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ABSTRACT: As high-amylose starch (HAS) has a higher content of linearly structured chains than 

other types of starch, it is more scientifically interesting to realize enhanced properties or new functions 
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for food and materials applications. However, the full dissolution of the compact granule structure of 

HAS is challenging under moderate conditions, which limits its applications. Here, we have revealed 

that the granule structure of HAS can be easily destructed by certain concentrations of acidic ZnCl2, 

neutral MgCl2 and alkaline CaCl2 solutions (43 wt%, 34 wt%, and 31 wt%, respectively) at a moderate 

temperature (under 50 °C). The ZnCl2 and CaCl2 solutions resulted in complete dissolution of HAS 

granules, whereas small amounts of HAS granule remnants still existed in the MgCl2 solution. The 

regenerated starch from the CaCl2 solution was completely amorphous, that from the ZnCl2 solution 

only presented a weak peak at 17°, and that from the MgCl2 solution contained V-type crystallites. No 

new reflections were found on the FTIR spectra indicating all these three chloride solutions can be 

considered as a non-derivatizing solvent for starch. In all the three cases, nanoparticles were formed 

in the regenerated starch, which could be due to the aggregation of starch chains or their complexation 

with the metal cation. In addition, their water absorption ratio was 1.5 to 3 times that of the control 

(treated in water).  
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INTRODUCTION 

Starch is a natural polymer formed by the photosynthesis in plants and is one of the major forms for 

plants to store energy. It is an abundant, cheap, renewable and environmentally-friendly resource.1 

Normal or wild-type starches consist of two types of glucose polymers, the predominately-linear 

amylose with rare branches, and the highly-branched amylopectin.2 Amylose has a molecular mass of 

about 106 Daltons with long branches. Amylopectin contains a large number of short branches and is 

one of the largest biopolymers (about 108 Daltons).3 

Starch with a higher content of amylose, compared to typical wild-type lines, can be termed as high-

amylose starch (HAS). HAS can be biosynthesized in mutant cereal grains such as wheat, maize, rice, 

and barley and have some special properties such as heat resistance and digestion resistibility.2 The 

granule structure of HAS has been extensively studied. Its inner region is composed of mainly loosely-

packed amylopectin growth rings with semicrystalline lamellae,4 while its compact periphery is 

supposed to be composed of entangled amylose chains.5  

HAS has been used in many applications such as nutritional food, food processing, drug release, 

and biodegradable materials.6 Due to the suitable molecular weight, linear molecular structure and 

densely populated hydroxyl groups, amylose has high chemical reactivity, which can be used to prepare 

modified starch,7 starch-ion inclusion complexes8 and starch-based materials.9 However, the compact 

granule structure and the high gelatinization temperature of HAS limit its applications. As a result, 

how to destroy HAS granules and release starch chains is both scientifically and practically interesting.  

Some solvents such as dimethyl sulfoxide (DMSO) and alkali solutions have been found to be 

capable of dissolving HAS. However, starch needs to be heated in 90% aqueous DMSO for about 24 
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h for the full dissolution; and alkaline solutions may induce depolymerization or oxidation of starch. 

Recent research has shown that ionic liquids (ILs) can dissolve starch and improve the degree of 

substitution (DS) and reaction efficiency for starch modification.10 Some examples of these modified 

starch include acetylated starch,11 cationic starch,12 esterified starch,13 carboxymethyl starch in 1-butyl-

3-methylimidazolium chloride ([Bmim]Cl),14 fatty-acid starch esters in 1-ethyl-3-methylimidazolium 

acetate ([Emim][OAc]),15 and oxidized starch in a polyoxometalate IL.16 However, the toxicity of ILs 

remains uncertain and their high prices also restrict their applications.17  

Besides ILs, some inorganic salt solutions can also destruct starch granules.18 Under certain 

concentrations, LiCl, KSCN, KI, BaF2 and BaBr2 solutions can be used to gelatinize starch granules 

at room temperature.19 ZnCl2 solution has been proved to be as an effective solvent for cassava starch20 

and a capable plasticizer and reinforcing agent for starch-based materials.21 For the structural 

disorganization mechanism, Jane et al.18 have indicated that, due to the electronegative nature of starch, 

anions tend to repel the ─OH groups of starch and stabilize starch granules; cations, on the other hand, 

attract the ─OH groups of starch and destabilize starch granules. However, Shimizu et al.22 suggested 

that at high salt concentrations, the anion may enter the inside of the starch granule, breaking the 

granules and reducing the gelatinization temperature.  

