzy logic.

Further work continuing from this thesis is not considered as a separate section 

for fuzzy control. This is because it is felt that the most significant contributions 

that this thesis makes to the field of fuzzy control, that of the hybrid powertrain 

controller itself, and the use of small fuzzy controllers in adaptive techniques, are 

inherently specific to the application considered. It is felt that the concepts that 

are embodied in this work will be of use in the consideration of any control engi

neering project which is new or about which there are no established techniques.

One of the major aims of this thesis, was to investigate the relevance of the 

original ideas motivating fuzzy control in modern control engineering, given the 

age of the subject and the nature of current fuzzy research activities. The growth 

o f fuzzy logic in commercial products is an obvious indication of the relevance of 

fuzzy logic as a basic control technology. In many cases, it is possible to see the 

combination of new sensors and intelligent information processing, that are the 

hallmarks of good fuzzy engineering.

It is hoped that this thesis will provide evidence supporting the view that fuzzy 

logic is not just useful in small scale, almost trivial applications, but is capable, 

when applied in the correct manner, of making a considerable contribution in much 

larger applications of significant complexity. As the debate between the merits of 

conventional control techniques and intelligent control techniques continues, work 

such as this will hopefully encourage the use of a considered approach, in which 

control techniques are selected by their relevance for the application, rather than 

by intellectual dogma.
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Data used in engine model.
A .l  Engine torque data.

Appendix A

Engine model output torque in Nm.
Engine speed in r/min~Throttle

a n g l e 1000 1250 15 00 17 50 2 0 0 0 2 2 5 0 25 00 27 50 3 0 0 0 32 50 3 5 0 0 3 7 5 0
0° 0.0 - 2 .5 - 5 .0 - 7.3 - 10 .0 - 1 0 .0 - 10.0 - 10 .0 - 1 0 .0 - 10.0 - 1 0 .0 - 10 .0
5 ° 1 9 .6 8 .1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0 ° 7 1 .3 6 2 .2 5 1 .7 4 3  8 3 7 .1 3 0 .2 2 4 .2 18.4 1 5 .3 9 .8 9 .0 8 .5
1 5 ° 8 2 .8 84 .9 8 1 .3 7 6 .9 72 .5 6 8 .8 58 .9 5 4 .2 4 9 .1 44 .0 4 1 .5 36 .3
2 0 ° 8 5 .3 93 .3 9 3 .4 9 3 .6 92 .8 9 2 .8 8 8 .0 8 6 .6 8 1 .3 77.4 7 7 .4 75 .1
2 5 ° 8 7 .7 9 2 .2 9 3 .8 9 7 .5 98  6 102.1 100.1 9 9 .7 9 5 .1 92 .5 9 5 .4 9 4 .7
3 0 ° 9 0 .1 93 .9 98 .1 1 0 1 .3 1 0 3 .9 1 0 4 .7 10 4 .7 104.7 1 0 2 .2 101.9 1 0 2 .7 1 0 1 .5
3 5 ° 9 0 .8 9 8 .7 10 2 .4 10 4 .1 10 4 .6 1 0 4 .7 10 5 .0 106.1 1 0 6 .5 104.9 1 0 5 .5 1 0 5 .9
4 0 ° 9 0 .8 9 7 .6 10 0 .6 1 0 4 .7 10 6 .3 10 6 .8 10 8 .3 11 0 .0 1 0 9 .4 107.4 1 0 7 .7 10 7 .9
4 5 ° 9 0 .8 9 5 .5 1 0 1 .3 1 0 4 .8 106.1 1 0 8 .2 111.0 114.0 1 1 0 .8 109.9 1 1 0 .0 1 1 0 .8
5 0 ° 9 0 .8 97 .1 1 0 3 .0 1 0 4 .8 10 6 .0 1 0 6 .8 10 8 .7 115.4 1 1 2 .5 111.6 1 1 2 .2 11 3 .9
5 3 ° 9 0 .7 9 9 .0 1 0 2 .7 1 0 6 .0 10 6 .8 1 0 7 .5 11 0 .9 11 4 .7 1 1 3 .6 111.6 1 1 2 .4 11 3 .2
6 0 ° 9 0 .7 9 6 .9 1 0 1 .3 1 0 5 .5 10 6 .6 1 0 8 .0 11 0 .8 11 3 .3 1 1 3 .7 112.2 1 1 2 .3 11 3 .1
« 3 ° 9 0 .6 9 6 .5 1 0 2 .6 1 0 5 .0 10 5 .6 1 0 7 .5 112.9 11 2 .7 1 1 3 .9 112.9 1 1 2 .1 114.1
7 0 ° 9 0 .7 99 .4 10 3 .9 1 0 5 .9 10 7 .2 1 0 8 .2 109.8 11 7 .7 1 1 5 .0 111.8 1 1 3 .0 11 4 .6
7 3 ° 9 0 .8 9 7 .9 1 0 1 .8 1 0 6 .3 10 7 .3 10 7 .9 112.3 11 5 .3 1 1 4 .8 112.3 1 1 2 .7 1 1 4 .7
3 0 ° 9 0 .9 96 .4 102.4 1 0 5 .4 1 0 5 .9 10 7 .8 110.0 11 3 .0 1 1 4 .5 112.9 1 1 2 .5 11 4 .8
* 3 ° 9 0 .9 97 .4 10 3 .4 1 0 4 .6 105.1 1 0 7 .8 110.3 112.4 1 1 4 .4 112.4 1 1 2 .3 11 4 .9
9 0 ° 9 5 .9 102.4 10 8 .4 1 0 9 .6 110.1 1 1 2 .5 114.3 118.4 1 1 6 .4 116.5 1 1 6 .5 116.4

40 00 42 50 45 00 4 7 5 0 5 0 0 0 5 2 5 0 55 00 57 50 6 0 0 0 6250 6 5 0 0
----------------- 0 ” “ - 10 .0 - 10 .0 - 1 0 .0 - 10 .0 - 10 .0 - 10 .0 - 10 .0 - 10 .0 - 1 0 .0 - 10.0 - 1 0 .0

