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Abstract

In this thesis I present a formalism for calculating the effects of magnetic anisotropy 

on the long wavelength excitations of a magnetically ordered itinerant electron 

system. It is derived from a relativistic multiple scattering theory treatment of 
the density functional formalism single electron equations.

Multiple scattering theory is shown to be capable of describing the small 

anisotropy energies involved via work on the effects of anisotropy on magnetic 
interactions between magnetic impurities embedded in a non-magnetic metallic 

host. The addition of a third, heavy non-magnetic impurity is found to enhance 
the magnetic anisotropy energy of a magnetic pair in the system such that in 

some cases it becomes comparable in magnitude to the effective exchange energy. 

The resulting anisotropic magnetic interaction is found to be more complex than 
that shown by other model calculations.

In attempting an investigation of the magnetic excitations by constructing 

a relativistic dynamic susceptibility-from a two electron Green’s function, it is 

found that solving the Kohn-Sham-Dirac single particle equations together with 
the Local Density Approximation in this situation leads to an inconsistency. As 

a result of this, the starting point for the subsequent analysis is the phenomeno­
logical equation of motion for a magnetic moment.

It is known that one of the effects of magnetic anisotropy on the excitations 

is the existence of a gap in the spin-wave dispersion spectrum. The formalism 

gives the correct result in the non-relativistic limit, an absence of a gap, and 
is evaluated numerically for bcc iron, fee nickel and fee cobalt when relativistic 
effects are included. The results compare favourably against previous magnetic 

anisotropy calculations and experimental work.
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Chapter 1

Introduction

The existence of materials with a permanent magnetisation in the absence of a 
magnetic field has been recognised for a considerable period of time. A reasonable 

description of the origin and behaviour of the magnetisation in such systems 

has been one of the hardest problems in solid state physics. Ferromagnetism 
was known to be a co-operative alignment of permanent magnetic dipoles, in 
the case of magnetic insulators the magnetisation is due to the intrinsic spin 

of the unpaired electron, localised on each atom. The origin of the magnetic 
ordering was shown to be electrostatic in nature, a consequence of the Coulomb 

and exchange interaction, an effect due to the Pauli exclusion principle, indicating 

that the origins of magnetism are quantum mechanical.

The above can be seen to hold well in the case of magnetic insulators, but 
what of metallic systems? It was some time before the idea that the electrons re­
sponsible for the magnetic behaviour in itinerant materials were also responsible 

for the conduction properties [1]. The idea of an exchange coupling between itin­

erant electrons and its importance in magnetism was put forward by Bloch [2]. In 
the metallic case it is hard to envisage the magnetic moments, the magnetisation 
per unit cell, being due to an individual electron’s spin, they are not localised 

long enough to define a spin operator, Si, as in the case of a local moment-
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insulator picture [3], [4]. Experimental evidence, such as the non-integral value 

in Bohr-magnetons of the magnetic moment, points against this concept as well. 

To produce a theory to explain many of the phenomenon produced by such sys­
tems the existence of exchange interactions alone is not sufficient. Exchange deals 

with the situation where electrons of like spin tend to avoid each other, however 
electrons of opposite spin will also prefer to stay apart merely from electrostatic 

repulsion. Hence a full description of magnetic behaviour in itinerant systems 

will need to deal with an interacting many-body situation.

The first step in producing a theory of such systems started with the free 

electron gas. In 1929 Bloch [2] suggested that the addition of exchange inter­
actions could lead to the existence of a ferromagnetic ground state. Wigner [5] 

indicated that when correlations, such as those between unlike spins, were taken 
into account then ferromagnetism was unlikely. Stoner [6] suggested that the 
non-integral values of the magnetic moments could be explained if the electrons 

responsible for the magnetic behaviour were itinerant. Later papers [7] together 

with work by Wohlfarth [8] and others, used partially filled d-bands as a starting 

point for a model with adjustable parameters to correlate many physical proper­
ties, magnetic moments, electronic specific heats etc., for transition metals and 

their alloys.
Itinerant magnetism is a competition between the potential energy of the lo­

calised coulomb exchange and the kinetic energy of the electrons due to their 
itinerant nature. One approach to this problem is that due to Hubbard [9]. He 

put forward a model, equation (1.1), which contains the minimum of features to 
describe both band-like and localised behaviour in the appropriate limits. How­
ever, although it is easy to describe, any solutions require further simplifications.

