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A b str a c t

In this thesis we present a theoretical investigation of the  rheological properties 
of gels and colloidal dispersions, subjected  to shear stresses.

We present a m ean field calculation of the  elfective shear m odulus of an elastic 
m aterial containing elastic inclusions and  use the resulting  expression to model 
a gel under shear. We calculate the  stress-strain  curve for such a gel and show 
th a t the  gel is expected  to fail along planes parallel to  the p lates providing the 
shearing forces.

A model of layered colloidal s truc tu res is investigated by considering the 
sheared flow of m any layers of fluid with differing viscosities in each layer. Such 
flows are  shown to  be linearly unstab le  for all system s w ith more than  four layers, 
when long wavelength pertu rbations are present.

A m icroscopic m odel of a flowing suspension of neutrally  buoyant spheres is 
presented, based on the approach used by Batchelor to  describe a fluidised bed. 
This model takes into the  account the lift forces of Vasseur and Cox and the 
diffusion effects of Brownian m otion. T he model is used to calculate the equilib
rium  partic le  d is tribu tions and fluid velocity profiles for a suspension subjected 
to shear. This equilibrium  solution is shown to be stab le  to small fluctuations of 
the flow, by a linear stability  analysis.
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Chapter 1

Introduction

1.1 T h e  P r o p e r t ie s  O f S tr u c tu r e d  F lu id s
1.1.1 W h a t is rh eo logy?
Rheology is the  study  of the  deform ation and flow of m aterials when they are 
subjected to  external m echanical forces. Many com m on substances dem onstrate  
rheological properties which are sim ilar to  those of an ordinary liquid at first sight 
bu t. on closer inspection, turn  ou t to have much m ore com plicated behaviours 
than  liquids such as w ater. Many industrially  im p o rtan t m aterials fall into th is  
category m aking the  scientific study of these properties of im portance.

1.1 .2  V isc o -e la s t ic  m a ter ia ls
An exam ple of an everyday m aterial which shows unexpected rheological p rop
erties is cornstarch or custard  powder. This will flow q u ite  freely down a sloping 
surface bu t can behave like a solid under rapidly applied stresses such as during 
a sudden im pact. T his is an exam ple of a m aterial which shows visco-elastic 
properties . If a  visco-elastic m aterial is subjected  to  a  rapid deform ation it will 
behave as an elastic solid but the same m aterial will flow like a viscous fluid if
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subjected  to  a slow deform ation. The ratio  of the tim e taken for the  m aterial 
to  relax back from a deform ation to the tim e  of taken to  deform the  m aterial 
is known as the  Deborah number. For large values of th e  Deborah num ber the 
m aterial will behave as an elastic solid, whilst for small values, the  behaviour is 
th a t of a viscous fluid. Many s truc tu red  fluids have a D eborah num ber of about 
unity, leading to  interesting rheological properties.

Shear Storage Modulus /  Pa (* )  Delta / degrees (+ )

Figure 1.1: The elastic properties o f C T A B  subjected  to oscillatory shear strains

An excellent exam ple of a m aterial with strongly visco-elastic properties is 
cetyl tri-m ethyl am m onium  brom ide (('TAB) in solution w ith salicylic acid. Fig
ure 1.1 shows a plot of the elastic properties of CTAB1 when subjected  to  an 
oscillating shear of varying frequency [1], T he property  m easured in this case 

'A ll the experim ental d a ta  shown in figures 1.1-1.3 were obtained  using a Boldin controlled 
stress rheom eter in collaboration  with the Paints division of I d .
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is the shear storage m odulus. M athem atically  this is given by the  real part of 
the complex elastic m odulus which relates the  applied strain  to  the  response 
stress. Physically this param eter gives a  m easure of the  elasticity  of a m aterial. 
The quan tity  D elta gives the  phase difference between the  applied strain  and 
the responding stress. This corresponds to  the  argum ent of the complex elastic 
modulus. (These m easurem ents are described in m ore detail in appendix A ). 
For a purely elastic m aterial the  phase difference should be zero. For a  purely 
viscous fluid the  phase difference will be 90 degrees. T he figure shows th a t as the 
frequency of the  oscillation is increased from 0.01 Hz to  10 Hz the  phase differ
ence changes from  near 90 degrees to alm ost zero. This clearly dem onstrates the 
tendency for ('TAB to  behave as a fluid on long tim e-scales (low frequency) and 
as an elastic solid on short tim e-scales (high frequency).

Figure 1.2 shows the  behaviour of a non-drip paint when subjected  to the  same 
oscillatory stra ins as ('TAB in figure 1.1 [1], It is seen here th a t the  phase differ
ence changes relatively little  over the range of frequencies, showing th a t the  paint 
is not strongly visco-elastic. The shear storage m odulus changes com paratively 
slowly, increasing by a  factor of 10 over the  frequency range.

1.1 .3  N o n -N e w to n ia n  F lu id s
A sim ple fluid whose viscosity is a constan t under all conditions is known as a
Newtonian fluid. By contrast a fluid whose viscosity is a  function of stress or tim e
is usually referred to  as a  non-Newtonian fluid. For the  purposes of this discussion
it is convenient to discuss non-Newtonian and visco-elastic properties separately, noted.
but it should be ^ th a t  visco-elastic m aterials are frequently non-Newtonian and 
vice versa.

As we have seen, m aterials such as a non-drip paint do not behave in the  same 
way as visco-elastic fluids bu t they do show significant differences from simple 
fluids. These m aterials behave as solids when small stresses are applied. When
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a larger stress is applied, such as by brushing a  paint brush across the pa in t, the 
m aterial will flow like a liquid. This shows the  characteristics of a shear-thinning  
m aterial whose viscosity decreases as the applied stresses are increased.

Shear Storage Modulus / kPa (* )  Delta / degrees (+ )

Figure 1.2: The elastic properties o f  a non-drip paint subjected  to oscillatory 
shear strains

Many o ther types of behaviour can also observed, such as shear-thickening  or 
dilattncy, where the  viscosity increases with increasing stresses. Also thixotropy  
is common where the viscosity is a function of the  length of tim e the  m aterial is 
under stress.

An exam ple of a m aterial which shows both shear-thinning and thixotropic 
properties is given in figure 1.3. This is ano ther type of paint, which shows a 
decrease in viscosity (the gradient of the s tress/ shear-ra te  curve) as the  shear-ra te  
is increased. It also shows th a t the  curve follows a different path when the  shear-
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ra te  is decreased from the  m axim um  value to zero. This shows th a t rheological 
properties are  tim e (or history) dependent, m aking the  m aterial thixotropic.

All of these different rheological properties are im portan t when considering 
the  industria l uses of struc tu red  fluids. For exam ple, a non-drip paint should be 
solid in the  container, yet it m ust flow easily when sheared by a  pain t brush so 
as to  be taken  up by the  bristles of the  brush (shear-thinning). It can then be 
easily applied  to  the  surface. Once on the  surface the  paint m ust be fluid enough 
to flow into any irregularities in the  surface and to  remove brush m arks. It m ust 
then regain its  viscosity to be strong enough to support its own weight on vertical 
surfaces (th ixo tropy), otherwise sagging will occur as the  paint slides down the  
surface. F inally  the  paint m ust dry to give a tough, durable surface.

Stress (Pa)

Figure l.d: Stress as a function shear-rate for a shear-thinning, thixotropic m a 
terial
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1 .1 .4  T h e  s tru c tu re  o f  c o m p lex  fluids
T he unusually com plex behaviour of the m aterials ju s t described is due to  the 
size and shape of the ir com ponent molecules. Unlike sim ple fluids, these fluids 
are  composed of large molecules, with sizes much greater than  those of a sim ple 
fluid such as water. These structures lead to  a very wide range of mechanical 
behaviours, with the  precise behaviour determ ined by the  precise size and shape 
of the com ponent molecules.

The actual s truc tu res which make up these fluids can vary widely. A common 
form is th a t of the  polym er. Polymers are useful in the  creation of structured  
fluids in several ways. The length of chains in m any polym ers can be closely 
controlled and this can he used to produce molecules w ith quite specific proper
ties. For exam ple, latex spheres can be produced with very small variations in 
size. Such m ono-disperse molecules are ideal for theoretical m odelling, since all 
th e  molecule’s sizes and shapes are known in advance and more sim ply described 
than  more com plex structures.

The non-drip pain t, whose visco-elastic behaviour is shown in figure 1.2, is 
an exam ple of a polym er system . The o ther paint (figure 1.3) is composed of 
clay particles, which gives it different rheological properties. The behaviour of 
('TAB is due to the  way the molecules arrange them selves into micelles. In this 
case the micelles are rod-like objects up to  1 pm  long, although only 20-30 nm 
wide. These micelles form a network which give ( ’TAB its strongly visco-elastic 
properties and ran  clearly he seen in electron m icro-graphs, as shown by Vinson 
and  Talmon [2].

The general nam e for a partic le  which is in the size range which is interesting 
for rheology is a colloidal particle. This usually covers particles which lie in the 
range from lnm  to lp m . These are not rigid lim its b u t are used to  define the 
scale at which surface effects for each partic le are com parable with, or exceed, 
th e  effects due to  the  bulk of the  particles. The partic le  need only have one



dim ension in the  colloidal size range in order to  show colloid like behaviour.

1.2 T h e  S ta b ility  O f C o llo id a l D isp er sio n s
1.2.1 W h a t are co llo id a l d isp ers io n s?
Colloidal dispersions consist of discrete colloidal particles w ithin a continuous 
dispersing m edium . M ost of the following discussion will consider dispersions of 
solid partic les within a liquid phase. There are  however several different types of 
dispersions, such as aerosols which are dispersions of solids or liquids in a  gas, or 
emulsions which are a liquid dispersed w ithin a  liquid.

W hen a large num ber of colloidal particles a re  dispersed in a fluid phase, it 
is usually im portan t th a t the  particles rem ain dispersed, ra ther than  clum ping 
together in a single large mass. This la tte r  process is known as aggregation 
and can occur to varying degrees. The partic les m ay aggregate into a relatively 
open netw ork, called a floe, which is easily broken up by stirring  or shearing 
the  dispersion. This aggregation process is given the  nam e flocculation. When 
aggregation occurs so th a t the aggregates can n o t be broken up by s tirring  or 
shearing the  dispersion is said to coagulate. T h e  difference between these  two 
behaviours is due to the  different in ter-partic le  forces acting in the  dispersion 
and is discussed below.

A colloidal dispersion is said to  be stable if flocculation does not occur to  a 
significant ex ten t. In general the stability  or o therw ise of a dispersion m u st be 
considered in term s of the  forces which act on th e  particles within the  dispersion. 
These can occur as in ter-particle forces such as e lec tro sta tic  a ttrac tio n  /  repulsion, 
or as external forces such as gravity. In addition to  forces such as these we m ust 
consider the  effects of Brownian m otion which can be very im portan t for partic les 
of colloidal dimensions.
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1.2 .2  In te r -p a r tic le  forces
The first g roup  of forces we discuss are Van der W’aals forces. These are fam iliar 
from the  role they  play in sim ple liquids. For colloidal particles it is frequently 
assum ed th a t  the  Van der Waals a ttrac tio n  can he calculated by assum ing th a t 
every m olecule in the partic le  a ttrac ts  every molecule in a neighbouring particle. 
This pair-w ise sum m ation of single m olecule forces results in a total force th a t 
acts betw een colloidal particles [3]. A lthough th is is a crude m ethod of m odelling 
the  in te rac tio n , it gives a useful guide to  the  effects of Van der Waals forces. 
An ex tra  correction  is required when the  particles are m ore than  about 50nm 
apart. T his is due to the  finite speed of light which causes correlations between 
particles to  be  reduced. This causes the  force to  drop m ore rapidly and is known 
as retardation  [4].

E lec trosta tic  forces can be im portan t when the  colloidal particles each carry 
a net electrical charge. The precise effect of electrostatic forces depends very 
strongly on th e  dispersion m edium , which frequently will contain ionised m ole
cules. This can  lead to the form ation of an electrical double layer, where the  
charged colloidal particles each a ttra c t a layer of oppositely charged ions around 
them selves. T hus the effects of e lec tro sta tic  forces can often be controlled by 
adjusting  th e  pH of the suspending m edium .

Steric forces are particularly  im p o rtan t when considering polym ers. These 
forces are d u e  to  the interaction of polym er chains at the  surfaces of colloidal 
particles. W hen these chains begin to  overlap and in ter-penetra te , we get two 
different effects. Firstly, the  concentration of the suspending m edium  is reduced 
between the  partic les, causing osm otic pressures which force more of the  m edium  
between th e  particles, tending to separa te  the  particles. Secondly, the chains 
become increasingly constrained in the ir m ovem ents, reducing the  num ber of 
configurations they  can adopt. This is equivalent to a reduction of entropy of the  
system  and resu lts  in an entropic force tending  to  separate the  particles.



These are the m ain inter-particles forces which define the stability  of colloidal 
dispersions. The relative im portance of these different forces will depend very 
strongly on the type of dispersion being considered. In general, if we plot the 
to tal po ten tial betw een two colloidal particles we get a curve sim ilar to tha t 
shown in figure 1.4. This curve shows the  com petition between the short range 
repulsive forces (e.g. steric repulsion) and the longer range a ttrac tiv e  forces (e.g. 
Van der W aals forces). This form of interaction is peculiar to  colloidal system s 
having two m inim a in the  potential curve.

Figure 1.4: The io ta/ interaction po ten tia l for two colloidal particles as a function  
o f separation, ft

Figure 1.4 gives an explanation for the  difference between flocculation and 
coagulation. If a partic le  is in the  deeper potential well a t small separation 
(the prim ary  m inim um ) then the  particles cannot be separated  by stirring. The

14



secondary m inim um ) is generally very shallow ( m aybe a few IcT or less ) and 
particles can be rem oved from it relatively easily by stirring  or shearing. Thus 
to  prevent a dispersion from coagulating significantly the energy barrier between 
the  m inim a should be as high as possible.

It should be em phasised th a t these descriptions are qu ite  sim plistic and  tha t 
detailed models of colloidal interactions require m ore specific inform ation about 
the  interactions betw een particles. Although we shall not say anything abou t the 
detailed interactions between particles in the  following chapters, these general 
in teractions will act as a background to our modelling.

1.2 .3  B row n ia n  m o tio n
The m otion of a neu trally  buoyant sphere suspended in a  fluid and sub ject to 
random  Brownian forces can be modelled using the  Langevin equation [5]. The 
random  forces correspond to  the  unpredictable forces im parted  to the  sphere 
during collisions with the  molecules com prising the  fluid. If a particle of mass, 
rn, has a radius, a is in a fluid of viscosity, r/, then the  Langevin equation2 is,

d 2r  d r'"TP + 67r,,ad7 = L̂ ' (*'*)
T he vector r  is the  position vector of the centre of the sphere, a t a tim e t and 
L (/) represents the  random  forces. This corresponds to N ew ton’s second law of 
m otion, with a drag force due to  the  surrounding fluid (using Stokes’ form ula) 
and inertia appearing in the usual way.

Since the  exact form  of the random  forces is unknown, we m ake two assum p
tions which are sufficient to characterise L (/) for our purposes. If, we define the

2E quations with a random  term  such as the Langevin equation are usually referred to  as 
stochastic equations. In som e texts a Langevin equation  is considered to  be a stochastic equation  
with a random  term  which does not vary with position.
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ensem ble average of a process,

<L(<)> =  T 7 £ M < ) ,  (1.2)t=i
where N  is a large num ber and L, is the  force for th e  ith  m em ber of th e  ensem ble, 
where all m em bers have identical initial conditions. We then assum e tha t the  
ensem ble average of the  random  force is zero,

<L(t)) = 0  (1.3)
and  the average of the  square of the force is given by,

<L(/)L(f +  r)> =  (1.4)
where a  is a constant and  S(t ) is a Dirac delta  function. The use of the  Dirac 
d e lta  function here is equivalent to saying tha t the  random  forces are com pletely 
uncorrelated in time.

Since the random  forces have been defined only through averages, we can only 
use the Langevin equation to  obtain inform ation about the average position of 
th e  sphere a t a given tim e. This is achieved by integrating the  equation once to 
ob ta in  the velocity, d r /d f ,  and calculating the average of the velocity squared. 
Then using the  equipartition  of energy at equilibrium ,

, d r, d fj*0 / _ L-!LL\ -  ll-Tf, a 'd *  d t } ~  * (1.5)
where StJ is a Kronecker delta , we ran  obtain an expression for a. We can then 
find the root mean square displacem ent as a function of tim e, as well as o ther 
average properties.

An a lte rna tive  approach is to  obtain a Fokker-Planck equation for the  prob
ab ility  d istribution , of finding the partic le a t a position, r, a t a tim e 1. This 
is m ost sim ply found in th e  case where the inertia  of the partic le is very small 
com pared to th e  viscous forces and so the first te rm  in the Langevin equation 
ra n  be neglected. The Fokker-Planck equation is then ,

~  V 2f>.d t 1 (1.6)
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(See Haken [6] for a full derivation of this result). It can easily be seen tha t this 
result has the  form of a diffusion equation , with a diffusion constant, <r/2. In 
fact, it is the  diffusion equation for particles and shows clearly tha t the  random 
forces cause the  sphere to diffuse throughout the fluid. T he diffusion constant is 
found from the  equipartition  of energy at equilibrium , as before to give,

which is the  usual Stoke's-Einstein result for the self-diffusion of a sphere.

1 .2 .4  S ed im en ta tio n
One exam ple of where external forces are im portan t in the stability  of dispersions 
is tha t of sedim entation. If we consider the  one-dim ensional sedim entation of a 
single partic le under gravity and subjected  to  Brownian m otion, we obtain the 
equation,

where </ is the  the acceleration due to  gravity  on a partic le a t a  height, x. The 
Fokker-Flanck equation for this system  is

It is useful at this point to  no te  th a t the  Fokker-Planck equation can be 
w ritten  as a continuity  equation for a probability flux,

d P  - i) .)
- f t  “ t o -  ( U 0 )

If we look for equilibrium  solutions, we can pu t HP/cH to be zero and integrate 
once with respect to  x  to obtain

( 1.8 )

d P  m g  c)P . j ) 2P
-77T  =  77 “  77 +  D — -d t 6tt r/a d x  r)x2 (1.9)

(irrr/rt d x ( 1. 11)
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Since the probability  flux must be zero at the bo ttom  of the  container (x  =  0), 
the constant of integration must be zero. Integrating once m ore we obtain

C =  C « p  ( ^ i ) ,  (1.12)

where we have used the  value of the diffusion constant given by equation 1.7 and C  
is a constan t (th is can be found by norm alisation of the  probability d istribution).

Here we have obtained an equilibrium  solution. An im portan t question to  be 
answered is how does the  system approach equilibrium ? W eiland, Fessas and Ra- 
m arao [7] have shown experim entally  th a t when two different sizes (or densities) 
of sedim enting particles are present the  system  can show fingering, where the 
particles tend  to  sedim ent in vertical stream s separated  by regions of relatively 
partic le free fluid. This shows tha t uniform  sedim entation can be unstable and 
can give m ore complex structures which vary in the directions perpendicular to 
the x  d irection . These instabilities have been investigated theoretically by B atch
elor and Jan se  Van Rensburg [8] who showed th a t the  fingering can be initiated  
by small fluctuations in the  concentration. T he idea th a t fluctuations in concen
tra tion  ran  cause equilibrium  solutions to  becom e unstable is very im portan t and 
will be used to  investigate the stability  of shear flows in chapters 3 and 5.

1 .3  T h e  E la s tic  P r o p e r tie s  O f G els
T he term  gi I can have many different interpre tations and has been used for 
m any widely varying system s. We shall use the  definition of Almdal [9]. The 
phenom enological characteristics of gels used by Almdal are:

(a) “They consist of two or more com ponents, one of which is a liquid present 
in substan tial q u an tity ”

(b) “They are  soft, solid or solid-like m aterials.”
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I liis definitions excludes dry m aterials such as aerogels but covers a wide range 
of t wo phase m aterials which are of interest.