In this work, we compared the effects of ZnCl2, MgCl2 and CaCl2 solutions, which are acid, neutral 

and alkaline solutions respectively, on the structural changes of HAS under a moderate temperature 

(50 °C). Based on that, we investigated the structural disorganization process of HAS granules and the 

aggregation of starch chains in the resulting salt solutions.  
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EXPERIMENTAL 

Materials. Gelose 80 corn starch (G80) (about 80% amylose content, as determined by the 

manufacturer) was supplied by National Starch Pty Ltd. (Lane Cove, NSW 2066, Australia). 

Anhydrous zinc chloride (ZnCl2), magnesium chloride (MgCl2), and anhydrous calcium chloride 

(CaCl2) were supplied by Aladdin Reagent (Shanghai) Co., Ltd. All these three chloride salts were 

chemically pure. Ethanol (analytical grade) was purchased from Guangzhou Chemical Reagent 

Factory (Guangzhou, China). All solutions were prepared with distilled water.  

Sample Preparation. A certain amount of anhydrous ZnCl2, MgCl2 or CaCl2 were added to the 

beaker to prepare 43 wt% ZnCl2, 34 wt% MgCl2 or 31 wt% CaCl2 aqueous solutions (the 

concentrations were determined according to the discussion of Fig. 1). These salt solutions were then 

mixed with starch to achieve a starch concentration of 2 wt% (dry weight). After that, the solutions 

were located in a shaking bath at 50 °C. After a certain time, regenerated starch was obtained from the 

above solutions by adding absolute ethanol with continuous stirring (the volume of ethanol was about 

2–5 times) and centrifuged under 3000 r/min for 5 min. Regenerated starch samples were washed three 

times by ethanol, and then dried and smashed into powder for further analysis. For comparison 

purposes, native G80 starch was also heated in a shaking bath at 50 °C for 4 h, which is taken as the 

control sample. 

Light Microscopy. A polarized microscope (Axioskop 40 Pol/40A Pol, ZEISS) equipped with a 

35mm SLA camera was used in the experimental work. The magnification used was 500× (50×10). 

Both normal and polarized lights were used for observation of starch suspensions (0.5 wt% 

concentration).  
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X-ray Diffraction (XRD). The crystallinity of starch samples was analyzed using an Xpert PRO 

diffractometer (PANalytical B.V., Netherlands) operated at 40 mA and 40 kV with Cu Kα radiation 

(wavelength 0.1542 nm). The scanning was performed from 5° to 50° 2θ at a speed of 10°/min and a 

step size of 0.033°. The degree of crystallinity (Xc) was estimated using MDI Jade 6 software according 

to a previous study.23 

Fourier-Transform Infrared (FTIR). FTIR spectra in the range of 400–4000 cm−1 were obtained 

using a Bruker Tensor-27 FT-IR Spectrometer (Bruker, Billerica, MA, USA). The samples were mixed 

with KBr and well ground before being pressed into wafers. 

Scanning Electron Microscopy (SEM). The morphology was imaged by a scanning electron 

microscope (JEOL JSM-7001F, Tokyo, Japan) with an accelerating voltage of 10 kV and a spot size 

of 6 nm. The samples were coated with platinum using an Eiko sputter coater. 

Residual cations in regenerated starch. The amount of cation was detected by atomic absorption 

spectrometry (AAS, Thermo Scientific iCE 3500) and the sample preparation was followed by Chinese 

National Standards GB 5009.14-2017, GB 5009.92-2016, and GB 5009.241-2017. Specifically, 10 mL 

of 69 wt% hydrogen nitrate solution and 0.5 mL of 70 wt% perchloric acid solution were added to 5 g 

of the regenerated starch, and the obtained solution was heated to 220 °C for 2 h. After cooling, the 

volume of the solution was adjusted to 50 mL by distilled water, and the content of cation was detected 

using the AAS facility.  