H = -  Yi lnchtei* + UY1 ”>.*"*-* ( 1 •1)
*>.* jt*

c]„, cjn and nJi(, are the second quantisation creation, destruction and number 
operators. The Pauli Principle and Coulomb repulsion are built into the formal-
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ism as equation (1.1) does not permit two electrons of the same spin to occupy 

the same site. The first term models the kinetic energy, it determines the elec­
tron hopping from site to site. The second term describes the interactions of 
the electrons, the competition between the two effects determines the electronic 
behaviour of the system.

An alternative description of itinerant systems exists in the form of band the­

ories. These, with the addition of exchange and correlation effects have proved 

very capable in describing a large portion of magnetic behaviour in metallic sys­

tems at low temperatures.

Interesting effects can result from the existence of magnetic anisotropy, this 

is the situation where the magnetic moment is coupled, in some form, to the 

crystal axes. The origin of magnetic anisotropy is relativistic, mainly due to the 
existence of a term which couples the electrons intrinsic spin to the orbital angular 

momentum. In magnetic insulators the origin and behaviour of such terms is 

quite well known, this leads to phenomenological as well as quantum mechanical 

descriptions of the behaviour of such systems [10]. From the former comes the 

concept of anisotropy constants, determined by various symmetry considerations
[10], the behaviour of which, as a function of temperature, have provided much 

discussion.
For itinerant systems the picture is not so clear. A proper relativistic treat­

ment of the many-body problem is required, until this is accomplished then the 

origins of many of the anisotropic effects will remain uncertain.

The remainder of this chapter deals with descriptions and methods of dealing 
with interacting electronic systems from a first principles quantum mechanical 

basis. Details are given on how to tackle the many-body problem, resulting in 

the production of a set of single particle equations.
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1.1 Interacting electronic systems

A first principles description of the behaviour of a material needs to address the

fully interacting electron problem. The non-relativistic behaviour of interacting 

electrons in a solid is determined by the Schrôdinger Equation (SE), however even 

making the approximation that the individual nuclei remain stationary (the Born- 
Oppenhiemer approximation), then we still have a partial differential equation in 

~  1023 X 3 dimensions, which is insolvable.
For a system of M nuclei and N electrons the Schrôdinger equation is,

Naturally attempts have been made to get round this or at least try to solve some­

thing similar to equation (1.2). One approach is to try and map equation (1.2) 
onto a set of equations describing non-interacting electrons moving in effective 

potentials set up by all the other electrons.
The first attempt towards this single particle approach was to assume that 

the wavefunction for the full interacting electron system could be approximated 

by a product of one electron (non-interacting), orthonormal wavefunctions, i.e,

I0  >*= |0 i(r)0a(r')03(r").... > (1.3)

Therefore the expectation value of H becomes,

(1.4)

For a solution 0 to the wave equation, the variation of the expectation value 

of H with respect to the wavefunction 0 can be shown to be zero,

6 < 0|H|0 >=  0 ( 1. 8)
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This minimisation condition can be achieved using Lagrange multipliers, A, and 

/  6<j>'(r)<f>i(r)dr =  0 as an orthogonality condition. Hence equation (1.5) becomes,

Therefore in this scheme, known as the Hartree approximation, the electron now 

moves in an effective potential,

By examining the wavefunction produced by the Hartree approximation it can 

be seen that it is incompatible with the Pauli Principal, e.g. the wavefunction 

is not anti-symmetric under exchange of electrons. Therefore this indicates that 

certain important features of the electron-electron interaction, such as exchange, 

cannot be described by such a simple self-consistent field approach. To remove 
some of these defects, the many electron wavefunction can be built up from a 

Slater determinant of one-electron wavefunctions, therefore the Pauli Principal 
is satisfied from the start. The resulting effective potential produced by such an 
approximation contains the Hartree term as described above together with an 

exchange term. However the form of this extra term produces a complication as 

seen in the resulting single particle equation,

Its form is such that it is non-local, therefore to make any attempt to solve this

( 1.8)

(1-9)
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leads to the Hartree-Fock method of dealing with the fully interacting problem. 