The m echanical p roperties of gels are im portan t in m any branches of industry. 
As a result of this, a theoretical understanding of the physics underlying these 
properties is highly desirable.

Experim ental m easurem ents of the  elastic properties of gels have been carried 
out by several groups. T he shear moduli of latex gels were m easured by Buscall et 
al [10] as a function of shear strain for various volume fractions of gelled m aterial. 
They showed tha t a t small strains the  gels behaved elastically w ith constant shear 
moduli. As the  strains were increased, the  shear moduli tended to  decrease and 
the gels softened. The shear moduli of gels as a function of partic le  concentration 
have also been m easured by Buscall e t al [11].

Experim ental m easurem ent of the  properties of gels near the  sol-gel transi
tion have also been carried  out by Allain and Salome [12] and Adam  et al [13]. 
Allain and Salome showed th a t the  elastic modulus of a gel goes to  zero below 
some critical concentration  of m olecular cross-links. Adam et al showed th a t 
above a critical concentration of cross-links the  mass d istribution  of clusters of 
gel molecules diverged.

T he elastic properties of gels have been theoretically investigated using several 
different approaches. O ne of the successful m ethods is the use of various aspects 
of percolation theory [14]. In its sim plest form , percolation theory can be used to 
calculate th e  fraction of a system which m ust be gelled, in order for the  system  to 
show a non-zero shear m odulus. Percolation theory provides a fram ework within 
which to  describe the  the  way the physical properties behave near the  gelation 
point (see for exam ple Adam et al [15]). This concept can be extended from 
a sim ple connectivity  problem , to include more complex ideas, such as rigidity 
percolation, as used by T horpe [16, 17].

Iligidity percolation takes into account the fact th a t although a gel network 
may be connected this is not a sufficient condition for the network to  support
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a stress across it. This allows stronger constrain ts to be placed on the required 
gelled fraction.

Work by Duxhury [18] on fn.se networks is related to  calculations of the elastic 
properties of gel networks. This work was intended to study th e  general failure 
of m aterials outside the  scope of elasticity theory. The equations solved when a 
network of fuses is subjected  to  an electric potential, are the scalar equivalent of 
the vector equations which would describe a  m aterial com prised of bonds w ith a 
finite yield stress. T he applied potential plays the role of an applied  stress on a 
gel and the fuses behave as bonds within th e  gel. Such calculations are useful in 
a ttem p tin g  to find pa tte rns  of failure w ithin a failed network.

Some other approaches have been less successful. For exam ple models such as 
that of Denny and Brodkey [19], based on the  kinetic equations for bond breakage 
and reform ation, contain too m any unknown param eters to  be practically  useful.

T he field of com posite m aterials has also given some useful results. These 
involve calculations of the  elastic properties of two phase m ateria ls , where each 
phase has different elastic properties. Since a  gel can he considered as a com posite 
of an elastic m edium  and regions which are stress free, where no bonds ex ist, the 
field of com posite m aterials is potentially very useful for the s tu d y  of gels. Much 
of the  work in the  field of com posites uses results due to  Eshelby [20], based on 
the assum ption th a t the  m aterials are composed of ellipsoidal regions w ithin a 
homogeneous m atrix  phase. Effective elastic moduli have been calculated using 
various assum ptions about the  system s in question. In the  case of shear m oduli, 
most of these m ethods are unable to give precise expressions. Normally, only 
upper and lower bounds on the  moduli can be obtained, such as the result of 
Hashin [21].

In C hap ter 2 a model of a gel under shear is described. We begin by m odelling 
t lie gel as a homogeneous, isotropic elastic m edium  with a d is tribu tion  of spherical 
voids throughout the  m edium . Each of these voids is a region which is unable to 
support any stress and can be thought of as a missing or broken bond w ithin the
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structure.
Tlie rase  of an elastic m edium  with a single spherical inclusion of elastic m a

terial is solved and the  resu lt shown to be analogous to the problem of an electric 
dipole in an electric field. To take into account the  effect of the  d istribution of 
spheres, a m ean field calculation of the  stress due to to a d istribution of such 
dipoles is m ade, by analogy with the Clausius-M ossotti relationship of electro
m agnetic theory. This allows a precise expression for the  effective shear modulus 
to be ob tained  in term s of the  volume fraction of voids.

A phenom enological m odel for the  void concentration is then used, in con
junction w ith this resu lt, to  obtain a self-consistent result for the stress-strain 
relationship for the gel. T h is uses the  idea of a d istribution  of bond yield stresses 
as used by D uxbury [IS]. We then go beyond the  mean field argum ents and 
predict the  likely p a tte rn s  of failure of the  gel. Inspection of the  energy density 
near a single void shows th a t failure is expected to  be most likely along planes 
perpendicular to the p lane of shear.

Finally, we shall point out the sim ilarity  between the equations of elasticity 
and the  equations of slow fluid motions. This sim ilarity  will be used to  obtain 
the solution for a spherical void near a fixed boundary.

1.4 T h e  S ta b ility  O f L ayered  C o llo id a l S tru c
tu re s  U n d e r  S hear

It luis been known since th e  early 1970’s th a t suspensions of particles can form 
ordered structures when sheared [22, 23]. bight scattering experim ents carried 
out on sheared latex dispersions [24] have shown th a t two and three dimensional 
s tructures can be formed, consisting of ordered arrays of colloidal particles.

Many different types of ordering have been observed, including string-like 
structures where particles lie in lines. S tructures of this sort have been observed
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by Ackerson and  Pusey for po lym ethylm ethacrylte (PMMA) spheres in a steady 
shear flow [25]. They also showed tha t under oscillatory shearing the particles 
exhibited a different ordering. In this case structures of face centred cubic and 
hexagonally packed particles were observed. W hen shearing was ceased, it was 
found th a t the  partic le s truc tu re  was lost over a period of abou t 30 m inutes, 
leaving an am orphous struc tu re . This was described a m elting of the crystal 
structure.

The s truc tu res  described so far show a crystal-like ordering with colloidal 
particles behaving as the units of the crystal. A different type  of ordering has 
also been observed where the colloidal particles are concentrated  in layers several 
particle d iam eters thick. These layers are separated  by regions which are depleted 
of particles [26]. These structures will behave less as crystals and  can be thought 
of as a lternating  layers with different rheological properties.

The viscosity of a suspension depends strongly on the  concentration of the 
suspended partic les. Hence we would expect these layered suspensions to  have 
different viscosities in each layer. Such a  suspension could then  be thought of 
as a system  of layered Newtonian fluids, with different viscosities anti densities 
a ttrib u ted  to each layer. The regions where the  particles tend  to congregate 
will have a high viscosity and the depleted layers will have a correspondingly 
lower viscosity. Using such a model, one can calculate the  tim e independent 
configurations of a  suspension.

The study of the  stability  of such layered configurations has a  long history, 
with many system s having been considered. The case of layers of inviscid fluids 
was investigated by Taylor [27], who considered stability  of a fluid with a density 
which varied as a  function of height. For the  rase  where the density  profile was 
constant in an upper and lower layer and varied linearly w ithin a central layer a 
form of resonance instability  was identified. This occurs when a d isturbance on 
one interface forces a d isturbance on the other.

A result ob tained  by Squire [28] allows one to  simplify the  stability  analysis
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of such system s greatly. He showed tha t any instab ility  which exists for a three 
dim ensional d isturbance also exists for a  two dim ensional d isturbance, with a 
lower value of the critical Reynold’s num ber. This m eans th a t the  stability  of 
any th ree  dim ensional fluid bounded by parallel, p lane walls could be found by 
considering the  equivalent two-dim ensional problem .

Squire’s result was used by Yih [29] and Li [30] to  investigate the  stability  of 
two and  three layer viscous flows respectively. They bo th  identified instabilities 
for long wavelength disturbances.

In C hap ter 3, we use the  long wavelength pertu rbation  technique of Yih to 
calculate the  stability  of N  layers of fluid in a C ouette  system . The neutral 
stability  curves are discussed and a resonance instab ility  identified. We shall 
show th a t this layered model is unstable when m ore than  four layers of fluid are 
considered.

1.5 A  M icro sco p ic  M o d e l O f F lo w in g  S u sp e n 
sion s

There have been many different models of flowing suspensions of partic les sug
gested over the  last 20 years. A variety of different approaches have been used 
with varying degrees of success. Most of these models rely on a knowledge of the 
behaviour of single particles in a flowing m aterial and so we begin with a brief 
discussion of the forces acting on single spherical particles.

T here  are various hydrodynam ic forces which act on single spheres. Possibly 
the  m ost fam iliar of these is th e  Stoke’s drag [31] which tends to  slow the  m otion 
of a partic le  relative to the surrounding fluid. A nother im portan t hydrodynam ic 
force is known as the Faxen force [32] and is proportional to V 2V , where V  is the 
fluid velocity which would exist w ithout the  particle. Both of these forces occur 
in the  lim it of zero Reynolds num ber, hut they are unable to m ake a partic le cross



stream lines w ithin a flow. (This is a general result a t  zero Reynolds num ber, due 
to B retherton [33]).

The existence of transverse forces, which allow partic les to cross stream lines, 
is well known in inviscid fluids and is described using the  Bernoulli equation. At 
low Reynolds num ber when viscous effects become im portan t the sam e effects 
are m ore difficult to  calculate. This type of force is often known as a lift force 
and has been considered by m any workers, both experim entally  and theoretically. 
The lift force on a sphere in an unbounded shear flow was obtained by Saffman 
[34]. The lift force in a bounded flow was discussed by Cox and B renner [35] who 
obtained a lift force in integral form . The first explicit calculation of a lift force 
in a bounded fluid was obtained by Ho and Leal [36] although the  result was 
later corrected by Vasseur and Cox [37]. These forces have been incorporated 
into several different types of model.

One model th a t we shall discuss is tha t used by Nozieres and Q uentada [38], 
who considered a continuous fluid containing d iscrete  spherical particles. This 
approach allows the  fluid to be described using a form of the  Navier-Stokes equa
tions. T he partic le  d istributions are defined using a  diffusion equation , with the 
additional assum ption tha t the  particles are subject to  a force acting to  move 
them  towards regions of lower shear rate. This force was justified by reference to 
the work of Ho and Leal but the  from of the force used was significantly different 
to that predicted by Ho and Leal. Noziere and Q uem ada carried out a linear s ta 
bility analysis for the  model and showed th a t Plane C o u e tte  flow of a suspension 
could be unstable above a critical shear rate.

An a lternative  approach was used by M cTigue, Clivler and N unziato [39], 
who modelled the particles as a second fluid which penetra tes throughout the 
true fluid. This m odel incorporated all of the hydrodynam ic forces m entioned 
above but required an ex tra  constitu tive  relation to be assum ed in order to make 
any physical predictions.

A more rigorous approach was used by Batchelor [40], for a  1 dim ensional
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fluidised bed. In a fluidised bed the particles fall under gravity while supported  
in a vertical upw ard fluid flow. Batchelor considered the  detailed conservation 
of m om entum  for th e  particles, to obtain an equation  which trea ts  the particles 
as a fluid but rem oves the  requirem ent for the additional assum ptions used by 
M cTigue et al.

In C hapter 4 we shall present m ore detailed review of these models and  the  
im portan t hydrodynam ic forces. We shall then use an approach sim ilar to  th a t 
used by Batchelor to  obtain a model of a flowing suspension. In C hapter 5 we 
apply our model to  the  problem of P lane C ouette  flow of a suspension. An 
equilibrium  solution is given and the  stability  of th e  solution considered using 
linear stability  theory.



Chapter 2

The Softening Of Gels Under 
Shear

2.1 A  M o d e l For G els
It is well known tha t a gel will behave as an elastic body when subjected to small 
shear stresses and strains. This has been shown by Buscall et al in the specific 
case of latex gels [10]. W ith this in mind, it is reasonable to  model a gel, initially, 
as an elastic m edium . As the stress is increased the struc tu re  of the  gel begins 
to break down and the  shear m odulus decreases. Microscopically this is a result 
of bonds breaking w ithin the gel structure. Regions near a failed bond are then 
unable to support a shear stress and further straining occurs. Such a region can 
be modelled as a cavity within a general elastic medium.

We begin by modelling a gel as a homogeneous, isotropic, elastic medium. 
W hen this gel is subjected to a given stress, a fraction of the bonds within the 
s truc tu re  will fail. T his is represented by a distribution  of spherical cavities within 
the  elastic m edium . T he actual volume fraction of cavities is determ ined by the 
applied stress. A schem atic diagram  of the system  is shown in Figure 2.1.

We must first consider the stress field associated with a single spherical cavity
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when the m edium  is subjected to  a homogeneous shear. This result is obtained 
from the calculation of the stress field for a spherical inclusion of elastic m aterial, 
with a shear m odulus which is different from the surrounding elastic medium. 
We may then  use the  lim iting case th a t the  shear m odulus of the inclusion equals 
zero. This result is used to  show th a t an elastic inclusion, in an elastic m aterial 
can be trea ted  by an approach analogous to th a t of a polarisable molecule, in a 
dielectric m aterial.

Elastic
Medium

Figure 2.1 : The geom etry  o f  the gel system

An equation analogous to the  Clausius-M ossotti relation [41, 42] from dielec
tric  theory is obtained for a system  of many inclusions. This relates the elastic 
constants of the  en tire  system  to  those of the  medium and the  inclusions. A 
self-consistent argum ent is used next, to obtain  the  stress-strain  relationship for 
a gel, when the num ber of cavities present is a function of the  applied stress. 
We next consider the  most likely modes of failure of a gelled system , when the 
d istribution  of cavities is not homogeneous, as is assumed in the  previous mean 
field calculation. Finally we point out some m athem atical sim ilarities between
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the equations of elasticity  and those of a fluid moving a t low Reynolds number.

2.2 T h e  S tre ss  F ie ld  D u e  To A  S in g le  In c lu sio n
We begin with a description of some well known results, which we will make 
use of in our calculation. The first result is a  calculation of the stress due to a

this situation  as a spherical inclusion w ithin an elastic m atrix . This result has 
been obtained independently  by many workers. T he approach used here combines 
results obtained by Landau and Lifshitz[43], for a  spherical void, and Eshelby[20], 
for general, elliptical inclusions.

The equation of equilibrium  for an elastic m aterial subjected  to a distribution  
of body forces, F . is

This equation involves Poisson’s ratio  for the  m atrix , i/, and the shear modulus,

to the  requirem ent tha t the  strain  energy of an isotropic elastic m aterial must 
always be positive. The upper lim it corresponds to  an incom pressible solid whose

lower lim it is for a m aterial whose volum e ran  be changed but whirl) cannot be

side of the  equation of equilibrium  is zero. Taking the divergence of tin - resulting 
equation gives

This analogy is used to calculate the  d isplacem ent field of a single cavity  near a 
fixed boundary.

single spherical inhom ogeneity in an infinite elastic m edium . We shall refer to

/ /V 2u +  — *  V ( V .u )  =  - F .
(1 -  2v) ( 2. 1)

//. Poisson’s ratio  can vary between values of —1 and j .  These lim its are due

sheared (i.e. the  body’s shape cannot be changed). M aterials with a negative 
Poisson’s ratio  are rare b u t a few exam ples are known (see for exam ple [44]).

If the  forces are only applied at the  surface of a body then the  right-hand

V 2( V .u )  =  0. ( 2.2 )
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Taking the Laplacian of the  equilibrium  equation instead of the taking divergence 
(still with F  =  0) gives the  result th a t the equilibrium  displacem ent vector must 
satisfy the b iharm onic equation,

V 2 V 2u =  0. (2.3)

Hence the volum e change during a deform ation V .u  is a harm onic function while 
u is a b iharm onic function.

If we now consider a spherical elastic inclusion in an  elastic m edium  then 
we can use th e  fact tha t u  satisfies the  biharm onic equation to obtain a general 
expression for th e  displacem ent vector in the  region outside the inclusion. Landau 
and Lifshitz s ta te d  the result in term s of derivatives of the d istance from the  centre 
of the  sphere, r. We give the  expression here using the no tation , <)k — d /d r *. (The 
Einstein sum m ation  convention is used subsequently, unless otherwise stated).

u, =  -4 /1 (1  -  i>)rr'lv()v +  A a IJpqdp()q(), r  (2.4)

Here a term  of order l / r s has been neglected. This form  is the most general 
biharmonic vector which depends on the applied stress an d  vanishes a t infinity. 
The stress a t distances far from the  inclusion, is given by <r,°p, and A , is an 
unknown constan t. Once the  displacem ent vector is known then the stress is 
derived in the  usual way using Hooke’s law,

Vik = E
1 + / / (« it + (2.5)

where li./t is th e  strain tensor, given by, u t* - ¿((Ji-u, +  <),u
Eshelby showed tha t if a homogeneous strain  is applied to a m atrix , an ellip- 

so'ctdlinclusion will be in a  s ta te  of homogeneous strain. T h e  form of th is strain 
is given by th e  strain  at large distances from the region. Using this result, the 
displacem ent vector within the  inclusion ran  be written in term s of the stress at 
large distances, <r|p:

H 
2 Ho (2.6)
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This expression involves the shear m odulus of the m atrix , /i0. and an unknown 
constan t, B.

The constants A  and B  are calculated using the  boundary conditions a t the 
surface of the sphere. The appropria te conditions are th a t the  displacem ent and 
the  resulting stress m ust he continuous across the  boundary. This leads to  the 
following expression for A and defines the stress within the  m atrix , due to  the 
inclusion.

We note a t this point th a t since we are applying a pure shear, Eshelby’s result 
says th a t the inclusion is in a s ta te  of pure shear. Hence only the shear m odulus 
of the  inclusion is involved in the  calculation.

trea t each of the  inclusions as a dipolar system  of forces. The description of the

a m ultipolar expansion of the G reen's function, in the convolution integral for 
the  displacem ent vector:

A derivation of this resid t is given in Appendix B .

5ff:i( 1 -  n /fip ) (2.7)4[2(4 — 5i/)p +  (7 — 5i/)p0]
The stress within the  inclusion is defined by B , which in term s of A  is given by

( 2.8)

Here /i is the shear m odulus of the  inclusion and R  is the  radius of the  inclusion.

2 .3  A n  In c lu s io n  A s A n  E la s tic  D ip o le
In order to  calculate th e  effective shear m odulus of a m atrix  with inclusions, we

inclusion contributions as dipolar is consistent w ith the term  polarisation stress, 
used by Shtrikm an[45], to describe additional stresses due to inclusions w ithin a 
m atrix .

The fact tha t the  inclusion stress field has a dipolar character can be seen by
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To obtain  a m ultipolar expansion, we use a Taylor expansion of the G reen ’s 
function, which is equivalent to  writing the  force distribution  as,

W )  =  F<°> S(r') -  F f td j  H r ')  +  ± F $ d }dt S(r') -  . . . ,  (2.10)

where

are the m om ents of the force d istribu tion  about r' - 0. From sym m etry  argu
ments, we would expect zero contribu tion  from the  ‘monopole’ term , i.e. F*°*. 
Thus the void should provide no net force acting on the gel. The leading order 
contribution is therefore expected to com e from F (1). If this term  is substitu ted  
into equation 2.9, and the  integral evaluated  using the properties of the  Dirac 
delta function, then after some m anipulation we obtain ,

47rp ('*»”'* (?) -  • ( 2 . 12)

If this expression is com pared to  the  expression given by Landau and Lifshitz 
then it is quickly shown th a t we have obtained the  two term s of order 1 / r 2, 
provided tha t the  elastic ‘polarisation ten so r’ F (l) is proportional to the applied 
stress This can be seen to  be reasonable by considering the following system  
of forces, as a tends to zero.