5 ° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 2 .0
1 0 ° 8 .2 7.9 7 .6 7 .3 7 .0 6 .7 6.4 6.1 5 .8 5.5 5 .2
1 3 ° 3 1 .2 2 7 .1 2 3 .1 19 .4 17 .2 16 .5 16 .5 16 .0 1 5 .6 15 .3 1 5 .0
2 0 ° 6 9 .7 6 7 .0 6 2 .3 5 7 .3 5 4 .3 4 8 .3 44 .6 3 8 .0 3 4 .8 35.1 3 2 .6
2 3 ° 9 2 .6 9 2 .4 8 9 .5 86 .1 8 3 .2 8 0 .8 76.4 71 .2 6 7 .1 63 .8 6 0  8
3 0 ° 100.1 10 3 .0 1 0 4 .0 1 0 2 .2 9 9 .4 90  4 9 3 .8 8 9 .6 84  4 80 .7 7 6 .0
3 3 ° 1 0 5 .9 10 7 .8 1 0 8 .5 1 0 7 .7 10 6 .5 10 5 .3 102.1 9 8 .2 9 3 .7 88 .1 8 2 .5
4 0 ° 1 0 9 .2 111.1 11 2 .5 1 1 1 .5 11 0 .7 1 0 9 .3 ,  107.1 1 0 3 .6 9 8 .3 92 .9 8 5 .6
4 3 ° 1 1 2 .5 1 1 4 .3 1 1 5 .9 1 1 5 .7 11 4 .9 113.1 110.3 106.1 10 1 .1 95 .5 8 8 .6
3 0 ° 114  2 116.1 11 6 .4 11 6 .3 11 6 .2 1 1 5 .8 112.2 10 8 .0 1 0 3 .5 97 .8 90  0
3 3 ° 11 4 .2 11 5 .9 11 7 .2 11 7  0 11 6 .6 1 1 5 .5 114.6 10 9 .9 1 0 4 .9 99 .2 9 1 .0
6 0 ° 11 5 .0 1 1 6 .5 1 1 7 .9 117.4 11 6 .5 11 5 .8 115.3 11 0 .7 1 0 5 .4 99.9 9 2 .0
« 3 ° 115  8 1 1 7 .3 11 7 .3 11 7 .4 117  9 1 1 7 .7 115.2 11 1 .2 1 0 6 .2 100.6 9 2 .6
7 0 ° 11 5 .8 116.8 11 6 .8 117  4 1 1 7 .9 1 1 8 .0 11 5 .0 111.0 1 0 7  0 101.0 9 3 .7
7 3 ° 11 5 .6 11 6 .2 1 1 6 .6 11 7 .4 11 7 .9 1 1 7 .6 114.8 111.8 10 6  5 101.0 9 5 .0
• 0 ° 11 5 .3 115  9 1 1 6 .6 117.4 118  1 1 1 7 .2 114.4 111.9 1 0 6 .5 100.8 9 5 .7
•  3 ° 115.1 115.8 1 1 6 .6 11 7 .4 11 8 .6 116  8 115.1 11 2 .0 1 0 6 .7 100  6 9 5  8
9 0 ° 116  4 118.1 11 8 .0 117  4 119  1 11 8 .1 114.6 11 2 .0 1 0 6 .7 100  6 9 5  8
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A .2 Engine fuel flow rate data.

Engine model fuel flow rate in g / s .

angle 1 0 0 0 1250 15 00 1750 2 0 0 0 2 2 5 0 25 00 2 7 5 0 30 00 32 50 35 00 3 7 5 0
(F- 0 .1 8 0 .1 8 0 .1 8 0 .1 8 0 .1 8 0 .1 8 0 .1 8 0  00 0 .0 0 0  00 0 .0 0 0 .0 0
5 ° 0 .2 5 0 .2 2 0 .2 0 0.21 0  22 0  22 0 .2 2 0 .2 0 0.21 0 .2 2 0 .2 7 0 .2 7

1 0 ° 0 .7 1 0  69 0 .6 3 0.66 0  69 0 .6 8 0 .6 9 0  64 0 .6 7 0 .6 9 0 .7 4 0 .7 4
1 5 ° 0 .9 5 0 .8 3 0 .9 1 1.00 1.09 1 .1 7 1.19 1 24 1.25 1.27 1.34 1.34
2 0 ° 0 .9 2 0 .9 8 1 .0 5 1.18 1 .3 0 1 .4 8 1.59 1 .7 3 1.78 1.89 2 .0 5 2 .1 7
2 5 ° 0 .8 8 0 .9 4 1 .0 8 1.25 1.41 1.64 1.80 1 .9 8 2 .0 5 2 .1 7 2 .4 2 2 .5 9
3 0 ° 0 .8 4 0 .9 8 1.14 1.32 1.51 1.71 1 .9 0 2 .1 0 2  24 2 .4 0 2 .5 8 2 .7 4
3 5 ° 0 .8 3 1.02 1 .1 9 1.37 1.55 1 .7 3 1 91 2 .1 4 2 .3 6 2.54 2 .6 9 2 .8 5
4 0 ° 0 .8 4 1.02 1 .2 0 1.39 1 .6 0 1.78 2 .0 0 2 .2 2 2 .4 2 2 .5 9 2 .7 6 2 .9 3
4 5 ° 0 .8 5 1.03 1.21 1.40 1.60 1 .8 2 2 .0 6 2 .3 1 2 46 2 .6 4 2 .8 2 3 .0 3
5 0 ° 0 .8 5 1.03 1 .2 2 1.41 1.60 1.80 2.01 2 .3 3 2 .5 2 2.71 2.91 3 .1 2
5 5 ° 0 .8 5 1.01 1 .2 2 1.42 1.62 1 .8 2 2 .0 8 2 .3 4 2 .5 5 2 .7 6 2 .9 4 3 .1 3
6 0 ° 0  86 1.04 1 .2 3 1.42 1.64 1 .8 8 2.11 2 .3 4 2 .5 6 2 .7 5 2 .9 3 3 .1 4
6 5 ° 0 .8 6 1.04 1 .2 3 1.41 1.60 1.84 2 .1 2 2 .3 4 2 .5 6 2 .7 5 2 .9 3 3 .1 6
7 0 ° 0 .8 6 0 .9 9 1 .2 2 1.42 1 .6 2 1 .8 2 2 .0 4 2 .3 8 2 .5 9 2 .8 0 2 .9 9 3 .1 8
7 5 ° 0 .8 6 1.03 1 .2 4 1.43 1.66 1 .8 6 2 .1 4 2 .4 0 2.64 2 .8 2 3 .0 0 3.21
8 0 ° 0 .8 6 1.05 1.24 1.42 1.62 1.89 2 .1 6 2 .4 3 2  68 2 .8 5 3 .0 1 3 .2 3
8 5 ° 0 .8 6 1.04 1 .2 3 1.41 1.60 1 .8 8 2 .1 6 2 .4 4 2.71 2 .8 7 3 .0 2 3 .2 5
9 0 ° 0 .8 6 1.04 1.24 1.42 1 .6 2 1 .9 9 2 .1 9 2 .4 8 2 .6 7 2 .8 8 3 .1 0 3.33

4 0 0 0 42 50 4 5 0 0 47 50 5 0 0 0 5 2 5 0 55 00 5 7 5 0 60 00 62 50 6 5 0 0
0 ° ^ 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0  00 0  00 0 .0 0
5 ° 0 .2 5 0 .2 5 0 .2 3 0 .2 2 0 .2 4 0 .2 6 0 .2 6 0 .3 1 0 .3 6 0 .4 5 0 .5 3