The effects of the electron-electron interaction not included in the Hartree-Fock 
approximation are known as correlations, however it should be noted that these 

are not really ‘ missing’ from the Hartree-Fock but are the errors that result 

in making that particular approximation. Both the Hartree and Hartree-Fock 

approaches need to be solved self consistently in order to generate the correct 
y f t .

Another method exists which takes account of both exchange and correlation 

effects, Density Functional Theory.

1.1 .1  D en sity  Functional T heory

Density Functional Theory, in principle, includes all the desirable effects of ex­

change and correlation in a scheme which has the ease of calculation of the 
Hartree-like single particle equations. For a review of the subject see [11].

It is fundamentally different to the Hartree and Hartree-Fock approaches in 

that attention is focussed on the density, n(r), of the interacting electron gas 

rather than the many electron wavefunction. Here we shall outline the basic 

principles of Density Functional Theory which are formally expressed by the 

Hohenberg-Kohn Theorem [12], [13].

1 The ground state energy, Eg, is an unique functional of the ground state 

density.

E g - E M  r)] ( 1-10)

The proof of this consists of showing that there is an unique ground state density 
for each chosen external potential [12]. Therefore as V'Tl determines the energy 

of the state, the energy of the state is determined by the density.

2 The energy functional obtains its minimum value with respect to the den­

sity, n(r), at the correct n(r) subject to the condition that the total number 

of particles remains constant.
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This arises from the general Quantum Mechanical variational principle that the 

ground state energy is a functional of the wavefunction and obtains the correct 
value when all variations conserve the particle number.

Hence if we could calculate the exact energy functional from a given density 

then the full interacting problem would be solved, however as it stands this is 

not possible. A method for calculating the energy functional can be developed 
by investigating the terms which would contribute to such a functional, hence,

£»["(«■)] =  T[n(r)] +  E«[n(r)] + £*c[n(r)) (1.11)

where T[n(r)] is the kinetic energy of the interacting electron system, £//[n(r)] 

is the usual Hartree term and £xc[n(r)] describes all the other electron-electron 

effects such as exchange and correlation.
By using the variational principal together with the particle conservation con­

dition, a set of Euler Lagrange equations with Lagrange multipliers, ft, are pro-

duced,
(1.12)

where
(1.13)

This is not quite the set of single particle equations we require as not only is 

E^c(n(r)] unknown but we do not have an exact expression for the kinetic en­
ergy of an interacting electron system. The latter point can be remedied by an 

approach due to Kohn and Sham [13].
The density, n(r), is expanded in terms of single particle states,

n(r) = £  |l/.(r)|a (1.14)
i

Carrying out the variational principle with this expansion reveals a set of SE-like 

single particle equations for t/|(r),

( - V 3 + V'a ) Ui(r) =  tiUi(r) (1.15)
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where V'^[n(r)] is as in equation (1.13). The kinetic energy term is now calcu­
lable, this is apparent when the single particle equations, (1.15), are solved self 

consistently leading to an expression for the ground state energy,

N '  ' n(r)n(r') f  6Exc\n(r)]
-| — - j  ¿n(r) -n(r)dr + EXcln(r)] (1.16)

Therefore we have an expression for the ground state energy with the only un­

known being £ x c K r )] .
Without a realistic method of dealing with ,E>rc[n(r)] there would be little 

purpose of taking the DFT route, however there are a number of reasons why 

such a path can be taken. It is possible to obtain a physical basis for the func­
tional and hence a realistic approximation can be made. The physical origin of 

£jrc[n(r )] can be seen as follows. As the electron moves through the gas the 
exchange and correlation effects ’dig out’ a region of depleted electronic charge 

or ‘hole’ . Therefore £ x c [n(r)] can be thought of as the interaction of the electron 

with its exchange correlation ‘hole’ . Methods exist for calculating Exc[n(r)] for 

the homogeneous electron gas. In fact, as the density is constant for such a case, 

the functional becomes just a function of the density, i.e. f?xc[rc(r)] =  e*c(rc(r)). 