F  =  - f i (  r  — <ix) — - ¿ ( r  +  ax)  +  — 6(r — a ï )  — — A(r — <iz). a a a a (2.13)

If we now use th e  definition of the elastic dipole m om ent,

F /; ' =  J Fir,dr,  (2.14)

then we find th a t F*1* =  2 (x z  +  zx ), which is indeed proportional to the applied
stress.

If the stress is thought of as the equivalent of the  electric field, then th e  con
stant of proportionality  which relates th e  stress, <rXJ and the elastic polarisation.
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F (1>, is the equivalent of the po larisability  of an electric dipole. In th is case the 
constan t of proportionality  is 16 7r/z(l — v )A , where A  is defined in equation 2.7. 
Hence we can define the clastic polarisability, ct. by

o 207t/73( 1 -  u)(p0 -  p)
[po(7 ~  fi»') +  2/t(4 — 51/)]

2 .4  E ffectiv e  S hear M o d u lu s  O f A n  E la s tic  M a
tr ix  W ith  M a n y  In c lu s io n s .

We now have a useful expression for th e  relationship between the  applied stress, 
a t long distances from an inclusion, an d  the resulting stress due to  an inclu
sion. Following the  analogy with electrom agnetic theory we can now derive a 
relationship between the microscopic polarisablility  and the elastic equivalent of 
the  dielectric constant of the m aterial. This is the  Clausius-M ossotti relation
ship of electrom agnetic theory. Since we consider only the  case of pure shear 
deform ations the  clastic dielectric constant is a  scalar. This quan tity  tu rns out 
to  be equal to the  ratio  of the  effective shear m odulus, p ra, and  the m atrix  shear 
m odulus, pa.

T he Clausius-M ossotti approach needs a calculation of the  local field within 
the  m edium . This local field consists o f contributions from th e  applied field and 
the  dipoles induced by tha t field. T h e  method used to  ob ta in  this local field 
is based on an elegant derivation of th e  Clausius-M ossotti relation by Hannay 
[■ Hi]. Hannay noted tha t each dipole has an extended electric field and a point 
field concentrated on the dipole itself. T h e  singular con tribution  is conveniently 
represented by a Dirac delta function s itua ted  at the  site of the  dipole. Thus the 
electric  field, E (r) due to dipole m om ent, p can be w ritten as

T he m agnitude of the delta function contribution  is calculated by integrating



th e  electric field over a sphere centred on the dipole. Hannay sta tes tha t the 
local field near a dipole will he given by the average field with the delta  function 
con tribu tion , due to the  dipoles, subtracted. This is due  to the fact th a t a single 
d ipo le  will not feel these contributions, although the  average field will include 
them .

T he same argum ents can be used in the case of e lastic inclusions. An integral 
of th e  stress due to a void, over a spherical volume cen tred  on the void, can be 
converted  to a surface integral to give

H ere we have assumed th a t  a single void has an elastic polarisation, f a ,  defined 
in th e  same way as F<'> in equation 2.10. This con tribu tion  to the macroscopic 
s tress is due only to the  d e lta  functions, which are produced by the derivatives 
of th e  radius vector.

Following Hannay, the  local stress field is obtained by subtracting these con
trib u tio n s from the average stress. The elastic polarisation for the void, /,•*, is 
then  related to  the local stress field by the polarisability, a , such tha t

T he link between the macroscopic stress and the average elastic polarisation 
can then be calculated from  the G reen’s function (equation 2.9), by analogy 
w ith  the derivation used in electrom agnetic theory. In electrom agnetic theory, 
th e  relation is obtained from  the G reen’s function for th e  electric potential. This 
gives the fam iliar D  =  E  +  4 7rP  , where E  is the electric field, P  is the polarisation 
am  1 D  is the electric d isplacem ent vector (See for exam ple [47]).

For a num ber density of voids, n, we ran  define Fa- =  n fa  as the  average 
e lastic  polarisation, with G'a as the clastic displacement field due to the inclusions, 
th e n  we obtain (see A ppendix B)

(2.17)

f ik  =  a  cra  — 2(4 -  5//)
15(1 -  v ) J'k ' (2.18)

G a  =  trik — Fik- (2.19)



This gives us the  relation between the average polarisation and the average stress 
applied. In electrom agnetic theory V .D  gives the free charge density. In o u r case 
the divergence of &',* gives the “free force” density, ie. the force applied ex ternally  
to the m edium . Hence this relation can be interpreted as saying th a t th e  total 
stress, <rtfc, is given by the sum of the  external stresses and the polarisation 
stresses.

If we assum e th a t the  elastic displacem ent field, Gik, is proportional to  the 
stress field, then we can introduce a scalar elastic dielectric constant, 7 . T his is 
a legitim ate assum ption since we are considering only pure shear deform ations. 
This gives us the  macroscopic relation,

n f ik = - ( 7  -  l) ,̂*.. (2 .2 0 )
1 'sing this definition of 7  as the ratio  of the  to tal stress and the applied stress 
means tha t we can in terp re t 7  as the ratio  of the  effective shear m odulus to  the 
m atrix  shear m odulus.

We now use equations 2.18 and 2 . 2 0  to elim inate the microscopic polarisation , 
fik  anil the average stress, <7,k, to obtain the  following expression 1 for th e  elastic 
dielectric constan t, 7 :

_  ■ ____________ 15^(1 -  i/)(l -  h / hq)_________
7  / j 0 ( 7  -  5 j/ )  +  2 ( 4  -  hv)[nlno -  (,t*/po -  1 )^ ]

Here we have introduced the volume fraction of the  inclusions, <f> = A n R ^n /'i.
This result is the  sam e as an expression obtained by Hashin[21], Hashin 

obtained the expression as a representative form ula which satisfies bounds on the 
shear modulus, calculated  by a variational approach. This m ethod shows th a t  the 
expression chosen has more physical significance than  o ther possible expressions, 
which are also bounded by the variational approach.

It is interesting to note at this point the  behaviour of the result we have 
obtained in the lim it th a t the inclusions become rigid and the m atrix  becom es 

'T h is  result has been independently obtained using a sim ilar approach by Felderhof and 
Iske [4K]
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incompressible. Hence we allow p  —> oo and v  —> i .  For small volum e fractions 
this gives

/ 'eff =  Po(l +  §<A)- (2 .2 2 )
This equation is of the  same form as the  Einstein relation for the  effective viscosity 
of a sheared fluid containing a small volume fraction of rigid spheres [49]. The 
incom pressibility of the m atrix  is im portan t, since fluids are usually considered 
to be incom pressible.

In fa rt the Einstein relation can be derived in sim ilar way to our result [50, 51]. 
This is because the  G reen’s function for the velocity field of a slow m oving fluid, 
due to  a point force, is very sim ilar to  th a t for the  displacem ent vector due to a 
point force in an elastic m edium . As for our result, the Einstein relation is due to 
spheres acting as dipolar system s of forces. In the  fluid mechanics term inology, 
the solution for a point force is known as a Stokeslet, and the  sym m etric  force 
dipole known as a  Stresslet. (There can also exist anti-sym m etric force dipoles 
which are known as Couplets or Rotlets  ). The sim ilarity between the  e lastic  and 
fluid G reen’s functions is exploited la te r in this chapter in order to calcu late  the 
displ acem ent field for an inclusion near a boundary.

2.5  S e lf-C o n sis te n t S h ear M o d u li For G e ls .
In order to obtain  a more com plete model of a gel under shear, it is necessary 
to model the failure of bonds within a  gel structure. W hen a bond fails in a gel, 
the region it occupies is unable to support any stress. If this region is assum ed 
to be spherical, then  the previously calculated expression for the  effective shear 
m odulus can be used for the gel. In order tha t no stress exists in the region, the 
shear m odulus of the  cavity is taken to  be zero.

Once this lim it has been taken a  self-consistent argum ent is necessary to 
calculate the actual volume fraction of the gel which has failed. T h ere  is no



generally accepted model of bond failure within gel s truc tu res, so the following 
phenomenological approach is used.

It is assumed th a t the  bonds w ithin a gel have a d istribution , P, of yield 
stresses, cry. W henever the  average stress within the  gel exceeds a bond’s yield 
stress, then  tha t bond is said to  have failed. The volum e fraction of failed gel 
can then be expressed as the  integral of the d istribution, P , up to the applied 
average stress. We assum e the  following form for the  norm alised d istribution, P .

The function 9(<rm  — cry), is a step  function, being unity  for a  positive argum ent 
and zero otherwise, with ctm the  m axim um  yield stress of th e  bond distribution. 
We have introduced a param eter, A , which can be ad justed  to give a suitable 
d istribution. For A  =  0 all bond strengths are equally probable up to the m axi
mum yield stress. For A =  1 the  probability increases linearly with yield stress. 
For increasing values of A  the  d istribution  becomes increasingly weighted toward 
higher yield stresses. We restric t A  to  having positive values to  avoid a divergence 
in the probability d istribu tion  function a t cry = 0 .

The volume fraction, (f> of failed bonds is now given by the  integral of this 
function up to the  applied stress.

Using the expression for the  effective shear m odulus 2.21, with /< =  0 to

Since the  effective shear m odulus is ecpial to dcr/d t, where f is the strain , we 
can integrate this expression to ob ta in  a stress-strain relationship for a gel.

(2.23)

represent a m atrix with cavities, we can now calculate the effective shear m odulus 
as a function of the  applied stress.

(2.25)

(2.26)



where we have taken .7 =  2(4 — 5i/)/(7  — 5i/). If we re-w rite this expression in 
term s of the norm alised stress, Z , such th a t Z  =  ct/ itm, we obtain

f =  —  ( - J Z - H J + 1 ) rPo V 7o
'a Ier M dZ

(1 -  Z A+ ')J  ') (2.27)

For .4 =  0. the solution ob tained  is as follows.

f = -----— [ J Z  +  ( • / + ! )  In |1 — Z| ] (2.28)(2.28)Po
Inspection of th is solution shows tha t the  strain  diverges when a  =  o m . In o ther
words, the gel is unable to  support a stress greater than  the yield stress of its 
strongest bonds, as one would intuitively expert.

Analytic expressions for the  integral are available for the cases where A is 
an integer. G radsteyn and Ryzhik [52] give the following expression for positive 
even values of A:

As A  is increased it can be seen th a t these solutions become progressively 
m ore com plicated, bu t we can obtain the  asym ptotic behaviour of these solutions 
by considering expansions of the  integrand near Z  =  1 and Z =  U. If we pu t 
Z  = l — b then our integral becomes

(2.29)
M + l ) /2 i,A+\)/2

+  Y  Q *sinY  P k cos
where

=  In ( Z 2 — 2Z  cos( ^ +  1 ^ , Qk = 2 arctan

A sim ilar expression can be obtained for odd integer values of A.

£
" / " m dZ db (2.31)(1 -  Z A+') ( 1  -  ( 1  -*)*+')■

Near Z  =  1 we have a sm all value of d e lta  and can expand the denom inator of 
the  integrand to first order in b. Thus the  integrand becomes \ /b (A  +  1) which



when integrated gives a logarithm ic term . W hen Z  is near zero the  denom inator is 
approxim ately unity. When this contribution is in tegrated  and the lim its applied, 
the  logarithm ic term  dom inates for stresses near rrM. T he integral then has the 
following form as a  —> <j m .

[«I«m dZ  1 l
Jo (1 -  Z A+') = ~ ( A +  1) "

Thus we see a logarithm ic divergence as a  approaches a «  for all positive val
ues of A, not ju st the integer values. This shows th a t the  strain  will diverge 
logarithm ically for any positive value of A , when the  applied stress approaches
(Tm .

This expression has also been integrated numerically, for non-integer values 
of A with the  m atrix  Poisson’s ratio  taken to be one half (J= 2 /3 ) , and taking 
crM/Ho to  be unity. Plots of the behaviour of the stress-strain  curves are given 
in figure 2.2. These confirm tha t the stress divergence, predicted by the analytic 
solutions, is a general feature of this model.

As the  value of A  is increased it ran  be seen the stress-strain  curve tu rns over 
increasingly rapidly. This is due to  the fart tha t increasing the  value of A  reduces 
the num ber of weaker bonds in the distribution  throughout the gel. Because of 
this the effective modulus does not change significantly un til the normalised stress 
approaches unity. In the lim it A —► oo we would expect the  s tress/stra in  ratio to 
be a constant until the stress equals <7 ^ ,  when the stra in  will diverge as all the 
bonds fail sim ultaneously. This tendency is clear in the  figure by A  =  5. The 
opposite lim it, with A = 0, shows a smooth turn-over with the  effective modulus 
decreasing sm oothly with increasing stress or strain.

It should be noted tha t this model has assumed th a t the  applied stress is the 
controlled quantity. A model which assumes tha t the strain  is the  fixed quantity  
would need to  be more com plicated. For exam ple, application of a fixed strain 
will induce a stress causing bond failures. These failures will then act to  reduce 
the average stress within the gel and lead to  over estim ation of the average stress.



A .let ailed algorithm  would lie needed to overcome such difficulties, and is not 
a ttem p ted  here.

Figure 2.2: Plots o f  stress  as a function o f strain, varying the param eter A  (Pois
son’s ratio o f  m a trix  =  1/2, go/&M =  U

2.6 M o d es  O f G el F ailure
We now have a m ean held theory approach to  calculate the  stress-strain  relation
ship for a gel. In o rd er to go beyond the mean field theory, we have a ttem p ted  
to find specific p a tte rn s  of failure to which gels are susceptible.

In a real gel, we would expert bond failures to  occur in regions where the 
stresses are highest. Since the stress tensor is a m ulti-com ponent ob jec t it is 
difficult to  define a ‘h igher’ level of stress. Instead we have looked a t the  elastic 
energy density as an indicator of the average stress a t any point. Since the  energy

:19



density is a scalar, this can more easily be used to discuss the  likelihood of bond 
failures at a given point.

The elastic energy density for a  m aterial under strain is given by

^  — 2 ( T  Gyy -̂yy T  U “f  ^xy^xy T  T  UyzHyz) • (2.33)

Calculation of th e  elastic energy density  near a single void in a gel, shows tha t 
there is a strong directional dependence of this density.

We take the  to ta l strain to be th e  sum of the  applied stra in , u°k, and the strain 
due to a single cavity, u}k. For the  case of pure shear we can use u°k =  o (x z  +  zx), 
where n  is a constan t. We can now use Hooke’s law to calculate the stress and 
hence the energy density, E, can be  w ritten as

E = Ho (u°ku°k +  2 u°ku}k + H .O .T .) . (2.34)

The first term  is the  energy density  without a cavity. T he second term  is the 
leading order correction which is of order 1 /r3. Since r  is greater than  unity 
outside the vacancy, we ignore the  subsequent term s which are of order l/? '0.

If we su b trac t the  energy density  due to  the  deform ation a t infinity, then we 
get the change in energy density, A E , due to the  cavity. Using spherical polar 
coordinates as defined in figure 2.3, for a void a t the origin of the coordinate 
system , we can w rite A E  in the following form.

A E  = ^  ^  [2( 1 — 2u) +  6 i/(s in 2 0 cos2 <t> + cos2 0) — ir  s in 2 20 cos2 </>] (2.35)

Here, A is the  constan t defined by equation 2.7.
We now wish to  find the m axim a and m inim a of this energy as 0 and <t> are 

varied. To achieve this, we differentiate this expression and look for zeroes of the 
result.

cTAT _  _  ' M 1 1  ( 2  cos (ftsin <̂ [6 i/s in 2 0  — •y s in 2 26)), (2.36)
Oq> 7"’

= ---- -—-—-(c o s 2 <)>\V2u sin 0 cos 0 — 30 sin 20 cos20] — 1 2 ( 7  sin 0 cos 0). (2.37)
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Tlie first differential is zero when 4> - n x  ¡2 , where n  is an integer. T he second 
is generally zero when 6 =  n x /2 .  In addition, for <t> =  n x ,  the second differential 
goes to  zero when 0  — n x /A .

Inspection of A E  near these  turning points shows th a t the energy is minimised 
for four sets of (0,4>) coordinates. These are ( f , 0), (^ , 7r), ( ^ ,  0) and (-' f , x ). 
R everting  to a Cartesian coordinate description, these correspond to  the lines 
x  =  z and x  --- The energy density is maxim ised for directions along the z 
axis, and the x  axis.

As a result of this, the to ta l energy density is reduced in the  directions near 
the  lines x  =  z  and x  =  —z , m aking bond failures less likely in those regions. 
T h e  regions near the x  — y an d  y — z planes have an increased energy density and 
therefore bond failures are m ore likely to occur in those regions.
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The failure of bonds in the  y — z  planes will not cause a catastrophic failure 
of the  gel, and will merely add to the softening. Failure in the x  — y plane will 
result in the  com plete failure of the gel since no stress can be passed between the 
upper and lower p lates in this case. Because of these effects, we would expect 
most failures of the  gel to occur along the x  — y planes.

2 .7  E la s tic ity  an d  S low  F lu id  M o tio n
2.7 .1  T h e  m e th o d  o f  im ages
The results presented so far in this chapter apply for a  m aterial subjected to a 
uniform shear a t infinity. This is a good approxim ation for voids within the bulk 
of the  gel bu t near the  surface of the  gel we should consider the  effect of more 
realistic boundary conditions.

The true  geom etry of a gel under shear is likely to  be a slab geom etry as 
shown in figure 2.1. In order to solve the problem  for a spherical cavity in a 
slab geom etry it is necessary to use the m ethod of im ages [53]. This allows 
the correct boundary  conditions to be obtained a t the  surfaces of the slab. A 
reasonable boundary condition to apply is th a t the  displacem ent vector, u,, due 
to the  presence of the  void m ust be zero on the  upper and  lower boundaries. This 
is equivalent to  assum ing tha t no slip conditions occur between the gel and the 
plates applying the  shear.

W ith a single boundary a single image is sufficient to  enforce the  correct 
condition. At a second boundary then the first image will give rise to  the need 
for corrections which are obtained with a second im age. This in turn  requires 
corrections at the  first boundary and so on. This resu lts  in an infinite series of 
images a t increasing distances from the boundary.
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2.7 .2  A  co m p arison  w ith  S to k e s’ fluid  flow s
As we m entioned earlier in this chapter problem s of this form in elasticity  theory 
are closely related to equivalent problems in low Reynold’s num ber fluid flows 
(known as Stokes’ or creeping flow problem s). It is convenient at th is point to 
discuss both the problem  of elastic images and th e  equivalent problem in Stokes’ 
flows. This will allow us to point out several sim ilarities between the approaches 
used and introduce concepts which will be useful later.

If we begin w ith the fluid problem , we no te tha t the velocity and pressure 
fields, v and p, for Stokes’ flow m ust satisfy

;;V 2v  =  V p, V  . v  =  0, (2.38)

where 7/ is the  viscosity of the  fluid. At first sight these equations may seem  quite 
different from the  equivalent elasticity equation of equilibrium . One im p o rtan t 
difference is tha t fluids are considered to be incom pressible and hence V .v  =  
0. This is not the  case in elasticity  problem s since elastic bodies are generally 
considered to be compressible (unless they have a Poisson’s ratio  of one half).

I he sim ilarity is em phasised if we rew rite the  equation of equilibrium  in the 
following form.

/' 7 ' U =  - ( r _ V ) V ( V -u )- (2.39)
This fjom makes the  elastic equivalent of pressure the quan tity  ( p V .u ) / (  1 —2r).

