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Abstract

In this thesis we present a theoretical investigation of the rheological properties
of gels and colloidal dispersions, subjected to shear stresses.

We present a mean field calculation of the elfective shear modulus of an elastic
material containing elastic inclusions and use the resulting expression to model
a gel under shear. We calculate the stress-strain curve for such a gel and show
that the gel is expected to fail along planes parallel to the plates providing the
shearing forces.

A model of layered colloidal structures is investigated by considering the
sheared flow of many layers of fluid with differing viscosities in each layer. Such
flows are shown to be linearly unstable for all systems with more than four layers,
when long wavelength perturbations are present.

A microscopic model of a flowing suspension of neutrally buoyant spheres is
presented, based on the approach used by Batchelor to describe a fluidised bed.
This model takes into the account the lift forces of Vasseur and Cox and the
diffusion effects of Brownian motion. The model is used to calculate the equilib-
rium particle distributions and fluid velocity profiles for a suspension subjected
to shear. This equilibrium solution is shown to be stable to small fluctuations of
the flow, by a linear stability analysis.
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Chapter 1

Introduction

1.1 The Properties Of Structured Fluids
1.1.1  What is rheology?

Rheology is the study of the deformation and flow of materials when they are
subjected to external mechanical forces. Many common substances demonstrate
rheological properties which are similar to those of an ordinary liquid at first sight
but. on closer inspection, turn out to have much more complicated behaviours
than liquids such as water. Many industrially important materials fall into this
category making the scientific study of these properties of importance.

1.1.2 Visco-elastic materials

An example of an everyday material which shows unexpected rheological prop-
erties is cornstarch or custard powder. This will flow quite freely down a sloping
surface but can behave like a solid under rapidly applied stresses such as during
a sudden impact. This is an example of a material which shows visco-elastic
properties . If a visco-elastic material is subjected to a rapid deformation it will
behave as an elastic solid but the same material will flow like a viscous fluid if



subjected to a slow deformation. The ratio of the time taken for the material
to relax back from a deformation to the time of taken to deform the material
is known as the Deborah number. For large values of the Deborah number the
material will behave as an elastic solid, whilst for small values, the behaviour is
that of a viscous fluid. Many structured fluids have a Deborah number of about
unity, leading to interesting rheological properties.

Shear Storage Modulus/ Pa (*) Delta/ degrees (+)

Figure 1.1: The elastic properties of CTAB subjected to oscillatory shear strains

An excellent example of a material with strongly visco-elastic properties is
cetyl tri-methyl ammonium bromide (('TAB) in solution with salicylic acid. Fig-
ure L1 shows a plot of the elastic properties of CTABL when subjected to an
oscillating shear of varying frequency [1], The property measured in this case

'All the experimental data shown in figures 1.1-1.3 were obtained using a Boldin controlled
stress rheometer in collaboration with the Paints division of Id.
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Is the shear storage modulus. Mathematically this is given by the real part of
the complex elastic modulus which relates the applied strain to the response
stress. Physically this parameter gives a measure of the elasticity of a material.
The quantity Delta gives the phase difference between the applied strain and
the responding stress. This corresponds to the argument of the complex elastic
modulus. (These measurements are described in more detail in appendix A ).
For a purely elastic material the phase difference should be zero. For a purely
viscous fluid the phase difference will be 90 degrees. The figure shows that as the
frequency of the oscillation is increased from 0.0 Hz to 10 Hz the phase differ-
ence changes from near 90 degrees to almost zero. This clearly demonstrates the
tendency for (‘'TAB to behave as a fluid on long time-scales (low frequency) and
as an elastic solid on short time-scales (high frequency).

Figure 1.2 shows the behaviour of a non-drip paint when subjected to the same
oscillatory strains as (‘TAB in figure L1 [L], It is seen here that the phase differ-
ence changes relatively little over the range of frequencies, showing that the paint
IS not strongly visco-elastic. The shear storage modulus changes comparatively
slowly, increasing by a factor of 10 over the frequency range.

1.1.3 Non-Newtonian Fluids

A simple fluid whose viscosity is a constant under all conditions is known as a
Newtonian fluid. By contrast a fluid whose viscosity is a function of stress or time
is usually referred to as a non-Newtonian fluid. For the purposes of this discussion
it is convenient to discuss non-Newtonian and visco-elastic properties separately,
but it should be “that visco-elastic materials are frequently non-Newtonian and
vice versa.

As we have seen, materials such as a non-drip paint do not behave in the same
way as visco-elastic fluids but they do show significant differences from simple
fluids. These materials behave as solids when small stresses are applied. When
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a larger stress is applied, such as by brushing a paint brush across the paint, the
material will flow like a liquid. This shows the characteristics of a shear-thinning
material whose viscosity decreases as the applied stresses are increased.

Shear Storage Modulus / kPa  (*) Delta/ degrees (+)

Figure 1.2 The elastic properties of a non-drip paint subjected to oscillatory
shear strains

Many other types of behaviour can also observed, such as shear-thickening or
dilattncy, where the viscosity increases with increasing stresses. Also thixotropy
Is common where the viscosity is a function of the length of time the material is
under stress.

An example of a material which shows both shear-thinning and thixotropic
properties is given in figure 1.3. This is another type of paint, which shows a
decrease in viscosity (the gradient of the stress/ shear-rate curve) as the shear-rate
Is increased. It also shows that the curve follows a different path when the shear-
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rate is decreased from the maximum value to zero. This shows that rheological
properties are time (or history) dependent, making the material thixotropic.

All of these different rheological properties are important when considering
the industrial uses of structured fluids. For example, a non-drip paint should be
solid in the container, yet it must flow easily when sheared by a paint brush so
as to be taken up by the bristles of the brush (shear-thinning). It can then be
easily applied to the surface. Once on the surface the paint must be fluid enough
to flow into any irregularities in the surface and to remove brush marks. It must
then regain its viscosity to be strong enough to support its own weight on vertical
surfaces (thixotropy), otherwise sagging will occur as the paint slides down the
surface. Finally the paint must dry to give a tough, durable surface.

Stress (Pa)

Figure 1.d: Stress as a function shear-rate for a shear-thinning, thixotropic ma-
terial

10



1.1.4  The structure of complex fluids

The unusually complex behaviour of the materials just described is due to the
size and shape of their component molecules. Unlike simple fluids, these fluids
are composed of large molecules, with sizes much greater than those of a simple
fluid such as water. These structures lead to a very wide range of mechanical
behaviours, with the precise behaviour determined by the precise size and shape
of the component molecules.

The actual structures which make up these fluids can vary widely. A common
form is that of the polymer. Polymers are useful in the creation of structured
fluids in several ways. The length of chains in many polymers can be closely
controlled and this can he used to produce molecules with quite specific proper-
ties. For example, latex spheres can be produced with very small variations in
size. Such mono-disperse molecules are ideal for theoretical modelling, since all
the molecule’s sizes and shapes are known in advance and more simply described
than more complex structures.

The non-drip paint, whose visco-elastic behaviour is shown in figure 1.2, is
an example of a polymer system. The other paint (figure 1.3) is composed of
clay particles, which gives it different rheological properties. The behaviour of
(‘'TAB is due to the way the molecules arrange themselves into micelles. In this
case the micelles are rod-like objects up to Ipm long, although only 20-30 nm
wide. These micelles form a network which give ('TAB its strongly visco-elastic
properties and ran clearly he seen in electron micro-graphs, as shown by Vinson
and Talmon [2).

The general name for a particle which is in the size range which is interesting
for rheology is a colloidal particle. This usually covers particles which lie in the
range from Inm to lpm. These are not rigid limits but are used to define the
scale at which surface effects for each particle are comparable with, or exceed,
the effects due to the bulk of the particles. The particle need only have one



dimension in the colloidal size range in order to show colloid like behaviour.

1.2 The Stability Of Colloidal Dispersions

1.2.1 What are colloidal dispersions?

Colloidal dispersions consist of discrete colloidal particles within a continuous
dispersing medium. Most of the following discussion will consider dispersions of
solid particles within a liquid phase. There are however several different types of
dispersions, such as aerosols which are dispersions of solids or liquids in a gas, or
emulsions which are a liquid dispersed within a liquid.

When a large number of colloidal particles are dispersed in a fluid phase, it
is usually important that the particles remain dispersed, rather than clumping
together in a single large mass. This latter process is known as aggregation
and can occur to varying degrees. The particles may aggregate into a relatively
open network, called a floe, which is easily broken up by stirring or shearing
the dispersion. This aggregation process is given the name flocculation. When
aggregation occurs so that the aggregates cannot be broken up by stirring or
shearing the dispersion is said to coagulate. The difference hetween these two
behaviours is due to the different inter-particle forces acting in the dispersion
and is discussed below,

A colloidal dispersion is said to be stable if flocculation does not occur to a
significant extent. In general the stability or otherwise of a dispersion must be
considered in terms of the forces which act on the particles within the dispersion.
These can occur as inter-particle forces such as electrostatic attraction / repulsion,
or as external forces such as gravity. In addition to forces such as these we must
consider the effects of Brownian motion which can be very important for particles
of colloidal dimensions.

122



1.2.2 Inter-particle forces

The first group of forces we discuss are Van der Waals forces. These are familiar
from the role they play in simple liquids. For colloidal particles it is frequently
assumed that the Van der Waals attraction can he calculated by assuming that
every molecule in the particle attracts every molecule in a neighbouring particle.
This pair-wise summation of single molecule forces results in a total force that
acts between colloidal particles [3]. Although this is a crude method of modelling
the interaction, it gives a useful guide to the effects of Van der Waals forces.
An extra correction is required when the particles are more than about 50nm
apart. This is due to the finite speed of light which causes correlations between
particles to be reduced. This causes the force to drop more rapidly and is known
as retardation [4].

Electrostatic forces can be important when the colloidal particles each carry
a net electrical charge. The precise effect of electrostatic forces depends very
strongly on the dispersion medium, which frequently will contain ionised mole-
cules. This can lead to the formation of an electrical double layer, where the
charged colloidal particles each attract a layer of oppositely charged ions around
themselves. Thus the effects of electrostatic forces can often be controlled by
adjusting the pH of the suspending medium.

Steric forces are particularly important when considering polymers. These
forces are due to the interaction of polymer chains at the surfaces of colloidal
particles. When these chains begin to overlap and inter-penetrate, we get two
different effects. Firstly, the concentration of the suspending medium is reduced
between the particles, causing osmotic pressures which force more of the medium
between the particles, tending to separate the particles. Secondly, the chains
become increasingly constrained in their movements, reducing the number of
configurations they can adopt. This is equivalent to a reduction of entropy of the
system and results in an entropic force tending to separate the particles.



These are the main inter-particles forces which define the stability of colloidal
dispersions. The relative importance of these different forces will depend very
strongly on the type of dispersion being considered. In general, if we plot the
total potential between two colloidal particles we get a curve similar to that
shown in figure L4. This curve shows the competition between the short range
repulsive forces (e.g. steric repulsion) and the longer range attractive forces (e.g.
Van der Waals forces). This form of interaction is peculiar to colloidal systems
having two minima in the potential curve.

Figure 14: The iota/ interaction potential for two colloidal particles as a function
of separation, ft

Figure 14 gives an explanation for the difference between flocculation and
coagulation. If a particle is in the deeper potential well at small separation
(the primary minimum) then the particles cannot be separated by stirring. The
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secondary minimum) is generally very shallow ( maybe a few IcT or less ) and
particles can be removed from it relatively easily by stirring or shearing. Thus
to prevent a dispersion from coagulating significantly the energy barrier between
the minima should be as high as possible.

It should be emphasised that these descriptions are quite simplistic and that
detailed models of colloidal interactions require more specific information about
the interactions between particles. Although we shall not say anything about the
detailed interactions hetween particles in the following chapters, these general
interactions will act as a background to our modelling.

1.2.3  Brownian motion

The motion of a neutrally buoyant sphere suspended in a fluid and subject to
random Brownian forces can be modelled using the Langevin equation [5]. The
random forces correspond to the unpredictable forces imparted to the sphere
during collisions with the molecules comprising the fluid. If a particle of mass,
rn, has a radius, a is in a fluid of viscosity, I/, then the Langevin equation2is,

467t = L &

The vector r is the position vector of the centre of the sphere, at a time t and

L(/) represents the random forces. This corresponds to Newton’s second law of

motion, with a drag force due to the surrounding fluid (using Stokes’ formula)
and inertia appearing in the usual way.

Since the exact form of the random forces is unknown, we make two assump-

tions which are sufficient to characterise L(/) for our purposes. If, we define the

2Equations with a random term such as the Langevin equation are usually referred to as
stochastic equations. Insome texts a Langevin equation is considered to be a stochastic equation
with a random term which does not vary with position.
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ensemble average of a process,

Uep = TIEM <), (12
where N is a large number and L, is the force for the ith member of the ensemble,

where all members have identical initial conditions. We then assume that the
ensemble average of the random force is zero,

<L) =0 (L3)
and the average of the square of the force is given by,
<L(HL(fF+ 1> = (1.4)

where a is a constant and S(t) is a Dirac delta function. The use of the Dirac
delta function here is equivalent to saying that the random forces are completely
uncorrelated in time.

Since the random forces have been defined only through averages, we can only
use the Langevin equation to obtain information about the average position of
the sphere at a given time. This is achieved by integrating the equation once to
obtain the velocity, dr/df, and calculating the average of the velocity squared.
Then using the equipartition of energy at equilibrium,

*% "d(HL%]:[JL} - YT, (]_5)
where St) is a Kronecker delta, we ran obtain an expression for a. We can then
find the root mean square displacement as a function of time, as well as other
average properties.

An alternative approach is to obtain a Fokker-Planck equation for the prob-
ability distribution,  of finding the particle at a position, r, at a time L This
iIs most simply found in the case where the inertia of the particle is very small
compared to the viscous forces and so the first term in the Langevin equation

ran be neglected. The Fokker-Planck equation is then,
w1V (1.6)
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(See Haken [6] for a full derivation of this result). It can easily be seen that this
result has the form of a diffusion equation, with a diffusion constant, <r2. In
fact, it is the diffusion equation for particles and shows clearly that the random
forces cause the sphere to diffuse throughout the fluid. The diffusion constant is
found from the equipartition of energy at equilibrium, as before to give,

which is the usual Stoke's-Einstein result for the self-diffusion of a sphere.

1.2.4 Sedimentation

One example of where external forces are important in the stability of dispersions
Is that of sedimentation. If we consider the one-dimensional sedimentation of a
single particle under gravity and subjected to Brownian motion, we obtain the
equation,

(1.8)
where 4 is the the acceleration due to gravity on a particle at a height, x. The
Fokker-Flanck equation for this system is

dpP P o)2P
W dutady * O (19

It is useful at this point to note that the Fokker-Planck equation can be
written as a continuity equation for a probability flux,
aP i)

If we look for equilibrium solutions, we can put HP/cH to be zero and integrate
once with respect to x to obtain

(irrrrt dx (L1b

i



Since the probability flux must be zero at the bottom of the container (x = 0),
the constant of integration must be zero. Integrating once more we obtain

C=Cx«p("1i), (1.12)

where we have used the value of the diffusion constant given by equation 1.7 and C
is a constant (this can be found by normalisation of the probability distribution).

Here we have obtained an equilibrium solution. An important question to be
answered is how does the system approach equilibrium? Weiland, Fessas and Ra-
marao [7] have shown experimentally that when two different sizes (or densities)
of sedimenting particles are present the system can show fingering, where the
particles tend to sediment in vertical streams separated by regions of relatively
particle free fluid. This shows that uniform sedimentation can be unstable and
can give more complex structures which vary in the directions perpendicular to
the x direction. These instabilities have been investigated theoretically by Batch-
elor and Janse Van Rensburg [8] who showed that the fingering can be initiated
by small fluctuations in the concentration. The idea that fluctuations in concen-
tration ran cause equilibrium solutions to become unstable is very important and
will be used to investigate the stability of shear flows in chapters 3 and 5.

1.3 The Elastic Properties Of Gels

The term gil can have many different interpretations and has been used for
many widely varying systems. We shall use the definition of Almdal [9]. The
phenomenological characteristics of gels used by Almdal are:

(a) “They consist of two or more components, one of which is a liquid present
in substantial quantity”

(b) “They are soft, solid or solid-like materials.”