Intrinsic viscosity. Intrinsic viscosity was detected following a previous study.20 Specifically, the 

samples were dispersed in 1M KOH solution and stirred in a boiling water bath for 10 min. The 

solutions were then cooled to room temperature and left overnight. After that, the solutions were 
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centrifuged under 3000 r/min for 6 min. The final concentrations of the solutions were 2.6–6.0 mg/mL. 

The intrinsic viscosity was measured by an Ubbelohde dilution capillary viscometer (size 37, Shanghai 

Liangjing Glass Instrument Factory, China), which was immersed in a water bath maintained at 

30.0±0.1 °C. The efflux time of solvent and solutions were measured in triplicate and averaged. Then, 

intrinsic viscosity [η] can be calculated using the equation: 

[η] = lim
𝑐→0

𝑡−𝑡0

𝑐×𝑡0
             (1) 

where t is the efflux time of the starch solution (s), t0 is the efflux time of the KOH solution (s), and c 

represents the concentration of the starch solution (g/mL).  

Water Absorption Measurement. The samples were soaked in water (5 wt% concentration) for 24 

h and then vacuum filtrated. The water absorption was then calculated based on the weights before and 

after soaking. Triplicate tests were performed for each sample.  

Rheology. After shaking at 50 °C for 4 h (see the section of Sample Preparation), the starch/chloride 

salt solutions were cooled to room temperature and tested immediately using a MCR 92 rheometer 

(Anton Paar GmbH, Austria) with a 60-mm-diameter cone-plate geometry and a Peltier temperature 

control system. For the salt solutions of different concentrations, the steady shear tests were carried 

out with the shear rate from 10 s−1 to 500 s−1 at 25 °C and 60 °C. Silicone oil (DC 200, Sigma–Aldrich) 

was placed around the edge of the measuring cell to maintain the moisture content of the sample. 

Silicone oil would hardly affect the experimental results, as it is immiscible with polysaccharide 

solutions and has a relatively lower viscosity (9.5 mPa/s at 20 °C). At least duplicate tests were 

performed for each sample.  

The power-law model was used to describe the rheological behaviors: 
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𝜂 = 𝐾 ∙ 𝛾̇𝑛−1             (2) 

where 𝜂 is the viscosity (Pa∙s) of the solution, 𝛾̇ is the shear rate (s−1), K is the consistency (Pa∙s), 

and n is the power-law index. 

Statistical Analysis. Microsoft Excel software was used for regression fitting based on a modified 

power-law equation and obtaining the correlation coefficients (R2). Data were analyzed based on 

one-way analysis of variance (ANOVA) and Duncan’s test for a statistical significance of p ≤ 0.05 

using IBM SPSS Statistics software (v19.0). 

RESULTS 

Structural Disorganization of Starch in Chloride Salt Solutions. Fig. 1a shows the birefringence 

(Maltese cross) of G80 starch granules in ZnCl2, MgCl2, and CaCl2 solutions at 50 °C for 4 h. Native 

G80 starch granules exhibited clear birefringence. The birefringence dimmed gradually with 

increasing salt concentration. When these salt solutions reached a certain concentration, namely 33% 

ZnCl2, 27% MgCl2 and 25% CaCl2, the birefringence disappeared completely, suggesting the 

disruption of crystalline structure in the granules. However, as shown in the corresponding normal-

light images, although some granules were swollen, most of them were still in their original shape. 

During the structural disorganization, their semicrystalline lamellae were destroyed by ions firstly, but 

their outer layer (which is formed by entangled amylose chains and is compact) could not be destroyed 

under these salt concentrations.8 The remaining granule remnants were stable under these salt 

concentrations, even after 8 h of treatment.  
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Fig. 1. (a) Microscopic images of G80 starch dissolved in chloride salt solutions under normal and 

polarized light; (b) Turbidity of G80 starch dissolved in three chloride salt solutions. The error bars 

represent standard deviations. 