This allows us to make the Local Density Approximation (LDA) to fixc[n(r)], 

this implies that the exchange-correlation energy at any particular point depends 

only upon the density at that position and its value is the same as the homoge­

neous electron gas at that point. Hence,

£xc[n(r)] =  J n(r)iXc(n{r))dr (1.17)

The LDA has proven to be very successful in a certain number of situations, 
however its validity in the description of certain electronic behaviour has been 

questioned for particular systems [14).
For a set of single particle DFT equations describing a system with trans­

lational symmetry there exist a number of band structure methods available to 

produce the required solutions,
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1. The single particle wavefunction is expanded via a basis set of orbitals, 

which are diagonalised to obtain the energy eigenfunctions. Examples of 

this are the Augmented Plane Wave (APW) and Linear Muffin-Tin Orbital 
(LMTO) approaches.

2. The single particle Green’s function is calculated, from which physical ob­
servables can be generated. A typical example of this is the KKR band 

structure approach, in particular the use of multiple scattering theory.

The solution to the single particle equations by the method described in 2, 

that of multiple scattering theory, is the subject of Chapter 4.

1.2 Outline of the thesis

Chapter2

Chapter 2 introduces the possible types of magnetic excitations, namely those 

involving ’single particle’ states and those where a collective behaviour of the 

system is required. Methods are demonstrated for calculating such magnetic 

responses, both through the construction of a dynamic susceptibility and the 

solution of an equation of motion for a ‘classical’ moment.

Chapter 3

The possible mechanisms behind magnetic anisotropy are investigated, in par­

ticular the use of a relativistic description for the behaviour of the electron. A 
phenomenological model, dependent upon the symmetry of the crystal structure 

is introduced and a review is made of previous magnetic anisotropy calculations 
in itinerant systems. Although the origins of magnetic anisotropy are relatively 

well understood in the case of magnetic insulators, which can be described by a 
localised moment picture, the situation of magnetic conductors is less clear. In
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particular the necessity to concentrate on a correct description of the interacting 

many-body effects is evident. The effects of anisotropy in magnetic domains and 

on the spin-wave excitations is also discussed.

Chapter 4

In chapter 4 the formalism used to solve the single particle equations described in 

chapter 1, namely multiple scattering theory, is introduced. As an example it is 
used to calculate the anisotropy energies obtained when magnetic impurities are 

embedded into a non-magnetic conducting host e.g. Fe in Cu, Mn in Ag. Numer­

ical results are presented including calculations indicating interesting behaviour 
when additional heavy, non-magnetic, impurities are added to the system. This 

has implications for the study of materials such as dilute magnetic alloys and 
spin-glasses.

Chapter 5

Chapter 5 contains the majority of the original work of this thesis. A formalism 

is developed to investigate the effects of anisotropy on the low-lying magnetic 
excitations of a metallic system. As a test of the formalism, the limiting non- 

relativistic case is investigated analytically.

Chapter 6

The results of the numerical calculations for the spin-wave gaps for Fe, Ni and 

Co are presented. Comparison of the results obtained to previous work on mag­

netocrystalline anisotropy is made, in particular the justification for a number of 

approximations made will be discussed.
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Chapter 2

Magnetic excitations

In this chapter the idea of excitations, as applied to magnetically ordered systems, 
is introduced. The concepts involved for both localised and itinerant systems are 
discussed, including the construction of phenomenological and first principles 

approaches.

2.1 Excitations in magnetic systems

In a single domain, ferromagnetic insulator, the ground state consists of all the 

magnetic moments aligned parallel along a particular spatial direction. At first 
sight one possible excitation could be the ’flip’ of one of the magnetic moments, 

as shown below. However it can be shown that the energy cost for such an

Figure 2.1: A possible single ‘spin’ excitation where one of the spins has been 

inverted.

operation is of the order of the exchange energy, 1 ~  10 eV. Instead of such a
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localised excitation, if the ‘flip’ were shared by the system as a whole, say in 

the form of a wave, then the energy cost would be considerably less. This form 

of excitation corresponds to the precession of the magnetic moments, the phase 
of one moment relative to the next is determined by a wave vector q. Such a 

’spin-wave* is illustrated in figure (2.2). Hence for this collective excitation, at

Figure 2.2: An alternative magnetic excitation is a spin-wave, the relative pre­

cession between each spin is determined by the wavevector, q.