1 0 ° 0 .7 2 0 .7 2 0 .7 0 0 .6 9 0 .7 1 0 .7 3 0 .7 3 0 .7 8 0 .8 3 0 .9 2 1 .0 0
1 5 ° 1 .3 2 1.32 1 .3 0 1.29 1.31 1 .3 3 1 .3 3 1 .3 8 1.43 1.52 1 .6 0
2 0 ° 2 .2 1 2 .2 9 2.31 2 .3 3 2 .3 9 2 .3 4 2 .3 9 2 .3 2 2 .3 8 2 .7 0 2 .7 8
2 5 ° 2 .7 3 2 .9 2 3 .0 1 3 .1 6 3 .2 6 3 44 3 .5 8 3 -6 6 3 .8 5 4 .0 9 4 .3 0
3 0 ° 2 .9 1 3 .1 9 3 .4 8 3 .7 7 4 .0 2 3 .9 1 4.41 4 .5 7 4 .7 5 5 .0 2 5 .2 0
3 5 ° 3 .0 6 3 .3 8 3 .6 7 4.02 4 .3 7 4 .6 8 4 .9 2 5 .1 2 5 .3 2 5 .5 2 5.71
4 0 ° 3 .1 8 3 .5 2 3 .8 4 4.19 4 .5 5 4 .8 7 5 .1 8 5 .4 5 5.66 5 .8 7 5 .9 6
4 5 ° 3 .3 0 3.61 3 .9 9 4.36 4 .7 2 5 .0 4 5  34 5 .6 0 5 .8 3 6 .0 6 6 .2 0
5 0 ° 3 .3 6 3 .6 7 4 .0 3 4.40 4 .7 8 5 .1 6 5 .4 5 5 .7 1 5 .9 6 6 .2 2 6 .2 9
5 5 ° 3 .3 6 3 .7 1 4 .0 6 4 .4 3 4.81 5 .2 0 5 .6 0 5 .8 1 6.04 6 .2 9 6 .3 6
6 0 ° 3 .3 9 3 .7 0 4 .0 9 4 .4 6 4 .8 4 5 .2 4 5 .6 3 5 .8 1 6  06 6.31 6.41
6 5 ° 3 .4 2 3 .6 8 4 .0 8 4 .4 7 4 .8 4 5 .2 3 5 .5 8 5 .8 6 6 .0 8 6.34 6  46
7 0 ° 3 .4 4 3 .7 3 4 .1 3 4 49 4 .8 6 5 .2 2 5 53 5 .8 1 6 .1 0 6  36 6 .5 4
7 5 ° 3 .4 5 3 .7 8 4 .1 5 4 .5 0 4 .8 7 5 .2 2 5.53 5 .8 5 6 .1 0 6 .3 5 6 .5 9
8 0 ° 3 .4 6 3.81 4 .1 6 4.51 4 .8 8 5 .2 1 5 .5 3 5 .8 6 6 .1 0 6 .3 3 6 .6 4
8 5 ° 3  48 3 .8 3 4 .1 8 4 .5 3 4 .8 9 5.21 5.54 5 .8 6 6.11 6 .3 2 6 .6 3
9 0 ° 3 .5 5 3 .8 2 4 .2 0 4.54 4 .8 9 5 .2 2 5 .5 2 5 .8 6 6.11 6 .3 3

293



Appendix B

Pseudo-code implementation of 
fuzzy logic algorithms.

B .l M ax-m in inference, centroid of fuzzy union 
defuzzification.

/*

♦there are ni rules
♦associated with each rule, i, there is an input and an 
♦output fuzzy set
♦the 1-dimensional arrays input.uni and output_uni define
♦ discrete universes of discourse over the input and output 
♦variables, they have dimension nj and nk
♦an array, input.sets of dimension (ni,nj) defines the 
♦grades of membership of the input fuzzy sets, the input 
♦fuzzy set i is defined over the i’th row of the matrix 
♦an array, output.sets of dimension (ni,nk) defines the 
♦grades of membership of the output fuzzy sets 
♦an array, inp.grds of dimension ni stores the grades of 
♦membership of the input value in each of the input fuzzy
♦ sets
♦temp is used as a scratch pad in the calculation of the 
♦output fuzzy set value
♦output.fset stores the values in the output fuzzy set as 
♦it is created, note there is no need to store the entire
♦ set 
*/

for i * 1, ni /»for each rule*/
/♦
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♦obtain grade of membership of input in input fuzzy 
♦set for current rule
♦find indices of elements of input.uni that bracket 
♦current input value, store value in index 
♦/

call getind(inp_val, input.uni, index)

/*
♦linearly interpolate within area found by getind, 
♦returning result in vector inp.grds 
♦/

call

end

linearinterp(inp_val,inp.uniCindex),
input_sets(i,index), inp.grds(i))

/*
♦preset total area sum to zero 
♦/

area.sum = 0 

/♦
♦preset moment of area sum to zero 
*/

momarea.sum = 0

for k = 1, nk /»for each element of the output fuzzy set*/ 
/*
♦preset output fuzzy set at this element value to 
♦zero 
*/

output.fset = 0

for i = 1, ni /*for each rule*/
/*
♦find fuzzy intersection of output set i, at 
♦element k and grade of membership of input in 
♦input fuzzy set 
♦/

temp = min(inp_grds(i),output_sets(i,k))

/*
♦find fuzzy union of output set i at element k,
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♦and output sets from other rules 
♦/

output.fset = max(temp, output.fset(k))
end

/♦
♦increment area sum
♦ /

area.sum = area.sum + output_fset 
/*
♦increment moment of area sun 
♦/

momarea.sum = momarea.sum + output.f set«output_uni(k)
end

/*
♦finally defuzzify by dividing the moment of area by the 
♦ area 
*/

output « momarea_sum/area_sum 

end
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Early simulation results

Appendix C

T h r o t t le
o ffse ts

A rm a tu re  current 
o ffsets

m 2egr fuel
c o n s .1

A  B att.'2

0 4 12 24 40 90 0 0 0 0 0 0 1 9.111 0 .000

0 4 12 24 40 90 0 0 0 33 66 165 1 9 .1 10 -0 .042
0 4 12 24 40 90 0 0 33 66 99 165 1 8 .504 -0 .773
0 4 12 24 40 90 0 33 66 99 132 165 1 6 .9 27 -1 .4 8 8
0 4 12 24 40 90 0 0 0 33 66 165 2 9 .2 08 -0 .0 3 9
0 4 12 24 40 90 0 0 33 66 99 165 2 8 .2 39 -0 .6 7 6
0 4 12 24 40 90 0 33 66 99 132 165 2 6 .033 -1 .2 1 0
0 4 12 12 40 90 0 0 0 33 66 165 1 9 .040 -0 .0 9 5
0 4 12 12 40 90 0 0 0 33 66 165 2 9 .1 02 -0 .0 8 6
0 4 12 12 40 90 0 0 0 66 99 165 1 9 .0 18 -0 .1 0 5
0 4 12 12 40 90 0 0 0 66 99 165 2 9 .0 88 -0 .0 8 8
0 4 4 12 40 90 0 0 33 99 132 165 1 6 .4 83 -1 .6 4 8
0 4 4 12 40 90 0 0 33 99 132 165 2 5 .7 59 -1 .2 8 7
0 4 4 12 40 90 0 0 66 99 132 165 1 5 .949 -1 .8 7 8
0 4 4 12 40 90 0 0 66 99 132 165 2 5 .3 06 -1 .4 1 5
0 4 4 12 40 90 0 0 99 132 132 165 1 5 .4 30 -2 .141
0 4 4 12 40 90 0 0 99 132 132 165 2 4 .9 46 -1 .521

0 0 0 0 0 0 0 33 66 99 132 165 1 4 .7 35 -2 .5 3 3
0 0 0 0 0 0 0 33 66 99 132 165 2 4 .734 -1 .6 1 8

‘ Fuel consum ption in 1 /100km.
2Change in battery state o f  charge in A h /k m .
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T h r o t t le
o ffsets

A rm a tu re  current 
offsets

m 2egr fuel
con s.