18



| liis definitions excludes dry materials such as aerogels but covers a wide range
of two phase materials which are of interest.

The mechanical properties of gels are important in many branches of industry.
As a result of this, a theoretical understanding of the physics underlying these
properties is highly desirable.

Experimental measurements of the elastic properties of gels have been carried
out by several groups. The shear moduli of latex gels were measured by Buscall et
al [10] as a function of shear strain for various volume fractions of gelled material.
They showed that at small strains the gels behaved elastically with constant shear
moduli. As the strains were increased, the shear moduli tended to decrease and
the gels softened. The shear moduli of gels as a function of particle concentration
have also been measured by Buscall et al [11].

Experimental measurement of the properties of gels near the sol-gel transi-
tion have also been carried out by Allain and Salome [12] and Adam et al [13].
Allain and Salome showed that the elastic modulus of a gel goes to zero below
some critical concentration of molecular cross-links. Adam et al showed that
above a critical concentration of cross-links the mass distribution of clusters of
gel molecules diverged.

The elastic properties of gels have been theoretically investigated using several
different approaches. One of the successful methods is the use of various aspects
of percolation theory [L4]. In its simplest form, percolation theory can be used to
calculate the fraction of a system which must be gelled, in order for the system to
show a non-zero shear modulus. Percolation theory provides a framework within
which to describe the the way the physical properties behave near the gelation
point (see for example Adam et al [15]). This concept can be extended from
a simple connectivity problem, to include more complex ideas, such as rigidity
percolation, as used by Thorpe [16, 17].

ligidity percolation takes into account the fact that although a gel network
may be connected this is not a sufficient condition for the network to support

19



a stress across it. This allows stronger constraints to be placed on the required
gelled fraction.

Work by Duxhury [18] on fn.se networks is related to calculations of the elastic
properties of gel networks. This work was intended to study the general failure
of materials outside the scope of elasticity theory. The equations solved when a
network of fuses is subjected to an electric potential, are the scalar equivalent of
the vector equations which would describe a material comprised of bonds with a
finite yield stress. The applied potential plays the role of an applied stress on a
gel and the fuses behave as bonds within the gel. Such calculations are useful in
attempting to find patterns of failure within a failed network.

Some other approaches have been less successful. For example models such as
that of Denny and Brodkey [19], based on the kinetic equations for bond breakage
and reformation, contain too many unknown parameters to be practically useful.

The field of composite materials has also given some useful results. These
involve calculations of the elastic properties of two phase materials, where each
phase has different elastic properties. Since a gel can he considered as a composite
of an elastic medium and regions which are stress free, where no honds exist, the
field of composite materials is potentially very useful for the study of gels. Much
of the work in the field of composites uses results due to Eshelby [20], based on
the assumption that the materials are composed of ellipsoidal regions within a
homogeneous matrix phase. Effective elastic moduli have heen calculated using
various assumptions about the systems in question. In the case of shear moduli,
most of these methods are unable to give precise expressions. Normally, only
upper and lower bounds on the moduli can be obtained, such as the result of
Hashin [21].

In Chapter 2 a model of a gel under shear is described. We begin by modelling
tlie gel as a homogeneous, isotropic elastic medium with a distribution of spherical
voids throughout the medium. Each of these voids is a region which is unable to
support any stress and can he thought of as a missing or broken bond within the
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structure.

Tlie rase of an elastic medium with a single spherical inclusion of elastic ma-
terial is solved and the result shown to be analogous to the problem of an electric
dipole in an electric field. To take into account the effect of the distribution of
spheres, a mean field calculation of the stress due to to a distribution of such
dipoles is made, by analogy with the Clausius-Mossotti relationship of electro-
magnetic theory. This allows a precise expression for the effective shear modulus
to be obtained in terms of the volume fraction of voids.

A phenomenological model for the void concentration is then used, in con-
junction with this result, to obtain a self-consistent result for the stress-strain
relationship for the gel. This uses the idea of a distribution of bond yield stresses
as used by Duxbury [IS]. We then go beyond the mean field arguments and
predict the likely patterns of failure of the gel. Inspection of the energy density
near a single void shows that failure is expected to be most likely along planes
perpendicular to the plane of shear.

Finally, we shall point out the similarity between the equations of elasticity
and the equations of slow fluid motions. This similarity will be used to obtain
the solution for a spherical void near a fixed boundary.

1.4 The Stability Of Layered Colloidal Struc-
tures Under Shear

It luis been known since the early 1970° that suspensions of particles can form
ordered structures when sheared [22, 23]. bight scattering experiments carried
out on sheared latex dispersions [24] have shown that two and three dimensional
structures can be formed, consisting of ordered arrays of colloidal particles.
Many different types of ordering have been observed, including string-like
structures where particles lie in lines. Structures of this sort have been observed
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by Ackerson and Pusey for polymethylmethacrylte (PMMA) spheres in a steady
shear flow [25]. They also showed that under oscillatory shearing the particles
exhibited a different ordering. In this case structures of face centred cubic and
hexagonally packed particles were observed. When shearing was ceased, it was
found that the particle structure was lost over a period of about 30 minutes,
leaving an amorphous structure. This was described a melting of the crystal
structure.

The structures described so far show a crystal-like ordering with colloidal
particles behaving as the units of the crystal. A different type of ordering has
also been observed where the colloidal particles are concentrated in layers several
particle diameters thick. These layers are separated by regions which are depleted
of particles [26]. These structures will behave less as crystals and can be thought
of as alternating layers with different rheological properties.

The viscosity of a suspension depends strongly on the concentration of the
suspended particles. Hence we would expect these layered suspensions to have
different viscosities in each layer. Such a suspension could then be thought of
as a system of layered Newtonian fluids, with different viscosities anti densities
attributed to each layer. The regions where the particles tend to congregate
will have a high viscosity and the depleted layers will have a correspondingly
lower viscosity. Using such a model, one can calculate the time independent
configurations of a suspension.

The study of the stability of such layered configurations has a long history,
with many systems having been considered. The case of layers of inviscid fluids
was investigated by Taylor [27], who considered stability of a fluid with a density
which varied as a function of height. For the rase where the density profile was
constant in an upper and lower layer and varied linearly within a central layer a
form of resonance instability was identified. This occurs when a disturbance on
one interface forces a disturbance on the other.

A result obtained by Squire [28] allows one to simplify the stability analysis
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of such systems greatly. He showed that any instability which exists for a three
dimensional disturbance also exists for a two dimensional disturbance, with a
lower value of the critical Reynold’s number. This means that the stability of
any three dimensional fluid bounded by parallel, plane walls could be found by
considering the equivalent two-dimensional problem.

Squire’s result was used by Yih [29] and Li [30] to investigate the stability of
two and three layer viscous flows respectively. They both identified instabilities
for long wavelength disturbances.

In Chapter 3, we use the long wavelength perturbation technique of Yih to
calculate the stability of N layers of fluid in a Couette system. The neutral
stability curves are discussed and a resonance instability identified. We shall
show that this layered model is unstable when more than four layers of fluid are
considered.

15 A Microscopic Model Of Flowing Suspen-
sions

There have been many different models of flowing suspensions of particles sug-
gested over the last 20 years. A variety of different approaches have been used
with varying degrees of success. Most of these models rely on a knowledge of the
behaviour of single particles in a flowing material and so we begin with a brief
discussion of the forces acting on single spherical particles.

There are various hydrodynamic forces which act on single spheres. Possibly
the most familiar of these is the Stoke’s drag [31] which tends to slow the motion
of a particle relative to the surrounding fluid. Another important hydrodynamic
force is known as the Faxen force [32] and is proportional to V2V, where V is the
fluid velocity which would exist without the particle. Both of these forces occur
in the limit of zero Reynolds number, hut they are unable to make a particle cross



streamlines within a flow. (This is a general result at zero Reynolds number, due
to Bretherton [33]).

The existence of transverse forces, which allow particles to cross streamlines,
is well known in inviscid fluids and is described using the Bernoulli equation. At
low Reynolds number when viscous effects become important the same effects
are more difficult to calculate. This type of force is often known as a lift force
and has been considered by many workers, both experimentally and theoretically.
The lift force on a sphere in an unbounded shear flow was obtained by Saffman
[34]. The lift force in a bounded flow was discussed by Cox and Brenner [35] who
obtained a lift force in integral form. The first explicit calculation of a lift force
in a bounded fluid was obtained by Ho and Leal [36] although the result was
later corrected by Vasseur and Cox [37]. These forces have been incorporated
into several different types of model.

One model that we shall discuss is that used by Nozieres and Quentada [38],
who considered a continuous fluid containing discrete spherical particles. This
approach allows the fluid to be described using a form of the Navier-Stokes equa-
tions. The particle distributions are defined using a diffusion equation, with the
additional assumption that the particles are subject to a force acting to move
them towards regions of lower shear rate. This force was justified by reference to
the work of Ho and Leal but the from of the force used was significantly different
to that predicted by Ho and Leal. Noziere and Quemada carried out a linear sta-
bility analysis for the model and showed that Plane Couette flow of a suspension
could be unstable above a critical shear rate.

An alternative approach was used by McTigue, Clivler and Nunziato [39],
who modelled the particles as a second fluid which penetrates throughout the
true fluid. This model incorporated all of the hydrodynamic forces mentioned
above but required an extra constitutive relation to be assumed in order to make
any physical predictions.

A more rigorous approach was used by Batchelor [40], for a 1 dimensional
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fluidised bed. In a fluidised bed the particles fall under gravity while supported
in a vertical upward fluid flow. Batchelor considered the detailed conservation
of momentum for the particles, to obtain an equation which treats the particles
as a fluid but removes the requirement for the additional assumptions used by
McTigue et al.

In Chapter 4 we shall present more detailed review of these models and the
important hydrodynamic forces. We shall then use an approach similar to that
used by Batchelor to obtain a model of a flowing suspension. In Chapter 5 we
apply our model to the problem of Plane Couette flow of a suspension. An
equilibrium solution is given and the stability of the solution considered using
linear stability theory.



Chapter 2

The Softening Of Gels Under
Shear

2.1 A Model For Gels

It is well known that a gel will behave as an elastic body when subjected to small
shear stresses and strains. This has been shown by Buscall et al in the specific
case of latex gels [10]. With this in mind, it is reasonable to model a gel, initially,
as an elastic medium. As the stress is increased the structure of the gel begins
to break down and the shear modulus decreases. Microscopically this is a result
of bonds breaking within the gel structure. Regions near a failed bond are then
unable to support a shear stress and further straining occurs. Such a region can
be modelled as a cavity within a general elastic medium.

We begin by modelling a gel as a homogeneous, isotropic, elastic medium.
When this gel is subjected to a given stress, a fraction of the bonds within the
structure will fail. This is represented by a distribution of spherical cavities within
the elastic medium. The actual volume fraction of cavities is determined by the
applied stress. A schematic diagram of the system is shown in Figure 2.1,

We must first consider the stress field associated with a single spherical cavity
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when the medium is subjected to a homogeneous shear. This result is obtained
from the calculation of the stress field for a spherical inclusion of elastic material,
with a shear modulus which is different from the surrounding elastic medium.
We may then use the limiting case that the shear modulus of the inclusion equals
zero. This result is used to show that an elastic inclusion, in an elastic material
can be treated by an approach analogous to that of a polarisable molecule, in a
dielectric material.

Elastic
Medium

Figure 2.1: The geometry of the gel system

An equation analogous to the Clausius-Mossotti relation [41, 42] from dielec-
tric theory is obtained for a system of many inclusions. This relates the elastic
constants of the entire system to those of the medium and the inclusions. A
self-consistent argument is used next, to obtain the stress-strain relationship for
a gel, when the number of cavities present is a function of the applied stress.
We next consider the most likely modes of failure of a gelled system, when the
distribution of cavities is not homogeneous, as is assumed in the previous mean
field calculation. Finally we point out some mathematical similarities between
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the equations of elasticity and those of a fluid moving at low Reynolds number.
This analogy is used to calculate the displacement field of a single cavity near a
fixed boundary.

2.2 The Stress Field Due To A Single Inclusion

We begin with a description of some well known results, which we will make
use of in our calculation. The first result is a calculation of the stress due to a
single spherical inhomogeneity in an infinite elastic medium. We shall refer to
this situation as a spherical inclusion within an elastic matrix. This result has
been obtained independently by many workers. The approach used here combines
results obtained by Landau and Lifshitz[43], for a spherical void, and Eshelby[20],
for general, elliptical inclusions.

The equation of equilibrium for an elastic material subjected to a distribution
of body forces, F. is

INu + (T,* 2V)V(V.U) =-F. (2.1

This equation involves Poisson’s ratio for the matrix, i/, and the shear modulus,
Il. Poisson’s ratio can vary between values of —1and j. These limits are due
to the requirement that the strain energy of an isotropic elastic material must
always be positive. The upper limit corresponds to an incompressible solid whose

lower limit is for a material whose volume ran be changed but whirl) cannot be
sheared (i.e. the body’s shape cannot be changed). Materials with a negative
Poisson’s ratio are rare but a few examples are known (see for example [44]).

If the forces are only applied at the surface of a body then the right-hand
side of the equation of equilibrium is zero. Taking the divergence of tin- resulting
equation gives

V2(V.u) = 0. 2.2
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Taking the Laplacian of the equilibrium equation instead of the taking divergence
(still with F = 0) gives the result that the equilibrium displacement vector must
satisfy the hiharmonic equation,

V.V =0 (23)

Hence the volume change during a deformation V.u is a harmonic function while
u is a biharmonic function.

If we now consider a spherical elastic inclusion in an elastic medium then
we can use the fact that u satisfies the biharmonic equation to obtain a general
expression for the displacement vector in the region outside the inclusion. Landau
and Lifshitz stated the result in terms of derivatives of the distance from the centre
of the sphere, r. We give the expression here using the notation, <k —d/dr*. (The
Einstein summation convention is used subsequently, unless otherwise stated).

u, = -4/1(1 - Driv(v + Aapdp()a0, r (2.4)

Here a term of order I/rs has been neglected. This form is the most general
biharmonic vector which depends on the applied stress and vanishes at infinity.
The stress at distances far from the inclusion, is given by <%, and A, is an
unknown constant. Once the displacement vector is known then the stress is
derived in the usual way using Hooke’s law,

Vik = E// («it + (2.5)

where li/t is the strain tensor, given by, ut* - ¢((Ji-u, + <u

Eshelby showed that if a homogeneous strain is applied to a matrix, an ellip-
so‘ctdlinclusion will be in a state of homogeneous strain. The form of this strain
IS given by the strain at large distances from the region. Using this result, the
displacement vector within the inclusion ran be written in terms of the stress at

large distances, <tp: '

2Ho
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This expression involves the shear modulus of the matrix, /i0. and an unknown
constant, B.

The constants A and B are calculated using the boundary conditions at the
surface of the sphere. The appropriate conditions are that the displacement and
the resulting stress must he continuous across the boundary. This leads to the
following expression for A and defines the stress within the matrix, due to the

inclusion. _ _
5ff:|81- n/fip) 27)
4[2(4 =5il)p + (7 =5i/)p(] '
The stress within the inclusion is defined by B, which in terms of A is given by

(2.8)

Here /i is the shear modulus of the inclusion and R is the radius of the inclusion.
We note at this point that since we are applying a pure shear, Eshelby’s result
says that the inclusion is in a state of pure shear. Hence only the shear modulus
of the inclusion is involved in the calculation.

2.3 An Inclusion As An Elastic Dipole

In order to calculate the effective shear modulus of a matrix with inclusions, we
treat each of the inclusions as a dipolar system of forces. The description of the
inclusion contributions as dipolar is consistent with the term polarisation stress,
used by Shtrikman[45], to describe additional stresses due to inclusions within a
matrix.

The fact that the inclusion stress field has a dipolar character can be seen by
a multipolar expansion of the Green's function, in the convolution integral for
the displacement vector:

A derivation of this residt is given in Appendix B.
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To obtain a multipolar expansion, we use a Taylor expansion of the Green’s
function, which is equivalent to writing the force distribution as,

W ) = RSS(r) - Fitd] HrY) + £F$d)itS(r) - ...,  (2.10)

where

are the moments of the force distribution about r* - 0. From symmetry argu-
ments, we would expect zero contribution from the ‘monopole’ term, ie. F**
Thus the void should provide no net force acting on the gel. The leading order
contribution is therefore expected to come from F(1). If this term is substituted
into equation 2.9, and the integral evaluated using the properties of the Dirac
delta function, then after some manipulation we obtain,

47rp (I*»Hl* (f)) . 0 (2.12

If this expression is compared to the expression given by Landau and Lifshitz

then it is quickly shown that we have obtained the two terms of order :/r2,

provided that the elastic ‘polarisation tensor’ F(l) is proportional to the applied

stress This can be seen to be reasonahle by considering the following system
of forces, as a tends to zero.