least in a classical sense, the excitation energy can vary continuously from zero 

up to the energy range of the localised, spin ’flip’ , excitations. This only really 

holds in the case where anisotropic effects are ignored.
The concept of spin-waves originated with Bloch [15] who dealt with the 

problem of a ferromagnetically ordered chain of spins. He calculated the spin- 
wave dispersion, and used this to evaluate the temperature dependence of the 

change in magnetic moment and specific heat, leading to the 7’ » law. In 1940 
Holstein and Primakoff [16] solved the quantum mechanical problem of spin-waves 

in a Heisenberg ferromagnet.. They also showed that by taking magnetic dipole- 
dipole interactions into account, the spin-wave energy not only had a dependence 
upon the magnitude of the wave-vector but also on its direction with respect to the 
direction of ground state magnetisation. This results in the spin-wave dispersion
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curve becoming a band, and for some orientations the cone of precession of the 

moment becomes an ellipse.
Physical sample size plays a very important role in the study of spin-wave 

excitations. For example when |q| < |, where l is of the order of the sample 

size, then the dipole-dipole interaction dominates over any exchange term, this 

leads to the existence of non-uniform magnetostatic modes whose exact form is 

highly sample dependent [17]. Also the role of surfaces and thin-films in spin- 
wave studies has come to the fore, it was shown that surface spin-wave modes, 

with higher energy than bulk modes, could exist [18], [19]. The reduction in 
symmetry of such systems allows a variety of anisotropic effects to be measured.

In 1946 Griffiths [20] demonstrated a method by which q = 0 spin-waves 

could be generated experimentally. Ferromagnetic resonance (FMR) excites these 
modes via microwave radiation, the theoretical basis for such experiments was 

provided by Kittel in 1950 [21]. For q ^ 0, microwave excitation of spin-waves 
runs into a number of difficulties, mainly due the large mis-match of microwave 

and spin-wave velocities, the microwave field being too uniform, however Kittel 
pointed out the possibility of exciting surface modes in metallic magnets. This 

is primarily due to the fact that the microwave field only penetrates as far as the 

skin-depth, and it was shown that modes of wavelengths up to this length could be 
induced. Thin-films provide an excellent testing bed for spin-wave theories, due 

to the sample dimensions a number of modes can be set up. Work on such systems 

originated in 1958 [18]. A number of solutions to the problem of producing q ^ 0 

spin-waves exist, these include applying a non-uniform magnetic field which sets 
up boundary conditions which make excitations possible, [22], and the use of 

techniques such as ’parallel pumping’ , a non-linear process where one photon 
decays into two spin-waves. Excellent reviews of spin-waves, their history and 

investigation, include Rado and Suhl [10], the two volume work edited by Borovik- 
Romanov and Sinha [23] and the work of Akhiezer, Baryakhtar and Peletminskii 

[24].
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2.2 Phenomenological description of magnetic

excitations

To illustrate the principles of spin-waves in a localised moment case, we intro­
duce a phenomenological approach, originally due to Landau and Liftschitz [25]. 

It should be noted that this approach can be made rigorous in the quantum 
mechanical sense with the appropriate spin operators and equations of motion 

[16]. In this situation, that of a quantum mechanical Heisenberg ferromagnet, 
described by the relevant Hamiltonian, H, the equation of motion of a spin is 

given by,
. f i^ i  = [S„H ] (2.1)

or, introducing an effective field (with dimensions of energy), H'-^,

i h ~  =  i (S, x H '" )  (2.2)

It is possible to relate the spin-operator, Si, to a macroscopic moment, M , i.e

M, =< * |S ? |*  >.

The starting point for a phenomenological theory of magnetic excitations is 

the consideration of a classical continuous magnetic medium, characterized by 

a definite magnetic moment at each point. As with all the spin-wave theories 

considered here it is based on the assumption that the deviation of the moment 
from its equilibrium position is small. Firstly we consider the motion of a rigid 

magnetic moment, M , of unit length in a magnetic field.

* - £  =  —yM, x H '1'  (2.3)

7 is the gyromagnetic ratio and H ] i s  the magnetic field experienced by the 
moment at site i. The effective field can be expressed in terms of the functional 

derivative of the total energy of the magnet [25],

H ? "  = -
6E

AM,
(2 .4)
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Equations (2.3)-(2.4) are equivalent to the following variational conditions,

SEtota, =  0 (2.5)

¿M  • M 0 =  0 (2.6)

Hence the equation of motion method will be valid in the region where |M| 

remains constant. As long as changes in direction or magnitude at a rate

which is slower than any thermal equilibrium change, then |M| will stay constant 
and will be acted upon by a torque proportional to M, X H' ̂ . The effective field 

has a number of contributing terms, for the purpose of this model anisotropic 

effects will be ignored.