A  B a tt .

0 4 12 24 40 90 0 33 33 66 99 165 1 7.462 -1 .2 3 2
0 4 12 24 40 90 0 33 33 66 99 165 2 6.576 -1 .0 6 2
0 0 4 12 40 90 0 33 66 99 132 165 1 5.924 -1 .9 1 2
0 0 4 12 40 90 0 33 66 99 132 165 2 5.284 -1 .4 4 3
0 4 12 24 40 90 0 0 0 -33 0 165 1 9.111 0 .000
0 4 12 24 40 90 0 0 0 -33 0 165 2 9.209 0.000
0 4 12 24 40 90 0 0 -33 -66 0 165 1 9.774 0.032
0 4 12 24 40 90 0 0 -33 -66 0 165 2 12.181 0.384
0 4 12 24 40 90 0 0 -33 -99 0 165 1 9.849 0.051
0 4 12 24 40 90 0 0 -33 -99 0 165 2 12.700 0.486
0 4 12 24 40 90 0 0 -66 -99 0 165 1 11.770 0.300
0 4 12 24 40 90 0 0 -66 -99 0 165 2 17.273 1.359
0 4 12 24 40 90 0 -33 -66 -99 0 165 1 12.624 0.388
0 12 24 24 40 90 0 -33 -99 -33 0 165 1 9.858 0.054
0 12 24 24 40 90 0 -33 -99 -33 0 165 2 13.283 0.538
0 12 24 24 40 90 0 -66 -99 -33 0 165 1 12.429 0.359
0 12 24 24 40 90 0 -99 -132 -66 0 165 1 14.747 0.784
0 12 24 24 40 90 0 -99 -99 -66 0 165 1 14.438 0.725
0 12 24 24 40 90 0 -33 -66 0 0 165 1 9.780 0.036
0 12 24 24 40 90 0 -33 -66 0 0 165 2 12.877 0 .450
0 12 24 24 40 90 0 -66 -66 -33 0 165 1 12.296 0 .329
0 12 24 24 40 90 0 -33 -33 0 0 165 1 9.697 0 .023
0 12 24 24 40 90 0 -33 -33 0 0 165 2 12.505 0 .363
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Data used in reference maps.
D .l Engine reference torque data.

Appendix D

E n gine reference ou tp u t torqu e  in N m .
T h r o t t le

ang le
E ngine s p e e d  in r /m in .

1000 1250 15 00 17 50 20 00 2 2 5 0 2 5 0 0 27 50 30 00 3 2 5 0 3 5 0 0 3 7 5 0
0 .0U - 4.4 - 6 .5 - 7 .5 - 8 .2 -8 .6 -8 .9 - 9.1 -9 .3 - 9.4 - 9 .5 - 9 .6 - 9 .6
2 . 5 ° 4.4 1.2 - 0 .6 - 1 .8 - 2 .7 - 3 .3 -3 .8 - 4 .2 - 4 .5 - 4 .8 - 5 .0 - 5 .2
5 .0 ° 19 .8 13 .8 10 .0 7 .3 5.4 4 .0 2 .8 1.9 1.1 0 .5 -0 .1 - 0 .5
7 . 5 ° 4 0 .7 3 1 .5 2 4 .7 1 9 .9 16 .4 13.6 11 .5 9 .7 8.2 7 .0 5 .9 5 .0

1 0 .0 ° 6 1 .6 51 .6 43 .1 3 6 .3 30 .6 2 6 .2 2 2 .6 19.7 17 .3 1 5 .3 1 3 .5 12 .0
1 2 . 5 ° 7 8 .2 70 .6 6 2 .6 5 4 .8 47 .9 4 1 .9 3 7 .0 32 .7 29.1 2 6 .1 2 3 .5 2 1 .2
1 5 .0 » 8 5 .7 83 .4 7 8 .8 7 2 .9 66 .5 60 .4 5 4 .5 49 .0 44.1 3 9 .9 3 6 .5 3 3 .4
1 7 . 5 ° 88 .4 87 .9 8 6 .8 8 5 .0 81 .7 77 .7 7 3 .3 68 .2 6 2 .9 5 7 .7 5 3 .0 4 8 .9
2 0 .0 ° 90 .1 90 .6 9 0 .6 9 0 .0 89 .1 8 8 .2 8 7 .2 84 .7 80 .9 7 6 .3 7 1 .5 67 .1
2 2 . 5 ° 9 1 .3 92 .4 9 3 .1 9 3 .3 93 .3 93 .4 9 3 .5 93 .0 9 1 .5 8 9 .2 8 6 .0 8 2 .6
2 5  0 ° 92 .1 93 .6 9 4 .8 9 5 .7 96 .2 9 7 .0 9 7 .8 98 .0 9 7 .3 9 5 .7 9 3 .5 9 1 .3
2 7 . 5 ° 9 2 .7 94 .5 9 6 .1 9 7 .3 98 .3 9 9 .5 10 0 .9 101.6 101.4 1 0 0 .4 9 8 .7 97 .1
3 0 .0 ° 9 3 .2 95 .2 9 7 .0 9 8 .6 99 .8 101.4 103.1 10 4 .2 10 4 .5 1 0 3 .8 1 0 2 .6 101.4
3 2 . 5 ° 9 3 .5 95 .7 9 7 .8 9 9 .5 10 1 .0 10 2 .9 10 4 .8 106.2 106.8 1 0 6 .4 1 0 5 .5 10 4 .5
3 5 .0 ° 9 3 .8 96.1 9 8 .3 10 0 .2 10 1 .9 10 4 .0 10 6 .2 107.8 108.5 1 0 8 .4 1 0 7 .7 10 7 .0
3 7 .5 ° 9 4 .0 96 .5 9 8 .7 1 0 0 .8 10 2 .6 10 4 .8 10 7 .2 108.9 109.9 1 0 9 .9 10 9 .4 1 0 8 .8
4 0 .0 ° 9 4 .2 96 .7 99 .1 1 0 1 .2 10 3 .2 10 5 .5 10 8 .0 109.9 11 0 .9 1 1 1 . 1 1 1 0 .7 1 1 0 .3
5 0 .0 ° 9 4 .7 97 .4 1 0 0 .0 10 2 .4 10 4 .6 10 7 .2 11 0 .0 112.2 11 3 .5 1 1 3 .9 1 1 3 .8 1 1 3 .7
6 0 .0 ° 9 4 .9 97 .7 1 0 0 .5 1 0 3 .0 10 5 .3 10 8 .0 11 0 .9 113.2 11 4 .7 1 1 5 .3 1 1 5 .3 1 1 5 .2
7 0 .0 ° 95 .1 97 .9 1 0 0 .7 1 0 3 .3 1 0 5 .7 10 8 .5 1 1 1 .5 113.8 115.4 1 1 6 .0 1 1 6 .0 1 1 6 .0
8 0 . 0 ° 9 5 .2 98.1 10 0 .9 1 0 3 .5 10 6 .0 108.8 11 1 .8 114.2 115.7 1 1 6 .4 1 1 6 .4 1 1 6 .4
9 0 . 0 ° 9 5 .2 98.1 1 0 1 .0 1 0 3 .6 106.1 109.0 1 1 2 .0 114.4 11 6 .0 1 1 6 .6 1 1 6 .7 1 1 6 .7