 

With increasing salt concentration, the birefringence of starch disappeared and the swollen granules 

became more and more ambiguous. The transparency of the solutions was characterized by turbidity 

(Fig. 1b). In previous studies,17,20 when cassava starch was dissolved in ZnCl2 solution with increasing 

concentration, there was an abrupt decrease in turbidity at a certain salt concentration (critical 
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concentration); after this point, the turbidity became stable. However, in this study, for G80 starch in 

ZnCl2 and CaCl2 solutions with increasing concentration, the turbidity kept decreasing. For the starch 

in MgCl2 solution with increasing concentration, the turbidity was stable at around 110 NTU (36% is 

its saturated concentration under room temperature) and no obvious granules could be observed under 

microscopy. Thus, this value was considered as the threshold for a homogeneous solution.  

Based on these results, the salt concentrations to destruct G80 starch were determined to be 43 wt% 

ZnCl2, 34 wt% MgCl2, and 31 wt% CaCl2 (Table 1). Under these salt concentrations, the starch-salt 

solutions were transparent and all the granules vanished under microscopy. Table 1 listed the 

parameters for G80 starch to be destructed in three chloride salt solutions. The salt concentrations for 

the disappearance of both birefringence and granules follow the order of ZnCl2 > MgCl2 > CaCl2. 

 

Table 1. Parameters of G80 starch dissolved in three chloride salt solutions. 

 ZnCl2 MgCl2 CaCl2 Control 

Salt concentration at birefringence 

disappearance (wt%) 

33 27 25 – 

pH of salt solution 4.21 7.10 9.52 – 

Salt concentration at granule disappearance 

(wt%) 

43 34 31 – 

pH of salt solution 3.65 6.54 9.17 – 

Content of cations in regenerated starch (mg/g) 53.0±1.3a 18.2±0.9 21.3±0.7 – 

Water absorption ratio of regenerated starch 

(wt%) 

152±9.6 222±8.7 144±12 60.9±5 

a Average ± standard deviations. 
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Morphology of Regenerated Starch. Fig. 2 shows the SEM images of different regenerated starch 

samples and the control sample. The controlled samples displayed a nearly spherical shape with a 

smooth surface. For the regenerated starch from the MgCl2 solution, the granules could be observed 

within 10 min of treatment; and after 30 min, some nanoparticles emerged on the surface of intact 

granules. After 4 h, some granules still remained with greater amounts of nanoparticles located on their 

surfaces. In other words, the MgCl2 solution not only destructed the starch granules but also resulted 

in the formation of nanoparticles. The residual granules contributed to the high turbidity of the 

starch/MgCl2 solution, which was stable at around 110 NUT (Fig. 1b).  
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Fig. 2 Morphology of regenerated G80 starch from 34 wt% MgCl2, 43 wt% ZnCl2 and 31 wt% CaCl2 

solutions (magnification: 1k× or 5k×)  

 

For the regenerated starch from the ZnCl2 solution, 30 min of treatment led to some degree of 

5
 m

in
, 

1
k

×

MgCl2 ZnCl2 CaCl2

Native G80

1
0

 m
in

, 
1

k
×

3
0

 m
in

, 
1

k
×

2
4

0
 m

in
, 

1
k

×
2

4
0

 m
in

, 
5

k
×

×
1

0
0

0

Page 12 of 36

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

13 

granule structural disorganization and the formation of nanoparticles. After 4 h, only nanoparticles 

(with some in the form of agglomerates) could be seen without original starch granules. For the 

regenerated starch from the CaCl2 solution, all the starch granules changed into tiny fragments within 

10 min. After 30 min, only agglomerated nanoparticles could be seen. This shows the efficient 

structural disorganization of G80 starch in the CaCl2 solution.  

Besides, we can see that the granules from the MgCl2 and ZnCl2 solutions within 10 min were larger 

than the controlled ones, which could be due to swelling. This result is in agreement with the 

microscopic observation (Fig. 1b) and with the previous results in hot water 24 and an IL.25 However, 

after 30 min of treatment, the granules became smaller than the controlled ones due to the 

disintegration of granules.  