The sim ilarities are further emphasised by inspecting the G reen’s function for 
Ihe velocity field, i>,, due to a point force

1

Ktt;/ ■1 Fk. (2.40)

This is very sim ilar to the G reen’s function for th e  elastic displacem ent, although 
slightly sim pler. In fact pu tting  Poisson’s ratio  to  be one half in the elastic G reen’s 
function makes the  G reen’s function differ only by the  constant of p roportionality  
(ie. the viscosity replaces the  shear modulus).
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Figure 2.4: Elastic displacem ent at a constant distance from  a point force, with  
Poisson’s ratio  =  0.5

Figure 2.5: Elastic displacem ent at a constant distance from a point force, with  
Poisson's ratio  =  —1.0

44



45



Figure 2.6: A cavity within an clastic m edium  and its  first two images

igiire 2.7: The coordinate system  for a force and its image at a single boundary
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we ran  construct a  G reen’s tensor of th e  form

Uih - U5wfj.( 1 — ;/) <*-*■ >(;+ » ) * • + 7 ? + RiRk
R 3 +  Uk (2.43)

Here to, is to be found an d R  is th e  vector from the image to the required 
point in the m edium  (See figure 2.7).

For u, to  l»e zero on the boundary ( R 3 =  d) then t ik m ust satisfy the following 
boundary condition,

Rtik =  2d (Si36ka +  ¿ * 3  ¿it>) -^3 , (2.44)
where R q(=  ( R 2 +  R \ +  d2)1/'2) is the  d istance from the image to a point on the 
boundary.

The problem  is approached using two-dim ensional Fourier transform s defined 
by

« 1 r roo ,
/(A ,,  Aa, « 3 ) =  —  y y  K R u R i ,  R 3 ) i* 'R'd R xd R 2. (2.45)

Since to, m ust satisfy the equation of equilibrium , with no force term , we Fourier 
transform  the  left-hand side of equation  2 . 1  to obtain

Q — j  *•'* +  ^ _ i Ac^n. +  f>i3~Qft^j +  Sj3 hk  =  0» (2-46)

where (,1 = 1 — 2 v.
In addition to the equation of equilibrium  we know th a t the bi-harm onic 

equation m ust be satisfied, giving

(2.47)

where £ 2 =  A2 +  A .̂ The general solution to this equation can he w ritten  in the 
form

tik = [Bik +  Cik(R 3 -  d)]e~(ft» +  [Eik +  Fik(R 3 -  d)]e(R\  (2.48)
We require Eik and Fn, to  he equal to zero , since t,k should go to zero as R 3 tends 
to infinity.
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Having obtained the  necessary equations in Fourier space, we now require 
th e  correct boundary condition in Fourier space. The m ost convenient way of 
ob ta in ing  this is to use the  following relationship between 2-dimensional Fourier 
transform s and 1-dim ensional Hankel transform s,

r  r o c  to o
2 ^  J L  f{ r )e  T' d r ' dr'  =  l  r f ( r ) M t r ) d r ,  (2.49)

w here . / 0 is a zeroth order Bessel function , r — (7-2 +  and  £ =  (A2 +  A^)1̂ 2.
T h e  real space boundary condition can now be w ritten in term s of derivatives of 
Ro. and transform ed to  give,

tik = '2d(6i36ka + S/czSia)—j - e  (2.50)

( Comparison of this condition with th e  general solution for <,•* when R 3 =  d 
im m ediately  gives

Bik — 2d ( 6i36ka +  Sk3Sia) (2-51)
N ext, we m ust find the  Cik's by substitu ting  the general solution for t,k into 

th e  Fourier transform ed equation of equilibrium  and using the  known expression 
for B,k, at K3 =  d. This results in the  following expression for the  Cik's.

f iik  '¿ (J  1 T  (íA aficiik £ ^ k 3  ) (2.52)

Back Fourier transform ing, t,k gives, 

fifc ~  2d  ^ ( fitffika 4" ^k.i^ut ) (2.53)
(B 3 - d )
2Q + \

Finally , after some m anipulation, we get

i^kc^ct ^k3^3t )(^in^np T  ^i3^3p] d 2

d  R id  Ft, (s)]}

( * a  . 1 ft ftiM J L ( L \ \
V W + (3-4//) ft3 /J (3 - A v Y ^ d R i Vft/J

(2.54)
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This result reduces to  B lake’s solution in the the  incom pressible lim it, u =  A. 
In general the expression is different due to the  fact th a t the elastic m aterial 
is com pressible, although a sim ilar interpre tation  of the result can be m ade for 
this solution. The first term  in the  square brackets is identified by Blake as 
a source doublet and has exactly  the  sam e form here, except for a numerical 
factor. T he second term  in the  square brackets was term ed a stresslet by Blake 
and corresponds to our elastic dipole solution. The final term  does not occur in 
Blake’s solution and corresponds to  a source, as defined by Blake and Chwang 
[57]. T his final term  d isappears as v  —► A.

2 .7 .4  T h e  im a g e  o f  a vo id
We now consider the  image of a void at a d istance d from a single boundary. 
In the creeping flow term inology, this is equivalent to finding the image of a 
S tresslet. Taking the elastic dipole m om ent to have the form F*1* =  2(xz +  zx), 
we can w rite the d isplacem ent vector in the form

Again t, is unknown, A7 =  1 — 1/[2(1 — i/)], P  =  3(1 — A/), and R  is the vector 
from the  image to the  required point in the m edium  (See figure 2.7).

As before for u, to be zero on the  boundary, R 3 =  d, then f, m ust satisfy the 
following boundary condition,

where //<, =  (R 2 +  R 2 +  d2 ) 1?2 is the  distance from the image to  a point on the 
boundary.

Using the  same approach as for the  point force we can obtain a general solution 
for f, of the  form

U =  [ B ,+ ( M R 3 - d )  ]e"<«', (2.57)
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Chapter 3

The Stability Of Layered 
Colloidal Structures Under 
Shear

3.1 T h e  m o d e l
We have shown in the previous ch ap te r that we expect a gelled struc tu re  to  fail 
along planes parallel to the plates which provide the shearing motion. This will 
result in parallel layers of a lte rn a tin g  high and low concentrations of colloidal 
particles. This effect has been seen experim entally [26]. In order to find out 
w hether these structures persist for significant tim es, or are merely a transien t 
phenom enon, it is necessary to  stu d y  the stability  of such layered structures.

To model such a situation we consider the s truc tu re  to  be composed of m any 
layers of fluid under shear. The viscosity of the  layers are chosen to a lte rna te  
between two values. The layers o f higher viscosity represent layers with higher 
concentrations of colloidal partic les, as would be expected. We are interested 
particularly  in the cases where the  num ber of layers is odd, since we would expect 
the struc tu res to be sym m etrical ab o u t the centre plane of the shear flow. Using
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this model we are able to calculate the velocity profile of the system  and study its 
stability  when subjected  to small pertu rbations. If the layered struc tu re  is to exist 
for a significant tim e, then it m ust be stable when subjected to  perturbations.

We assum e th a t the  particles under consideration are neu trally  buoyant. This 
is not unrealistic for appropria te colloidal partic les and has the  advantage tha t 
the  density in each of the fluid layers will be th e  same and constant. In this case 
gravity does not affect the  stability  of the system .

3.2 P r e v io u s  re su lts
We are interested in the stability  of a three-dim ensional, layered system , un
dergoing plane C ouette flow. It was shown by Squire [28] th a t it is sufficient to 
consider two-dimensional disturbances of fluids in a parallel p la te  geometry, since 
any instability  which exists in the three-dim ensional case will also exist for the 
two-dimensional case, although the critical R eynold’s num ber will be reduced. 
As a result of this we restric t our analysis to  tw o spatial dim ensions.

The linear stability  of two layer, plane C ouette  flow was investigated by Yih 
[29] for the  viscous case. He used a pertu rba tion  technique appropria te  to small 
am plitude, long wavelength disturbances, and  showed th a t two layer flows could 
be unstable at the  first order of perturbation  if the  viscosity was different in each 
layer. This instability  occurs a t all values of the  Reynold’s num ber. The same 
approach was used by Li [80] for the case of three layers. Li showed tha t due 
to  a form of resonance between the fluid interfaces, the 8 -layer system could be 
unstable even at the  zeroth order of pertu rba tion . A sim ilar resonance instability 
has been identified by W einstein and Kurz [58] for three-layer flow down an 
inclined plane. This is analogous to the instab ility  of three layers of inviscid 
fluid, originally identified by Taylor [27].

Hooper and Grim shaw [59] have shown th a t  the  introduction of surface tension 
effects lead to stabilization. However in the presen t trea tm en t, which is restricted
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to long-wavelength d isturbances, such effects are small.
The physical reason for the  instability, as explained by Yih [60], is the dis

continuity in vortieity which occurs near the  interface between two layers. This 
allows interfacial waves to draw  energy from the main flow. A mechanism for this 
type of behaviour was given by Hinc.h for an unbounded shear flow, albeit with 
an em phasis on short wavelength d isturbances [61]. The mechanism is illustrated 
in figure 3.1. A perturb ing  wave produces vorticity perturbations of one sign 
near the  peaks of the wave and of the  opposite sign near the troughs. This vor
ticity is then  advected along by the  background shear flow, resulting in vorticity 
pertu rbations of differing signs a t adjacent positions either side of the interface. 
These opposing vorticities in teract so as to  increase the  am plitude of the original 
wave. T he whole process is repeated  and this leads to the am plification of the 
am plitude of any initial wave and corresponds to instability.

Induced Vorticity

Induced Vorticity

Figure 3.1: T/ie advection o f vorticity in a shear flow



U

Figure 3.2: The Problem G eometry

3 .3  T h e  eq u ilib r iu m  so lu tio n  for N  lay ers

(3.1)

(3.2)

T he Navier-Stokes equations for the j t h  layer of fluid are 
(  d  \  1 c/p 2
U + u >  J U ] = ~ ~ p d i+ v i V i h
(  & 1 tip( ^ -  +  u J, v j n J =  V u , ,

w here Uj and v3 are the x  and y com ponents of the velocity Uj, p  is the  pressure 
and iij is the viscosity of the j t h  layer. The interfacial boundary  conditions 
are  the  continuity  of velocity and stress, rjjduj/dy. The usual no-slip boundary 
conditions apply at the walls of the system .

For convenience we introduce dimensionless variables by the  m aking following 
substitu tions;

Uj /U , ( x ,y )  -»  ( x ,y ) /w ,  p - t p / p l / 2, t - * t l / / w , (3.3)
where II is the  velocity of the  upper p late and w is the width of th e  system . It 
is also convenient to  choose the  coordinate system such tha t yo =  1 and y y  — 0
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The viscosity is assigned a value 7/1 in odd num bered layers and a value r/2 
in even num bered layers, th e  layers being num bered from the side nearest the 
moving wall as shown in figure 3.2. In a sim ilar fashion the equilibrium  layer 
thickness alternates between and d2. T he system  can then be described in 
term s of the  two param eters, rn =  7/2/7 7 1 and d =  d2/d \ .  The positions of the 
interfaces, yj, can now be w ritten  as

j ( l + d ) +  1 ( 1 - ( - ! ) > ) ( !  - r f )
yj N ( l  +  d) +  * ( l  - ( - 1 ) * 0 - d ) '  '

We m ust first find the equilibrium  velocity profile. We assume th a t the flow 
is unidirectional, hence i)j -- 0 and Uj depends only on y. (We use the over-bar 
to indicate equilibrium values from here on). The equation for th e  equilibrium  
flow is then

%  -  <“ >
where K j is the pressure grad ien t, taken to  be constant in each layer. The
resulting tim e-independent velocities are polynomial in y \

Uj =  dj +  bjy Cjy2. (3.6)

Since there is no external pressure gradient in plane C ouette flow the  constants 
Cj are zero.

Using the  interfacial boundary  conditions, we find tha t

h, = b\ 7/1 / 7/ j , (3.7)

and
Hj = a, -(- i/ft, ' ¿ ( - l ) pjip, (3.8)

p=t
where yp is the  position of th e  pth interface and v = (1 /m )  — 1. The values of 
/>! and at a re then chosen to  satisfy the no-slip boundary conditions at the walls 
which can be expressed as:

«1 +  ¿ 1  =  1, n \  = 0. (3.9)
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3 .4  T h e  s ta b ility  an a ly sis
3.4 .1  T h e  w avy in ter fa ce  a p p ro x im a tio n
We now apply the  stability  analysis introduced by Yih [29] to  the  above flow 
geometry. We allow perturbations to occur in the  velocity field, these being u ' 
and v'j in the x  and y d irections respectively, and define these in term s of a 
stream -function »/>_, such th a t

u i (h>,
dy

drl’j
d x (3.10)

The disturbances in the pressure p and stream -function, i/>, are then of the form

(Pi'l’j )  =  (fj(y),<t>j(y))ex\>ia{x -  ct). (3.11)

Here o  is the wave num ber of the disturbance and c the  complex velocity. If the 
im aginary part of the velocity c/ is greater than  zero then the  disturbances will 
increase in tim e and the system  will he unstable. Substitu ting  the  prim ary flow 
plus the  perturbations into the  Navier-Stokes equations and linearizing gives the 
following equations:

_ a .2^ \  
à y  ) (3.12)

)■ (3.13)
Differentiating the first equation and elim inating  the  pressure term  f j  leads to 
the O rr-Som m erfeld equation:

Hy4 2n,Ìl.ìy* + C,*<Ì>3 =  ÌCtRj {(ÖJ ” ~ aÎ*J)} ' (3.14)

Here H3 is the Reynolds num ber p l fw / j/j , where w is the channel w idth, p the 
fluid density, V  the velocity of the upper p late , and i]3 the viscosity of the j th  
layer. The elim ination of the  pressure pertu rbation  is achieved by effectively
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taking the curl of the pertu rbed  Navier-Stokes equation. Since we have only two
dim ensions th is  gives a single equation in the direction perpendicular to  the flow. 
I sing this in terpre tation  we see tha t the Orr-Somm erfeld equation is equivalent 
to a linearised vorticity equation for two-dimensional disturbances [62].

To specify the  problem completely, the correct boundary conditions must be 
applied. T he rigid wall boundary  conditions are

faces, i j .  As the  perturbations are small a Taylor expansion of the  interface 
positions, ab o u t the mean positions, can be made. Continuity of velocity and 
stress in bo th  the  x  and y d irections then gives four conditions at each interface. 
Continuity of the  y com ponent of velocity gives

where < j is given by c—u ^ y ,) .  I Jsing this result the  continuity of the x  component 
gives a more com plicated condition due to  the curvature of the interface:

and

The interfacial boundary conditions m ust be applied a t the  deformed inter-

At each interface we m ust satisfy

(3.18)

I sing the definition of v', the  interfacial position can be written as

<>Oj + i _  m +i I Hjh _  i,u j+i
<)y <)y I j \  <)y <)y( )' (3.20)

Here all the functions are evaluated a t y,.
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Tlie continuity  of shear stress can be applied a t the interfaces themselves since
the gradient of the shear stress is the same in all layers. This gives

( (3.21)

Finally, the  continuity  of hydrostatic pressure gives the  condition

Here we have introduced the  effect of surface tension, Tj, a t the j t h  interface. 
However such term s do not con tribu te  to the analysis given below since they are 
only significant at short wavelengths.

It is im portan t to note th a t only one boundary condition contains the wave 
velocity itself; the  condition for continuity in u '. It occurs there because a cor
rection has to be m ade for the  curvature of the interface. In the next section we 
shall show tha t at long wavelengths this is the only place th a t c appears and so 
any instability  m ust be due to  the  curvature of the interfaces.

3 .4 .2  T h e  lon g  w a v e len g th  a p p ro x im a tio n
T he Orr-Som m erfeld equation is investigated using the  pertu rbation  m ethod of 
^ ill. The eigenfunctions <t>j and eigenvalue c  are expanded as a power series in 
the  wave num ber rv.

These expressions are then substitu ted  into the  O rr-Som m erfeld equation and

<f>] — <t>ii,j  +  +  • • • (3-23)
c =  Co -1- rvci +  . . . (3.24)

collected into term s of the sam e order of a. The zeroth o rder equation is

which has a polynomial solution

<t>o,j — .'h,,, +  B o j  y  +  C 0 j  y 2 •+- D q j  !) '■ (3.26)
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W e no w  a p p ly  t h e  b o u n d a r y  c o n d i t io n s  a t  z e ro th  o r d e r .  C o n t in u i ty  o f  v'] g iv es

<P0,] + \ -  4>0,j\y=y (3.27)
and continuity of u ' gives

d<Poj+i -s p 1 to,, (  d u j du,+ 1 \
d y dy »5o'<D \ d y dy ) y=y}

(3.28)

where e0j  =  Co -  u ,(y ,)-  
( Continuity of stress gives

d 2<t> ojVj+1 ' á ..2 =  1, -------¿

Vi+l

d y 2 

0 *^OJ+ 1

d y 3 ,,J ay 3

Tliis results in a linear, homogeneous, system  of algebraic equations for the 
coefficients of equation  3.26. The only noil-trivial solution of such a system  occurs 
when the determ inan t of the system  is zero. Using this fact we can construct the 
characteristic equation  for th e  system which is a polynomial of order TV — 1 in 
Co. Thus there are N  — 1 possible eigenvalues for the system a t zeroth order. 
II all these eigenvalues are real then the system is neutrally stable. Since the 
characteristic polynom ial has real coefficients, if the eigenvalues are not real, 
they will appear in complex conjugate pairs, with one eigenvalue always giving 
an unstable mode. T he  results of Yih [29] show th a t to lowest order we cannot 
get instability for tw o layers, bu t Li [30] has shown tha t for three layers we obtain 
an instability.

If the zeroth o rder wave velocity is real, then we have neutral stability  and 
the first order approxim ation m ust be considered. This has the following form:

d y 2 

d3<t>0 ,j

(3.29)

(3.30)
y=V]

(3.31)*V i,j ■ „  ^d 2<t>0.J d 2“] ,  ]—  =  m f t,  -  c )—  -  —  •

This equation can also be integrated directly to produce a polynomial solution 

<Ai ,j =  A t j  + £ t,j  y  +  C \j  y 2 + D i,> y3 +  in R ,h j(y ) .  (3.32)
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The first three term s are the com plem entary solution for which the coefficients 
are found from applying the boundary conditions to  order a . The final term  is 
the particu lar solution, which has the following form:

h j(y ) — ( 'o j(d j — 'o)y^ +  +  3D0j ( a j  — c o )} ^  4- D0j b j ~ .  (3.33)

The boundary conditions to  be applied are the  same as for the zeroth  order 
case, w ith <f>0,j becoming w ith the exception of equation 3.28 which has an 
additional correction to become

For each zeroth order eigenvalue there exists a  corresponding first o rder eigen
value c | . If the zeroth order eigenvalue is real then  it can be shown (see Appendix 
I)) tha t the  first order eigenvalue is of the form

Ci =  ia H \J ,  (3.35)

where .J is a real function of the  num ber of layers, the viscosity ratio  and the 
depth ratio . Thus the  first o rder eigenvalue is wholly imaginary. The condition 
for instability  is th a t .1 >  0 .

3.5 N u m er ica l C a lcu la tio n s
3.5.1 T h e  zero th  o rd er  ca lcu la tio n
The algebraic analysis involved in solving the  stability  problem for m ore than 
three layers becomes unwieldy and hence we have resorted to  a num erical tre a t
m ent.

The prim ary How coefficients are first evaluated for the given values of the 
viscosity ratio  tn = i/i/f/i and depth  ratio d =  d j/d \ .  This involves solving the 
recurrence relations 3.7 and 3.8 so as to satisfy the  no slip boundary conditions.
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The interfacial conditions can also be expressed in term s of recurrence re
lations. At each order in the  pertu rba tion , the  coefficients of the  polynomial 
solution m ust satisfy these recurrence relations and also th e  boundary conditions 
at the upper and lower walls. At zeroth order the relations are

-4o,j+i =  A oj A y j(B aj  ~  ffo.j+i) +  .Vjff 'o.j — f ’o.j+i) (3.36)
+Vj(Do,j — T>o,j+i),

Boj+\ =  &o,i + ‘¿yj(C 0,j — Co,j+\) +  3y](D 0,j — D0,j+\) (3.37)
+Fj(Ao,j +  VjB0,j + VjCo,j + y] D0,j),

Co,; =  Co,,— , (3.38)Vj
and

D 0,j = D0,i— , (3.39)Vj
where Fj =  (bj — bj+i ) /e 0j .  Unlike for the prim ary flow, these recurrence relations 
cannot be separated to obtain a general solution and hence we use a purely 
numerical m ethod to  find the  eigenvalues eg.