40 00 42 50 45 00 4 7 5 0 5000 52 50 5 5 0 0 5750 60 00 6 2 5 0 6 5 0 0
0 .0" -9 .7 - 9 .7 - 9 .8 - 9 .8 -9 .8 -9 .8 -9 .8 -9 .9 - 9 .9 -9.9 -9.9
2 . 5 ° -5.3 -5.5 - 5 .6 - 5 .7 -5 .8 - 5 .9 -6 .0 -6 .0 -6.1 - 6 .2 - 6 .2
5 .0 ° - 0 .9 - 1.3 - 1.6 - 1 .9 - 2 .2 - 2.4 -2 6 -2 .8 -3 .0 - 3 .2 -3 .3
7 . 5 ° 4 .2 3.4 2 .8 2 .2 1.7 1.3 0 .8 0 .5 0.1 - 0 .2 - 0 .5

1 0 .0 ° 10 .7 9 .5 8.4 7.5 6 .7 5 .9 5 .2 4 .6 4 .0 3 .4 2 .9
1 2 . 5 ° 19.3 17 .5 1 5 .9 14 .6 13 .3 12 .2 11.1 10 .2 9 .3 8 .5 7 .8
1 5 .0 ° 3 0 .6 2 8 .2 2 6 .0 24 .1 22 .4 20 .8 19 .3 18 .0 16.8 1 5 .7 1 4 .7
1 7 . 5 ° 4 5 .3 42 .2 3 9 .4 3 6 .9 3 4 .6 32 .4 3 0 .5 2 8 .7 26 .9 2 5 .0 2 2 .9
2 0 .0 ° 6 3 .3 6 0 .2 5 7 .4 5 4 .8 52.1 49 .0 4 5 .7 42  8 39 .9 3 6 .5 3 2 .5
2 2 . 5 ° 79 .7 77.4 7 5 .5 73 .4 70 .7 6 6 .7 6 2 .0 5 7 .9 54 .0 4 9 .5 4 4 .4
2 5 .0 ° 8 9 .5 88 .3 8 7 .4 86  2 8 4 .0 80 .0 75.1 70 .9 6 7 .0 6 2 .5 5 7 .8
2 7  5 ° 95  9 9 5 .2 94  9 9 4 .2 92 .4 88 .9 84.4 80 .5 76 .9 7 2 .8 6 8 .2
3 0 .0 ° 100.5 100.3 1 0 0 .3 1 0 0 .0 98  6 95.5 9 1 .3 8 7 .7 8 4 .3 8 0 .4 7 6 .0
3 2 .5 ° 104.0 104.1 104  4 10 4 .4 103.2 100.3 9 6 .4 9 3 .0 8 9 .8 8 6  0 8 1 .7
3 5 .0 ° 106  7 106.9 107  5 1 0 7 .6 10 6 .7 104.0 100.1 96 .9 9 3 .8 9 0 .1 8 5  9
3 7  5 ° 108.7 109.1 10 9 .8 110.1 109.3 10 6 .7 10 3 .0 99  8 96  8 9 3 .1 8 9 .0
4 0 . 0 ° 11 0 .3 110.8 1 1 1 6 1 1 2 .0 1 1 1 .3 108.8 105  1 102  0 99  1 9 5 .4 9 1 .2
5 0 .0 ° 11 3 .9 11 4 .7 1 1 5 .7 1 1 6 .3 11 5 .7 11 3 .3 10 9 .7 106.6 103.6 99.9 9 5 .5
6 0 .0 ° 11 5 .5 116.4 11 7 .4 1 1 8 .0 117.4 115.0 1 1 1 .3 108.1 105.0 101.1 9 6 .5
7 0 .0 ° 116.3 11 7 .2 1 1 8 .2 118  8 118.1 115  6 11 1 .9 108.6 105.3 1 0 1 .2 9 6 .5
80  0 ° 11 6 .7 117.6 1 1 8 .6 119.1 118.4 11 5 .8 11 2 .0 108.6 105.2 1 0 1 .0 9 6 .1
90  0 ° 11 7 .0 117.8 1 1 8 .8 11 9 .3 11 8 .5 115.9 1 1 2 .0 108.5 105.0 1 0 0 .6 9 5 .6
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.2 Engine reference fuel flow rate data.

E ngine re feren ce  fuel How rate in g /s .
E n g in e  speed  in r /m in .T h r o t t le

a n g l e 1000 1 2 5 0 1500 1750 2 0 0 0 22 50 2 5 0 0 27 50 3 0 0 0 3 2 5 0 35 00 37 50
0 .0 ° 0 .1 4 0 .1 3 0 .1 2 0 .1 2 0.11 0.11 0 .1 0 0.09 0 .0 9 0 .0 8 0.08 0 .0 7
2 .5 ° 0 .1 5 0 .1 5 0.14 0 .1 4 0 .1 4 0  13 0 .1 3 0 .1 3 0 .1 2 0 .1 2 0.11 0.11
5 .0 ° 0.24 0 .2 4 0.24 0 .2 4 0 .2 4 0 .2 4 0 .2 4 0.24 0 .2 4 0 .2 4 0.24 0.24
7 .5 ° 0  36 0 .3 9 0 .4 0 0  41 0.41 0 .4 2 0 .4 2 0.42 0 .4 3 0 .4 3 0.44 0  44

1 0 .0 ° 0 .4 8 0 .5 5 0 .5 9 0 .6 1 0 .6 3 0 .6 4 0 .6 5 0 .6 6 0 .6 7 0 .6 8 0 .6 9 0 .7 0
1 2 .5 ° 0  58 0 .6 9 0 .7 7 0  82 0 .8 6 0 .8 9 0  92 0 .9 3 0 .9 4 0 .9 6 0  98 1.00
1 5 .0 ° 0 .6 4 0  78 0 .9 0 0 .9 9 1.06 1 . 1 3 1 .2 0 1.24 1 .2 6 1 .2 7 1.29 1.32
1 7 .5 ° 0 .6 9 0 .8 4 0 .9 8 1 .1 0 1.21 1.33 1.45 1.53 1 .5 7 1.59 1.62 1 66
2 0 .0 ° 0 .7 3 0 .8 8 1.03 1 .1 7 1 .3 0 1.45 1.61 1.74 1 .8 3 1.88 1.92 1.97
2 2 .5 ° 0 .7 6 0 .9 2 1.08 1 .2 3 1 .3 7 1.54 1 .7 2 1.88 2.01 2 .1 0 2 .1 7 2 .2 6
2 5 .0 ° 0 .7 8 0 .9 5 1.11 1 .2 7 1.43 1 .6 1 1.81 1.99 2 .1 4 2 .2 6 2 .3 6 2 .4 7
2 7 .5 ° 0 .8 0 0 .9 7 1.14 1 .3 0 1.47 1.66 1.88 2 .0 7 2 .2 4 2 .3 8 2 .5 0 2 .6 4
3 0 .0 ° 0.81 0  98 1.16 1 .3 3 1.50 1 .7 1 1.93 2 14 2 .3 2 2 .4 7 2.61 2 .7 7
3 2 .5 ° 0 .8 2 1 .0 0 1.17 1 .3 5 1.53 1.74 1.97 2.19 2 .3 8 2 .5 5 2 .7 0 2 .8 7
3 5 .0 ° 0 .8 3 1.01 1.19 1 .3 7 1.55 1.77 2 .0 1 2 .2 3 2 .4 3 2 .6 0 2 .7 7 2 .9 5
3 7 .5 ° 0 .8 4 1.01 1.20 1 .3 8 1 .5 7 1.79 2 .0 3 2.26 2 .4 7 2 .6 5 2 .8 2 3.01
4 0 .0 ° 0 .8 4 1 .0 2 1.20 1 .3 9 1.58 1 .8 0 2 .0 5 2.29 2 .5 0 2 .6 8 2.86 3 .0 6