Starch Structural Changes. Fig. 3 illustrates the XRD curves and the degree of crystallinity (Xc) 

of regenerated starch. For native G80 starch, the crystalline peaks located at 5.6°, 15°, 17°, 19.5°, 22° 

and 23.5° 2θ, which indicate the B-type pattern.26-27 Its Xc was 14.7±0.2 %, similar to previous 

results.21,28 For the regenerated starch from the ZnCl2 solution (Fig. 3a), the crystalline pattern became 

very weak with only the reflection at 17° 2θ being apparent. For the samples from the MgCl2 solution 

(Fig. 3b), only the peaks at 13° and 20° 2θ remained. These reflections are characteristic of the V-type 

crystalline pattern, which is due to the complexation of starch long chains with small molecules such 

as fat and iodine to form a single helical structure.29 Besides, the peak in 17° 2θ remained within the 

first 5 min but disappeared after 10 min. For starch from the CaCl2 solution (Fig. 3c), all peaks vanished 

within 5 min. The different crystalline patterns of regenerated starch show different interactions 

between starch chains and metal ions. Moreover, no new peaks emerged on the XRD curves, indicating 
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that the nanoparticles in the regenerated starch (Fig. 2) were not inorganic salt crystals.  

Fig. 3d shows that in all these cases, Xc decreased sharply within 5 min. For the regenerated starch 

from CaCl2 solution, Xc decreased to 0 within 5 min. For the samples from the ZnCl2 and MgCl2 

solutions, Xc dropped sharply within 30 min, to 5.7±0.2 % and 10.2±0.2 % respectively. After that, the 

decrease in Xc was much slower. After 4 h of treatment, Xc was 3.6±0.3% and 7.3±0.3% for the samples 

in the ZnCl2 and MgCl2 solution respectively.  
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(c) 

 

(d) 

Fig. 3. XRD patterns for the regenerated G80 starch samples from 43 wt% ZnCl2 (a), 34 wt% MgCl2 

(b), and 31 wt% CaCl2 (c) solutions at different times of treatment (0 min, 5 min, 10 min, 20 min, 30 

min, 60 min, 90 min and 240 min, from top to bottom). (d) shows the degree of crystallinity of the 

regenerated starch samples from 43 wt% ZnCl2, 34 wt% MgCl2, and 31 wt% CaCl2 solutions as a 

function of time. The error bars represent standard deviations. 
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different from previous studies,20,30 where for cassava starch dissolved in a ZnCl2 solution, the O─H 

bending of adsorbed water at 1647 cm−1 was shifted to 1627 cm−1, indicating the water absorption 

function of the regenerated starch became weak. However, here for G80 starch, this shift was not 

apparent. Also, the water absorption ratios of the regenerated starch were much higher (nearly 1.5 to 

3.5 times) than the controlled G80 starch (Table 1).  

 

 

Fig. 4. FTIR spectra for native and regenerated G80 starch samples from 43 wt% ZnCl2 solutions (a), 

34 wt% MgCl2 solutions (b), and 31 wt% CaCl2 solutions (c) after 4 h of dissolution. 

 

Intrinsic Viscosity of Regenerated Starch. Fig. 5 shows the intrinsic viscosity ([η]) of native and 

regenerated G80 starch. Intrinsic viscosity is an important parameter reflecting the size of a 

macromolecule in a given solvent at a certain temperature.31 Native starch exhibited the highest [η] 

value. The sample from 34% MgCl2 solution had a [η] value very close to that of native starch. The [η] 

value of regenerated starch from the CaCl2 solution was higher than that from the ZnCl2 solution, but 

both of them were significantly lower than that from the MgCl2 solution.  
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Fig. 5. Intrinsic viscosity of native starch (a), and regenerated starch samples from 34 wt% MgCl2 

solutions (b), 31 wt% CaCl2 solutions (c), and 43 wt% ZnCl2 solutions (d). 