F = éfi(r —<ix) —éé(r tax) + 56(r —ai) —EA(r —<iz). (2.13)
If we now use the definition of the elastic dipole moment,
Fl = J Firdr, (2.14)

then we find that F*I*= »(xz + zx), which is indeed proportional to the applied
stress.

If the stress is thought of as the equivalent of the electric field, then the con-
stant of proportionality which relates the stress, <X and the elastic polarisation.
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F (1> is the equivalent of the polarisability of an electric dipole. In this case the
constant of proportionality is w-r/z(I —Vv)A, where A is defined in equation 2.7.
Hence we can define the clastic polarisability, ct. by

0 07d73( - u)(po- p)
[po(7 ~ fiv') + 2t(4 —51))]

2.4 Effective Shear Modulus Of An Elastic Ma-
trix With Many Inclusions.

We now have a useful expression for the relationship hetween the applied stress,
at long distances from an inclusion, and the resulting stress due to an inclu-
sion. Following the analogy with electromagnetic theory we can now derive a
relationship between the microscopic polarisablility and the elastic equivalent of
the dielectric constant of the material. This is the Clausius-Mossotti relation-
ship of electromagnetic theory. Since we consider only the case of pure shear
deformations the clastic dielectric constant is a scalar. This quantity turns out
to be equal to the ratio of the effective shear modulus, pra, and the matrix shear
modulus, pa.

The Clausius-Mossotti approach needs a calculation of the local field within
the medium. This local field consists of contributions from the applied field and
the dipoles induced by that field. The method used to obtain this local field
is based on an elegant derivation of the Clausius-Mossotti relation by Hannay
i Hl Hannay noted that each dipole has an extended electric field and a point
field concentrated on the dipole itself. The singular contribution is conveniently
represented by a Dirac delta function situated at the site of the dipole. Thus the
electric field, E(r) due to dipole moment, p can be written as

The magnitude of the delta function contribution is calculated by integrating



the electric field over a sphere centred on the dipole. Hannay states that the
local field near a dipole will he given by the average field with the delta function
contribution, due to the dipoles, subtracted. This is due to the fact that a single
dipole will not feel these contributions, although the average field will include
them.

The same arguments can be used in the case of elastic inclusions. An integral
of the stress due to a void, over a spherical volume centred on the void, can be
converted to a surface integral to give

(2.17)

Here we have assumed that a single void has an elastic polarisation, fa, defined
in the same way as F<> in equation 2.10. This contribution to the macroscopic
stress is due only to the delta functions, which are produced by the derivatives
of the radius vector.

Following Hannay, the local stress field is obtained by subtracting these con-
tributions from the average stress. The elastic polarisation for the void, /¢*, is
then related to the local stress field by the polarisability, a, such that

fik = a cra _zlgtl--%/))J'k . (2.18)

The link between the macroscopic stress and the average elastic polarisation
can then be calculated from the Green’s function (equation 2.9), by analogy
with the derivation used in electromagnetic theory. In electromagnetic theory,
the relation is obtained from the Green’s function for the electric potential. This
gives the familiar D = E + 4:1P , where E is the electric field, P is the polarisation
am 1D is the electric displacement vector (See for example [47]).

For a number density of voids, n, we ran define Fa- = nfa as the average
elastic polarisation, with G'a as the clastic displacement field due to the inclusions,
then we obtain (see Appendix B)

Ga = trik—Fik (2.19)



This gives us the relation between the average polarisation and the average stress
applied. In electromagnetic theory V.D gives the free charge density. In our case
the divergence of &* gives the “free force” density, ie. the force applied externally
to the medium. Hence this relation can be interpreted as saying that the total
stress, <tfc, is given by the sum of the external stresses and the polarisation
stresses.

If we assume that the elastic displacement field, Gik, is proportional to the
stress field, then we can introduce a scalar elastic dielectric constant, -. This is
a legitimate assumption since we are considering only pure shear deformations.
This gives us the macroscopic relation,

nfik=".¢7 - |)A,*.. (z.zo)

1'sing this definition of - as the ratio of the total stress and the applied stress
means that we can interpret - as the ratio of the effective shear modulus to the
matrix shear modulus.

We now use equations 2.18 and 2 .o to eliminate the microscopic polarisation,
fik anil the average stress, ¢k, to obtain the following expression. for the elastic
dielectric constant, - :

N 1571 - i/)(l - h/hq)
7o (7- 5) + 2(4 - hv)[nlno - (t*/po - 1)
Here we have introduced the volume fraction of the inclusions, $= AnR*n/"i.

This result is the same as an expression obtained by Hashin[21], Hashin
obtained the expression as a representative formula which satisfies bounds on the
shear modulus, calculated by a variational approach. This method shows that the
expression chosen has more physical significance than other possible expressions,
which are also bounded by the variational approach.

It is interesting to note at this point the behaviour of the result we have
obtained in the limit that the inclusions become rigid and the matrix becomes

‘This result has been independently obtained using a similar approach by Felderhof and

Iske [4K]
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incompressible. Hence we allow p —o00 and v —i. For small volume fractions
this gives

['eff = P0(| + §<A)- (2 .22)
This equation is of the same form as the Einstein relation for the effective viscosity
of a sheared fluid containing a small volume fraction of rigid spheres [49]. The
incompressibility of the matrix is important, since fluids are usually considered
to be incompressible.

In fart the Einstein relation can be derived in similar way to our result [50, 51.
This is because the Green’s function for the velocity field of a slow moving fluid,
due to a point force, is very similar to that for the displacement vector due to a
point force in an elastic medium. As for our result, the Einstein relation is due to
spheres acting as dipolar systems of forces. In the fluid mechanics terminology,
the solution for a point force is known as a Stokeslet, and the symmetric force
dipole known as a Stresslet. (There can also exist anti-symmetric force dipoles
which are known as Couplets or Rotlets ). The similarity between the elastic and
fluid Green’s functions is exploited later in this chapter in order to calculate the
displacement field for an inclusion near a boundary.

2.5 Self-Consistent Shear Moduli For Gels.

In order to obtain a more complete model of a gel under shear, it is necessary
to model the failure of bonds within a gel structure. When a bond fails in a gel,
the region it occupies is unable to support any stress. If this region is assumed
to be spherical, then the previously calculated expression for the effective shear
modulus can be used for the gel. In order that no stress exists in the region, the
shear modulus of the cavity is taken to he zero.

Once this limit has been taken a self-consistent argument is necessary to
calculate the actual volume fraction of the gel which has failed. There is no



generally accepted model of bond failure within gel structures, so the following
phenomenological approach is used.

It is assumed that the bonds within a gel have a distribution, P, of yield
stresses, cry. Whenever the average stress within the gel exceeds a bond’s yield
stress, then that bond is said to have failed. The volume fraction of failed gel
can then be expressed as the integral of the distribution, P, up to the applied
average stress. We assume the following form for the normalised distribution, P.

(2.23)

The function Y<mm —cry), is a step function, being unity for a positive argument
and zero otherwise, with ctm the maximum yield stress of the bond distribution.
We have introduced a parameter, A, which can be adjusted to give a suitable
distribution. For A = 0 all bond strengths are equally probable up to the maxi-
mum yield stress. For A = Lthe probability increases linearly with yield stress.
For increasing values of A the distribution becomes increasingly weighted toward
higher yield stresses. We restrict A to having positive values to avoid a divergence
in the probability distribution function at cry = o.

The volume fraction, ¢>of failed bonds is now given by the integral of this
function up to the applied stress.

Using the expression for the effective shear modulus 2.21, with K = 0 to
represent a matrix with cavities, we can now calculate the effective shear modulus
as a function of the applied stress.

(2.25)

Since the effective shear modulus is ecpial to dcr/dt, where f is the strain, we
can integrate this expression to obtain a stress-strain relationship for a gel.

(2.26)



where we have taken .7 = 2(4 —5i/)/(7 —5i/). If we re-write this expression in

terms of the normalised stress, Z, such that Z = o itm, we obtain
- aleM  dZ
f— ro (/'JZ'H J+1)f0 (1_ ZA+|)\)' (2.27)

For 4 = 0. the solution obtained is as follows.
f= pgoe + (/1) INL—2] ] (2.28)

Inspection of this solution shows that the strain diverges when a = om. In other
words, the gel is unable to support a stress greater than the yield stress of its
strongest bonds, as one would intuitively expert.

Analytic expressions for the integral are available for the cases where A is
an integer. Gradsteyn and Ryzhik [52] give the following expression for positive
even values of A:

(2.29)
M+l i,A+\)/2
vy pk Q0B + Y Q*sin
where
= In tZZ—ZZ C0S M+N o Qk =z arctan

A similar expression can be obtained for odd integer values of A.

As A is increased it can be seen that these solutions become progressively
more complicated, but we can obtain the asymptotic behaviour of these solutions
by considering expansions of the integrand near Z = land Z = U If we put
Z = | —D then our integral becomes

"I'm dZ db
£ (1 - ZA+I) (1 - @ -*)*+')I (231)

Near Z = 1 we have a small value of delta and can expand the denominator of
the integrand to first order in b. Thus the integrand becomes \/b(A + 1) which



when integrated gives a logarithmic term. When Z is near zero the denominator is
approximately unity. When this contribution is integrated and the limits applied,
the logarithmic term dominates for stresses near M. The integral then has the
following form as a —m.

[«lem  dZ .

o (1-ZA+)=~(A+ D"
Thus we see a logarithmic divergence as a approaches a« for all positive val-
ues of A, not just the integer values. This shows that the strain will diverge
logarithmically for any positive value of A, when the applied stress approaches
(Tm.

This expression has also been integrated numerically, for non-integer values
of A with the matrix Poisson’s ratio taken to be one half (J=2/3), and taking
aM/Ho to be unity. Plots of the behaviour of the stress-strain curves are given
in figure 2.2. These confirm that the stress divergence, predicted by the analytic
solutions, is a general feature of this model.

As the value of A is increased it ran be seen the stress-strain curve turns over
increasingly rapidly. This is due to the fart that increasing the value of A reduces
the number of weaker bonds in the distribution throughout the gel. Because of
this the effective modulus does not change significantly until the normalised stress
approaches unity. In the limit A — oo we would expect the stress/strain ratio to
be a constant until the stress equals <*, when the strain will diverge as all the
bonds fail simultaneously. This tendency is clear in the figure by A = 5. The
opposite limit, with A =0, shows a smooth turn-over with the effective modulus
decreasing smoothly with increasing stress or strain.

It should be noted that this model has assumed that the applied stress is the
controlled quantity. A model which assumes that the strain is the fixed quantity
would need to be more complicated. For example, application of a fixed strain
will induce a stress causing bond failures. These failures will then act to reduce
the average stress within the gel and lead to over estimation of the average stress.



A letailed algorithm would lie needed to overcome such difficulties, and is not
attempted here.

Figure 2.2: Plots ofstress as a function ofstrain, varying the parameter A (Pois-
son’s ratio of matrix = 1/2, go/&M = U

2.6 Modes Of Gel Failure

We now have a mean held theory approach to calculate the stress-strain relation-
ship for a gel. In order to go beyond the mean field theory, we have attempted
to find specific patterns of failure to which gels are susceptible.

In a real gel, we would expert hond failures to occur in regions where the
stresses are highest. Since the stress tensor is a multi-component object it is
difficult to define a ‘higher” level of stress. Instead we have looked at the elastic
energy density as an indicator of the average stress at any point. Since the energy
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density is a scalar, this can more easily be used to discuss the likelihood of bond
failures at a given point.
The elastic energy density for a material under strain is given by

N—o | TOYWT U TM&xyMyT T UyzHyz) « (2.33)

Calculation of the elastic energy density near a single void in a gel, shows that
there is a strong directional dependence of this density.

We take the total strain to be the sum of the applied strain, u’k, and the strain
due to a single cavity, ulk. For the case of pure shear we can use u’k = o(xz + zx),
where n is a constant. We can now use Hooke’s law to calculate the stress and
hence the energy density, E, can be written as

E = Ho(ukuk + 2ukulk + H.0.T.) . (2.34)

The first term is the energy density without a cavity. The second term is the
leading order correction which is of order 1/r3. Since r is greater than unity
outside the vacancy, we ignore the subsequent terms which are of order 1/2'0.

If we subtract the energy density due to the deformation at infinity, then we
get the change in energy density, AE, due to the cavity. Using spherical polar
coordinates as defined in figure 2.3, for a void at the origin of the coordinate
system, we can write AE in the following form.

AE =" "N [21—2u) + 6i/(sin20cos. £+ c0s. 0) —irsin.20cos. 4|  (2.35)

Here, A is the constant defined by equation 2.7.
We now wish to find the maxima and minima of this energy as 0 and 4are
varied. To achieve this, we differentiate this expression and look for zeroes of the

result.
C'BQ;T _ 'an (2 €08 (ftsin s i/sin2 0 —eysin226)), (2.36)

= e ——(C052 VSN 0 cos 0—305sin 20 ¢0s20] —2¢7 sin 0cos 0). (2.37)
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Tlie first differential is zero when &- nx;2, where n is an integer. The second
is generally zero when 6 = nx/2. In addition, for €= nx, the second differential
goes to zero when 0 —nx/A.

Inspection of AE near these turning points shows that the energy is minimised
for four sets of (04>) coordinates. These are (f,0), (*, ), (", 0) and (-'f,x).
Reverting to a Cartesian coordinate description, these correspond to the lines
x=1zand x - The energy density is maximised for directions along the z
axis, and the x axis.

As a result of this, the total energy density is reduced in the directions near
the lines x = z and x = —, making bond failures less likely in those regions.
The regions near the x —y and y—z planes have an increased energy density and
therefore bond failures are more likely to occur in those regions.
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The failure of bonds in the y —z planes will not cause a catastrophic failure
of the gel, and will merely add to the softening. Failure in the x —y plane will
result in the complete failure of the gel since no stress can be passed between the
upper and lower plates in this case. Because of these effects, we would expect
most failures of the gel to occur along the x —y planes.

2.7 Elasticity and Slow Fluid Motion
2.7.1 The method of images

The results presented so far in this chapter apply for a material subjected to a
uniform shear at infinity. This is a good approximation for voids within the bulk
of the gel but near the surface of the gel we should consider the effect of more
realistic boundary conditions.

The true geometry of a gel under shear is likely to be a slab geometry as
shown in figure 2.1. In order to solve the problem for a spherical cavity in a
slab geometry it is necessary to use the method of images [53]. This allows
the correct boundary conditions to be obtained at the surfaces of the slah. A
reasonable boundary condition to apply is that the displacement vector, u,, due
to the presence of the void must be zero on the upper and lower boundaries. This
is equivalent to assuming that no slip conditions occur between the gel and the
plates applying the shear.

With a single boundary a single image is sufficient to enforce the correct
condition. At a second houndary then the first image will give rise to the need
for corrections which are obtained with a second image. This in turn requires
corrections at the first boundary and so on. This results in an infinite series of
images at increasing distances from the boundary.
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2.7.2 A comparison with Stokes’ fluid flows

As we mentioned earlier in this chapter problems of this form in elasticity theory
are closely related to equivalent problems in low Reynold’s number fluid flows
(known as Stokes or creeping flow problems). It is convenient at this point to
discuss both the problem of elastic images and the equivalent problem in Stokes
flows. This will allow us to point out several similarities between the approaches
used and introduce concepts which will be useful later.

If we begin with the fluid problem, we note that the velocity and pressure
fields, v and p, for Stokes’ flow must satisfy

WV = Vp, V. =0, (2.38)

where - is the viscosity of the fluid. At first sight these equations may seem quite
different from the equivalent elasticity equation of equilibrium. One important
difference is that fluids are considered to be incompressible and hence V.v =
0. This is not the case in elasticity problems since elastic bodies are generally
considered to be compressible (unless they have a Poisson’s ratio of one half).