| 5 0 .0 ° 0 .8 5 1 .0 3 1.22 1.41 1.61 1.84 2 .0 9 2.34 2 .5 6 2 .7 6 2 .9 5 3 .1 6
6 0 .0 ° 0 .8 6 1.04 1.23 1 .4 2 1.62 1.85 2 .1 1 2 .3 6 2 .5 9 2 .7 9 2 .9 8 3 .2 0
7 0 .0 ° 0 .8 6 1.04 1.23 1 .4 2 1.62 1 .8 5 2 .1 2 2.37 2 .5 9 2 .8 0 3 .0 0 3 .2 2
8 0 .0 ° 0 .8 6 1 .0 4 1.23 1 .4 2 1.62 1 .8 6 2 .1 2 2 .3 7 2 .6 0 2 .8 0 3 .0 0 3  22
9 0 .0 ° 0 .8 6 1 .0 4 1.23 1 .4 2 1 .6 2 1 .8 6 2 .1 2 2 .3 7 2 .6 0 2 .8 0 3 .0 0 3 .2 2

40 00 4 2 5 0 45 00 4 7 5 0 5 0 0 0 5 2 5 0 5 5 0 0 57 50 6 0 0 0 6 2 5 0 65 00
0 .0 ° 0 .0 6 0 .0 6 0 .0 5 0 .0 4 0 .0 4 0 .0 3 0 .0 3 0.02 0 .0 1 0 .0 1 0 .0 0
2 .5 ° 0.11 0 .1 0 0 .1 0 0 .1 0 0 .0 9 0 .0 9 0 .0 9 0.08 0  08 0 .0 7 0 .0 7
5 .0 ° 0 .2 4 0 .2 4 0 .2 4 0 .2 4 0 .2 4 0.24 0 .2 4 0.24 0 .2 3 0 .2 3 0 .2 3
7 .5 ° 0.44 0 .4 5 0 .4 5 0 .4 6 0 .4 6 0  46 0 .4 7 0 .4 7 0 .4 8 0 .4 8 0 .4 8

1 0 .0 ° 0.71 0 .7 2 0 .7 3 0 .7 4 0 .7 5 0 .7 6 0 .7 7 0 .7 8 0 .7 9 0 .8 0 0.81
1 2 .5 ° 1.02 1.04 1.05 1 .0 7 1.09 1.11 1.13 1.15 1 .1 7 1 .1 9 1.21
1 5 .0 ° 1.35 1 .3 9 1.42 1 .4 5 1.48 1.51 1.55 1.58 1.61 1.64 1.67
1 7 .5 ° 1.71 1 .7 6 1.80 1 .8 5 1.90 1.95 2 .0 0 2.04 2 .0 9 2 .1 4 2 .1 9
2 0 .0 ° 2 .0 5 2 .1 4 2 .2 3 2 .3 0 2 .3 6 2.41 2 .4 8 2.54 2.61 2 .6 8 2 .7 5
2 2 .5 ° 2 .3 7 2 .5 1 2 .6 5 2 .7 8 2 .8 7 2.94 3.01 3 .1 0 3 .1 9 3 .2 9 3 .3 9
2 5 .0 ° 2 .6 3 2 .8 2 3 .0 3 3 .2 2 3 .3 7 3 .4 6 3 .5 4 3 .6 6 3 .8 0 3 .9 4 4 .0 9
2 7 .5 ° 2 .8 2 3 .0 4 3 .3 0 3 .5 5 3 .7 6 3 .9 0 4.01 4 .1 7 4 .3 6 4 .5 4 4 74
3 0 .0 ° 2 .9 7 3 .2 1 3 .4 9 3 .7 7 4 .0 2 4 .2 0 4 .3 4 4.54 4 .7 8 5 .0 1 5.24
3 2 .5 ° 3 .0 8 3 .3 4 3 .6 4 3 .9 4 4.21 4.41 4 .5 8 4.80 5 .0 6 5 .3 2 5 .5 7
3 5 .0 ° 3 .1 7 3 .4 5 3 .7 6 4 .0 7 4 .3 6 4 .5 7 4 .7 6 5 .0 0 5 .2 8 5 .5 6 5.84
3 7 .5 ° 3 .2 4 3 .5 3 3 .8 5 4 .1 8 4 47 4 .7 0 4 .9 0 5.16 5 .4 6 5 .7 5 6.04
4 0 .0 ° 3 .3 0 3 .5 9 3 .9 2 4 .2 6 4 .5 6 4 .8 0 5 .0 1 5.28 5.59 5 .8 9 6 .2 0
5 0 .0 ° 3 .4 2 3 .7 3 4 .0 8 4.44 4.76 5 .0 2 5 .2 6 5.55 5 .8 9 6 .2 2 6 .5 6
6 0 .0 ° 3 .4 7 3 .7 8 4.14 4 .5 0 4 84 5.11 5 .3 5 5.65 6 .0 0 6 .3 4 6  69
7 0 .0 ° 3 .4 8 3 .8 0 4 .1 6 4 .5 3 4 .8 6 5 .1 4 5 .3 8 5.69 6 .0 4 6 .3 8 6.74
8 0 .0 ° 3 49 3 .8 1 4 .1 7 4 .5 3 4 .8 7 5 .1 5 5 .4 0 5.70 6 .0 5 6 .4 0 6 .7 5
9 0 .0 ° 3 .4 9 3 .8 1 4 .1 7 4 .5 4 4 .8 8 5 .1 5 5 .4 0 5.71 6 .0 6 6  41 6 .7 6
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D .3 Motor reference torque data

M o to r  reference to rq u e  in Mm.
D e m a n d e d  a r m a t u r e  

c u r r e n t .
M o t o r s p e e d i n  r / m i n .