 

The intrinsic viscosity of polymers is caused by the friction force between the solvent and the solute 

in a dilute solution and can be used to reflect the size of the macromolecular conformation in the certain 

solution.32-33 For starch, the size of their macromolecular conformation was caused by the degree of 

polymerization (DP), namely the molecular weight.34 Therefore, a lower [η] value may indicate that 

the structural disorganization of starch granules in the ZnCl2 and CaCl2 solutions was accompanied by 

degradation, which was mainly caused by H+ and OH− ions. Moreover, since the pH value of 43 wt% 

ZnCl2 solution was 3.65 and that of 31 wt% CaCl2 solution was 9.17 (Table 1), the [η] value of the 

regenerated starch from the ZnCl2 solution was lowest. The MgCl2 solution is pH-neutral, so starch 

chains were hardly degraded, with similar [η] as that of native starch. 

Since the degradation of molecular mass during the granule structural disorganization is mainly 

caused by the H+ or OH− ions in the solution, this kind of hydrolysis should have no selectivity on α-
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(1-4) or α-(1-6) glycosidic bonds. In other words, chain degradation should occur to both amylose and 

amylopectin. 

Rheological Properties of Starch/Chloride Salt Solutions. Since the concentration of saturated 

MgCl2 solution at 25 °C is 36 wt% and the threshold concentration for ZnCl2 solution to dissolve starch 

is 43 wt%, we compared the rheological properties of Gelose 80 starch in 34% MgCl2 and 34% CaCl2 

solutions (Fig. 6a) and those of Gelose 80 starch in 43% ZnCl2 and 43% CaCl2 solutions (Fig. 6b). Fig. 

6a shows that the viscosity of starch/MgCl2 solution was higher than that of starch/CaCl2 solution at 

34% concentration. Fig. 6b shows that the viscosity of starch/CaCl2 solution was higher than that of 

starch/ZnCl2 solution at 43% concentration. Thus, the viscosity of different starch solutions should 

follow the order of MgCl2 > CaCl2 > ZnCl2 under the same conditions.  
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(b) 

Fig. 6. Viscosity–shear rate curves for G80 starch in 34% MgCl2 and CaCl2 solutions (a) and in 

43% ZnCl2 and CaCl2 solutions (b). 

 

Table 2 shows the calculated parameters of the power-law equation at different temperatures and 

concentrations. Their correlation coefficients (R2) were all higher than 0.99, showing a strong power-

law dependence of viscosity on shear rate. The power-law index n for the starch/MgCl2 solution is 

lower than that for the starch/CaCl2 solution, and the n value of the starch/CaCl2 solution is lower than 

that of the starch/ZnCl2 solution. For a pseudo-plastic solution, a lower n value indicates a greater 

shear-thinning behavior and a larger molecular configuration of the solute.35-37 Therefore, the n result 

reflects that the configuration of starch chains in the solutions followed the order of MgCl2 > CaCl2 > 

ZnCl2, which is in agreement with the intrinsic viscosity results.  
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5%G80-34%MgCl2-25°C 0.751a 2.1249o 0.9961b 

5%G80-34%MgCl2-60°C 0.791c 0.7438k 0.9972c 

2%G80-34%MgCl2-25°C 0.845f 0.1856g 0.9998d 

2%G80-34%MgCl2-60°C 0.888g 0.845l 0.9911b 

5%G80-34%CaCl2-25°C 0.76b 1.1732m 0.9967b 

5%G80-34%CaCl2-60°C 0.816d 0.3313j 0.9977d 

2%G80-34%CaCl2-25°C 0.88g 0.0771d 0.9955b 

2%G80-34%CaCl2-60°C 0.898h 0.0355b 0.9938b 

5%G80-43%ZnCl2-25°C 0.852f 0.3025i 0.999d 

5%G80-43%ZnCl2-60°C 0.835e 0.1329f 1d 

2%G80-43%ZnCl2-25°C 0.904h 0.0549c 0.9971b 

2%G80-43%ZnCl2-60°C 0.941j 0.0266a 0.9963b 

5%G80-43%CaCl2-25°C 0.875g 1.5158n 0.9925b 

5%G80-43%CaCl2-60°C 0.882g 0.2669h 0.9995d 

2%G80-43%CaCl2-25°C 0.923i 0.1026e 0.997b 

2%G80-43%CaCl2-60°C 0.934j 0.039b 0.9802a 

Superscripts with different letters in the same column indicate significant differences (p≤0.05). 