Ihe similarity is emphasised if we rewrite the equation of equilibrium in the
following form.

[7'U=-(r_V)V(V-u)- (2.39)

This fjom makes the elastic equivalent of pressure the quantity (pV .u)/( 1-2r).

The similarities are further emphasised by inspecting the Green’s function for
lhe velocity field, i>, due to a point force

This is very similar to the Green’s function for the elastic displacement, although
slightly simpler. In fact putting Poisson’s ratio to be one half in the elastic Green’s
function makes the Green’s function differ only by the constant of proportionality
(ie. the viscosity replaces the shear modulus).
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Figure 2.4: Elastic displacement at a constant distance from a point force, with
Poisson’ ratio = 0.5

Figure 2.5: Elastic displacement at a constant distance from a point force, with
Poisson's ratio = —L0
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Figure 2.6: A cavity within an clastic medium and its first two images

igiire 2.7. The coordinate system for a force and its image at a single boundary
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we ran construct a Green’s tensor of the form

U i, —) <1 (k) ¥ o477+ RRCGuw ea)
Here to, is to be found and R is the vector from the image to the required
point in the medium (See figure 2.7).
For u, to I»e zero on the boundary (R3 = d) then tik must satisfy the following
boundary condition,
tik = 20 (Si36ka + o416 s, (2.44)
where Rg(= (R + R\ + d2)1/2) is the distance from the image to a point on the
boundary.
The problem is approached using two-dimensional Fourier transforms defined
by

«

1 .
I(A, fa, )= —yy " KRURI, R3)i*RdRxdR2 (2.45)
Since to, must satisfy the equation of equilibrium, with no force term, we Fourier
transform the left-hand side of equation ».. to obtain
Q — ] %+ A TAC, + BB~OftY + 53 hk = O (2-46)

where (= « —2v.
In addition to the equation of equilibrium we know that the bi-harmonic
equation must be satisfied, giving

(2.47)

where e2 = A+ A" The general solution to this equation can he written in the
form
tik = [Bik + Cik(R3- d)]e~(ft» + [Eik + Fik(R3- d)]e(R\ (2.48)

We require Eik and Fn, to he equal to zero, since t,k should go to zero as R3 tends
to infinity.
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Having obtained the necessary equations in Fourier space, we now require
the correct boundary condition in Fourier space. The most convenient way of
obtaining this is to use the following relationship between 2-dimensional Fourier
transforms and 1-dimensional Hankel transforms,

[roc too
ML H{r)e Tdridr =1 rf(r)Mtr)dr, (2.49)
where o is a zeroth order Bessel function, r — (72 + and £ = (A + AN

The real space boundary condition can now be written in terms of derivatives of
Ro. and transformed to give,

tik = '2d(6i36ka + S/czSia)-e (2.50)

(Comparison of this condition with the general solution for <* when R3 = d
immediately gives
Bik —2d (6i36ka + Sk3Sia) (2-51)

Next, we must find the Cik's by substituting the general solution for tk into
the Fourier transformed equation of equilibrium and using the known expression
for Bk, at K3 = d. This results in the following expression for the Cik's.

flk w0 1T (iaaficik £%%3) (2.52)
Back Fourier transforming, tk gives,

fift ~ 2d " (fitffika 4" *k.i"ut) (2.53)

B3-d) . i i o
(2Q+\) e'et (g T3] g pigr, (s)])

Finally, after some manipulation, we get

(2.5
0 . 1 ftiM JL(L

VW +(3-4//) ft3 /] (3- AvY~dRi VFt/l
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This result reduces to Blake’s solution in the the incompressible limit, u= A
In general the expression is different due to the fact that the elastic material
is compressible, although a similar interpretation of the result can be made for
this solution. The first term in the square brackets is identified by Blake as
a source doublet and has exactly the same form here, except for a numerical
factor. The second term in the square brackets was termed a stresslet by Blake
and corresponds to our elastic dipole solution. The final term does not occur in
Blake’s solution and corresponds to a source, as defined by Blake and Chwang
[57]. This final term disappears as v — A

2.4 The image of a void

We now consider the image of a void at a distance d from a single boundary.
In the creeping flow terminology, this is equivalent to finding the image of a
Stresslet. Taking the elastic dipole moment to have the form F*I*= 2(xz + zx),
we can write the displacement vector in the form

Again t, is unknown, A7 = « —1/[2(L —il)], P = 3(1 —A/), and R s the vector
from the image to the required point in the medium (See figure 2.7).

As before for u, to be zero on the boundary, R3 = d, then f, must satisfy the
following boundary condition,

where /<, = (R2+ R2+ d2)172 is the distance from the image to a point on the
boundary.
Using the same approach as for the point force we can obtain a general solution
for f, of the form
U= [B,+(MR3-d)]e"<, (2.57)
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Chapter 3

The Stability Of Layered
Colloidal Structures Under

Shear

3.1 The model

We have shown in the previous chapter that we expect a gelled structure to fail
along planes parallel to the plates which provide the shearing motion. This will
result in parallel layers of alternating high and low concentrations of colloidal
particles. This effect has been seen experimentally [26]. In order to find out
whether these structures persist for significant times, or are merely a transient
phenomenon, it is necessary to study the stability of such layered structures.

To model such a situation we consider the structure to be composed of many
layers of fluid under shear. The viscosity of the layers are chosen to alternate
between two values. The layers of higher viscosity represent layers with higher
concentrations of colloidal particles, as would be expected. We are interested
particularly in the cases where the number of layers is odd, since we would expect
the structures to be symmetrical about the centre plane of the shear flow. Using
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this model we are able to calculate the velocity profile of the system and study its
stability when subjected to small perturbations. Ifthe layered structure is to exist
for a significant time, then it must be stable when subjected to perturbations.

We assume that the particles under consideration are neutrally buoyant. This
is not unrealistic for appropriate colloidal particles and has the advantage that
the density in each of the fluid layers will be the same and constant. In this case
gravity does not affect the stability of the system.

3.2 Previous results

We are interested in the stability of a three-dimensional, layered system, un-
dergoing plane Couette flow. It was shown by Squire [28] that it is sufficient to
consider two-dimensional disturbances of fluids in a parallel plate geometry, since
any instability which exists in the three-dimensional case will also exist for the
two-dimensional case, although the critical Reynold’s number will be reduced.
As a result of this we restrict our analysis to two spatial dimensions.

The linear stability of two layer, plane Couette flow was investigated by Yih
[29] for the viscous case. He used a perturbation technique appropriate to small
amplitude, long wavelength disturbances, and showed that two layer flows could
be unstable at the first order of perturbation if the viscosity was different in each
layer. This instability occurs at all values of the Reynold’s number. The same
approach was used by Li [80] for the case of three layers. Li showed that due
to a form of resonance between the fluid interfaces, the s-layer system could be
unstable even at the zeroth order of perturbation. A similar resonance instability
has been identified by Weinstein and Kurz [58] for three-layer flow down an
inclined plane. This is analogous to the instability of three layers of inviscid
fluid, originally identified by Taylor [27].

Hooper and Grimshaw [59] have shown that the introduction of surface tension
effects lead to stabilization. However in the present treatment, which is restricted
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to long-wavelength disturbances, such effects are small.

The physical reason for the instability, as explained by Yih [60], is the dis-
continuity in vortieity which occurs near the interface between two layers. This
allows interfacial waves to draw energy from the main flow. A mechanism for this
type of behaviour was given by Hinc.h for an unbounded shear flow, albeit with
an emphasis on short wavelength disturbances [61]. The mechanism is illustrated
in figure 3.1. A perturbing wave produces vorticity perturbations of one sign
near the peaks of the wave and of the opposite sign near the troughs. This vor-
ticity is then advected along by the background shear flow, resulting in vorticity
perturbations of differing signs at adjacent positions either side of the interface.
These opposing vorticities interact so as to increase the amplitude of the original
wave. The whole process is repeated and this leads to the amplification of the
amplitude of any initial wave and corresponds to instability.

Induced Vorticity

Induced Vorticity

Figure 3.L: Tl/ie advection of vorticity in a shear flow



Figure 3.2: The Problem Geometry

3.3 The equilibrium solution for N layers

The Navier-Stokes equations for the jth layer of fluid are

(d \ L Clp 2

U +u> JU]=~~pdi+viVih (33)

(& +ulvjni= 0 vy, (3.2)
where Uj and v3are the x and y components of the velocity Uj, p is the pressure
and iij is the viscosity of the jth layer. The interfacial boundary conditions
are the continuity of velocity and stress, rjjduj/dy. The usual no-slip boundary
conditions apply at the walls of the system.

For convenience we introduce dimensionless variables by the making following

substitutions;

UlU, (xy) - (x,y)lw, p-tplpli2, t-*tl/lw, (3.3)

where Il is the velocity of the upper plate and w is the width of the system. It
is also convenient to choose the coordinate system such that yo= 1 and yy —o
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The viscosity is assigned a value -« in odd numbered layers and a value 12
in even numbered layers, the layers being numbered from the side nearest the
moving wall as shown in figure 3.2. In a similar fashion the equilibrium layer
thickness alternates between  and d2. The system can then be described in
terms of the two parameters, m = 477 and d = d2/d\. The positions of the
interfaces, yj, can now be written as

JI+d)+ o (c-(-1)>) (! -rf)
Vi N(I+d)+*(I-(-1)*0-d)" '

We must first find the equilibrium velocity profile. We assume that the flow
is unidirectional, hence i)j - 0 and Uj depends only on y. (We use the over-bar
to indicate equilibrium values from here on). The equation for the equilibrium
flow is then

w o <>
where Kj is the pressure gradient, taken to be constant in each layer. The
resulting time-independent velocities are polynomial in y\

U= dj+by Ciy2 (36)
Since there is no external pressure gradient in plane Couette flow the constants
G are zero.
Using the interfacial boundary conditions, we find that
h, = b\7/1/7/j, (37)
and
Hi =a, {iff, pc (-1) i, (38)

where yp is the position of the pth interface and v = (L/m) —1 The values of
M and at are then chosen to satisfy the no-slip boundary conditions at the walls
which can be expressed as:

d+a=1 nl=0 (3.9)
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3.4 The stability analysis

3.4.1 The wavy interface approximation

We now apply the stability analysis introduced by Yih [29] to the above flow
geometry. We allow perturbations to occur in the velocity field, these being u'
and Vj in the x and y directions respectively, and define these in terms of a
stream-function », such that

. (> arl]
Ny i (3.10)
The disturbances in the pressure p and stream-function, ib are then of the form
(PI}) = (fj(y),<t>j(y))ex\>iafx - ct). (3.11)

Here o is the wave number of the disturbance and c the complex velocity. If the

imaginary part of the velocity ¢/ is greater than zero then the disturbances will

increase in time and the system will he unstable. Substituting the primary flow

plus the perturbations into the Navier-Stokes equations and linearizing gives the
following equations:

a2\

ay) (3.12)

(3.13)

Differentiating the first equation and eliminating the pressure term fj leads to
the Orr-Sommerfeld equation:

Hyd  anliys +crds= ior {Q” ~a*)} (3.14)
Here H3 is the Reynolds number plfw/jfj, where w is the channel width, p the

fluid density, V the velocity of the upper plate, and i3 the viscosity of the jth
layer. The elimination of the pressure perturbation is achieved by effectively
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taking the curl of the perturbed Navier-Stokes equation. Since we have only two
dimensions this gives a single equation in the direction perpendicular to the flow.
| sing this interpretation we see that the Orr-Sommerfeld equation is equivalent
to a linearised vorticity equation for two-dimensional disturbances [62].

To specify the problem completely, the correct boundary conditions must be
applied. The rigid wall boundary conditions are

and

The interfacial boundary conditions must be applied at the deformed inter-
faces, ij. As the perturbations are small a Taylor expansion of the interface
positions, about the mean positions, can be made. Continuity of velocity and
stress in both the x and y directions then gives four conditions at each interface.
Continuity of the y component of velocity gives

At each interface we must satisfy
(3.18)

| sing the definition of v', the interfacial position can be written as

where q is given by c—u™y,). 1Jsing this result the continuity of the x component
gives a more complicated condition due to the curvature of the interface:

+i m+i|Hh G
Iy (Y (3.20)
Here all the functions are evaluated at y,.
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Tlie continuity of shear stress can be applied at the interfaces themselves since
the gradient of the shear stress is the same in all layers. This gives

(3.21)

Finally, the continuity of hydrostatic pressure gives the condition

Here we have introduced the effect of surface tension, Tj, at the jth interface.
However such terms do not contribute to the analysis given below since they are
only significant at short wavelengths.

It is important to note that only one boundary condition contains the wave
velocity itself; the condition for continuity in u". It occurs there because a cor-
rection has to be made for the curvature of the interface. In the next section we
shall show that at long wavelengths this is the only place that ¢ appears and so
any instability must be due to the curvature of the interfaces.

3.4.2 The long wavelength approximation

The Orr-Sommerfeld equation is investigated using the perturbation method of

Mll. The eigenfunctions < and eigenvalue . are expanded as a power Series in
the wave number .

H—j+ + e (3-23)

c= Co-lrvai + ... (3.24)

These expressions are then substituted into the Orr-Sommerfeld equation and
collected into terms of the same order of a. The zeroth order equation is

which has a polynomial solution
<t>0,j_.'h,,,+ Bojy T cojy2*™Dqj)m (326)

58



We now apply the boundary conditions at zeroth order. Continuity of v] gives

BJH - HOjy=y (3.27)
and continuity of u' gives
d<PojHi e _ t0, (duj dui
oA Celly dy )y (328)
where e0j = G- u,(y,)-
(Continuity of stress gives
VL' g3 = 1 %"-’5’6 (329)
Vie gy e (3:30)

Tliis results in a linear, homogeneous, system of algebraic equations for the
coefficients of equation 3.26. The only noil-trivial solution of such a system occurs
when the determinant of the system is zero. Using this fact we can construct the
characteristic equation for the system which is a polynomial of order TV—"1in
Co. Thus there are N —1possible eigenvalues for the system at zeroth order.
Il all these eigenvalues are real then the system is neutrally stable. Since the
characteristic polynomial has real coefficients, if the eigenvalues are not real,
they will appear in complex conjugate pairs, with one eigenvalue always giving
an unstable mode. The results of Yih [29] show that to lowest order we cannot
get instability for two layers, but Li [30] has shown that for three layers we obtain
an instability.

If the zeroth order wave velocity is real, then we have neutral stability and
the first order approximation must be considered. This has the following form:

WVij oz, - Q2] d2 T (3.31)
This equation can also be integrated directly to produce a polynomial solution
Aj= Atj +E£tjy+ C\jy2+ Dipy3+ inR,hj(y). (3.32)
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The first three terms are the complementary solution for which the coefficients
are found from applying the boundary conditions to order a. The final term is
the particular solution, which has the following form:

hj(y) —(oj(dj —'o)y" + +3D0j(aj —co)}™ 4 DObj~.  (3.33)

The houndary conditions to be applied are the same as for the zeroth order
case, with 48] becoming with the exception of equation 3.28 which has an
additional correction to hecome

For each zeroth order eigenvalue there exists a corresponding first order eigen-
value c|. Ifthe zeroth order eigenvalue is real then it can be shown (see Appendix
1)) that the first order eigenvalue is of the form

0 = iaH\, (3.35)

where J is a real function of the number of layers, the viscosity ratio and the
depth ratio. Thus the first order eigenvalue is wholly imaginary. The condition
for instability is that .1 > o,

3.5 Numerical Calculations

3.5.1 The zeroth order calculation

The algebraic analysis involved in solving the stability problem for more than
three layers becomes unwieldy and hence we have resorted to a numerical treat-
ment.