We can take the value of A0,i to  be unity since the zeroth order solution is only 
defined up to  an arb itrary  m ultip licative constant. The coefficients (70,i and Do,i 
are then calculated in term s of Bo.i using the  upper wall boundary conditions:

1 +  #o,i +  Uo,i +  Do,\ =  0  (3.40)

and
Bo, i +  2f7o,i +  3 £>o,i =  0 . (3.41)

Thus we can iterate the recurrence relations if we first specify the values for Bo,i 
anil c,j. However by making the change of variables

A0,j — A u,j +  B o.tÁ o j, B oj =  B oj +  B oj B o j, (3.42)
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Ao.i — 1, Ao.i =  0, flo.i =  0, fl0,i 1, (3.43)

we need only specify the value of cfl before we start the iteration scheme. The 
transform ed recurrence relations are given in Appendix D.

The value of cfl is obtained by iterating  the  recurrence relations and applying 
the boundary condition a t the lower wall. This condition can be expressed as

Ao.Arflo.At — flo.ArAo.At =  <-'(co) =  0. (3.44)

The evaluation of the  eigenvalue is now equivalent to finding th e  zeroes of the 
function <7(oo). This function is equivalent to  the characteristic equation  for the 
system of equations which as previously sta ted  is polynomial in Co. Using this 
fact we look for N  — 1 real solutions to the boundary condition. If fewer solutions 
are found then we know tha t the rem aining solutions exist as complex conjugate 
pairs. In this case one of the eigenvalues m ust correspond to an unstab le mode. 
Thus we ran  determ ine whether the system is stable or unstable using only real 
variables, a significant simplification over using complex algebra. We can now 
take a range of real values for Co, evaluate G'(co) and plot it as a function of c0. 
The zeroes of the function G(co) are obtained by using a bisection algorithm  [63].

Some plots of G(c0 ) are shown in figures 3.3 and 3.4. It is found th a t the zeroes 
of the function always lie in the range from 0 to 1. (This result has been proven 
for the Orr-Somm erfeld equation applied to a  single fluid [64]). It can also be seen 
that the function goes to  infinity whenever cfl takes the  value of an undisturbed 
interface velocity. This is due to the term  proportional to l/eo,j — l/( ro  — tij) in 
equation 3.37.

Figures 3.3(a)-(c) show tha t as the dep th  ratio is varied the num ber of zeroes 
of (!  goes from two (neutral stability) to zero (instability). It ran  also be seen 
that at the point at which the system goes unstable the two eigenvalues converge 
to a common value. This behaviour m eans tha t just as the two interfaces go

a n d  a p p ly in g  t h e  n e w  b o u n d a r y  c o n d i t io n s
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(a) (b)

( 0

Figure •{.'{: The boundary function, G, as a function o f  the wave velocity, c, for 
three layers, (a) m =0..r>, d = l .!> (h) ni=0..r>, d =0..I5 (c) ni=0.5, d  =0.1 
(N ote the  vertical lines are asym ptotes and the ir crossings do not represent zeroes 
of CJ(co).)
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(a)

(b)

Figure .{.4: The bon Hilary function, G, as a function o f the wave velocity, c, for 
six layers, (a) m=0.25, d= 0.5 (b) m=4.0, cl =2.0
(Note the vertical lilies are asym ptotes anil their crossings do not represent zeroes
of (7(co).)
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unstable the  waves a t the interfaces (defined by £) have the same velocity. Thus 
we can associate the instability w ith a resonance phenomenon. Sim ilar results 
are obtained for jV >  3 and are illustrated  in figure 3.4.

T here are certain sym m etries which the system m ust show. For an odd num 
ber of layers the function (7(co) m ust be sym m etrical about Co =  1 / 2 , since the 
prim ary flow has this property. For an even num ber of layers the  transform ations 
rn —* l / m  and d —> l / d  must not alter the stability  of the system . T his transfor
m ation is equivalent to a physical reflection of the  system about th e  centre-line 
of the flow. The effect of this transform ation is dem onstrated for six layers in 
figure 3.4. The zeroes of the function are seen to  go from Co to  1 — Co as would 
be expected for the reflection. These sym m etries are obeyed by our numerical 
results.

3 .5 .2  D iscu ssio n  o f  s ta b ility  at zero th  order
From the  above num erical results we can find the values of the  two param eters 
rn and d for which ( ! (r 0) loses two real zeroes. A plot of these critical values of 
rn and d against one another gives a neutral stability  curve. Such a curve divides 
the param eter space (m ,d ) into regions corresponding to stability  and  instability.

Figure 3.5 shows the neutral stability  curves a t zeroth order for system s with 
four and five layers. When the viscosity ratio rn is less than un ity  the curves 
almost overlap and furtherm ore are of the same general form as those for the 
three layer case as calculated by Li. Each of these system s is neu trally  stable for 
all depth ratios when rn tends to zero. More significantly, the  four and  five layer 
system s also have an instability region when m  is greater than unity. This is not 
tin- case for three layers, which is stable if rn is greater than unity.

The curve for the four layer system  satisfies the sym m etry rn —> l /m  and 
d —► l / d  as it has an even num ber of layers. This means tha t th e  values for 
rn > I can be obtained from the curve for rn <  1. This is the rase  for all our



Figure 3.5: Zeroth order neutral stab ility  curves as a function o f  depth ratio and  
viscosity ratio for 4 and 5 layers

results for even num bers of layers (e.g. 8  layers in figure 3.6)
For six or more layers the  system  is found to be unstable for finite depth ratios 

even as m  tends to  zero. Figure 3.6 shows this and also gives an exam ple of the 
pairing of neighbouring curves for large values of m . It is seen tha t as in. gets 
large the eight layer and seven layer curves converge. This phenomenon occurs 
for all pairs of curves for 2N  and  2 .'V — 1 layers, where jV is an integer. As m 
tends to zero a sim ilar pairing occurs for system s with 2N  and 2N  +  I layers. 
This pairing occurs when two system s differ by the  addition of an ex tra  layer of 
fluid near the  lower wall. As in becomes very small or very large this fluid is much 
m ore viscous than its neighbouring layer. All the zeroth order perturbation  term s 
in such a layer tend to zero as m  tends to zero and this prevents the  layer from 
altering  the stability  of the system  overall. Using these argum ents, it, follows tha t
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the 1 »ehavior of the three layer case at m — 0  is governed by the  stability  of the 
two fluid case in the  same lim it. Using the sym m etry for even num bers of layers, 
in —> 1 /rn ,d  —> 1 /d ,  in addition to this argum ent, gives tha t the  behaviour of 
the four and five layer cases, as in  tends to zero, is restricted by the  behaviour of 
the three layer rase as in  tends to  infinity.

Figure 3.6: Zeroth order neutral stability  curves as a function o f dep th  ratio and  
viscosity ratio for 7 and S layers

It can also been seen from figure 3.6 th a t for seven and eight layers the system 
is unstable at finite depth  ratios as m tends to zero. This property is shown for 
all cases with six or more layers. It is also found th a t the range of unstable d 
values increases as the  num ber of layers is increased (subject to the  requirem ent 
tha t cases with 2 N  and 2N  +  1 layers m ust pair off in this lim it, as previously 
described).

All the system s show neutral stability, to  zeroth order, when m approaches
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unity, as would be expected. As the num ber of layers is increased the  unstable 
regions get larger, as shown by figures 3.5 and 3.6. It should be noted th a t the 
's tab le ' regions a t zeroth order are neutrally stable and not tru ly  stable, since the 
eigenvalues are purely real. For those regions which are stable to  lowest order 
the analysis has been extended to first order and the growth ra te  function, .7. 
calculated. This is used to  obtain the growth rates using equation 3.35.

3 .5 .3  T h e first ord er ca lcu la tion
In the  sam e way as for the  zeroth order calculation the  first order calculation 
results in a series of recurrence relations. The first order recurrence relations are 
analyzed by using a sim ilar transform ation as for the zeroth order calculation. 
This makes it easy to show th a t the first order eigenvalue is wholly im aginary 
as long as the zeroth order eigenvalue is wholly real. For the  sake of brevity we 
om it the  first order recurrence relations here and give a detailed discussion in 
Appendix I).

The first order results were checked using certain  sym m etries which the system 
m ust satisfy at both zeroth and first order. Again, if the num ber of layers is even, 
then changing m  and d  to  1 / in  and l /d  respectively does not a lter the  first order 
eigenvalues. If the  num ber of layers is odd, then the first order eigenvalues will 
occur in pairs with the sam e value C\. This is due to the sym m etry  of the odd 
num ber of layers about the  centre line of the flow.

The numerical results were also checked for the rases of two layer and three 
layer flow by com paring with the  results of Yih [29] and Li [30] respectively.

3 .5 .4  D iscu ssio n  o f  s ta b ility  at first order
The growth rate function for the  cases of the four anti six layers are  shown in 
figures 3.7 and 3.6. It is found tha t for all system s with greater than  three layers, 
at least one eigenvalue corresponds to an unstable mode for any value of the
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Figure 0.7: The growth rate function  .7 as a function o f  viscosity ratio in. (4 
layers. d = l.5 ) The three curves correspond to the three zeroth order eigenvalues 
for the system

viscosity ratio. The actual mode which is unstable depends on whether m is 
greater than  or less than unity. T he growth ra te  function is not shown for m  less 
than unity in the  six layer case as the  system is unstable a t  zeroth order in most 
of this region. For the th ree  layer system the modes are  stable for m  > 1 and 
unstable for m  <  1. Again the eigenvalues are zero when the viscosity ratio is 
unity, giving the expected neutral stability.

If we consider the tim e scale for this instability to  manifest itself we must 
calculate the  value of f»C| in a dimensional form. If we take as representative 
values those for water sheared a t a shear rate of 1 0 s -1 , w ith a channel width of 
lcm and a dimensionless wave num ber of 0 . 1 , we get a  m axim um  dimensional 
growth rate  of approxim ately O.l.s-1 . Since the pertu rbation  is initially small this
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Figure 3.8: The grow th rate function J  as a function o f viscosity ratio in. (6  
layers. d=0.'d) The five curves correspond to the five zeroth order eigenvalues

would mean tha t tim e  scales of order 103 seconds would be required to visually 
identify the instability. We have not calculated the zeroth order growth rates but 
would expect them  to  be about an order of m agnitude larger than this, (from the 
form of the expansion). This would imply a tim e scale of 100s to observe any 
instability.

3 .6  C o n c lu sio n s  o f  th e  s ta b ility  a n a ly s is
The analysis discussed in this chapter has shown several new types of behaviour 
for multi-layer plane Couette Hows. We have identified instabilities for m ulti
layer flows which are  analogous to the resonance instability identified by Li for 
three layer flow (at th e  lowest order of pertu rbation ). However, for four or more
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layers the  neu tral stability  curves show much more structure. Im portantly  new 
regions of instability  appear in the viscosity ratio  /  depth  ratio  param eter space. 
For exam ple a region of instability  occurs when the viscosity ratio  is greater than 
unity, a result not found for th ree  layers. It is also found, som ewhat unexpectedly, 
th a t a system  with six or m ore layers is unstable for finite depth  ratios as the 
viscosity ratio  approaches zero. This is unlike the  cases with three, four or five 
layers. These are stable at zeroth order for all depth ratios as the  viscosity ratio  
goes to zero. Furtherm ore, using first order perturbation  theory it is found tha t 
system s with four or more layers are unstable for all values of the  viscosity ratio  
and depth ratio . This result differs significantly from the  result for three layers, 
where Li showed tha t stable configurations existed to lowest and first order.

When the  system  has a large, odd num ber of layers and the  viscosity ratio  
is small, we find (except for unrealistic depth ratios) the  system  to be unstable 
to  zeroth order. This is the  configuration which models colloidal structures most 
closely and thus predicts such physical system s to he unstable.

3 .7  D isc u ss io n  o f  th e  m o d e l
T he original m otivation for th is chapter was to  determ ine the  stability  of flows 
in concentrated , colloidal dispersions with layers of different concentrations (and 
hence viscosities). The results show th a t in the limit of a large num ber of layers 
(appropriate  for a macroscopic sam ple) all such layered profiles are unstable. 
This behaviour is seemingly in contrast with th a t observed experim entally, where 
layered struc tu res are found to  exist for finite periods of tim e.

It is possible tha t these instabilities do occur but tha t they evolve too slowly 
to be observed in the experim ental work carried out to date. An alternative 
explanation for the  discrepancy is th a t the observed layering is truly a tim e 
independent phenomenon in which case the model is not adequate to cap ture 
the  true  behaviour of the system . An improved model should take into account
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the microscopic behaviour of the suspended particles. A more detailed model of 
flowing colloidal suspensions will be discussed in the next chapter.



Chapter 4

A Microscopic Model Of 
Flowing Suspensions

4.1 T h e  H y d ro d y n a m ic  F o rces  A c tin g  O n C ol
lo id a l P a r tic le s

4.1 .1  T h e  forces p resen t in  c r eep in g  flow
In order to m ake a microscopic, model of a flowing suspension it is essential to 
know how the  suspending fluid interacts with th e  particles w ithin it. This means 
tha t a knowledge of the hydrodynam ic forces ac ting  on particles is necessary. We 
begin by considering the forces acting on single spherical particles in slow fluid 
flows.

The most commonly known force which a fluid can exert on a spherical particle 
is the Stokes’ drag [.'ll]. T his is a force which ten ds to equalise the velocity of a 
particle with the  surrounding fluid. Its m agnitude is 6 m )a(Vj — Vp), where r/ is 
the viscosity, a is the partic le radius and Vj — Vv is the difference between the 
fluid and partic le velocities. This form is applicable at low Reynolds num bers. 

The Stokes’ force can be obtained as a special case of the  force obtained by
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Faxen [32]. The approach of Faxen treats the particle as a distribution of point 
forces in a fluid. T he resulting velocity field is integrated over the  surface of the  
sphere to  obtained the total force acting on the sphere. The form of the force on 
a partic le moving with a velocity V p in a fluid with a velocity V /  is

F  =  6 ^ « ( [ V /  +  | a i V 2V / ]0 - V p). (4.1)
The subscrip t zero means tha t the object in square brackets should be evaluated 
at the cen tre  of the sphere. In the case th a t V 2V /  =  0 this im m ediately reduces 
to  Stokes force.

Both of these forces are im portant in creeping flow but they are unable to 
explain all of the observed behaviour of particles in a fluid, such as partic les 
moving across the stream lines of a uni-directional flow. This is clear for the  
Faxen force since the force is parallel to the fluid velocity. More generally the  
equations of creeping flow are linear, leading to a sym m etry under the reversal of 
the  direction of a flow. Thus particles cannot cross stream lines when the fluid is 
undergoing creeping flow. This result was obtained by B retherton [33] for all un i
directional lam inar flows. Therefore, in order to explain observations of particles 
crossing stream lines, the inertial effects of a non-zero Reynolds num ber m ust be 
considered.

4 .1 .2  T h e  m ig ra tio n  o f  p artic les  across strea m lin es
The m igration of particles across stream  lines was first observed experim entally  
by Segre and  Silverberg [(»!), 6 6 ] for neutrally buoyant, rigid spheres in Poiseuille 
flow. T he experim ents of Segre and Silverberg also showed th a t the  spheres did 
not m igrate all the way to the pipe axis, bu t reached an equilibrium  position at 
approxim ately 0 . 6  of the pipe radius from the axis.

Sim ilar observations were m ade by Halow and Wills' [6 8 , 69] for neutrally  
buoyant spheres in a C ouette system . In their experim ent it was found th a t the  
spheres m igrated to  a position midway between the annular container walls.
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M ore recent experim ents by Jefri and Zahed [70] have shown tha t the  equi
librium  position of spheres in plane-Poiseuille flow also depends on the elastic 
properties of the suspending fluid. For a non-Newtonian (shear-thinning) fluid, 
they found tha t the equilibrium  position was near the container walls. Several 
different equilibrium  positions were observed as the  elastic properties of the  sus
pending fluid were varied.

4 .1 .3  T h eo re tica l in v estig a tio n s o f  p a rtic le  m igra tion
The existence of transverse forces on particles moving in inviscid  fluids is well 
known and is described using the  Bernoulli equation. At low Reynolds num ber 
when viscous effects become im portan t the sam e effects are more difficult to 
calculate. Many workers have theoretically investigated the migration of particles 
at low Reynolds num ber, with varying degrees of success. Most workers have 
begun their investigations by considering the  case of a single rigid sphere in 
Poiseuille or C ouette flows. In all of the approaches described in this chapter 
inertial effects are taken into account by using asym ptotic expansions valid for 
small, bu t non-zero, Reynolds num bers.

Rubinow and Keller [71] and Saffman [34], were among the first to calculate 
the m igration force on a sphere moving through an unbounded fluid. Rubinow 
and Keller assumed th a t the sphere was both spinning, with an angular veloc
ity, uj, and moving through a stationary, viscous fluid, with velocity, V . They 
obtained a m igration force, F^,, of the form

Ft. =  p5r«3 (u> x V ). (4.2)

The fluid density is p and the  partic le radius «.
Saffm an’s calculation was for a sphere in a  simple, unbounded shear flow, 

with a shear rate, /f. He obtained an expression for a m igration force which is
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independent of the rate of rotation of the sphere:
\

F l  =  § A (> i)V a 1 ■ (4 -3 )

This result was obtained by m aking an inner and ou ter expansion of the equa
tions in powers of the Reynolds num ber. The m atching criterion for the  two 
expansions led to the dom inant contribution being proportional to the square 
root of the  Reynolds num ber (the quantity  in brackets in the  expression is the  
Reynolds num ber). Unlike for the  calculation by Rubinow and Keller the force 
is found to  be independent of the ra te  of rotation  of the sphere. An analysis 
was also m ade by Halow and W ills [6 8 ] based on Saffman’s solution, which was 
som ewhat unsatisfactory in th a t they introduced an arb itrary  factor, in order to  
gain agreem ent with experim ent.

Cox and Brenner [35] considered the  more general case of bounded, three 
dim ensional, Poiseuille flow. The approach used a  double expansion in term s of 
the  Reynold’s num ber and the  ratio  of the partic le  size to the pipe size. T his 
result assum ed tha t the boundaries lay within the region of the inner expansion, 
m aking the  ou ter expansion unnecessary. The results obtained were not explicit, 
but were left in integral form w ithout specifying the  m agnitude or direction of 
any m igration force.

Ho and Leal [36] used a sim ilar approach to  Cox and Brenner, involving 
the  m ethod of reflections and the  generalised reciprocal theorem  of Lorentz [72] 
to  obtain actual values for tbe  m igration force. Tbis allowed them  to obtain  
equilibrium  positions for particles in plane Poiseuille and shear Hows, which are 
in agreem ent with experim ent. Two distinct effects were pointed out by Ho and 
Leal. Firstly for plane C ouette flow, a force directed  towards the centre of the  
flow, proportional to the square of the shear rate. Secondly a force due to the  
curvature of the  velocity profile which tends to move particles away from the  
centre of a plane Poisseuille flow.