 

DISCUSSION 

Structural disorganization Process of Starch in Chloride Salt Solutions. The structure of G80 

granules includes the hilum locates in the center of granule, loosely-packed semicrystalline growth 
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rings around the hilum formed mainly by amylopectin, and a thick and compact outer layer formed 

primarily by entangled amylose chains.5, 38-39  

The outer layer of starch granules exhibits a semipermeable-membrane-like behavior for both 

cations and anions, which prevents ions at low concentrations from entering the granule.22 Since there 

are no cavities and channels on G80 granules,40-41 the high salt concentration is needed for the 

penetration of ions through the outer layer. Once ions have passed through the outer layer and reached 

the hilum, they will destruct the semicrystalline lamellar regularity firstly, as reflected by the 

disappearance of birefringence and a significant reduction in Xc. The outer layer will require an even 

higher ion concentration to be disintegrated.  

Aggregation of Starch Chains to Form Nanoparticles. Large amounts of nanoparticles can be 

seen in regenerated starch in all cases (see SEM results). These nanoparticles should not be the 

inorganic salt crystals (XRD results). Previous studies have shown that coordinated complexes may 

form between starch chains and some metal cations since the positively charged cations can be paired 

with the isolated charges on the oxygen atoms of starch hydroxyl groups.42-45 Therefore, the 

nanoparticles observed could be considered as a form of starch–metal cation complexes, which can 

stabilize starch chains in the solution. 

Moreover, different chloride salt solutions could result in different structures of starch–metal cation 

complex. The starch–Mg2+ complex presents a V-type crystalline structure. Regarding this, the 

coordination of Mg2+ with starch may allow the main chains of amylose or the long branches of starch 

macromolecules to form single helices, which then align into crystals under the neutral condition. 

However, such alignment may not be possible in the ZnCl2 or CaCl2 solution, where an acidic or 
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alkaline condition may restrict the formation of any crystalline structure. Therefore, starch–Zn2+ and 

starch–Ca2+ complexes are amorphous. 

Early work has involved the preparation of starch–metal cation complexes, such as the bismuth (III) 

and bismuth (V) derivatives of starch,46-47 starch–aluminum complex,48 starch–copper complex and 

starch–iron complex.49 These complexes are potential to be used in pharmaceutical applications such 

as for skin diseases, gastric ulcers, or hair growth. In this work, we have revealed a facile method to 

prepare starch–metal cation nanoparticles. The characteristics including embedding properties of these 

nanoparticles for active ingredients will be studied in the future.  

Structural Disorganization Ability of Ions on Starch. Based on the residues and the degree of 

crystallinity, the structural disorganization ability of three chloride salt solutions on G80 starch 

granules follows the order of CaCl2 > ZnCl2 > MgCl2. Then, what is the key factor to determine this 

ability? 

For the structural disorganization mechanism of starch in ILs, previous studies have indicated that 

the anions have a protonation effect and can weaken the hydrogen bonding between starch chains, thus 

promoting the phase transition of granules.50-51 Moreover, the cations can improve the protonation 

effect of anions by their ionic radius.52-54 In other words, the larger the size of the cation, the stronger 

effect does the anion have. Moreover, besides the hydrogen-bonding capacity of IL anion, the viscosity 

of water/IL mixtures also plays a key role in the disruption of the starch structure.55  

The three chloride salt solutions studies here present similar viscosities. The ionic radius of Ca2+ is 

100 pm, that of Mg2+ is 72 pm, and that of Zn2+ is 74 pm,56 which show no obvious difference as well. 

Therefore, the key factor should be attributed to the synergistic effect of ion. Specifically, based on the 
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acid–base proton theory, Cl− may accept a proton and break the hydrogen bonds between starch chains; 

however, its protonation effect is very weak.57 With the pH of these salt solutions noticed, it could be 

possible that H+ and OH− ions assist the structural disorganization. 