The primary How coefficients are first evaluated for the given values of the
viscosity ratio tn = ififf/i and depth ratio d = dj/d\. This involves solving the
recurrence relations 3.7 and 3.8 so as to satisfy the no slip boundary conditions.
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The interfacial conditions can also be expressed in terms of recurrence re-
lations. At each order in the perturbation, the coefficients of the polynomial
solution must satisfy these recurrence relations and also the boundary conditions
at the upper and lower walls. At zeroth order the relations are

Adojti = Aoj Ayj(Baj ~ ffoj+i) + Vjff'oj —f0.j+) (3.36)
+Vj(Do,] —T>0,ji),

Boj+\ = &oji+ (yj(COj —Co,j+\) + 3y](D0Oj — DOj+) (3.37)
+Fj(Ao,j + VjBOj + VjCo + y] DO,
Co,; = CO”Vj’ (3.38)
and
D0j = DO’iVj’ (3.39)
where Fj = (bj—bj+i)/eoj. Unlike for the primary flow, these recurrence relations
cannot be separated to obtain a general solution and hence we use a purely
numerical method to find the eigenvalues eg.
We can take the value of AQji to be unity since the zeroth order solution is only
defined up to an arbitrary multiplicative constant. The coefficients (70i and Doji
are then calculated in terms of Bo.i using the upper wall boundary conditions:

1+ #0,i + Uoji + Do\ = o (3.40)

and
Bo,i + 2f70,i + 3£0) = 0. (3.41)

Thus we can iterate the recurrence relations if we first specify the values for Bo,i
anil ¢j. However by making the change of variables

AOj —Auj + Bo.tAoj,  Boj = Boj + BojBoj, (3.42)
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and applying the new boundary conditions
Aoi—1 Aoi=0 floi=0 floj 1, (3.43)

we need only specify the value of cfl before we start the iteration scheme. The
transformed recurrence relations are given in Appendix D.

The value of dfl is obtained by iterating the recurrence relations and applying
the boundary condition at the lower wall. This condition can be expressed as

AoArfloAt —flo.ArA0AL = <-(co) = 0. (3.44)

The evaluation of the eigenvalue is now equivalent to finding the zeroes of the
function <7(c0). This function is equivalent to the characteristic equation for the
system of equations which as previously stated is polynomial in Co. Using this
fact we look for N —Z1real solutions to the boundary condition. If fewer solutions
are found then we know that the remaining solutions exist as complex conjugate
pairs. In this case one of the eigenvalues must correspond to an unstable mode.
Thus we ran determine whether the system is stable or unstable using only real
variables, a significant simplification over using complex algebra. We can now
take a range of real values for Co, evaluate G'(co) and plot it as a function of c0.
The zeroes of the function G(co) are obtained by using a bisection algorithm [63).

Some plots of G(c0) are shown in figures 3.3 and 3.4. It is found that the zeroes
of the function always lie in the range from 0 to 1 (This result has been proven
for the Orr-Sommerfeld equation applied to a single fluid [64]). 1t can also be seen
that the function goes to infinity whenever cfl takes the value of an undisturbed
interface velocity. This is due to the term proportional to I/eo,j — I/(ro —tij) in
equation 3.37.

Figures 3.3(a)-(c) show that as the depth ratio is varied the number of zeroes
of (! goes from two (neutral stability) to zero (instability). It ran also be seen
that at the point at which the system goes unstable the two eigenvalues converge
to a common value. This behaviour means that just as the two interfaces go
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Figure {'{_ The boundary function, G, as a function of the wave velocity, c, for
three layers, (a) m=0..5d=1>(h) ni=0..d =0.15 (c) ni=0.5, d =0.1

(Note the vertical lines are asymptotes and their crossings do not represent zeroes
of CJ(co),)

6d



(b)

Figure {4: The bonHilary function, G, as a function of the wave velocity, c, for

six layers, (a) m=0.25, d=0.5 (b) m=4.0, d =2.0
(Note the vertical lilies are asymptotes anil their crossings do not represent zeroes

of (7(co).)
64



unstable the waves at the interfaces (defined by £) have the same velocity. Thus
we can associate the instability with a resonance phenomenon. Similar results
are obtained for V> 3 and are illustrated in figure 3.4.

There are certain symmetries which the system must show. For an odd num-
ber of layers the function (7(co) must be symmetrical about Q= /-, since the
primary flow has this property. For an even number of layers the transformations
m—*1/m and d —>I/d must not alter the stability of the system. This transfor-
mation is equivalent to a physical reflection of the system about the centre-line
of the flow. The effect of this transformation is demonstrated for six layers in
figure 3.4. The zeroes of the function are seen to go from Goto 1—Coas would
be expected for the reflection. These symmetries are obeyed by our numerical
results.

3.5.2 Discussion of stability at zeroth order

From the above numerical results we can find the values of the two parameters
mand d for which (!(r0) loses two real zeroes. A plot of these critical values of
m and d against one another gives a neutral stability curve. Such a curve divides
the parameter space (m,d) into regions corresponding to stability and instability.

Figure 3.5 shows the neutral stability curves at zeroth order for systems with
four and five layers. When the viscosity ratio rn is less than unity the curves
almost overlap and furthermore are of the same general form as those for the
three layer case as calculated by Li. Each of these systems is neutrally stable for
all depth ratios when m tends to zero. More significantly, the four and five layer
systems also have an instability region when m is greater than unity. This is not
tin- case for three layers, which is stable if m is greater than unity.

The curve for the four layer system satisfies the symmetry m — I/m and
d = I/d as it has an even number of layers. This means that the values for
m > | can be obtained from the curve for m < L1 This is the rase for all our



Figure 3.5: Zeroth order neutral stability curves as a function of depth ratio and
viscosity ratio for 4 and 5 layers

results for even numbers of layers (e.g. s layers in figure 3.6)

For six or more layers the system is found to be unstable for finite depth ratios
even as m tends to zero. Figure 3.6 shows this and also gives an example of the
pairing of neighbouring curves for large values of m. It is seen that as in. gets
large the eight layer and seven layer curves converge. This phenomenon occurs
for all pairs of curves for 2N and 2.V —. layers, where |V is an integer. As m
tends to zero a similar pairing occurs for systems with 2N and 2N + | layers.
This pairing occurs when two systems differ by the addition of an extra layer of
fluid near the lower wall. As in becomes very small or very large this fluid is much
more viscous than its neighbouring layer. All the zeroth order perturbation terms
in such a layer tend to zero as m tends to zero and this prevents the layer from
altering the stability of the system overall. Using these arguments, it, follows that
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the 1»ehavior of the three layer case at m —o is governed by the stability of the
two fluid case in the same limit. Using the symmetry for even numbers of layers,
in —=>1/rn,d —./d, in addition to this argument, gives that the behaviour of
the four and five layer cases, as in tends to zero, is restricted by the behaviour of
the three layer rase as in tends to infinity.

Figure 3.6: Zeroth order neutral stability curves as a function of depth ratio and
viscosity ratio for 7 and S layers

It can also been seen from figure 3.6 that for seven and eight layers the system
is unstable at finite depth ratios as m tends to zero. This property is shown for
all cases with six or more layers. It is also found that the range of unstable d
values increases as the number of layers is increased (subject to the requirement
that cases with 2N and 2N + 1 layers must pair off in this limit, as previously
described).

All the systems show neutral stability, to zeroth order, when m approaches
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unity, as would be expected. As the number of layers is increased the unstable
regions get larger, as shown by figures 3.5 and 3.6. It should be noted that the
‘stable’ regions at zeroth order are neutrally stable and not truly stable, since the
eigenvalues are purely real. For those regions which are stable to lowest order
the analysis has been extended to first order and the growth rate function, .7.
calculated. This is used to obtain the growth rates using equation 3.35.

3.5.3 The first order calculation

In the same way as for the zeroth order calculation the first order calculation
results in a series of recurrence relations. The first order recurrence relations are
analyzed by using a similar transformation as for the zeroth order calculation.
This makes it easy to show that the first order eigenvalue is wholly imaginary
as long as the zeroth order eigenvalue is wholly real. For the sake of brevity we
omit the first order recurrence relations here and give a detailed discussion in
Appendix 1).

The first order results were checked using certain symmetries which the system
must satisfy at both zeroth and first order. Again, if the number of layers is even,
then changing m and d to «/in and I/d respectively does not alter the first order
eigenvalues. If the number of layers is odd, then the first order eigenvalues will
occur in pairs with the same value C\. This is due to the symmetry of the odd
number of layers about the centre line of the flow.

The numerical results were also checked for the rases of two layer and three
layer flow by comparing with the results of Yih [29] and Li [30] respectively.

3.5.4 Discussion of stability at first order

The growth rate function for the cases of the four anti six layers are shown in
figures 3.7 and 3.6. It is found that for all systems with greater than three layers,
at least one eigenvalue corresponds to an unstable mode for any value of the
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Figure 0.7: The growth rate function .7 as a function of viscosity ratio in. (4
layers. d=1.5) The three curves correspond to the three zeroth order eigenvalues
for the system

viscosity ratio. The actual mode which is unstable depends on whether m is
greater than or less than unity. The growth rate function is not shown for m less
than unity in the six layer case as the system is unstable at zeroth order in most
of this region. For the three layer system the modes are stable for m > 1and
unstable for m < L Again the eigenvalues are zero when the viscosity ratio is
unity, giving the expected neutral stability.

If we consider the time scale for this instability to manifest itself we must
calculate the value of &C in a dimensional form. If we take as representative
values those for water sheared at a shear rate of 105-1, with a channel width of
lcm and a dimensionless wave number of o.., we get a maximum dimensional
growth rate of approximately O.ls-1. Since the perturbation is initially small this
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Figure 3.8: The growth rate function J as a function of viscosity ratio in. (6
layers. d=0.'d) The five curves correspond to the five zeroth order eigenvalues

would mean that time scales of order 103 seconds would be required to visually
identify the instability. We have not calculated the zeroth order growth rates but
would expect them to be about an order of magnitude larger than this, (from the
form of the expansion). This would imply a time scale of 100s to observe any
instability.

3.6 Conclusions of the stability analysis

The analysis discussed in this chapter has shown several new types of behaviour
for multi-layer plane Couette Hows. We have identified instabilities for multi-
layer flows which are analogous to the resonance instability identified by Li for
three layer flow (at the lowest order of perturbation). However, for four or more
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layers the neutral stability curves show much more structure. Importantly new
regions of instability appear in the viscosity ratio / depth ratio parameter space.
For example a region of instability occurs when the viscosity ratio is greater than
unity, a result not found for three layers. It is also found, somewhat unexpectedly,
that a system with six or more layers is unstable for finite depth ratios as the
viscosity ratio approaches zero. This is unlike the cases with three, four or five
layers. These are stable at zeroth order for all depth ratios as the viscosity ratio
goes to zero. Furthermore, using first order perturbation theory it is found that
systems with four or more layers are unstable for all values of the viscosity ratio
and depth ratio. This result differs significantly from the result for three layers,
where Li showed that stable configurations existed to lowest and first order.

When the system has a large, odd number of layers and the viscosity ratio
is small, we find (except for unrealistic depth ratios) the system to be unstahle
to zeroth order. This is the configuration which models colloidal structures most
closely and thus predicts such physical systems to he unstable.

3.7 Discussion of the model

The original motivation for this chapter was to determine the stability of flows
in concentrated, colloidal dispersions with layers of different concentrations (and
hence viscosities). The results show that in the limit of a large number of layers
(appropriate for a macroscopic sample) all such layered profiles are unstable.
This behaviour is seemingly in contrast with that observed experimentally, where
layered structures are found to exist for finite periods of time.

It is possible that these instabilities do occur but that they evolve too slowly
to be observed in the experimental work carried out to date. An alternative
explanation for the discrepancy is that the observed layering is truly a time
independent phenomenon in which case the model is not adequate to capture
the true behaviour of the system. An improved model should take into account
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the microscopic behaviour of the suspended particles. A more detailed model of
flowing colloidal suspensions will be discussed in the next chapter.



Chapter 4

A Microscopic Model Of

Flowing Suspensions

4.1 The Hydrodynamic Forces Acting On Col-
loidal Particles

4.1.1 The forces present in creeping flow

In order to make a microscopic, model of a flowing suspension it is essential to
know how the suspending fluid interacts with the particles within it. This means
that a knowledge of the hydrodynamic forces acting on particles is necessary. We
begin by considering the forces acting on single spherical particles in slow fluid
flows.

The most commonly known force which a fluid can exert on a spherical particle
Is the Stokes’ drag [.1l]. This is a force which tends to equalise the velocity of a
particle with the surrounding fluid. Its magnitude is sm)a(Vj — Vp), where 1/ is
the viscosity, a is the particle radius and Vj — W is the difference between the
fluid and particle velocities. This form is applicable at low Reynolds numbers.

The Stokes’ force can be obtained as a special case of the force obtained by
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Faxen [32]. The approach of Faxen treats the particle as a distribution of point
forces in a fluid. The resulting velocity field is integrated over the surface of the
sphere to obtained the total force acting on the sphere. The form of the force on
a particle moving with a velocity Vpin a fluid with a velocity V/ is

F= o ([VI+]aiVaVI]o-V p). (4.1)

The subscript zero means that the object in square brackets should be evaluated
at the centre of the sphere. In the case that V.V/ = 0 this immediately reduces
to Stokes force.

Both of these forces are important in creeping flow but they are unable to
explain all of the observed behaviour of particles in a fluid, such as particles
moving across the streamlines of a uni-directional flow. This is clear for the
Faxen force since the force is parallel to the fluid velocity. More generally the
equations of creeping flow are linear, leading to a symmetry under the reversal of
the direction of a flow. Thus particles cannot cross streamlines when the fluid is
undergoing creeping flow. This result was obtained by Bretherton [33] for all uni-
directional laminar flows. Therefore, in order to explain observations of particles
crossing streamlines, the inertial effects of a non-zero Reynolds number must be
considered.

4.1.2 The migration of particles across streamlines

The migration of particles across stream lines was first observed experimentally
by Segre and Silverberg [), ss] for neutrally buoyant, rigid spheres in Poiseuille
flow. The experiments of Segre and Silverberg also showed that the spheres did
not migrate all the way to the pipe axis, but reached an equilibrium position at
approximately o.s of the pipe radius from the axis.

Similar observations were made by Halow and Wills' [ss, 69] for neutrally
buoyant spheres in a Couette system. In their experiment it was found that the
spheres migrated to a position midway between the annular container walls.

14



More recent experiments by Jefri and Zahed [70] have shown that the equi-
librium position of spheres in plane-Poiseuille flow also depends on the elastic
properties of the suspending fluid. For a non-Newtonian (shear-thinning) fluid,
they found that the equilibrium position was near the container walls. Several
different equilibrium positions were observed as the elastic properties of the sus-
pending fluid were varied.

4.1.3 Theoretical investigations of particle migration

The existence of transverse forces on particles moving in inviscid fluids is well
known and is described using the Bernoulli equation. At low Reynolds number
when viscous effects hecome important the same effects are more difficult to
calculate. Many workers have theoretically investigated the migration of particles
at low Reynolds number, with varying degrees of success. Most workers have
begun their investigations by considering the case of a single rigid sphere in
Poiseuille or Couette flows. In all of the approaches described in this chapter
inertial effects are taken into account by using asymptotic expansions valid for
small, but non-zero, Reynolds numbers.

Rubinow and Keller [71] and Saffman [34], were among the first to calculate
the migration force on a sphere moving through an unbounded fluid. Rubinow
and Keller assumed that the sphere was hoth spinning, with an angular veloc-
ity, uj, and moving through a stationary, viscous fluid, with velocity, V. They
obtained a migration force, F*,, of the form

Ft. = paaaip x V). (4.2)

The fluid density is p and the particle radius «.
Saffman’s calculation was for a sphere in a simple, unbounded shear flow,
with a shear rate, /f. He obtained an expression for a migration force which is
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independent of the rate of rotation of the sphere:
\

FI = §A(>i)Val [ (4-3)

This result was obtained by making an inner and outer expansion of the equa-
tions in powers of the Reynolds number. The matching criterion for the two
expansions led to the dominant contribution being proportional to the square
root of the Reynolds number (the quantity in brackets in the expression is the
Reynolds number). Unlike for the calculation by Rubinow and Keller the force
is found to be independent of the rate of rotation of the sphere. An analysis
was also made by Halow and Wills [ss] based on Saffman’s solution, which was
somewhat unsatisfactory in that they introduced an arbitrary factor, in order to
gain agreement with experiment,

Cox and Brenner [35] considered the more general case of bounded, three
dimensional, Poiseuille flow. The approach used a double expansion in terms of
the Reynold’s number and the ratio of the particle size to the pipe size. This
result assumed that the boundaries lay within the region of the inner expansion,
making the outer expansion unnecessary. The results obtained were not explicit,
but were left in integral form without specifying the magnitude or direction of
any migration force.