Later calculations by Vasseur and Cox [37] gave different asym ptotic values
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of the forces near the  boundaries. The num erical results of Vasseur and Cox were 
found to  agree with an analytic calculation of the force on a sphere near a single 
boundary carried out by Cox and Hsu [73]. The differences between the  results 
of Vasseur and Cox and those of Ho and Leal were a ttrib u ted  to num erical errors 
and do not significantly alter the equilibrium  positions which were predicted by 
Ho and Leal. T he lift force obtained by Vasseur and Cox can be w ritten  in the 
following form for the case of plane C ouette  flow with a velocity profile V  and a 
cross channel coordinate, z :

nil^Fl =  6 tt (4.4)

The function N (z )  is a numerically calculated  function equal to unity  on the 
boundaries and zero at the centre of the flow. The constan t C  was found ana
lytically by Cox and Hsu [73] and num erically by Vasseur and Cox to  be equal 
to 55/576 or abou t 0.1. Although the derivation of th is expression is strictly  
only valid for small Reynolds num bers flows, it has been found to give qualitative 
agreem ent with experim ents at Reynolds num bers larger than unity, as carried 
out by Halow and Wills [69].

The physical mechanism for the lift force on a partic le near a wall was given 
by McLaughlin for plane (o u e tte  flow [74]. As a particle moves through a fluid 
it m ust displace the fluid to either side. If a wall is present then it resists this 
displacem ent, which has the effect of forcing the sphere away from the  wall. The 
effect of inertia is to  make the displacem ent of fluid irreversible at large distances 
from the sphere giving a lateral force even a t  large d istances from the  wall.

These are the main forces which we shall need to consider in order to construct 
our model of a suspension. We shall now discuss some previous models which 
have been suggested.
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4 .2  P r e v io u s  M o d e ls  O f S u sp e n sio n s
4.2 .1  T h e  m o d e l o f  N o z ière s  and Q u em ad a
This m odel treats the suspension as a fluid which obeys the Navier-Stokes equa
tions with the  inclusion of the  effect of a variable viscosity, 77, which is a function 
of the  local particle density, n. The density fluctuations, ¿ra, are assum ed to be 
small and  a  Taylor expansion used to  w rite the  viscosity in the  form

shear ra te , 7 : F i =  /d x ) .  The introduction of th is lift force was m otivated
by Ho and  Leal’s lift force but is not of the  sam e form as their result.

A linear stability  analysis about an equilibrium  plane O ouette flow was consid

to the  walls. The pertu rbations were considered to be independent of the the 
d istance along the flow. An instability  was found for shear rates above a critical 
value. T he interpre tation  of this m ade by Nozieres and Q uem ada was tha t the 
flow breaks up into dom ains for the shear rates above the  critical value, 7 , given

Here /(' is d fi /d n  where fi is the chem ical potential and 7/ '  is djj/071. T he ratio

T he model ignores the  inertial effects of the fluid on the  grounds th a t there is 
no velocity gradient along the  flow. This is true  a t equilibrium  and is consistent 
with the  the  stability analysis used. Although this is tru e  it ran  be argued tha t 
a less restric tive pertu rbation  should be considered, allowing pertu rbations to be

an (4.5)

T he partic le density is assum ed to  obey a diffusion equation with the  addi
tional assum ption th a t th e  particles feel a lift force which is a function of the

ered, allowing pertu rbations in the partic le density and the  fluid velocity parallel

by
. 2 _  >//*' 

/ V  ' (4.6)

is effectively the ra tio  of the m agnitudes of the diffusional forces and the lift
force.
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functions of the distance along the channel. In this case the  inertial term s must 
he taken into account.

4 .2 .2  T h e m o d e l o f M cT ig u e , G iv ler  and N u n z ia to
A different approach was used for the  model suggested by M cTigue, Givler and

particulate phase can be modelled as fluids. The two phases are assum ed to  be 
inter-penetrating and able to exchange m om entum  by means of the hydrodynam ic 
forces discussed earlier. The m om entum  equations for each phase are expressed 
in term s of the volume fraction of the appropria te phase, <pa. T he subscript 
a becomes p to indicate a particulate  phase and /  for the  fluid phase. The 
m om entum  equation can be expressed in the following form.

P n ^ 'i — f  V a. V V „ j  =  V . T „  +  p„<^„b„ +  m a. (4.7)

Here is the density of the appropriate phase, V„ the velocity field. T he vis
cous stresses and pressure terms are denoted by T „, body forces by b„ and the 
interactions due to hydrodynam ic forces by m„.

In addition to  this two continuity equations are used,

These equation ensure tha t conservation of fluid and particles are both satisfied. 
T he interaction term s for the solid are assumed to be of the  form

with D / being the  sym m etric tensor defined by D /  =  i ( V V /  +  VVJ-) and the 
symbol 1  representing the unit tensor. The n ’s and /i’s are trea ted  as constants.

Nunziato. The model begins from the  assum ption th a t both the  true  fluid and the

(4.8)

nip =  V f  — Vp) -|- <̂>PG V .D /  -I- p/V<$p, (4.9)

F  =  < i,l +  2rvaD /,  G  =  /i, 1 +  2& D./ (4.10)
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The interaction term s for the  fluid are assum ed to  be the  negative of this, in 
order to  conserve m om entum .

This form was shown by Passm an [75] to be an exact second-order approxi
m ation for a general “fram e-indifferent” constitu tive relation for tbe  interaction , 
m p, which is a function of V / — V p, V .D /  and D ¡. Fram e indifference is defined 
by Drew [76] as the requirem ent th a t the relations are invariant under changes 
of reference fram e. In the  bulk th is approach is appropriate as the  variables 
listed are the  im portan t variables determ ining directions. It is not clear th a t this 
approach retains its im portance near boundaries , since boundaries can impose 
preferred directions on the  behaviour of the  system .

Once this from has been chosen the  interactions defined by the  constan ts « 1 , 
, i j , and /ij are identified as Stokes’ drag, Faxen’s force, Saffm an’s lift force 
and Ho and Leal’s lift force respectively. An additional term  is included in the 
interaction  term  to allow for the  effect of the  particles on the  fluid velocity. This 
is equivalent to using the Einstein relation m entioned in chapter 2.

File equations obtained by this approach cannot be solved in a closed form 
as they stand , since there are m ore unknowns than  there are equations. This 
is not an uncom m on problem  in models of this sort and it is usually solved by 
postulating a constitutive relation between the  fluid and particle pressure term s, 
p / and pv. M ctigue et al used a relation of the  form

Pv =  P i  +  T +  W(V 1 — V p)2 +  C T race(D /). (4.11)

This introduced a term , r  due to Brownian pressure, with C a bulk viscosity and 
u; a constant. This allows the equations to  be solved in a closed form.

The model was solved for the  case of plane Poiseuille flow using both an 
approxim ate analytic technique and a num erical approach. The resu lts showed 
th a t a non-uniform concentration profile occurs across the channel w idth , due 
to the lift forces present. Since the  exact profile is a function of shear ra te , the 
apparen t viscosity is also a function of shear rate. Thus the model behaves as a
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single, non-Newtonian fluid. T he stability  of the resulting equilibrium  solutions 
were not discussed.

The need for an ex tra  constitu tive  relation makes th is  type of model rather 
unsatisfactory. An alternative approach was suggested by Passman [77] for dilute 
suspensions. Passm an suggested th a t argum ents sim ilar to those used in the 
kinetic theory of gases could allow a m om entum  equation to be obtained for the 
particu la te  phase, giving an im m ediate interpretation  of the particle pressure, 
which would remove the need for an ex tra  constitutive relation. This is the 
approach used by Batchelor to  describe a fluidised bed and  the approach which 
we shall use. First we describe B atchelor’s m ethod in som e detail.

4.2 .3  B a tc h e lo r ’s m o d e l o f a flu id ised  b ed
Batchelor produced a model of a fluidised bed in order to  investigate the stability 
of siu li system s [40]. In o rder to be as com plete as possible the model was 
obtained in a formal m anner. T he approach used was sim ilar to tha t used in 
the  kinetic theory of gases. B atchelor’s model is one dim ensional, in th a t all 
quantities are averaged over horizontal planes normal to th e  direction of the fluid 
and particle velocities, which are  vertical are driven by gravity. Because of the 
one-dim ensional form of the equations, Batchelor showed th a t only the behaviour 
of the particles need be considered. For a mean particle velocity, V , and a volume 
fraction, </>, the  flux through a control surface is V<t>- Hence the mean fluid flux 
is — V<j> and the mean fluid velocity —V<t>/( 1 — <t>) (assum ing the sum of the fluid 
and particle volume fractions is unity).

The approach used is to consider the quantities of partic le  num ber and particle 
moment um, which must both be conserved. We first consider the conservation of 
particle num ber. Considering th e  rate  of change of the num ber of particle centres 
within a cylindrical volume w ith a vertical axis, gives

(4.12)
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The term s m ultiplied by 6 and C, are associated with virtual mass effects due 
to fluid inertia  and are  im portan t a t high Reynolds num bers. T he precise form 
of these term s is not clear and Batchelor presents this form as a “provisional 
guess” . T he term  involving {v 2) is due to pertu rbations in the partic le  velocity 
caused by turbulence o r particle-particle interactions. The next term  Fh(V,<t>) is 
the external g ravitational force acting on the  particles. The contribution  given 
by Fh(U, <t>) is due to friction or drag tending to  equalise the partic le  and fluid 
velocities. Next we have the diffusion forces acting on the particles characterised 
by the  diffusion constan t, D, with a mobility, B. These diffusion forces are treated  
as external to the  partic les and are im portan t in our following calculations. The 
final term  is equivalent to a particle viscosity which Batchelor sta tes  should be 
im portan t when partic les are very close together such as in a layer of sedim ent.

4 .3  A  N e w  M o d e l For F lo w in g  S u sp e n sio n s
4.3 .1  T h e  r e g im e  o f  a p p lica b ility
We shall construct ou r model by following B atchelor’s argum ent’s for the be
haviour of a d istribu tion  of particles within a one dimensional fluidised bed [40] 
ami generalise his argum ents for a system  of 3 dimensions.' We choose the p a rti
cles to be neutrally  buoyant and spherical for simplicity.
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Unlike B atchelor, we shall not consider a concentrated suspension of particles. 
For a d ilu te  suspension, we expect the  particles to be separated  sufficiently tha t 
they do not in teract with each o th e r in any direct m anner. As a result of th is we 
need only consider those in teractions between the fluid and a single partic le  and 
may neglect effects which are the  result of m ulti-particle interactions.

Before we continue the  construction  of the model we m ust note th a t there 
are two Reynolds num bers which are  im portant in this analysis. The system  
Reynolds num ber, R , , is given by p V  L/i] for a fluid of density, p and viscosity, 
7/, in a channel of w idth, L, w ith a scale velocity, V. T here is also a partic le 
Reynolds num ber, Rp, defined by p V a / 77, where a is the partic le  radius. Since 
we expect a to  be much sm aller than  L then we shall have R r 2 > R p. (The 
scale velocities m ay also differ bu t th is  result will still be true  as the partic le 
scale velocity will not exceed the  system  scale velocity). In this analysis we 
shall assum e the  partic le Reynolds num ber is small enough to  allow us to  use 
the expressions for Stokes’ drag and  the  other forces discussed earlier. We can 
now discuss B atchelor’s expression for conservation of partic le num ber and  fluid 
m om entum  in th e  light of these restrictions.

4 .3 .2  T h e  p a r tic le  eq u a tio n s
Conservation of partic le num ber is straightforw ard and follows directly  from 
Batchelor’s work to  give

^  + V . ( r . V p) =  0, (4.14)
where 11 is the partic le  concentration and V p is the average velocity of the  p a rti
cles.

The m om entum  equations need a more careful approach. T here are several 
effects which B atchelor considers in his model tha t are not appropria te for our 
model. We shall neglect the v irtual mass effects since they are only im portan t 
at a  high partic le  Reynold’s num ber. We may also neglect the  effects of the
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pertu rbations in the partic le  velocity field, (v 2). Since we do not expect to be 
in a turbu len t regime and we are ignoring the  interactions between particles, the  
tw o possible situations which require th is term  do not occur.

Although the effects of gravity  are essential in a fluidised bed, they are not 
expected to play an im portan t role in our model since the  particles are neu
tra lly  buoyant. Therefore we may ignore the term  Fh(V,<p). The effects of drag 
( Fu(U, <j>)) are very im portan t and we shall include them  in the  form of the  Stokes’ 
forces. The final term  in B atchelor’s expression is expected to  be im portan t when 
th e  particles are close together and is a form of partic le-particle interaction . Be
cause of this, we neglect th is  final term  as with all th e  o ther partic le-particle 
interactions.

For our system  we m ust consider additional forces which are not present in 
B atchelor’s model. Since th e  particles are not interacting , we can use the ap
p ropria te  single partic le results. T he presence of boundaries gives rise to the 
previously discussed lift force, H ”, which acts in the d irection norm al to the 
walls. We m ust also consider Faxen’s forces, F*V 2 V /, due to the  curvature of 
th e  fluid velocity profile. Unlike M ctigue, we choose not to  include the  Saffman 
lift force. This is due to the fact th a t the Saffman lift and the  lift force of Vasseur 
and  Cox are not com patible in their derivations. Vasseur’s calculation assumes 
th a t the outer expansion is irrelevant and has a good agreem ent with experim ent. 
Since Saffman’s calculation relies on existence of the apparen tly  unnecessary outer 
expansion we are justified in neglecting th is contribution (for narrow flows).

Considering the  flow of m om entum  through the boundary  of a spherical sur
face (the 3-dimensional version of B atchelor’s cylindrical surface) gives the  fol
lowing expression for the conservation of particle m om entum  in our system :

Here //* , IF , .S'* and F ‘ represent the  lift force, diffusion forces, Stokes' drag

rn (4.15)
+7j,S’*(V /  — V p) -F n F ’V l \ j .
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and Faxen forces respectively. The s ta r indices indicate th a t these values are 
dim ensional quantities. T he lift force is in the  2  direction, denoted by the unit 
vector, z. If we now consider plane C ouette flow, we assum e the lift force given 
by Vasseur and Cox has th e  following form

H * = dir pa4V 2 (  d \
To L 2 ( 1 - 2  2 ), (4.16)

where p is the density of the flu id /particles, a is the  partic le  radius, V  is the 
scale velocity (the velocity of the moving boundary) and L is the scale length 
(the w idth of the channel). For convenience we have defined 2  and V /  to  go from 
0 to 1 . This expression is a reasonable analytic approxim ation to  the  num erical 
results of Vasseur and Cox and gives a m anageable expression for our model.

T he o ther term s are defined as
D" =  k T ,  .S'* -  dwrja, F" =  m ja3. (4.17)

Here we have used k  to be B oltzm ann’s constant, T  the  tem pera tu re  and t] to  be 
the viscosity of the suspending fluid.

We can put the  conservation equation  into a more convenient form using the 
conservation of partic les and  the fact th a t m  - Ana^p/'i. Also the  num ber density 
is proportional to the  volum e fraction, <j>, such th a t n =  (3 <^)/(47rn3). This gives

^  =  - V . ( V p<?i) (4.18)
and

^ ( ¿  +  V "* V ) Vp =  4 ^ 3  { - * w * * -  (4.19)
+<A.S'*(V/  -  V „) +  <t>F"Vl \ , }  .

4 .3 .3  T h e  flu id  e q u a tio n s
In a 1 dimensional model the re  is no need to  obtain  the equations for conservation 
of fluid volume and fluid m om entum . In our 3-dim ensional m odel we m ust have 
these equations. Now we discuss how to  obtain the  fluid equations.
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All the  term s on the right hand side of the particle m om entum  equation 4.19 
are due to interaction  forces where the suspending fluid acts upon the particles. 
W hen considering the  fluid equations we m ust take into account the resulting 
reaction of the particles on th e  fluid, which will he the  negative of these term s. 
We m ust also take into account the viscosity of the fluid (which is a function of 
partic le concentration) and th e  pressure gradient. T he m om entum  of th e  fluid 
will be proportional to  the voidage fraction, 1 — <p. Any dependence on this 
param eter is absorbed into th e  definition of the viscosity for the  viscous term s, 
and sim ilarly the  pressure gradient. This gives a conservation equation for fluid 
m om entum  as

p ( \ - d > )  ( j t  +  V y . v )  V , =  V . ^  +  ^ j V V y } -  V p  (4.20)

- - ¿ j  -  D‘V<t> + 4>S’( Y ,  -  V p) + <j)F‘V 2Y /}  .

Here we assume tha t for small perturbations in partic le volume fraction, 6<j>, 
from the  mean volum e fraction, <j>, we can write the  viscosity as t) +  i)'b<p with 
t/  =  dij/i)4>-

Tlie corresponding continuity  equation is

- ^  =  - V . { V / ( l - ^ ) } ,  (4.21)

It can be seen from the form  of these equations th a t we have no form  of 
partic le  viscosity o r particle pressure involved. This removes the need to postu late  
a constitu tive relation in order to close our system of equations. We now have 
the requisite num ber of equations for the unknowns (V p,V / ,p ,  <j>).

4 .3 .4  B ou n d a ry  c o n d itio n s
In order to obtain a useful solution of these equation we require the  appropriate 
boundary  conditions. The conditions on V /  are obviously the usual fluid bound
ary conditions of zero normal velocity and the no-slip condition. The conditions



for V p are not so obvious. The normal velocity m ust be zero as for V / to  prevent 
a flow of particles through the  wall. T he question of the  no-slip condition is not 
so simple. The argum ent for the no-slip condition is usually th a t any disconti
nuity in velocity gradient a t the wall will result in large viscous stresses tending 
to equalise the  velocities [78]. However these argum ents are known not to apply 
to very dilu te gases, which is effectively the case here. Since we have no particle 
viscosity it does not seem  appropriate th a t the no-slip condition be applied. The 
fact th a t the equation of conservation of m om entum  for partic les is of first order 
in Vp m eans tha t we will not have underspecified the  boundary  conditions by 
relaxing the no-slip condition.

The boundary condition to  be applied for <j> is more com plicated. This is 
particularly  the  case when the  lift force is considered since th is  force occurs only 
when partic le inertia cannot be neglected. The effect of partic le  inertia  is to  intro
duce non-local effects, since the  inertia of the partic le  depends on forces applied 
a t earlier tim es than th e  tim e being considered. For the m om ent we shall merely 
s ta te  the physical condition tha t there should be no flux of m om entum  through 
the walls of the  system . The m athem atical im plem entation o f this condition is 
discussed for specific cases in the next chapter, where certain  assum ptions will 
be m ade about the form of the solutions.
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Chapter 5

A Suspension Undergoing Plane 
Couette Flow

5.1 T h e  s y s te m  to  b e  m o d e lled
In the  previous chapter we constructed a model which describes the behaviour of 
a flowing suspension using the  forces acting on particles on a microscopic scale. In 
this chap ter we shall presen t a solution for the particular case of plane C ouette  
flow. We shall consider first the equilibrium  solution for th e  system and then 
discuss the  stability  of th e  equilibrium  state.

As they stand, the equations we have are non-linear and  hence solutions are 
very difficult to obtain. N ot only do we have the non-linear term s due to inertia  
but also the  non-linear expression for the  lift force. Because of this we are forced 
to look for m athem atical approxim ations which can lie m ade in order to obtain  
solutions. To aid this process we first consider the equations in a dimensionless 
form.

T he system  we shall consider will consist of neutrally  buoyant particles with 
a radius, «, of about 1 /im , suspended in a fluid confined between plates w ith a 
separation, /.. of lcm . T h e  density, p, and viscosity, r/t), of th e  suspending fluid
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will be taken as the  appropria te  values for w ater a t a tem pera tu re , T , of 293k. 
This gives p = 103 k G m - 3  and i/o =  10- 3 kG m - , s-1 . We shall also assume tha t 
tha t average shear ra te , V /L ,  is approxim ately unity.

5.2 T h e  e q u a tio n s  in  d im e n s io n le ss  form
In order to obtain  the  dimensionless form of the governing equations, we make 
the following substitu tions:

( x , y , z )  (x , y , z ) / L , t —► tV /  L (5.1)
(V p, V /)  (Vp, V /) /V , p —> pL/j)0V.