0 25 0 500 750 1000 1250 1500 1 7 5 0 2000 2 2 5 0
OA 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

10A 1.5 1.5 1.6 1.6 1.6 1.6 1.7 1 .7 1.7 1 .7
20  A 4 .7 4 .8 4.8 4 .8 4 .9 4 .9 4.9 4 .9 4.9 4 .9
30  A 8 .0 8 .0 8 .0 8.1 8.1 8.1 8.1 8 .1 8 .2 8 .2
40  A 11 .2 11 .2 11.3 11 .3 11.3 1 1 4 11.4 1 1 .4 11.4 1 1 .4
5 0 A 14 4 14 .5 14.5 14 .5 14.6 14 .6 14.6 1 4 .6 14.6 1 4 .6
60  A 1 7 .7 1 7 .7 17.8 17 .8 17 .8 17 .8 17 .9 1 7 .9 17.9 1 7 .9
70 A 2 0 .9 2 1 .0 2 1 .0 2 1 0 21.1 21.1 21.1 2 1 .1 21.1 2 1 .1
80  A 2 4 .2 2 4 .2 2 4 .2 2 4 .3 24 .3 24 .3 24.3 2 4 .3 24.4 2 4 .4
9 0  A 27 .4 2 7 .4 2 7 .5 2 7 .5 27 .5 27 .6 27 .6 2 7 .6 27 .6 2 7 .6

100 A 3 0 .6 3 0 .7 3 0 .7 3 0 .7 30 .8 30 .8 30.8 3 0 .8 30 .8 3 0 .8
1 10 A 3 3 .9 3 3 .9 3 4 .0 3 4 .0 34 .0 34 .0 34 .0 3 4 .1 34.1 3 4 .1
12 0A 3 7 .1 3 7 .2 3 7 .2 3 7 .2 37 .2 37 .3 37 .3 3 7 .3 37 .3 3 7 .3
13 0A 40 .4 4 0 .4 40 .4 4 0 .5 40 .5 40 .5 40 .5 4 0 .5 40 .5 4 0 .6
14 0A 4 3 .6 4 3 .6 4 3 .7 4 3 .7 4 3 .7 4 3 .7 43 .8 4 3 .8 43 .8 4 3 .8
150 A 46 8 4 6 .9 4 6 .9 4 6 .9 47 .0 47 .0 47 .0 4 7 .0 47 .0 4 7 .0
160 A 50 .1 50 .1 50 .1 5 0 .2 50 .2 50 .2 50 .2 5 0 .3 50 .3 5 0 .3

2 5 0 0 2 7 5 0 30 00 3 2 5 0 35 00 37 50 4000 4 2 5 0 4500 4 750
0 A 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0.0 0 .0

10 A 1 .7 1.7 1.7 1 .7 1.7 1.7 1.7 1 .6 1.5 1.4
20 A 4 .9 4 .9 4 .9 4 9 4.9 4.9 4.9 4 .7 4.4 4 .2
3 0  A 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8.0 7 .6 7.1 6 .8
40 A 11 .4 11.4 11.4 11 .4 11 .4 11.4 10.9 1 0 .3 9.8 9 .3
50 A 1 4 .6 14 .7 14 .7 14 .6 14.6 14.6 13 .7 1 2 .9 12.2 11 .6
60  A 17 .9 1 7 .9 17 .9 17 .9 17 .9 17.4 16.3 15 .4 14.6 13 .8
70 A 21 .1 21 .1 21 .1 2 1 .1 21 .1 2 0 .0 18.8 1 7 .7 16 8 15 .9
80  A 24 4 2 4 .4 24 .4 2 4 .4 23 .9 22 .4 21.1 1 9 .9 18.8 17 .8
90  A 2 7 .6 2 7 .6 2 7 .6 2 7 .6 26 .4 2 4 .7 23 .2 2 1 .9 20 .7 19 .6

100 A 3 0 .8 3 0 .8 3 0 .8 3 0 .7 28 .7 26 .8 25 .2 2 3 .8 2 2 .5 2 1 .3
110 A 34 .1 34 .1 34.1 3 3 .0 3 0 .7 28 .8 27.1 2 5 .5 24.1 2 2 .8
120 A 3 7 .3 3 7 .3 3 7 .3 3 5 .0 32 .7 30 .6 28 .7 2 7 .1 25.6 2 4 .2
13 0A 4 0 .6 4 0 .6 3 9 .7 3 6 .9 34 .4 32 .2 30 .2 2 8 .5 26.9 2 5 .5
140 A 4 3 .8 4 3 .8 4 1 .6 3 8 .6 36 .0 3 3 .7 31 .6 2 9 .7 28.1 2 6 .6
15 0A 4 7 .0 4 6 .8 4 3 .2 40 .1 37 .4 34 .9 32 .8 3 0 .9 29.1 2 7 .6
1 6 0 A 5 0 .3 4 8 .4 4 4 .6 4 1 .4 38 .5 3 6 .0 33 .8 3 1 .8 30.1 2 8 .5

50 00 5 2 5 0 55 00 5 7 5 0 60 00 62 50 6500 6 7 5 0
0 A 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

10A 1.3 1.3 1.2 1.2 1.1 1.1 1.0 1.0
20  A 4 .0 3 .8 3 .6 3 .4 3 .3 3 .2 3 .0 2 .9
30  A 6 .4 6 .1 5.8 5 .6 5.4 5.1 5.0 4 .8
40  A 8 .8 8.4 8 .0 7 .6 7.3 7.0 6 .8 6 .5
50  A 1 1 .0 10 .5 1 0 .0 9 .6 9.2 8 .8 8 .5 8  2
6 0  A 13.1 12 .5 11 .9 11 .4 10 .9 10 .5 10.1 9 .7
70 A 15.1 14 .4 13 .7 13.1 12 .6 12.1 11 .6 1 1 .2
80  A 1 6 .9 16.1 15.4 14 7 14.1 13 .6 13.1 1 2 .6
9 0  A 18 .6 17 .8 17.0 1 6 .2 15 .6 14 .9 14.4 1 3 .9

100 A 2 0 .2 19 .3 18 4 1 7 .6 16 9 16 .2 15.6 1 5 .0
1 10 A 2 1 .7 2 0 .7 19 .7 18 .9 18.1 17.4 16 .7 16 .1
120 A 2 3 .0 2 1 .9 2 0 .9 2 0 .0 19 .2 18 .4 17 .7 17 .1
13 0A 2 4 .2 23 .1 2 2 .0 21 .1 2 0 .2 19.4 18 .7 1 8 .0
140 A 2 5 .3 24 .1 2 3 .0 2 2 .0 21 .1 2 0 .3 19.5 1 8 .8
150 A 2 6 .2 2 5 .0 2 3 .9 2 2 .8 2 1 .9 2 1 .0 20 .2 1 9 .5
160 A 27 .1 2 5 .8 2 4 .6 2 3 .5 2 2 .6 2 1 .7 20 .9 2 0 .1
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D.4 Motor reference battery current data

M o to r  referen ce  b a tte rv  current in A .
D em a n d ed  arm atu re 

cu rren t.
M o to r  speed in r /m in .