Ho and Leal [36] used a similar approach to Cox and Brenner, involving
the method of reflections and the generalised reciprocal theorem of Lorentz [72]
to obtain actual values for the migration force. This allowed them to obtain
equilibrium positions for particles in plane Poiseuille and shear Hows, which are
in agreement with experiment. Two distinct effects were pointed out by Ho and
Leal. Firstly for plane Couette flow, a force directed towards the centre of the
flow, proportional to the square of the shear rate. Secondly a force due to the
curvature of the velocity profile which tends to move particles away from the
centre of a plane Poisseuille flow.

Later calculations by Vasseur and Cox [37] gave different asymptotic values
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of the forces near the boundaries. The numerical results of Vasseur and Cox were
found to agree with an analytic calculation of the force on a sphere near a single
boundary carried out by Cox and Hsu [73]. The differences between the results
of Vasseur and Cox and those of Ho and Leal were attributed to numerical errors
and do not significantly alter the equilibrium positions which were predicted by
Ho and Leal. The lift force obtained by Vasseur and Cox can be written in the
following form for the case of plane Couette flow with a velocity profile V and a
cross channel coordinate, z:
_ nilt

FI = ott (4.4)
The function N(z) is a numerically calculated function equal to unity on the
boundaries and zero at the centre of the flow. The constant C was found ana-
lytically by Cox and Hsu [73] and numerically by Vasseur and Cox to be equal
to 55/576 or about 0.1. Although the derivation of this expression is strictly
only valid for small Reynolds numbers flows, it has been found to give qualitative
agreement with experiments at Reynolds numbers larger than unity, as carried
out by Halow and Wills [69].

The physical mechanism for the lift force on a particle near a wall was given
by McLaughlin for plane (ouette flow [74]. As a particle moves through a fluid
it must displace the fluid to either side. If a wall is present then it resists this
displacement, which has the effect of forcing the sphere away from the wall. The
effect of inertia is to make the displacement of fluid irreversible at large distances
from the sphere giving a lateral force even at large distances from the wall.

These are the main forces which we shall need to consider in order to construct
our model of a suspension. We shall now discuss some previous models which
have heen suggested.
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4.2 Previous Models Of Suspensions

4.2.1 The model of Noziéres and Quemada

This model treats the suspension as a fluid which obeys the Navier-Stokes equa-
tions with the inclusion of the effect of a variable viscosity, -, which is a function
of the local particle density, n. The density fluctuations, ¢ra, are assumed to be
small and a Taylor expansion used to write the viscosity in the form

. (49

The particle density is assumed to obey a diffusion equation with the addi-
tional assumption that the particles feel a lift force which is a function of the
shear rate, - Fi = [dx). The introduction of this lift force was motivated
by Ho and Leal’s lift force but is not of the same form as their result.

A linear stability analysis about an equilibrium plane Oouette flow was consid-
ered, allowing perturbations in the particle density and the fluid velocity parallel
to the walls. The perturbations were considered to be independent of the the
distance along the flow. An instability was found for shear rates above a critical
value. The interpretation of this made by Nozieres and Quemada was that the
flow breaks up into domains for the shear rates above the critical value, -, given

by
2 /><//*, (4.6)
Here /(" is dfi/dn where fi is the chemical potential and /' is djj/071. The ratio
is effectively the ratio of the magnitudes of the diffusional forces and the lift
force.

The model ignores the inertial effects of the fluid on the grounds that there is
no velocity gradient along the flow. This is true at equilibrium and is consistent
with the the stability analysis used. Although this is true it ran be argued that
a less restrictive perturbation should be considered, allowing perturbations to be
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functions of the distance along the channel. In this case the inertial terms must
he taken into account.

42.2 The model of McTigue, Givler and Nunziato

A different approach was used for the model suggested by McTigue, Givler and
Nunziato. The model begins from the assumption that both the true fluid and the
particulate phase can be modelled as fluids. The two phases are assumed to be
inter-penetrating and able to exchange momentum by means of the hydrodynamic
forces discussed earlier. The momentum equations for each phase are expressed
in terms of the volume fraction of the appropriate phase, 4a. The subscript
a becomes p to indicate a particulate phase and / for the fluid phase. The
momentum equation can be expressed in the following form.

Pnti —fVa.vVv,j =V.T, + p,<\b,+ ma. 4.7)

Here s the density of the appropriate phase, V,, the velocity field. The vis-
cous stresses and pressure terms are denoted by T,, body forces by b, and the
interactions due to hydrodynamic forces by m,,.

In addition to this two continuity equations are used,

(4.8)

These equation ensure that conservation of fluid and particles are both satisfied.
The interaction terms for the solid are assumed to be of the form

nip= Vi—=Vp)+<GV.D/ +p<dp, (4.9)

F=<il+2aDl, G=/il+2&D/ (4.00)

with D/ being the symmetric tensor defined by D/ = i(VV/ + VVJ-) and the
symbol 1 representing the unit tensor. The n’sand /i’s are treated as constants.
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The interaction terms for the fluid are assumed to be the negative of this, in
order to conserve momentum.

This form was shown by Passman [75] to be an exact second-order approxi-
mation for a general “frame-indifferent” constitutive relation for tbe interaction,
m p, which is a function of V/ —Vp, V.D/ and Dj. Frame indifference is defined
by Drew [76] as the requirement that the relations are invariant under changes
of reference frame. In the bulk this approach is appropriate as the variables
listed are the important variables determining directions. It is not clear that this
approach retains its importance near boundaries , since boundaries can impose
preferred directions on the behaviour of the system.

Once this from has been chosen the interactions defined by the constants «,
JdJ,  and /i are identified as Stokes’ drag, Faxen’s force, Saffman’s lift force
and Ho and Leal’s lift force respectively. An additional term is included in the
interaction term to allow for the effect of the particles on the fluid velocity. This
is equivalent to using the Einstein relation mentioned in chapter 2,

File equations obtained by this approach cannot be solved in a closed form
as they stand, since there are more unknowns than there are equations. This
is not an uncommon problem in models of this sort and it is usually solved by
postulating a constitutive relation between the fluid and particle pressure terms,
p/ and pv. Mctigue et al used a relation of the form

pe=pi t THWVL—=Vp)2+ CTrace(D/). (4.11)

This introduced a term, r due to Brownian pressure, with Ca bulk viscosity and
u; a constant. This allows the equations to be solved in a closed form.

The model was solved for the case of plane Poiseuille flow using both an
approximate analytic technique and a numerical approach. The results showed
that a non-uniform concentration profile occurs across the channel width, due
to the lift forces present. Since the exact profile is a function of shear rate, the
apparent viscosity is also a function of shear rate. Thus the model behaves as a
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single, non-Newtonian fluid. The stability of the resulting equilibrium solutions
were not discussed.

The need for an extra constitutive relation makes this type of model rather
unsatisfactory. An alternative approach was suggested by Passman [77] for dilute
suspensions. Passman suggested that arguments similar to those used in the
kinetic theory of gases could allow a momentum equation to be obtained for the
particulate phase, giving an immediate interpretation of the particle pressure,
which would remove the need for an extra constitutive relation. This is the
approach used by Batchelor to describe a fluidised bed and the approach which
we shall use. First we describe Batchelor’s method in some detail.

4.2.3 Batchelor’s model of a fluidised bed

Batchelor produced a model of a fluidised bed in order to investigate the stability
of siuli systems [40]. In order to be as complete as possible the model was
obtained in a formal manner. The approach used was similar to that used in
the kinetic theory of gases. Batchelor’s model is one dimensional, in that all
quantities are averaged over horizontal planes normal to the direction of the fluid
and particle velocities, which are vertical are driven by gravity. Because of the
one-dimensional form of the equations, Batchelor showed that only the behaviour
of the particles need be considered. For a mean particle velocity, V, and a volume
fraction, < the flux through a control surface is \k> Hence the mean fluid flux
is —\5>and the mean fluid velocity —V<tf(» —& (assuming the sum of the fluid
and particle volume fractions is unity).

The approach used is to consider the quantities of particle number and particle
momentum, which must both be conserved. We first consider the conservation of
particle number. Considering the rate of change of the number of particle centres
within a cylindrical volume with a vertical axis, gives

(4.12)
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The terms multiplied by 6 and G are associated with virtual mass effects due
to fluid inertia and are important at high Reynolds numbers. The precise form
of these terms is not clear and Batchelor presents this form as a “provisional
guess”. The term involving {v2) is due to perturbations in the particle velocity
caused by turbulence or particle-particle interactions. The next term Fh(V.<t>) is
the external gravitational force acting on the particles. The contribution given
by Fh(U, | is due to friction or drag tending to equalise the particle and fluid
velocities. Next we have the diffusion forces acting on the particles characterised
by the diffusion constant, D, with a mobility, B. These diffusion forces are treated
as external to the particles and are important in our following calculations. The
final term is equivalent to a particle viscosity which Batchelor states should be
important when particles are very close together such as in a layer of sediment.

4.3 A New Model For Flowing Suspensions
43.1 The regime of applicability

We shall construct our model by following Batchelor’s argument’s for the be-
haviour of a distribution of particles within a one dimensional fluidised bed [40]
ami generalise his arguments for a system of 3 dimensions." We choose the parti-
cles to be neutrally buoyant and spherical for simplicity.
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Unlike Batchelor, we shall not consider a concentrated suspension of particles.
For a dilute suspension, we expect the particles to be separated sufficiently that
they do not interact with each other in any direct manner. As a result of this we
need only consider those interactions between the fluid and a single particle and
may neglect effects which are the result of multi-particle interactions.

Before we continue the construction of the model we must note that there
are two Reynolds numbers which are important in this analysis. The system
Reynolds number, R,, is given by pV L/i] for a fluid of density, p and viscosity,
4, In a channel of width, L, with a scale velocity, V. There is also a particle
Reynolds number, Rp, defined by pVal= where a is the particle radius. Since
we expect a to be much smaller than L then we shall have Rr o> Rp. (The
scale velocities may also differ but this result will still be true as the particle
scale velocity will not exceed the system scale velocity). In this analysis we
shall assume the particle Reynolds number is small enough to allow us to use
the expressions for Stokes’ drag and the other forces discussed earlier. We can
now discuss Batchelor’s expression for conservation of particle number and fluid
momentum in the light of these restrictions.

4.3.2 The particle equations

Conservation of particle number is straightforward and follows directly from
Batchelor’s work to give
AtV (V) =0, (4.14)

where 1 is the particle concentration and Vp is the average velocity of the parti-
Cles.

The momentum equations need a more careful approach. There are several
effects which Batchelor considers in his model that are not appropriate for our
model. We shall neglect the virtual mass effects since they are only important
at a high particle Reynold’s number. We may also neglect the effects of the
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perturbations in the particle velocity field, (v2). Since we do not expect to be
in a turbulent regime and we are ignoring the interactions between particles, the
two possible situations which require this term do not occur.

Although the effects of gravity are essential in a fluidised bed, they are not
expected to play an important role in our model since the particles are neu-
trally buoyant. Therefore we may ignore the term Fh(V,<p). The effects of drag
(Fu(U, ¢)) are very important and we shall include them in the form of the Stokes
forces. The final term in Batchelor’s expression is expected to be important when
the particles are close together and is a form of particle-particle interaction. Be-
cause of this, we neglect this final term as with all the other particle-particle
interactions,

For our system we must consider additional forces which are not present in
Batchelor’s model. Since the particles are not interacting, we can use the ap-
propriate single particle results. The presence of boundaries gives rise to the
previously discussed lift force, H”, which acts in the direction normal to the
walls. We must also consider Faxen’s forces, F*V.V/, due to the curvature of
the fluid velocity profile. Unlike Mctigue, we choose not to include the Saffman
lift force. This is due to the fact that the Saffman lift and the lift force of Vasseur
and Cox are not compatible in their derivations. Vasseur’s calculation assumes
that the outer expansion is irrelevant and has a good agreement with experiment.
Since Saffman’s calculation relies on existence of the apparently unnecessary outer
expansion we are justified in neglecting this contribution (for narrow flows).

Considering the flow of momentum through the boundary of a spherical sur-
face (the 3-dimensional version of Batchelor’s cylindrical surface) gives the fol-
lowing expression for the conservation of particle momentum in our system:

m (4.15)
HS*(VI =Vp) FnFVIj.
Here /I*, IF, S*and F* represent the lift force, diffusion forces, Stokes' drag
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and Faxen forces respectively. The star indices indicate that these values are
dimensional quantities. The lift force is in the - direction, denoted by the unit
vector, z. If we now consider plane Couette flow, we assume the lift force given
by Vasseur and Cox has the following form

«_ dirpadv2 (d\
He= drpalfz(dh ) (4.16)

where p is the density of the fluid/particles, a is the particle radius, V is the

scale velocity (the velocity of the moving boundary) and L is the scale length

(the width of the channel). For convenience we have defined - and V/ to go from

0 to +. This expression is a reasonable analytic approximation to the numerical

results of Vasseur and Cox and gives a manageable expression for our model.
The other terms are defined as

D" = kT,  S*- dwrja, F"=mja3. (4.17)

Here we have used k to be Boltzmann’s constant, T the temperature and f] to be
the viscosity of the suspending fluid.

We can put the conservation equation into a more convenient form using the

conservation of particles and the fact that m - Ana*p/'i. Also the number density
is proportional to the volume fraction, $xsuch that n = (s<")/(s2rn3). This gives

Mo=VLU(VK) (4.18)
and

Mg +V™V)Vp = ang {-*w**- (4.19)
HKASHVI - V) + <BFVI\,} .

4.3.3 The fluid equations

In a . dimensional model there is no need to obtain the equations for conservation
of fluid volume and fluid momentum. In our 3-dimensional model we must have
these equations. Now we discuss how to obtain the fluid equations.
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All the terms on the right hand side of the particle momentum equation 4.19
are due to interaction forces where the suspending fluid acts upon the particles.
When considering the fluid equations we must take into account the resulting
reaction of the particles on the fluid, which will he the negative of these terms.
We must also take into account the viscosity of the fluid (which isa function of
particle concentration) and the pressure gradient. The momentum of the fluid
will be proportional to the voidage fraction, 1 —<p Any dependence on this
parameter is absorbed into the definition of the viscosity for the viscous terms,
and similarly the pressure gradient. This gives a conservation equation for fluid
momentum as

p(\-d>) (jt +Vywv) Vv, =V .M +2jVVy}-vp o (420)
¢ ] - D'+ BS(Y, - vp+ JFV 13 .
Here we assume that for small perturbations in particle volume fraction, 65
from the mean volume fraction, 4> we can write the viscosity as t) + ijb<p with

t = dijfiyd>-
Tlie corresponding continuity equation is

A RAZI(EY (4.21)

It can be seen from the form of these equations that we have no form of
particle viscosity or particle pressure involved. This removes the need to postulate
a constitutive relation in order to close our system of equations. We now have
the requisite number of equations for the unknowns (Vp,V/,p, $

4.3.4 Boundary conditions

In order to obtain a useful solution of these equation we require the appropriate
boundary conditions. The conditions on V/ are obviously the usual fluid bound-
ary conditions of zero normal velocity and the no-slip condition. The conditions



for Vpare not so obvious. The normal velocity must be zero as for V/ to prevent
a flow of particles through the wall. The question of the no-slip condition is not
so simple. The argument for the no-slip condition is usually that any disconti-
nuity in velocity gradient at the wall will result in large viscous stresses tending
to equalise the velocities [78]. However these arguments are known not to apply
to very dilute gases, which is effectively the case here. Since we have no particle
viscosity it does not seem appropriate that the no-slip condition be applied. The
fact that the equation of conservation of momentum for particles is of first order
in Vp means that we will not have underspecified the boundary conditions by
relaxing the no-slip condition.

The boundary condition to be applied for $is more complicated. This is
particularly the case when the lift force is considered since this force occurs only
when particle inertia cannot be neglected. The effect of particle inertia is to intro-
duce non-local effects, since the inertia of the particle depends on forces applied
at earlier times than the time being considered. For the moment we shall merely
state the physical condition that there should be no flux of momentum through
the walls of the system. The mathematical implementation of this condition is
discussed for specific cases in the next chapter, where certain assumptions will
be made about the form of the solutions.
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Chapter 5

A Suspension Undergoing Plane

Couette Flow

5.1 The system to be modelled

In the previous chapter we constructed a model which describes the behaviour of
a flowing suspension using the forces acting on particles on a microscopic scale. In
this chapter we shall present a solution for the particular case of plane Couette
flow. We shall consider first the equilibrium solution for the system and then
discuss the stability of the equilibrium state.