I sing the same definitions as in the previous chapter V /  and V p are the  fluid and 
particle velocities respectively. Thus using R F as the  Reynolds num ber, pVd/i]0, 
we obtain in dim ensionless form

4>R' ( ^  +  v r*v )  V P =  DV<t> (5.2)
+</>S(Vf -  V p) + <j>FVI 2V f

and

(1 -<t>)Rr ( ¿  +  V , . v j  V ,  =  V .{ ( ,o  +  ^ ) V V / } - V p  (5.3)
+ +  DV<t> -  <t>S(\i -  V p) -  4>FV2\ , .

Here we have redefined the  interaction coefficients as

s D = k T L  
4 V  r/o«* ' (5.4)

esI he continuity equations have the  sam e form except with dim ensionless variahl
replacing the  original variables:



= - V . { V y( l - ^ ) } .  (5.6)
C alculating  the m agnitudes of the  coefficients in equation 5.4 it is found tha t 

D  ~  1 and tha t H  can be considerably sm aller than  unity , due to  the  factor 
(a /L )  ~  10-4 . This suggests tha t th e  lift force could be trea ted  as a pertu rbation  
to the  system  and an expansion in term s of the  param eter H  m ay be useful. This 
is convenient m athem atically  since the  lift force corresponds to  a non-linear term  
and a pertu rbation  analysis will allow it to be trea ted  in a  linear fashion. We 
m ust note th a t H contains a factor of the system  Reynolds num ber. Thus such a 
pertu rbation  approach would require a restriction to  be placed on the Reynolds 
num ber of the  system . A conservative estim ate would allow values of R e < 100. 
This will still allow a wide range of realistic situations to  be modelled.

Using th is approach we shall now look for an equilibrium  solution for Plane 
( 'ouette  flow.

V

Figure 5 . 1 : Tin- geom etry o f  the problem
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5 .3  T h e  E q u ilib riu m  S o lu tio n
For an equilibrium  solution we expect a tim e-independent, uni-directional flow. 
We shall use a coordinate system as shown in figure 5.1. Thus the  particle and 
fluid velocities will take the form V p =  up(z)'k  and V /  =  u /( z ) x  respectively. A 
flow of this form will autom atically  satisfy the  continuity  conditions so we need 
only consider the  conservation of particle and fluid m om entum . In addition, it 
is easily seen th a t the  non-linear term s of the  form V .V V  are zero for uni
directional flow.

We now use an expansion such tha t

v „(* ) = V p.o ( z ) + H V pA(z ), (5.7)
V /(* ) = V M (*) + / J V /fl(*),

<t> — <t>o 4* H <t>\ ■)
p =  po + H p\.

These expressions are then substitu ted  into the  equations of conservation of mo
m entum  and term s of like powers of / /  grouped together.

The zeroth order equations are

0  — — — V Pio) +  </>oF’V ^V /to, (5.8)

0 =  V . — Vpu+/)V</>o — (f>oS(V/,o—V Pio) — </>oF’V '!V  fg.
(5.9)

Fsing the fact th a t V p =  up(z )x  and V /  =  u /(z )x , equation 5.8 gives the 
volume fraction of particles, <f>o, to be a constan t. This m ust be the average 
volume fraction <j). T his result is then used to  reduce equation 5.9 to  the form

V 2 V / >0 =  — Vpo- (5.10)

This is the  usual form of the equation for C ouette  flow of a single fluid. Since 
there  is no external pressure gradient applied in C ouette  flow, we pu t V 7J0 to be
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equal to zero. Integrating the  result and applying the boundary conditions (zero 
velocity a t z = 0  and z = l )  gives

V /, o =  2X, V p,o =  : x .  0o =  0. (5.11)

We now require the correction to the  equilibrium  sta te  to first order in H . The 
flow is still considered to  be uni-directional. T h is allows the  inertia  term s to  be 
neglected an d  ensures tha t the  continuity equations are satisfied. The equations 
of conservation of particle and fluid m om entum  a t this order are

(
Oil \  ^
~ 2 )  z — £>V0, +  0oS ( V — V p,i) +  0oF V 2V /,i (5.12)

and

0  =  V .  J w , , ,  + ^ 0 ,V V /iOJ  -  V Pl - 0 o ( l - 2 z )  i  (5.13)
+ D V 0 , -  0O5 (V / ,1 -  V Pf,)  -  0oF V 2 V / ,1.

1 sing sim ilar argum ents to  the case at 0 ( 1 ), we obtain an expression for the 
volume fraction , which is a function of z  only;

0
0 1  =  — (z  Vi D \ 2) +  C. (5.14)

The constan t of integration, C , is obtained by requiring th a t the total volum e 
fraction of partic les is a constant and hence th a t  the integral of 0 i across the 
channel is zero. This gives C  - —0 /6 D .

We can now use this expression to  obtain an expression for the fluid velocity 
field. Thus we obtain,

0 -  J L  (  d“ /'1 +  v ' ^ du/.iA  _  d p ±
d z  \  d z  7/o d z  )  d x  ' (5.15)

Again we have no pressure gradient and th is expression can be integrated  to 
obtain „> / , 2  r 3 , \

(5 .1 6 )
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Application of the boundary  conditions (u/,i being zero on the  boundaries) gives
c  = d  =  o.

Finally, the  x  com ponent of the partic le equation gives

4>0S (u fA — Up,]) +  <t>0F V 2uf,i =  0. (5.17)

This gives the  particle velocity as up i =  u /,j +(r]'4>ai )( 1 —‘2z)/(i]0D L i ). It should 
be po in ted  out tha t the  equilibrium  partic le  velocity does not satisfy the  no-slip 
boundary condition only as a result of the  Faxen forces, which cause the particles 
to lead /lag  behind the  fluid velocity a t different points in the  channel.

P h i

Figure 5.2: The perturbation  in volum e fraction , ‘P h i’, across the channel due to 
the lift force at equilibrium

We now have expressions for the  equilibrium  particle and fluid velocities and 
the volum e fraction:

i):i

(5 .1 8 )
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1

Figure 5.3: The fluid velocity, V f ,  (dashed line) with perturbation due to the lift

order unity.
It can lx- seen from figure 5.2 th a t the particles tend  to move towards the  

cen tre  of the channel, as expected. Figure 5.3 shows the  effect of this on the  
velocity field. The shear ra te  is reduced in the cen tre  of the flow where the  
partic le  volume fraction and hence the viscosity is highest. Near tin- edges of the  
flow, where the viscosity decreases, the shear rate is increased.

Now we have an equilibrium  solution for plane (,'ouette flow, we shall discuss 
t he stability  of small pertu rbations from the  equilibrium  conditions.

In each of these cases the  correction term  is of order H  since (i)'<l>)/(iioD) is of
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5 .4  L in ear S ta b ility  A n a ly s is
5.4 .1  T h e  p er tu rb a tio n s
In order to  carry out a  stability  analysis we shall begin by writing each of the 
variables as the  equilibrium  value (designated by a hat) plus a small pertu rbation . 
These expressions are then substitu ted  into equations 5.3, 5.4. 5.5 and 5.6. The 
resulting equations are then linearised with respect to the perturbation  variables.

An im portan t factor in this analysis is the  form of the lift force when we 
are away from equilibrium . The form of the  lift force used for the  equilibrium  
calculation relied on the  zeroth order flow being plane Couette, for which th e  lift 
force is well known. W hen we allow pertu rbations in the fluid velocity to occur 
in our system , we shall no longer have a tru e  plane C ouette (or plane Poisseuille) 
flow, and the  correct form of the  lift force is unclear. An exact calculation of the 
force on a partic le in a tim e varying fluid flow would be very difficult (due to  the 
non-local effects m entioned in the last chap ter).

In the absence of any detailed calculations, we shall assume th a t the  equ i
librium form of the  lift force can still lie applied. In addition we shall allow 
for the curvature of the fluid velocity profile by including a force of the form 
/ /  \ ( f >V¡ / wi t h \  a constan t of order unity. This force is of the 
form noted by Ho and Leal and accounts for the tendency of particles to move 
away from the centre of a plane Poiseuille flow1. These two contributions rep
resent the two m ain contributions to the  lift force and will suffice to model the 
general behaviour of the particles.

As in chapter 3, we shall consider only a 2-dimensional system with p e rtu r
bations of the  form

(V ,,V p,p,*) = { V f ( z ) ,V p(z),p(z),<t,(z)}eilk* - 'tl  (5.19)
'T h is  behaviour is observed experim entally and  predicted by the m ethods of both Ho and 

Leal and Vassewr and Cox.



The resulting linearised equations are: 
Particle m om entum :

4>R, ( ir v pV 0 <- + V P*V V P +  V P*V V r 
d u / d ù / 1 / a " N 2

l ) 7 1 h-\-H l 2<j>{2
) -

+ <t>
( -

d ii/

„ 1 .  d ù f d 2u j ,
H4>x~ d 7 - d ^ z

(1 - 2 z ) z  -  DV<b

(5.20)

+ S  { ¿(V / -  V p) +  -  V p)} + F  { ¿V 2V , +  <t>V2\ , }  ,

Fluid m om entum :
(& V j 

6 t(1 -<t>)R,•(' +  V / .V V /  +  V / .V V / ) = (5.21)

V 2V , +  — V . {¿V V , +  (<£ -  ^ V V ,}  -  VpVo
„  d iij d 2u j  (  - dn  j  dii f

d z  d z +  ^ Z y«/
V d z

(1 -  2z)z

+DV<t> -  S  { ¿ (V , -  V p) +  ¿ (V / -  V P)} -  F  {¿V 2V y +  <{>V2\ /}  ,

'a rtic le  conservation :
^  =  - V . ( V p ^  +  ^ V p ) ,d t (5.22)

Fluid conservation:

(5.23)

An inspection of these equations shows th a t the coefficients are not constan t due 
to the  presence of the lift force and inertial term s. T his complicates any exact 
analysis of these equations considerably so we shall consider a further pertu rb a
tion approach.

We already have a small param eter, / / ,  hut this is not sufficient to remove all 
the difficulties. To overcome this we shall consider an additional small param 
eter, k-\ the  wavenumber for pertu rbations down the channel. This is the  same 
param eter as used in C hapter 3 for our analysis of m ulti-layer plane C ouette flow.
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We therefore carry  out a pertu rbation  analysis in th e  two param eters; H. 
the lift force, and k, th e  w avenum ber of the  d istu rbance along the  channel. To 
achieve this we let th e  quantities V / ,V p,p , <j> and u  be of the form

-V =  .Vo +  H X h  +  k X k. (5.24)

For the rest of th is  chapter we shall use the  following notation for the  x  and 
z  com ponents of the  velocity fields,

V f  = ujSi + v / z ,  Vp =  upx + v  pz. (5.25)

5 .4 .2  S ta b ility  for H = 0 ,  K = 0
Before we study the  equations governing the  stability  of the  flow, we m ust find 
the  correct boundary conditions to  be applied for <f> a t th is level of approxim ation. 
Considering the conservation of partic le  m om entum  (equation 5.3) with H = k =  
0 , we obtain from th e  ~ com ponent (norm al to  the  wall) 2

= - D ^ P -  +  4>S(v°j -  v°p) + (5.26)d t d z  "  w  dz*  '
Since ti® and vp are zero on the  walls as sta ted  in the las t chapter and differen
tia ting  with respect to  t gives only a  phase factor, the condition of zero flux of 
m om entum  through th e  walls is

dd> o d 2vH (5.27)

This then is the boundary  condition which m ust be satisfied in addition to  those 
disc ussed in the- last chapter.

We now take the  divergence of the  perturbed  partic le m om entum  equation 
(5.21) and su bstitu te  for vj and vp using the  pertu rbed  continuity equations 
(5.23 and 5.22) which have become

()v'j _ iu>0 cfvp iu>0 ,:<Po, -Z7— = —T~V o-
( 1  -<!>) d z <t> (5 .2 « )

2We shall use a raised index notation  for th e  velocity p ertu rba tio n  term s for clarity.
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This gives for the perturbations a t 0(1):

n  + d 2<t> o 
d z 1

iui0S
( 1  - 0 ). (t>o =  0 .

This is an equation in 0o alone and we see th a t <1>q m ust be of the  form
1 — 0) T  i^o S<t> o — A c ~ F  B t  ~, / =

(5.29)

(5..30)D( 1 — <t>) + iu>0<t>F
Differentiating the perturbed  fluid continuity equation (5.28) gives

(F d<t> o
d z 2 ( i — <t>) d z  '

Substitu ting  th is and th e  expression for <j>0 into the  boundary condition we obtain
iui0(pF

(5.31)

n  + (1 -0)J l(A e‘ -  B e - ', = 0 . (5-32)
2 =  0,1

Since the quan tity  in square brackets cannot be zero (all the perturbations become 
zero if this is the  case), the  boundary conditions are satisfied by pu tting  A  =  —B  
and  restricting  / to values of inn , where n is an integer. This gives the dispersion 
relation:

=  ^  ( - Q  ±  yjQ> -  \ D R rn H ^ j  , S — n2ir24>F

( 1 - 0 ) (5.33)

From this we can see th a t we have two modes corresponding to the two choices 
of sign for the  square root. Both of these modes are stable a t this level of ap 
proxim ation as long as Q  is positive. Using the known expressions for S  and F, 
and defining the  wavelength in the  z direction, A =  2 /n , the  condition for Q > 0 
becomes

A2 > <t>(2n)2d2 
6  L1

a
I 2 ' (5.34)

For this condition to be violated, we would require physical wavelengths sm aller 
than  the partic le radius. Obviously this is outside the regime of applicability of 
th e  model and we can say tha t in the regime where we expect the  model to be 
valid the system  is stable.
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It is interesting to notice th a t the stability  a t lowest o rder does not depend 
on the  form of the  equations for fluid m om entum  conservation. At th is  stage 
partic le m om entum  conservation is sufficient. This is not generally true  and is a 
feature of the form of the  perturbation  analysis. Since at th is stage the pertu rbed  
quantities are not functions of x  we have effectively a one-dim ensional system . 
Tliis is sim ilar to  the case discussed by Batchelor [40] who noted th a t for a 1- 
dim ensional fluidised bed, the fluid m om entum  equations are  superfluous.

The eigenfunctions a t this order can now be obtained in term s of ujq and the 
m agnitude of the  volum e fraction perturbations, A. Expressions for Vf and vp 
are obtained by in tegrating  the continuity  equations and these results used in the 
m om entum  equations to obtain u j  and up. The eigenfunctions are

<t> o
..o

=  A cos (ti in
(  iu>0A  \  .=  — I --------------  I si\  (1 4 > ) m r/

)

sin (nirz),
( iuj0A \  .— I ------  I St<t>Tl7TV

=  6— sinfrurz), riTT
=  esin(nirz).

where fi and t are real coefficients, given by

6

1

with
o = l  +

(.S’ -  iu>oRr) 

iult)Rr<j>F

( [ 5 - , - W - i ^ ) ,

D

(5.35)

=  li— r — f ~ ( ' i,r)2 -  iuJoRr f l  -  , (5.36)(i — (n7r)*at \ r / 0 V S —iu>0RrJJ

(5'37).S' — iu„ R r ’
T he general form of the  eigenfunction is given in figures 1.4 and 1.5 for the 

two possible eigenvalues. Figure 5.4 shows the  case with the positive root having 
been chosen. This corresponds to  the m ode close to  neutral stability  and  it can 
lie seen tha t the  partic le velocities are aligned alm ost along th e  channel. There
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0

Figure T).4: A sketch o f  the  eigenfunctions for II =  0, k =  0. (a) Positive root 
chosen. ( I)) Negative root chosen.
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is a small com ponent tending to move the particles from the  region of increased 
volum e fraction to the  region of decreased volume fraction, hence the  mode is not 
exactly  neutrally  stable. It can be seen tha t the  z  com ponent of the  fluid velocity 
is oppositely directed to  the  2  com ponent of the  partic le velocity, in accordance 
with the conservation of fluid and particles. At this level of approxim ation there 
is no such restriction on the  x  com ponents.

Figure 5.5 shows the  eigenfunctions when the  negative root is chosen. Again 
the  partic le  and fluid velocities have opposing z  com ponents to  satisfy the con
servation of fluid and particles. T he particle velocity is m ore strongly directed 
from the  region of high volume fraction to the region of low volum e fraction than  
for the  previous case. In addition th a t actual velocities are considerably larger 
(although this cannot be shown in the  figures, since the scales differ widely). 
These two effects dem onstra te  th a t th is  mode is much more strongly stabilising 
than  the  previous one.

These eigenfunctions will be required to calculate the  effects of non-zero values 
of k anil H . We begin by considering the  case for k  ^  0.

5 .4 .3  S ta b ility  For S m all W a ven u m b er P ertu rb a tio n s
We now consider the  stability  of the  system including term s of order k in our 
analysis. Before we discuss the equations in detail we require the  boundary 
condition to  be applied for <t>. Considering the linearised stab ility  equations at 
order k , with II =  0  the  z  com ponent of the particle m om entum  equation is

=  - D ~ -  +  4>S(v) -  v kp ) + (5.38)

Using the  boundary conditions on v k and vp and the known form of «V°we obtain

(5.39)d z  T d z 1
This is of the same form as for k =  0 except with new indices representing term s 
of order k.
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Using this we can w rite u>*.. as

(5-47)

where we have evaluated the  integrals involving <f>0. Hence th e  effects of non-zero
values of k  are merely to  allow a neutrally  stable wave to pass through the  system . 
This can he interpreted  as the zeroth order perturbations being advected along 
the channel a t the m ean velocity of the  fluid (mean velocity =  5 ).

This approach of ob tain ing the dispersion relation is m uch  more economical 
than solving the  general equation for (f>0 and applying the boundary conditions. 
The actual eigenfunctions are sim ple in term s of their functional form , being 
products of polynomials in z  with sin (n irz)  and cos(nirz). However the  coeffi
cients are complicated expressions involving the zeroth order coefficients, m aking 
the application of the boundary  conditions a lengthy procedure. This m ethod 
means that we do not need to know the  form of the  eigenfunctions for th is anal
ysis and we shall use the  sam e approach to calculate the s tab ility  when a small 
lift force is considered.

by obtaining the  boundary condition for 4>h - Taking the  equations governing 
stability  with k  =  0, the boundary condition for the expansion a t order H is

Using the known expressions for the  zeroth order functions, we ran w rite the

5.4 .4  S ta b ility  For A  S m a ll Lift Force
As for the stability  analysis at order k  in the preceding section , we m ust begin

(5.4«)

Note tha t the equilibrium  volume fraction suffers a pertu rb a tio n , a t order / /  
and the effect is included lien-. We have assumed tha t the z  com ponent of the 
perturbations in the fluid velocity does not give a contribution  to the lift force.
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This gives us the condition

((¡>0f ( z ,u iH)) =  - 2  {̂ 2<f>6l +  1) -  ■ (5.55)

Evaluating th e  integrals on the  left hand side of this expression and rearranging 
gives the dispersion relation:

=  T i [<32 -  4l2DRr
m  l - \ x l i ) + 12 +

I
x

iu>0
(5.56)

4(1 -  <t>)D — 2  + <t>
\-<t> +  F  <f> 1 - <t>

1 -4>
This expression involves several com plicated term s found from the zeroth 

onler stab ility  problem. It is obvious tha t u>h m ust be purely imaginary, although 
the sign of th e  expression is not im m ediately clear. Despite the fact th a t we can 
choose e ither sign for the denom inator, the value of u n is different in each case 
allowing the  possibility th a t the  num erator will also change sign.

The analysis of the expression is simplified if we restrict ourselves to wave
lengths of a few particle radii or longer. This allows the expression for u>0 (equa
tion 5.33) to  be expanded since S  (nir)2F<j>. The two roots then become

u>o — — iD( 1 — 4>)(mr ) 2 u>o —iS
/M i  - $ ) ' (5.57)

As expected from the form of th e  expression for oj0, one is small and proportional 
to 1 /.S', the  o ther is of order .S'. T he first corresponds to taking the positive 
value of the  square root and the  second to th e  negative root. In this lim it, the 
denom inator of the dispersion relation becomes ±t.S’.