For the alkaline CaCl2 solution, both Cl− and OH− anions are strong hydrogen-acceptors.58-59 

Therefore, the structural disorganization ability of the CaCl2 solution is the highest, and all residues 

changed into nanoparticles within a short time. When the acidic ZnCl2 solution is used, the acid 

hydrolysis by H+ facilitates the destruction of starch granules, accompanied by the degradation of 

starch chains. For MgCl2 solution, which is pH-neutral, the concentration of H+ and OH− ions can be 

too low to facilitate the protonation by Cl−, resulting in incomplete structural disorganization of starch 

granules (Fig. 7).  

The threshold salt concentration to destruct starch granules follows the order of CaCl2 < MgCl2 < 

ZnCl2. The reason should be the influence of H+ or OH− ions on the protonation effect of Cl−. 

Specifically, OH− anions can destroy the hydrogen bonds without varying the structural 

disorganization effect of Cl−; thus, the threshold concentration of CaCl2 solution is the lowest. However, 

although H+ can hydrolyze starch chains, it hinders the protonation effect of Cl− anions, as H+ can 

accept the electron offered by Cl−. Therefore, a greater number of Cl− ions (a higher concentration of 

ZnCl2) are needed to destruct starch granules. 

Besides HAS, we found all these chloride salt solutions can fully destroy normal and waxy starch 

granules as well, and the dissolution of waxy and normal starches is easier than that of HAS, namely 

with lower salt concentrations and a shorter time. This may be explained by the looser granule structure 

of waxy and normal starches than that of HAS. The details regarding the dissolution of different 
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starches with different amylose contents by these chloride salt solutions will be discussed in our future 

work. Moreover, the dissolution mechanism is worth to be further investigated using theoretical 

chemistry approaches (e.g. molecular modelling simulations) and electrochemical studies. 

 

 

Fig. 7. Schematic diagram representing the structural disorganization of starch by metal chloride salt 

solutions. 

 

CONCLUSIONS 

Here, we have compared the effects of three chloride salt solutions on the structural disorganization of 
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G80 HAS granules. The crystalline structure of starch granules can be destroyed in 33 wt% ZnCl2, 27 

wt% MgCl2, and 25 wt% CaCl2 solutions, and the complete destruction of the granules needs 43 wt% 

ZnCl2, 34 wt% MgCl2, and 31 wt% CaCl2 solutions at 50 °C. In other words, the threshold salt 

concentration follows the order of CaCl2 < MgCl2 < ZnCl2. This should be mainly caused by the 

protonation effect of Cl− anions on the hydrogen bonds, which is promoted by OH− and hindered by 

H+. Meanwhile, the degradation of starch by OH− and H+ is inevitable. The structural disorganization 

ability of the salt solutions follows the order of CaCl2 > ZnCl2 > MgCl2. Specifically, starch chains 

dissociate in the CaCl2 and ZnCl2 solutions totally. Nevertheless, in MgCl2 solutions, although most 

starch chains were detached, small amounts of granule residues remain.  

Surprisingly, the regenerated starch from the chloride salt solutions is in the form of nanoparticles, 

which are likely to be formed by the complexation between the dissociated starch chains and the metal 

cations. XRD results indicate the different crystalline structures of these complexes, with Mg2+ cations 

promoting the formation of V-type crystallites whereas Ca2+ cations lead to completely amorphous 

nanoparticles. Besides, we also found that the water absorption ratio of regenerated starch is 1.5 to 3.5 

times that of the control (treated in water). Thus, we demonstrate a facile method using non-

derivatizing metal chloride salts to prepare absorbent biopolymer nanoparticles, which can be 

potentially used for the encapsulation and controlled release of active ingredients in food and 

pharmaceutical applications.  

In all, this work has shown that HAS can be fully dissolved by cheap metal chloride salt solutions 

without derivatization effect. This finding could lead to ‘green’ processes for easy modification of 

HAS and for the preparation of plasticized starch-based ion-conductive materials.  
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- For Table of Content Use Only - 

 

A facile method to prepare starch nanoparticles using cheap metal chloride salts is disclosed, leading 

to advanced applications of biopolymer. 

 

High amylose 
starch

Chloride salt 
solutions

25%  CaCl2 31%  CaCl2 Nanoparticles

27%  MgCl2 34%  MgCl2

33%  ZnCl2 43%  ZnCl2
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