As they stand, the equations we have are non-linear and hence solutions are
very difficult to obtain. Not only do we have the non-linear terms due to inertia
but also the non-linear expression for the lift force. Because of this we are forced
to look for mathematical approximations which can lie made in order to obtain
solutions. To aid this process we first consider the equations in a dimensionless
form.

The system we shall consider will consist of neutrally buoyant particles with
a radius, «, of about :/im, suspended in a fluid confined between plates with a
separation, /.. of lcm. The density, p, and viscosity, rt), of the suspending fluid
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will be taken as the appropriate values for water at a temperature, T, of 293k.
This gives p = 10:kGm.s and ilo = 10-:kGm-,s-1. We shall also assume that
that average shear rate, V/L, is approximately unity.

5.2 The equations in dimensionless form

In order to obtain the dimensionless form of the governing equations, we make
the following substitutions:

(x,y,2) (x,y,2)/IL, t—=+tV/L (5.1)
(Vp, V) (Vp, VNIV,  p—>pLlj)oVv.
| sing the same definitions as in the previous chapter V/ and Vpare the fluid and

particle velocities respectively. Thus using RFas the Reynolds number, pVd/i]o0,
we obtain in dimensionless form

BR (N +vr*v) VP = DV<t> (5.2)
+<>8(Vf - Vp) + G>FVRV
and
(L-<BRr(e +V,vjV, = V{(o+")VVI}-Vp (5.3)

+ + DV>- <t>§(\i- Vp)- 4>FVA .
Here we have redefined the interaction coefficients as

_ kTL
S D= 4 rioe 54)

| he continuity equations have the same form except with dimensionless variahles
replacing the original variables:



=-V{Vy(l-")}. (5.6)
Calculating the magnitudes of the coefficients in equation 5.4 it is found that
D ~ . and that H can be considerably smaller than unity, due to the factor
(all) ~ 10-4. This suggests that the lift force could be treated as a perturbation
to the system and an expansion in terms of the parameter H may be useful. This
is convenient mathematically since the lift force corresponds to a non-linear term
and a perturbation analysis will allow it to be treated in a linear fashion. We
must note that H contains a factor of the system Reynolds number. Thus such a
perturbation approach would require a restriction to be placed on the Reynolds
number of the system. A conservative estimate would allow values of Re < 100.
This will still allow a wide range of realistic situations to be modelled.
Using this approach we shall now look for an equilibrium solution for Plane
(‘ouette flow.

Figure 5..: Tin- geometry of the problem
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5.3 The Equilibrium Solution

For an equilibrium solution we expect a time-independent, uni-directional flow.
We shall use a coordinate system as shown in figure 5.1. Thus the particle and
fluid velocities will take the form Vp=up(z)’k and V/ = u/(z)x respectively. A
flow of this form will automatically satisfy the continuity conditions so we need
only consider the conservation of particle and fluid momentum. In addition, it
is easily seen that the non-linear terms of the form V.VV are zero for uni-
directional flow.
We now use an expansion such that

Vv, (¥) = Vp.o(z)+HVpA(2), (5.7)
VI(*) = VM(*) + QVII(*),

$ — Gl HM

p = po+Hpl

These expressions are then substituted into the equations of conservation of mo-
mentum and terms of like powers of // grouped together.
The zeroth order equations are

o —— —VPo) + $FV AV, (5.8)
0=V. =V put/)V<>0—{f>05(V/,0—V Pio) —FV'IV fg.
(59)

Fsing the fact that Vp = up(z)x and V/ = ul(z)x, equation 5.8 gives the
volume fraction of particles, 48, to be a constant. This must be the average
volume fraction <) This result is then used to reduce equation 5.9 to the form

VaVio= —VpO' (510)

This is the usual form of the equation for Couette flow of a single fluid. Since
there is no external pressure gradient applied in Couette flow, we put Vb to be
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equal to zero. Integrating the result and applying the boundary conditions (zero
velocity at z-o and z=1) gives

Vio=2X, Vpo=x. 0o=0. (5.11)

We now require the correction to the equilibrium state to first orderin H. The
flow is still considered to be uni-directional. This allows the inertia terms to be
neglected and ensures that the continuity equations are satisfied. The equations
of conservation of particle and fluid momentum at this order are

H A
Qil 2§

Z —E£>V0, + 00S (V —Vpi)+ 00FV /i (5.12)

(
and

o = VLW, + %o VVIQ) - VPl - 00(l-22) i (5.13)
+£DVO, - 0G5(V.s- VPE) - 00FV.V/ 1

1 Sing similar arguments to the case at o (1), we obtain an expression for the
volume fraction, which is a function of z only;

W:Su )+ C. (5.14)

The constant of integration, C, is obtained by requiring that the total volume
fraction of particles is a constant and hence that the integral of o i across the
channel is zero. This gives C - —0/6D.
We can now use this expression to obtain an expression for the fluid velocity
field. Thus we obtain,
AR RS (619
Again we have no pressure gradient and this expression can be integrated to
obtain

W .2 3\
g r (5.16)
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Application of the boundary conditions (u/,i being zero on the houndaries) gives
c =a =0

Finally, the x component of the particle equation gives
405 (ufA —Up)) + 4OF V 2ufi = 0. (5.17)

This gives the particle velocity as upi = u/,j +(r]'4>ai)(1—22)/(i]0DLi). It should
be pointed out that the equilibrium particle velocity does not satisfy the no-slip
boundary condition only as a result of the Faxen forces, which cause the particles
to lead/lag behind the fluid velocity at different points in the channel.

Phi

Figure 5.2: The perturbation in volume fraction, ‘Phi’, across the channel due to
the lift force at equilibrium

We now have expressions for the equilibrium particle and fluid velocities and
the volume fraction:

(5.18)



Vi

0.

0.<

0.2 04 06 0.8 Dt

Figure 5.3: The fluid velocity, Vf, (dashed line) with perturbation due to the lift

In each of these cases the correction term is of order H since (i)<I>)/(iioD) is of
order unity.

It can Ix- seen from figure 5.2 that the particles tend to move towards the
centre of the channel, as expected. Figure 5.3 shows the effect of this on the
velocity field. The shear rate is reduced in the centre of the flow where the
particle volume fraction and hence the viscosity is highest. Near tin- edges of the
flow, where the viscosity decreases, the shear rate is increased.

Now we have an equilibrium solution for plane (,'ouette flow, we shall discuss
the stability of small perturbations from the equilibrium conditions.
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5.4 Linear Stability Analysis

5.4.1 The perturbations

In order to carry out a stability analysis we shall begin by writing each of the
variables as the equilibrium value (designated by a hat) plus a small perturbation.
These expressions are then substituted into equations 5.3, 5.4. 5.5 and 5.6. The
resulting equations are then linearised with respect to the perturbation variables.

An important factor in this analysis is the form of the lift force when we
are away from equilibrium. The form of the lift force used for the equilibrium
calculation relied on the zeroth order flow being plane Couette, for which the lift
force is well known. When we allow perturbations in the fluid velocity to occur
in our system, we shall no longer have a true plane Couette (or plane Poisseuille)
flow, and the correct form of the lift force is unclear. An exact calculation of the
force on a particle in a time varying fluid flow would be very difficult (due to the
non-local effects mentioned in the last chapter).

In the absence of any detailed calculations, we shall assume that the equi-
librium form of the lift force can still lie applied. In addition we shall allow
for the curvature of the fluid velocity profile by including a force of the form
IT\(f>V;] with \ a constant of order unity. This force is of the
form noted by Ho and Leal and accounts for the tendency of particles to move
away from the centre of a plane Poiseuille flowl. These two contributions rep-
resent the two main contributions to the lift force and will suffice to model the
general behaviour of the particles.

As in chapter 3, we shall consider only a 2-dimensional system with pertur-
bations of the form

(v..vpp.* = {V(z),Vp(z) p(z) <t (z)}eilke-t (5.19)
‘This behaviour is observed experimentally and predicted by the methods of both Ho and
Leal and Vassewr and Cox.



The resulting linearised equations are:
Particle momentum:

SR (V04 vpryyp+ VPV ik dutda), (5.20)

~ du/du/t i1/ N2

+S{¢(V/- Vp)+ -Vt F{VV, + B}
Fluid momentum:
(L <BR .((.%YJ FVIVVI 4V VV]) = (5.20)
V&, +V—0V. {(VV, +(€- "VV }-Vp
, diij d2uj (- ddnzj ddiizf +A%<;/ (- 2)
HV<>- S{(V,- Vp)+ (V- VP}- F{;VNy+ <A [},

article conservation :

G =V (Vpt V) (522

Fluid conservation:
(5.23)

An inspection of these equations shows that the coefficients are not constant due
to the presence of the lift force and inertial terms. This complicates any exact
analysis of these equations considerably so we shall consider a further perturba-
tion approach.

We already have a small parameter, //, hut this is not sufficient to remove all
the difficulties. To overcome this we shall consider an additional small param-
eter, k\ the wavenumber for perturbations down the channel. This is the same
parameter as used in Chapter 3 for our analysis of multi-layer plane Couette flow.
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We therefore carry out a perturbation analysis in the two parameters; H.
the lift force, and k, the wavenumber of the disturbance along the channel. To
achieve this we let the quantities V /,V p,p, $and u be of the form

V= M+ Hxnt kxk (5.24)

For the rest of this chapter we shall use the following notation for the x and
z components of the velocity fields,

VE=ujSi+viz,  Vp=upx+vpz (5.25)

5.4.2  Stability for H=0, K=0

Before we study the equations governing the stability of the flow, we must find
the correct boundary conditions to be applied for $at this level of approximation.
Considering the conservation of particle momentum (equation 5.3) with H = k =
o, We obtain from the ~component (normal to the wall).

o D YW e 6
Since t®and vp are zero on the walls as stated in the last chapter and differen-
tiating with respect to t gives only a phase factor, the condition of zero flux of

momentum through the walls is
o d2H (5.27)

This then is the boundary condition which must be satisfied in addition to those
disc ussed in the- last chapter.

We now take the divergence of the perturbed particle momentum equation
(5.21) and substitute for vj and vp using the perturbed continuity equations
(5.23 and 5.22) which have become

Wj_  iwo, i
o < '?éﬂ' Sl (5.2

2We shall use a raised index notation for the velocity perturbation terms for clarity.
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This gives for the perturbations at 0(1):
4248 iui0S

n+ dzl @ - o) bo=o. (5.29)
This is an equation in 0o alone and we see that gz must be of the form
. . - 1—0) T i"0S
@—AC-FBL /= py 1_4%2 g (5.30)
Differentiating the perturbed fluid continuity equation (5.28) gives
(F Ko
22 (i—gdz’ (5:31)
Substituting this and the expression for 8 into the boundary condition we obtain
'ui08 . . _
I(Ae‘- Be-', = . -32
n+(1_ g\](e e o (5-32)

Since the quantity in square brackets cannot be zero (all the perturbations become
zero if this is the case), the boundary conditions are satisfied by putting A = —B
and restricting / to values of inn, where n is an integer. This gives the dispersion
relation:

_~ (-q = Yj0>- \DRMH"] S(—"_zrz)“* (5.33)
From this we can see that we have two modes corresponding to the two choices
of sign for the square root. Both of these modes are stable at this level of ap-
proximation as long as Q is positive. Using the known expressions for S and F,
and defining the wavelength in the z direction, A= 2/n, the condition for Q >0

becomes o2
w> S T 534

For this condition to be violated, we would require physical wavelengths smaller
than the particle radius. Obviously this is outside the regime of applicability of
the model and we can say that in the regime where we expect the model to be
valid the system is stable.
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It is interesting to notice that the stability at lowest order does not depend
on the form of the equations for fluid momentum conservation. At this stage
particle momentum conservation is sufficient. This is not generally true and is a
feature of the form of the perturbation analysis. Since at this stage the perturbed
quantities are not functions of x we have effectively a one-dimensional system.
Tliis is similar to the case discussed by Batchelor [40] who noted that for a 1
dimensional fluidised bed, the fluid momentum equations are superfluous.

The eigenfunctions at this order can now be obtained in terms of uqg and the
magnitude of the volume fraction perturbations, A. Expressions for Vf and vp
are obtained by integrating the continuity equations and these results used in the
momentum equations to obtain uj and up. The eigenfunctions are

40 = Acos(tiin (5.35)

0 = B0A ki
0 .((1 bmr/lsm(mrz),

= Gm—Tsmfrurz),

= esin(nirz).

where fi and t are real coefficients, given by

6 = h_—(fﬁr)*at {r~/0('i,r)2- iWoRr U * S —i0RrJJ (5.36)
(- o) (L5 - - W -in),

i ul)Rr<F
- iulRr
0=+ iR 0 (5'37)
The general form of the eigenfunction is given in figures 1.4 and 1.5 for the
two possible eigenvalues. Figure 5.4 shows the case with the positive root having
been chosen. This corresponds to the mode close to neutral stability and it can

lie seen that the particle velocities are aligned almost along the channel. There
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Figure T)4: A sketch of the eigenfunctions for Il = 0, k = 0. (a) Positive root
chosen. (1)) Negative root chosen.
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is a small component tending to move the particles from the region of increased
volume fraction to the region of decreased volume fraction, hence the mode is not
exactly neutrally stable. It can be seen that the z component of the fluid velocity
Is oppositely directed to the . component of the particle velocity, in accordance
with the conservation of fluid and particles. At this level of approximation there
IS no such restriction on the x components.

Figure 5.5 shows the eigenfunctions when the negative root is chosen. Again
the particle and fluid velocities have opposing z components to satisfy the con-
servation of fluid and particles. The particle velocity is more strongly directed
from the region of high volume fraction to the region of low volume fraction than
for the previous case. In addition that actual velocities are considerably larger
(although this cannot be shown in the figures, since the scales differ widely).
These two effects demonstrate that this mode is much more strongly stabilising
than the previous one.

These eigenfunctions will be required to calculate the effects of non-zero values
of k anil H. We begin by considering the case for k * 0.

5.4.3 Stability For Small Wavenumber Perturbations

We now consider the stability of the system including terms of order k in our
analysis. Before we discuss the equations in detail we require the boundary
condition to be applied for > Considering the linearised stability equations at
order k, with 1l = o the z component of the particle momentum equation is

=-D ~- +45(v)- vp)+ (5.38)
Using the boundary conditions on vk and vp and the known form of «V°we obtain
dz T dzl (5:39)

This is of the same form as for k = 0 except with new indices representing terms
of order k.
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Using this we can write (. as
(5-47)

where we have evaluated the integrals involving 48. Hence the effects of non-zero
values of k are merely to allow a neutrally stable wave to pass through the system.
This can he interpreted as the zeroth order perturbations being advected along
the channel at the mean velocity of the fluid (mean velocity = s).

This approach of obtaining the dispersion relation is much more economical
than solving the general equation for ¢ and applying the boundary conditions.
The actual eigenfunctions are simple in terms of their functional form, being
products of polynomials in z with sin(nirz) and cos(nirz). However the coeffi-
cients are complicated expressions involving the zeroth order coefficients, making
the application of the boundary conditions a lengthy procedure. This method
means that we do not need to know the form of the eigenfunctions for this anal-
ysis and we shall use the same approach to calculate the stability when a small
lift force is considered.

5.4.4  Stability For A Small Lift Force

As for the stability analysis at order k in the preceding section, we must begin
by obtaining the boundary condition for #h- Taking the equations governing
stability with k = 0, the boundary condition for the expansion at order H is

(5.4¢)

Note that the equilibrium volume fraction suffers a perturbation,  at order //
and the effect is included lien-. We have assumed that the z component of the
perturbations in the fluid velocity does not give a contribution to the lift force.
Using the known expressions for the zeroth order functions, we ran write the
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This gives us the condition
(of(z,uiH)) = -2 {"2<l+ 1) - I (5.55)

Evaluating the integrals on the left hand side of this expression and rearranging
gives the dispersion relation:

|
= Ti [®- 4IDRr X (5.56)

. >0 S &
m "\Xl')+2+4(1-<1>)D —2+\_<t> tFE - S

This expression involves several complicated terms found from the zeroth
onler stability problem. It is obvious that wh must be purely imaginary, although
the sign of the expression is not immediately clear. Despite the fact that we can
choose either sign for the denominator, the value of un is different in each case
allowing the possibility that the numerator will also change sign.