If we now consider the expression for u>/y for the positive root in this lim it, we 
find the dom inant term s give

The value for the ratio i/'/r/o is of order one and , for exam ple, using the Einstein 
relation we get a ratio equal to  2.5. T he first te rm  shows the com petition bewteen
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/tlie effects of the equlibrium  lift force and the interaction with the  curvature of the
pertu rbation . Since the  exact value of \  is unknown it is possible tha t this mode
may be destabilising when n  is sm all. Since \  >s expected to be of order unity, 
such a destabilising m ode is unlikely and when n becomes larger the mode is 
definitely stabilising. This is to be expected since as n  increases, the  curvature of 
the zeroth order solutions m ust increase, and the interactions w ith the curvature,

the expression is sm aller than the  lift force term s and is therefore not im portant 
in governing the stability.

II we now take the  negative sign for the square root then then  expression for 
u>n becomes

sion except for large values of n, where they may be com parable, but since both 
term s are of the sam e sign, they are  both stabilising. Again the first term  shows

This tim e there is no chance of destabilisation oceuring due to the  second term , 
which dom inates in this region.

A lthough this analysis shows th a t there is the pssibility th a t effect of the lift 
force can be destabilizing, the effect is never large enough to force the system 
into an unstable regime. Since th e  total dispersion relation is

where II is small, it can be seen tha t the stabilizing effect of the  zeroth order

num ber along the channel implies th a t the dam ping is dom inated  by local effects 
at this level of approxim ation. T hus we would expert th a t local, single particle 
effects are dom inating the  behaviour of the  system .

which oppose the  equilibrium  lift force, m ust also increase. T he second term  in

This corresponds to a stabilising mode. The second term  dom inates the expres

LÜ — UÍQ +  Hujfl T  k'UJk, (r>.(>0)

mode will always dom inate any destabilizing effect of the  lift force.
The fact tha t the dam ping of the system  is does not depend on the wave
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5 .5  D isc u ss io n
This analysis has shown th a t under an imposed shear, our model predicts a stable 
equilibrium  flow with a small curvature of the norm ally  flat velocity profile. The 
stability  of this equilibrium  sta te  is apparently  in disagreem ent with the result of 
Nozieres and Q uem ada bu t in fact this is not the  case.

The critical shear ra te  predicted by Nozieres and  Q uem ada is very high due 
to  the  factor r//»;”. Since 7/“ =  dr//dn  and n =  <t>/v for a volume fraction, <t> and 
the  volume of a single sphere, u, then in the d ilu te lim it 7/* =  2.57/v. This makes 
the  ratio 77/ 77* of order 1018 and the  critical shear ra te  corresponding high. Such 
a shear rate is obviously well out the regime in which our perturbation  analysis 
can be applied. To m ake any accurate  com parison of our model with Nozieres 
resu lt would require a fully non-linear analysis, p robably  by numerical means.
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Chapter 6

Conclusions

In this thesis we have theoretically investigated the  rheological properties of var
ious types of m ate ria ls  undergoing shear flows. In chapter 2 we obtained the 
effective shear m odulus of an elastic m edium  filled with a d istribution  spherical 
inclusions. We have shown th a t a single elastic inclusion can be trea ted  in a simi
lar way to  a polarisable molecule in an electric field. Following th e  approach used 
by Clausius and M ossotti for dielectric m aterials, we have ob tained  the effective 
shear modulus of a  m aterial in term s of the  polarisability of a  single inclusion. 
The resulting expression was in agreem ent with bounds found by Hashin using 
a variational approach . This dem onstrated  some useful links which can be m ade 
between elasticity  theory and electrom agnetic theory, two subjects  which would 
normally be tho u g h t of as unrelated  areas of interest.

This last resu lt was used to  model a gel as an elastic m edium  containing 
spherical voids representing  regions of failed bonds. Using a phenomenological 
model for the yield  stresses of bonds within a gel, in conjunction with this, we 
obtained the stress-strain  behaviour of a gel subjected to shear. This model 
showed that a gel will support a  m axim um  stress given by the yield stress of the 
strongest bonds w ith in  its structure. These m ean field argum ents were augm ented 
by considering th e  energy density near a single void. This showed th a t bond
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failures are likely to occur along planes parallel to  the p lates providing a shearing 
force. T hus we have obtained a model of the  softening and eventual failure of a 
gel.

Ill addition to the analogy m ade with electrom agnetic theory, we showed in 
chapter 2  th a t very useful com parisons can be m ade between the equations of 
elasticity  and those of Stokes’ or Creeping flows. We used this to  obtain  the 
displ acem ent field of a spherical cavity near a  fixed wall. In the incom pressible 
lim it it was shown th a t the problem  of a po in t force in an elastic m edium  is 
v irtually  identical to the  problem  of a point force in a fluid undergoing creeping 
flow.

In chapter 3 we studied a model of layered colloidal s tructures observed by 
Buscall in a sheared suspension of colloidal particles. T he layers were assumed to 
be fluidised and of an a lternating  viscosity. A num erical linear stability  analysis 
of the flow, using long wavelength perturbations, showed th a t the  stability  of 
the  fluid flow depends strongly on the num ber of layers tha t are present. A 
resonance instability  was identified, which is analogous to  th a t obtained by Li 
for three layers. This instability  occurs for th ree  or more layers. The regimes in 
which th is instability  is im portan t were found to  depend strongly on the  num ber 
of layers, with the topological s truc tu re  of the  neutral stability  curves changing 
ab rup tly  when going from five to six layers.

W here a resonance instability  does not occur, a different instability  was iden
tified for four or more layers. This is analogous to  the instability  found by Yih for 
two layers and is due to the  discontinuity in vorticity a t the interfaces between 
the layers. In the  limit of many layers it was found tha t the  flow is unstab le anti 
hence th a t the  experim entally observed layers should be unstable. T he growth 
ra te  of the  instability  is such th a t a tim e scale of greater than 1 0 0 s would be 
required for any effect to  evolve to  an observable scale. .Since the  tim escale of 
the  experim ent is not known to the  au thor it is not possible to to draw a firm 
conclusion as to  whether this is in agreem ent with observations.
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In chap ter 4 we have constructed a microscopic model of a dilute, flowing 
suspension of neutrally buoyant colloidal particles. To achieve this we followed 
the approach used by Batchelor for a fluidised bed. This approach uses the con
servation of particles and particle m om entum  in a spherical volume to ob ta in  
governing equations for the partic le motions. The effects of Vasseur and C ox’s 
lift force were included as well as Stokes’ drag and Faxen forces. Since the p a r
ticles were assum ed to be approxim ately 1/mi in size the  effects of Brownian 
diffusion were also included. Using this approach we avoid the need to postu la te  
a constitu tive relation involving the  particle pressure, since all the contributions 
to the partic le  m om entum  are obtained explicitly.

In chap ter 5 we investigated our model for the case of a sheared suspension. 
We showed th a t an equilibrium  flow is obtained, with small changes from th e  
sim ple shear solution. These are due to the  non-uniform ity of the particle d is
tribu tion , brought about by the lift forces. This equilibrium  flow is shown to  
be linearly stab le  to small perturbations in the particle concentrations and th e  
equilibrium  flow.

IK)



Appendix A

Oscillatory Rheological 
Measurements

O scillatory rheological m easurem ents are very useful for observing the visco
elastic properties of m aterials. M easurem ents of th is kind involve subjecting 
a m aterial to  a periodic shear strain , 7 , of a  given frequency, u>, such tha t

7  =  7 0  sin ujt. (A. 1 )

Here the am plitude of the oscillation is given by 7 0 . T he response to this shear 
strain  is also periodic with the same frequency, provided tha t the  m agnitude of 
the oscillation is small enough for the m ateria l to respond linearly. The response 
stress, S ( t) ,  ran  therefore be w ritten in the  form,

S (t)  — 7 o(fV' sin uit +  Ci"cos uit). (A .2)

( 1" and (!"  are dim ensionally of the form o f elastic m oduli. They represent the 
in-phase and out of phase parts of the response respectively. The in-phase com 
ponent. (! ', is known as the shear storage m odulus, and represents the elastic 
behaviour of the m aterial. (!"  is railed th e  shear loss m odulus, and represents 
t he losses due to viscous dissipation with th e  m aterial. This is illustrated  in figure



A p p lie d  Strain/R esponse S tress

Figure A .l:  The applied strain and response stress for oscillatory rheological 
m easurem ents

The general v isro-elastir behaviour of a m aterial is usefully described by the 
definition of the phase angle, b, where

G"tan o =  — . (A .3)

A purely elastic body will have a response precisely in phase with the  applied 
strain , an d  hence have b =  0 . A purely viscous body will respond out of phase 
with the  applied force, giving a 6 of 90 degrees.
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The Green’s Function For An

Appendix B

Elastic Medium

The equation of equilibrium  for a  d istribution of body forces, F, throughout an 
elastic body is,

pV 'm  + /*
- V (V .u )  =  -F . (B.l)

( 1  -  2 i/)
Here we denote Poisson’s ratio by u and the  shear m odulus by fi. If we Fourier 
transform  this equation , denoting transform ed quan tities with tildes, we ob tain

/*
/¿k2ù + - k(k .ù ) =  F. (B.2)( 1 - 2 */)

Using index notation and inverting this equation gives

*  -  -  z P r r b j )  <“ >
where here is the  Kronecker delta , which is zero unless its indices are equal. 
Equation B.3 can now he reverse Fourier transform ed to  give a convolution inte
gral

_  _____ 1_
l(i*r/i(l

where <7, =
This expression is equivalent to  the G reen’s function given by Landau and 

Lifshitz [43] , but has been^f>y a m ore direct m ethod here.

<*•>
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Macroscopic Elastic Polarisation

Appendix C

First we consider from the G reen’s function for the  displacem ent vector, tq (r), 
due to a d istribution  of forces, Fk(r')  (See A ppendix 4).

Here fi is the shear modulus and 1/ is Poisson’s ratio.
A Taylor expansion of the term s in the  square brackets is equivalent to  re

placing the  force d istribution by the  appropria te  m ultipole d istributions. Here 
we consider only the first two term s in such an expansion,

where Fk is the  distribution  of point forces, and F£j is the d istribution  o f dipolar 
contributions. O nce this expansion is m ade, we calculate the  strain , in the 
usual way. using

If we now take the  divergence of the  stress, after a fairly lengthy calculation , we 
obtain,

u.'jt =  5  (#|U* +  dkU i). (C..{)
I he stress field, rj,k , is then obtained using Hooke’s law,
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This has used the the fart tha t derivatives of the radius vector have delta function
com ponents, with the following weights.

)  ~ - j M ( r - r') (C.6)

didjdkd,\r -  r'| ~  +  Sik6j, +  SuSjk)6(r -  r') (C.7)
We now define the  clastic displacement field, G ,k, by analogy with the electric 
displacem ent vector. D . such tha t,

d,Gik =  -F £  (C.8)
Hence the divergence of G lk gives us th e  point force d istribution . This gives us,

G,k - er,k — F,k (C.9)

which is the elasticity analogue of D  =  E  + 4 ttP  as used in electrom agnetic theory.



Appendix D

The numerical stability analysis 
for multi-layer flows

D . l  T h e z e ro th  ord er ca lc u la tio n
Tlie O rr-Som m erfeld equation at zeroth order is

iTV q.j
c)y4 =  0 , (D .l)

where is the perturbed stream  function in the  j t h  layer of fluid. This has a 
polynom ial solution in each layer:

— -4o,j +  B0,j y +  C0,j y 1 +  Dqj y \ (D.2)

A pplying the houndary conditions described in C hap ter 4 gives the  following set 
of recurrence relations;

Aop+i — A 0 ,j +  y j ( B 0 ,j — So,>+i) +  V j ( C 0 j  — Co,>+i) (D.3)
+ y ' j ( D o , j  — B o j + i ),

Bo,j+\ — Boj + 2y¿(Co¿ — Co,j+i) + •iyj(D o¿ — Do¿+\) (D-4)
+  F j ( A 0 ,j + y j B 0 ,j + y 2j C o , j  +  !/jßo,j),
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and
r  -  rL/0 ,J —  ( - 0 ,1 -----

F  3
(0 .5 )

# o , j  — # 0 , 1 — , ( 0 .6)
Fi

where F3 =  (b3 — 6>+i ) /e 0,j ,  and y3 is the position of the  j t h  interface.
If we take A 0,i to be unity then the  boundary conditions at y =  I are

1 +  #o.i +  (  o.i +  #o.i - 0, #o,i +  2Co,i +  3#o,i =  0. (0 .7 )

T he boundary conditions a t y = 0 are

A 0,n  =  0, # o  ,n  =  0. ( 0 .8)

We can calculate t70,i and # o ,i in term s of B\ to  get

(  o,i =  — (2# o ,i +  3), # o , i  =  # o , i +  2. ( 0 .9)

All the C0j and D0j  are now known using the recurrence relations D.4 and D.5. 
We now use the  substitu tion

Ao.j = Âo,> +  # 0,1 Ào.j, #o,> — #o,> +  # 0,1 # 0,,. (I). 1 0 )

This leads to a set of four recurrence relations which after substitu ting  for f  'o,i 
and # 0,1 become

'V j+ i  =  ( 1  -  F3y3)Â 0,j -  F3y3 B0,j +  i'y3( - \ ) J(:i -  4y3) ( 0 . 1 1 )
F F,y3Q 3('i -  2 j/j),

#o,j+i =  (1 +  F]y,)ba.3 -  FjAo,} +  t^yj( — 1 )J(6 yj -  6 ) (0 .12)
+ F3y]Q 3(2yj -  3),

^o.j+i =  (1 -  #j!tj)^o,j -  F}y3B0,3 +  v y ] ( - i y ( 2  -  2y3) (D.13)
+F3y]Q 3(2 -  y3),
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(I) 14)=  (1 +  Fjyj)B0J -  F}A0j +  «'yJ ( - l ) J(3yJ -  4)
+ FJy iJQ1(y1 -  2),

where ,/ =  ( 1 /m )  — 1 for a viscosity ratio, m , and Qj =  [1  +  l j / ( l  +  ( — 1 )J )].
The transform ed boundary conditions become

4 0,i =  1 , -4o,i =  0 , So,, =  0 , S 0,i =  1 (D.15)

and
4 o,jvS o,n -  B o,n A o,n  — G(co) 0 . (D.16)

We now have a set of recurrence relations which have we can ite ra te  with a single 
unknown, c0. Thus solving this eigenvalue problem  is now equivalent to finding 
the zeroes of G'(co).

Inspection of the recurrence relations shows tha t G'(co) is a polynom ial of order 
N — 1 in 1/r'o. It can also be seen th a t all the coefficients in the recurrence relations 
are real. Thus if less than  N  — 1 roots exist then the  o ther roots m ust exist in 
complex conjugate pairs. In this case one of the pairs of roots will correspond to 
an unstable mode. Using this approach of looking for real roots only allows us to 
use only real variables, which is a considerable sim plification com pared to  using 
complex variables. Finally, the values of the zeroes are obtained using a bisection 
algorithm .

W hen N  — 1 real roots have been obtained then we know th a t the  system  
is neutrally  stable a t this order. In this case we m ust consider the  first order 
correction to  c.

D .2  T h e  first ord er  ca lcu la tio n
T he first order stream  function satisfies

<)y*
i n  Hj ~  c) f l y 2

(D .1 7 )

118



This gives the following form for çh j,

0 i . j  =  ^ i . j  +  B \ ,: V +  C t j  y 2 +  D j  j  y 3 +  i a R j h j ( y ) .  ( D . 1 8 )

T he functions h j(y )  are defined hy
4 5 6

h j(y )  =  —  c0 )y -  +  {C o,jb} + 3 D 0j ( â j  — c o )} |-  +  D o jb j ^ - .  (D.19)i± oU oU
As for the  zeroth order calculation, application of the  interfacial boundary condi
tions results in a set of recurrence relations which cannot be separated to  obtain 
a general solution. These are,

A jj+ i -  A j j  +  — B i j +i)  +  y |(C i,j — C jj+ i) (D.20)
+ yj(D i,j -  D ij+ i) -(- inRj^hj Afi+i bj+1 ),

^1 ,J+ 1  -  (1 +  Fjy j )Bi j  -I- FjAhJ +  2ÿj(Cij  -  C i ,j + 1 ) 

+ 3 y*(DU] -  D i j +i) +  Fjy] (C i j  +  ynDu )
(D-2 1 )

+i<\RJ \  By
th <>hj+i

fij+i dy + F ,h
J e0,j

n  _  N  r, , *«Æ»+1 (àPhj (Ph3̂ \-  ------u \,j + -----7.----  - f l T ------) ’ (D.22)/iJ+, 6 V d y 3 d y 3 )

and

C ij+ i

The boundary conditions a t the  walls are,
- ^ ^  - 1 )}  ■«»->

R i ,i  4- C j , i  -I- D \, \  +  i n R t h i ( 1 ) = 0 ,

R\,\ -f  2Ci,j T  '1 /1 | i io tR \**—̂ —- =  Q,By
a t j/ =  1 and

A i , / v  =  0 ,  B \ , n  =  0 ,

(D.24) 

(I) 25)

(D .2 6 )
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at y =  0 .
We now make a transform ation sim ilar to tha t for the zeroth order problem . 

This tim e  it is more convenient to transform  all the  variables such th a t

X \ j  — i a R \X  i j  +  B \ ' \X \ j . (D.27)

The recurrence relations for the  variables X \ tJ are identical to  the equations for 
the zeroth order problem  w ith X 0j  being replaced by X t j .  These equations are 
simply iterated  using the known values of Co.

The recurrence relations in X \ j  becom e

^ i j+ i  — ( 1  F jy j)Â \,j F jy jB \ j  — V j(C \j  — (7 ij+i) (D.28)
- 2 V j W u  ~  A J+ . ) -  F n f t f i i  +  y jD i) +  Q i(h i -  j Æ  -  F ^ h , )

-Qj+\(hj+i — ) +  —~yj4>o,jcuy C 0 J

dy

f l . ,,J+ 1  - + F jy j) B i, j  — F j Â \,j + 2y} ( ( \  — T’i.j+i ) (D.29)
+3</•(£.,> -  Â ,j+ .)  +  F t f i P i  +  j / , 4 )  +  +  F A )

< A ± i +  a .
t|y e0,j 1

* 1 (  c ) 2 h .  d 2 h j + . rF/ij
tii/ 2 ¿ty2 }•

an d

where cj =  taA |C |.
The boundary conditions at ¡/ =  1 are  

¿ 1 . 1  =  0 , » 1.1 =  0 ,
A ,  -  6 , . ,  =  - ^ +  2k„

( t y  a y

(D.30)

A JL 1 /¿ > A  tF/»i+1\
/tJ+1/)J+1 -  p A ,  +  g ( â - T  -  “ g p - J  ' (D .3 1 )

(D .3 2 )
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F in a l ly ,  t h e  b o u n d a r y  c o n d i t io n  a t  y  =  0 b e c o m e s

À \,n B i 'N — =  H (c\) =  0. (D.33)

It can be seen from these relations th a t all the variables X j j  m ust be entirely 
real and th a t r j  is also real. From this we see th a t the  first order eigenvalue cj 
m ust be entirely im aginary and of tbe  form

ci =  i a R i J ,  (I).34)

where .7 is a real function.
The problem is now sim ilar to the  zeroth order case. We m ust find the  zeroesvi

of the  function H (c\). This is more sim ple th a /fo r  the zeroth order case since H 
is linear in cj anti the zeroes can be calculated directly w ithout using a bisection 
algorithm .
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