0 25 0 50 0 750 1000 1250 1500 1750 2 0 0 0 2 2 5 0
OA 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

10  A 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 23 .5 23  5 2 3 .5
20  A 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5
30  A 4 3 .5 4 3 .5 4 3 .5 4 3  5 4 3 .5 4 3 .5 4 3 .5 43 .5 4 3 .5 4 3 .5
40  A 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 3 .5 53 .5 5 3 .5 5 3 .5
50  A 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5
60  A 7 3 .5 73 .5 73 .5 7 3 .5 73 .5 73 .5 73 .5 73 .5 73 .5 7 3 .5
70  A 8 3 .5 8 3 .5 8 3 .5 8 3 .5 8 3 .5 8 3 .5 8 3 .5 83 .5 8 3 .5 8 3 .5
80  A 9 3 .5 9 3 .5 9 3 .5 93  5 9 3 .5 9 3 .5 9 3 .5 9 3 .5 9 3 .5 9 3 .5
9 0 A 10 3 .5 1 0 3 .5 10 3 .5 1 0 3 .5 103.5 10 3 .5 10 3 .5 103.5 10 3 .5 1 0 3 .5

100  A 11 3 .5 1 1 3 .5 1 1 3 .5 1 1 3 .5 11 3 .5 11 3 .5 11 3 .5 11 3 .5 1 1 3 .5 1 1 3 .5
110  A 1 2 3 .5 1 2 3 .5 12 3 .5 123  5 123.5 12 3 .5 12 3 .5 123.5 12 3 .5 1 2 3 .5
1 2 0 A 1 3 3 .5 1 3 3 .5 1 3 3 .5 1 3 3 .5 133.5 13 3 .5 13 3 .5 133.5 13 3 .5 1 3 3 .5
1 3 0 A 14 3 .5 1 4 3 .5 1 4 3 .5 1 4 3 .5 143.5 143.5 14 3 .5 143.5 143.5 1 4 3 .5
14 0  A 15 3 .5 1 5 3 .5 1 5 3 .5 1 5 3 .5 153.5 15 3 .5 15 3 .5 153.5 15 3 .5 1 5 3 .5
1 5 0 A 1 6 3 .5 1 6 3 .5 16 3 .5 1 6 3 .5 163.5 16 3 .5 16 3 .5 163.5 1 6 3 .5 1 6 3 .5
1 6 0 A 17 3 .5 1 7 3 .5 1 7 3 .5 1 7 3 .5 17 3 .5 17 3 .5 17 3 .5 17 3 .5 1 7 3 .5 1 7 3 .5

2 5 0 0 2 7 5 0 3 0 0 0 3 2 5 0 3 5 0 0 37 50 40 00 4250 4 5 0 0 4 7 5 0
0 A 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

10 A 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 2 3 .5 22 .4 2 0 .5 19.1
20  A 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 3 3 .5 31 .5 2 9 .9 2 8 .5
30  A 4 3 .5 4 3 .5 4 3 .5 4 3 .5 4 3 .5 4 3 .5 42 .8 40 .8 3 9 .2 3 7 .9
40  A 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 3 .5 5 1 .8 50.1 48 .6 47  4
5 0 A 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .5 6 3 .3 6 1 .0 59 .3 5 8 .0 5 7 .0
60  A 7 3 .5 73 .5 73 .5 7 3 .5 73 .5 72 .2 70 .3 6 8 .7 6 7 .5 6 6 .7
70  A 8 3 .5 8 3 .5 8 3 .5 8 3 .5 8 3 .5 8 1 .3 79 .5 78 .0 7 7 .0 7 6 .4
80  A 9 3 .5 9 3 .5 9 3 .5 9 3 .5 9 2 .7 9 0 .5 8 8 .8 87 .5 8 6 .7 86 .1
90  A 1 0 3 .5 1 0 3 .5 1 0 3 .5 1 0 3 .5 10 1 .7 9 9 .7 98.1 97 .0 9 6 .3 9 5 .8

1 0 0 A 1 1 3 .5 1 1 3 .5 1 1 3 .5 1 1 3 .3 110.8 108.9 107.5 106.6 1 0 6 .0 1 0 5 .6
11 0  A 1 2 3 .5 1 2 3 .5 1 2 3 .5 12 2 .1 11 9 .9 118.2 117.0 116.3 115.8 11 5 .4
120  A 1 3 3 .5 1 3 3 .5 1 3 3 .5 13 1 .1 129.0 127.5 126.6 126.0 12 5 .5 1 2 5 .2
1 3 0 A 1 4 3 .5 1 4 3 .5 1 4 2 .6 140.1 138.3 137.0 136.3 135.7 135.3 1 3 5 .0
140  A 15 3 .5 1 5 3 .5 151.4 1 4 9 .2 14 7 .6 146.6 145.9 145.5 145.1 144  8
150  A 16 3 .5 1 6 3 .2 16 0 .4 15 8 .4 157.0 156.2 15 5 .7 155.2 154.9 1 5 4 .6
1 6 0 A 1 7 3 .5 1 7 1 .9 16 9 .4 1 6 7 .6 16 6 .5 165.9 165.4 16 5 .0 1 6 4 .7 1 6 4 .4

5 0 0 0 5 2 5 0 5 5 0 0 5 7 5 0 60 00 62 50 65 00 67 50
OA 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

10  A 1 7 .9 17 .0 16.4 16 .0 15 .7 15.4 15.1 14.9
2 0 A 27 .4 2 6 .7 2 6 .2 2 5 .8 2 5 .5 2 5 .2 2 5 .0 24 .8
30  A 3 7 .0 3 6 .4 3 6 .0 3 5 .6 3 5 .3 35 .1 3 4 .8 34 .6
40  A 4 6 .7 4 6 .2 4 5 .8 4 5 .4 4 5 .2 44  9 4 4 .7 44 5
5 0 A 56 .4 5 5 .9 5 5 .6 5 5 .3 5 5 .0 5 4 .8 5 4 .6 54.4
6 0 A 6 6 .1 6 5 .7 6 5 .4 6 5 .1 6 4 .9 6 4 .6 64 .4 64 3
70 A 7 5 .9 7 5 .5 7 5 .2 7 4 .9 74 .7 7 4 .5 74 .3 74 .2
8 0 A 8 5 .7 8 5 .3 8 5 .0 8 4 .8 8 4 .6 84 .4 84 .2 84 0
9 0 A 9 5 .4 9 5 .1 9 4 .9 9 4 .6 94 .4 9 4 .2 94 .1 9 3 .9

100  A 1 0 5 .3 1 0 5 .0 10 4 .7 1 0 4 .5 104.3 104.1 10 3 .9 103.8
110  A 115.1 1 1 4 .8 1 1 4 .6 1 1 4 .3 11 4 .2 11 4 .0 113.8 11 3 .7
120  A 1 2 4 .9 1 2 4 .6 124.4 124  2 12 4 .0 12 3 .9 12 3 .7 123.6
1 3 0 A 1 3 4 .7 1 3 4 .5 13 4 .3 13 4 .1 13 3 .9 13 3 .7 13 3 .6 133.4
140  A 1 4 4 .5 1 4 4 .3 144  1 1 4 3 .9 143.8 143  6 143.5 143.3
1 5 0 A 15 4 .4 1 5 4 .2 15 4 .0 1 5 3 .8 153.6 15 3 .5 153.3 153.2
1 6 0 A 164  2 1 6 4 .0 16 3 .8 1 6 3 .6 16 3 .5 163.4 163.2 163.1
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