The analysis of the expression is simplified if we restrict ourselves to wave-
lengths of a few particle radii or longer. This allows the expression for uo (equa-
tion 5.33) to be expanded since S (nir)2§> The two roots then become
—iD( 1—4>)(mr)2 —S

(1=4) % sy (557)
As expected from the form of the expression for 0, one is small and proportional
to 1.5, the other is of order S. The first corresponds to taking the positive
value of the square root and the second to the negative root. In this limit, the
denominator of the dispersion relation becomes .S’

If we now consider the expression for W for the positive root in this limit, we
find the dominant terms give

o —

The value for the ratio i//r/o is of order one and, for example, using the Einstein
relation we get a ratio equal to 2.5. The first term shows the competition bewteen
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tlie effects of the equllibrium lift force and the interaction with the curvature of the
perturbation. Since the exact value of \ is unknown it is possible that this mode
may be destabilising when n is small. Since \ s expected to be of order unity,
such a destabilising mode is unlikely and when n becomes larger the mode is
definitely stabilising. This is to be expected since as n increases, the curvature of
the zeroth order solutions must increase, and the interactions with the curvature,
which oppose the equilibrium lift force, must also increase. The second term in
the expression is smaller than the lift force terms and is therefore not important
in governing the stability.

Il we now take the negative sign for the square root then then expression for
>N becomes

This corresponds to a stabilising mode. The second term dominates the expres-
sion except for large values of n, where they may be comparable, but since both
terms are of the same sign, they are both stabilising. Again the first term shows

This time there is no chance of destabilisation oceuring due to the second term,
which dominates in this region.

Although this analysis shows that there is the pssibility that effect of the lift
force can be destabilizing, the effect is never large enough to force the system
into an unstable regime. Since the total dispersion relation is

10—UQ+ Hujfl T kUk, (>.(>0)

where 11 is small, it can be seen that the stabilizing effect of the zeroth order
mode will always dominate any destabilizing effect of the lift force.

The fact that the damping of the system is does not depend on the wave-
number along the channel implies that the damping is dominated by local effects
at this level of approximation. Thus we would expert that local, single particle
effects are dominating the behaviour of the system.
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5.5 Discussion

This analysis has shown that under an imposed shear, our model predicts a stable
equilibrium flow with a small curvature of the normally flat velocity profile. The
stability of this equilibrium state is apparently in disagreement with the result of
Nozieres and Quemada but in fact this is not the case.

The critical shear rate predicted by Nozieres and Quemada is very high due
to the factor rff»;”. Since 4/* = dr//dn and n = <> for a volume fraction, ¢and
the volume of a single sphere, u, then in the dilute limit #* = 257/v. This makes
the ratio =/ ~* of order 10is and the critical shear rate corresponding high. Such
a shear rate is obviously well out the regime in which our perturbation analysis
can be applied. To make any accurate comparison of our model with Nozieres
result would require a fully non-linear analysis, probably by numerical means.
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Chapter 6

Conclusions

In this thesis we have theoretically investigated the rheological properties of var-
ious types of materials undergoing shear flows. In chapter 2 we obtained the
effective shear modulus of an elastic medium filled with a distribution spherical
inclusions. We have shown that a single elastic inclusion can be treated in a simi-
lar way to a polarisable molecule in an electric field. Following the approach used
by Clausius and Mossotti for dielectric materials, we have obtained the effective
shear modulus of a material in terms of the polarisability of a single inclusion.
The resulting expression was in agreement with bounds found by Hashin using
a variational approach. This demonstrated some useful links which can be made
between elasticity theory and electromagnetic theory, two subjects which would
normally be thought of as unrelated areas of interest.

This last result was used to model a gel as an elastic medium containing
spherical voids representing regions of failed bonds. Using a phenomenological
model for the yield stresses of bonds within a gel, in conjunction with this, we
obtained the stress-strain behaviour of a gel subjected to shear. This model
showed that a gel will support a maximum stress given by the yield stress of the
strongest bonds within its structure. These mean field arguments were augmented
by considering the energy density near a single void. This showed that bond
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failures are likely to occur along planes parallel to the plates providing a shearing
force. Thus we have obtained a model of the softening and eventual failure of a
gel.

Il addition to the analogy made with electromagnetic theory, we showed in
chapter » that very useful comparisons can be made between the equations of
elasticity and those of Stokes’ or Creeping flows. We used this to obtain the
displacement field of a spherical cavity near a fixed wall. In the incompressible
limit it was shown that the problem of a point force in an elastic medium is
virtually identical to the problem of a point force in a fluid undergoing creeping
flow.

In chapter 3 we studied a model of layered colloidal structures observed by
Buscall in a sheared suspension of colloidal particles. The layers were assumed to
be fluidised and of an alternating viscosity. A numerical linear stability analysis
of the flow, using long wavelength perturbations, showed that the stability of
the fluid flow depends strongly on the number of layers that are present. A
resonance instability was identified, which is analogous to that obtained by Li
for three layers. This instability occurs for three or more layers. The regimes in
which this instability is important were found to depend strongly on the number
of layers, with the topological structure of the neutral stability curves changing
abruptly when going from five to six layers.

Where a resonance instability does not occur, a different instability was iden-
tified for four or more layers. This is analogous to the instability found by Yih for
two layers and is due to the discontinuity in vorticity at the interfaces between
the layers. In the limit of many layers it was found that the flow is unstable anti
hence that the experimentally observed layers should be unstable. The growth
rate of the instability is such that a time scale of greater than 100$ would be
required for any effect to evolve to an observable scale. .Since the timescale of
the experiment is not known to the author it is not possible to to draw a firm
conclusion as to whether this is in agreement with observations.
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In chapter 4 we have constructed a microscopic model of a dilute, flowing
suspension of neutrally buoyant colloidal particles. To achieve this we followed
the approach used by Batchelor for a fluidised bed. This approach uses the con-
servation of particles and particle momentum in a spherical volume to obtain
governing equations for the particle motions. The effects of Vasseur and Cox’s
lift force were included as well as Stokes’ drag and Faxen forces. Since the par-
ticles were assumed to be approximately Umi in size the effects of Brownian
diffusion were also included. Using this approach we avoid the need to postulate
a constitutive relation involving the particle pressure, since all the contributions
to the particle momentum are obtained explicitly.

In chapter 5 we investigated our model for the case of a sheared suspension.
We showed that an equilibrium flow is obtained, with small changes from the
simple shear solution. These are due to the non-uniformity of the particle dis-
tribution, brought about by the lift forces. This equilibrium flow is shown to
be linearly stable to small perturbations in the particle concentrations and the
equilibrium flow.



Appendix A

Oscillatory Rheological

Measurements

Oscillatory rheological measurements are very useful for observing the visco-
elastic properties of materials. Measurements of this kind involve subjecting
a material to a periodic shear strain, -, of a given frequency, W, such that

7 2 708iN U]t (A 1)

Here the amplitude of the oscillation is given by -o. The response to this shear
strain is also periodic with the same frequency, provided that the magnitude of
the oscillation is small enough for the material to respond linearly. The response
stress, S(t), ran therefore be written in the form,

S(t) —7o(fV'sin uit + Ci"cos uit). (A.2)

(f"and (1" are dimensionally of the form of elastic moduli. They represent the
in-phase and out of phase parts of the response respectively. The in-phase com-
ponent. (1", is known as the shear storage modulus, and represents the elastic
behaviour of the material. (1" is railed the shear loss modulus, and represents
the losses due to viscous dissipation with the material. This is illustrated in figure



Applied Strain/Response Stress

Figure A.l: The applied strain and response stress for oscillatory rheological
measurements

The general visro-elastir behaviour of a material is usefully described by the
definition of the phase angle, b, where
tan o= 9". (A3)

A purely elastic body will have a response precisely in phase with the applied
strain, and hence have b = o. A purely viscous body will respond out of phase
with the applied force, giving a 6 of 90 degrees.
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Appendix B

The Green’s Function For An

Elastic Medium

The equation of equilibrium for a distribution of body forces, £, throughout an
elastic body s,

pvV'm + . _/*zi/)—V(V.u) = -F. (B.)
Here we denote Poisson’s ratio by u and the shear modulus by fi. If we Fourier

transform this equation, denoting transformed quantities with tildes, we obtain
Jekat + (1 _/*2*/)—k(k.u) = F. (B.2)

Using index notation and inverting this equation gives

*- . 1Prrbj) <>
where  here is the Kronecker delta, which is zero unless its indices are equal.
Equation B.3 can now he reverse Fourier transformed to give a convolution inte-
gral

1

i x>
where < =
This expression is equivalent to the Green’s function given by Landau and
Lifshitz [43] , but has been*f>y a more direct method here.
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Appendix C

Macroscopic Elastic Polarisation

First we consider from the Green’s function for the displacement vector, tq(r),
due to a distribution of forces, Fk(r') (See Appendix 4).

Here fi is the shear modulus and J is Poisson’s ratio.

A Taylor expansion of the terms in the square brackets is equivalent to re-
placing the force distribution by the appropriate multipole distributions. Here
we consider only the first two terms in such an expansion,

where Fk is the distribution of point forces, and F£j is the distribution of dipolar
contributions. Once this expansion is made, we calculate the strain, in the
usual way. using

Wit = s (#U* + dkUi). €.J)
Ihe stress field, rjk, is then obtained using Hooke’s law,

If we now take the divergence of the stress, after a fairly lengthy calculation, we
obtain,
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This has used the the fart that derivatives of the radius vector have delta function
components, with the following weights.

) ~-jM (r-1) (C.6)

didjdkd \r = I'] ~ + sikej, + sugkys(r - 1) (C7)

We now define the clastic displacement field, Gk, by analogy with the electric
displacement vector. D. such that,

d,Gik = -F£ (C8)
Hence the divergence of Glk gives us the point force distribution. This gives us,
Gk - erk—Fk (C.9)

which is the elasticity analogue of D = E +4 4P as used in electromagnetic theory.



Appendix D

The numerical stability analysis

for multi-layer flows

D.I The zeroth order calculation

Tlie Orr-Sommerfeld equation at zeroth order is

iTVaj _
AN oJ)

where is the perturbed stream function in the jth layer of fluid. This has a
polynomial solution in each layer:

Applying the houndary conditions described in Chapter 4 gives the following set
of recurrence relations;

Aopt  — a0+ yj(B0j —S0>H) + vj(coj — Co>H) (DJ3)
+y'(Do,j — Boj+i)

Bojt\ — Boj +2y;(Co; —Co,j+i) + *iyj(Do; — Do +\) (D-4)
+Fj(A0] +yjB0j +ypco,j + YjBo,j),
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[0 = (-o,l-l-:--é (0.5)
and

#0,j — #0,1— | 0.6
j Fi ( )

where F3= (b3—e>ti)/e0j, and y3 is the position of the jth interface.
If we take AQ,i to be unity then the boundary conditions at y = I are

1+ #oi+ (oit#od -0, #o,i+2Co,i+ 3ko,i = 0. (0.7)
The boundary conditions at y = 0 are
AOn = 0, #o,0 = O. (0.8)
We can calculate 0, and #o,i in terms of B\ to get
(0i= —2#0.i 13), #0,i = #0,it 2L (0.9)

All the C0j and DOj are now known using the recurrence relations D.4 and D.5.
We now use the substitution

Poj = Ao>+ #oahoj  #0> —#0> + #oito,. (). 10)

This leads to a set of four recurrence relations which after substituting for f'o;
and #o.: become

Vi

¢ - Fy3)A0) - FY3BOj+ iy3(-\)I(i- 4y3) (o .11)
FFY3Q(i - 2jf)),

foj+i = (L+ Fly)bad- Fjho}+ tyj(—D(eyi- ) (0.12)
+FY1Q3(2y] - 3),

Mgt = (1- #tj)"o,j - Fly3B03+ vy](-iy(2 - 2y3)  (D.13)
tFY1Q32 - ¥3)
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= (L + Fjyjpeoa- A0+ «YI(-1)I(3yJ - 4) (I) 14)
+FlyiQ1(yl- 2),

where /= (:/m) —. for a viscosity ratio, m, and Qj = w + lj/(I + (—))].
The transformed boundary conditions become

40,| =, -40,i =0, S0, = o, SO,I = (D15)

and
4ojSan - BonAgn —G(C0) . (D.16)

We now have a set of recurrence relations which have we can iterate with a single
unknown, ¢0. Thus solving this eigenvalue problem is now equivalent to finding
the zeroes of G'(co).

Inspection of the recurrence relations shows that G'(co) is a polynomial of order
N —ZLin 1/r'o. It can also be seen that all the coefficients in the recurrence relations
are real. Thus if less than N — 1 roots exist then the other roots must exist in
complex conjugate pairs. In this case one of the pairs of roots will correspond to
an unstable mode. Using this approach of looking for real roots only allows us to
use only real variables, which is a considerable simplification compared to using
complex variables. Finally, the values of the zeroes are obtained using a bisection
algorithm,

When N —1 real roots have been obtained then we know that the system
is neutrally stable at this order. In this case we must consider the first order
correction to c.

D.2 The first order calculation

The first order stream function satisfies

inH ~ ) (D.17)

fly2
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This gives the following form for ¢hj,
0ij = Mij+ Bx.vt ctiyat Djjys+ iarinjcy). (D.18)
The functions hj(y) are defined hy
hi(y) = ~w)yg + {Co,b} +3D0j(2] —c0)}j; + Dojojgy. (D19

As for the zeroth order calculation, application of the interfacial boundary condi-
tions results in a set of recurrence relations which cannot be separated to obtain
a general solution. These are,

Ajjti - Ajj+ —Bij+) + y|(Ci,j —Cjj+i) (D.20)
+Yj(Di,j - Dij+i) inRj*hj afisi O0),
M+l - (L + Fjyj)Bij - FJAN + 2§)(Cij - cij+1) (D-21)
+3y*(DY - Dij+i)+ Ry](Cij + ynDu )
i th <fj+i
+I<\RJ\ By fij+i <>(?y +Fh I e
- et~ (1 (D.22)
and
Cijti _ NN -1)} mo>
The boundary conditions at the walls are,
Ri,i 4 Cj,i -D\\ + inRthi(1) =0, (D.24)
R\\ -£2Cij T 11)i iotR\*—gy— = Q, () 25)
at j/= 1 and
Aiv =0, Bln=0 (D.26)



at Y=o
We now make a transformation similar to that for the zeroth order problem.
This time it is more convenient to transform all the variables such that

X\j —iaR\Xij + BVX\;. (D.27)

The recurrence relations for the variables X\t are identical to the equations for
the zeroth order problem with X0 being replaced by Xtj. These equations are
simply iterated using the known values of Co

The recurrence relations in X'\j become

Miti — o FiyDAL]  FjyjB\j = Vj(C\j —(7ij+) (D.28)
2 ViWu ~ A J+.)- Fnftfii +yjDi) + Qi(hi - jﬁde - F™h))
-Qj\(hj+i — y )+cﬁyj4>°'jcu
flod: - +FiypBij —FiAv; +2yi((v —TijH) (ng)
13<(E> - Aj+) + FHiPi+j/,4) + + FA)
<Atit a.
t|y e0,j:
* Liom  domje. (F/ij
tiis2 WE }. (D30)
and
A L [(>A  tFhitl)
/0+1/)J+1 - pA, + g (a-T - “gp-J ' (D.31)
where ¢j = taA|C|.
The boundary conditions at j/ = lare
(11 = o, Y11 = o, (D.32)
A ) - (ty 61') = - /;y+ 2kn
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Finally, the boundary condition at'y = 0 becomes

N

AnBiN — = H(c) = 0. (D.33)

It can be seen from these relations that all the variables X jj must be entirely
real and that rj is also real. From this we see that the first order eigenvalue cj
must be entirely imaginary and of tbe form

ci = iaRilJ, (1).34)

where .7 s a real function.

The problem is now similar to the zeroth oqjer case. We must find the zeroes
of the function H(c\). This is more simple tha/for the zeroth order case since H
is linear in cj anti the zeroes can be calculated directly without using a hisection
algorithm,
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