Exchange

The first term to consider in the energy is the exchange interaction. If by assuming 

a Heisenberg type interaction, i.e,

£ o c ^ J yM 1 M > (2.7)

and making the approximation that the deviations of the spins from site to site 

are small,

M j = M, + (r, -  r.) • V,M , +  ¿ ((r ; -  r<) • V ,)2M, + ... (2.8)

then for a short range interaction, the exchange contribution to the total energy 

can be expressed as,
Exc «  M, • (rj -  r, • V ,)2M< (2.9)

where the inversion symmetry of the crystal lattice has been taken into account.
Using the expression for an effective field, (2.4), this exchange energy corresponds 

to a field, Hxc,
Hxc = 2/1V 2M , (2.10)
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where A is known as the exchange stiffness parameter and can be related to the 

coupling constants, Jij. As can be seen from the form of equation (2.7), the 
exchange energy is independent of the direction of M,.

Dipole-dipole interactions

By introducing the dipole-dipole interaction, we now have to consider the energy 

of the dipole moment interacting with a field set up by all the other moments.

Edip =  J M, ■ H dipdv (2.11)

This magnetostatic energy is hard to evaluate due to its non-local nature and its 

dependence upon the shape of the sample being investigated [26]. However it can 

be obtained for situations where the magnetisation is uniform inside the sample 
(which is what we require for investigations into bulk ferromagnetic excitations). 

This turns out to be satisfied only for certain sample configurations, for example, 

an ellipsoid. In this case the magnetostatic, or de-magnetisation energy has the 

form,

EdiP =  —4*N .M  (2.12)

where N depends upon the sample in question. The above holds for the case of 

uniform magnetisation, therefore there can be no domain structure.

Equation of motion

The resulting equation of motion for the moment is,

=  — yMi x [2AVaM, -I- H * moa + Hfrl "t (2.13)

H „i and H mlcr„ are an external static field and an internal microwave field, as 

required in the case of FMR. The effects of the demagnetisation on this microwave 
field are taken into account by the appropriate Maxwell equations and boundary 

conditions. When damping and relaxation terms are introduced then equation 

(2.13) is known as the Landau-Lifshitz-Gilbert equation [25], [27].
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In solving equation (2.13) and looking for plane wave solutions, M  oc e'(w‘ -<>-r), 

it is found that the addition of the dipolar interaction couples q and —q solutions 
[23]. This can be shown to indicate that the modes excited are elliptical, the exact 

modes depend upon the sample shape and the angle of propagation with respect 

to the equilibrium moment position.

Other non-uniform modes exist in this region where the dipolar energy dom­
inates, particularly where the spatial variation of the spin deviations is of the 
order of the sample size. These modes depend heavily on the sample shape and 

the strength of the applied static field. They are really just a consequence of 

applying a static magnetic field to a dipolar magnetic continuum and are known 

as magnetostatic modes.

2.2 .1  Spin-w aves

Fortunately, the density of the usual spin-wave modes is much higher than the 

magnetostatic modes, therefore in investigating spin-wave effects on magnetisa­

tion, specific heats etc, it is not necessary to consider these higher energy static 

effects.
For our investigation of bulk spin-waves in cubic structures we can ignore the 

effects of dipolar interactions. Using the exchange field as introduced in equation 
(2.10) together with a static external magnetic field, H'*', in the z direction, then 

the relevant equation of motion of a moment at site t becomes,

^  =  7 M , x + H " ' j  (2.14)

As we are looking for small deviations about the equilibrium magnetisation, and 
are required to satisfy the variational condition, equation (2.6), we can rewrite 

the components of the magnetisation as,

M i =  (6M't ,6M'v,M 0) (2.15)
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Equation(1.24) can then be linearised resulting in two coupled equations for 6M'X 

and f>M'y, which can be solved by forming the linear combinations,

6M\ = 6Mi + i6M'v (2.16)

6 M l =  6M'X — i6My (2.17)

By Fourier transforming, assuming a cubic lattice and using a small q expansion 
of the exchange term , then wave-like solutions, 6m'+ oc e~'ut exist for,

w =  7H ' rt +  £>92 + ... (2.18)

This form of dispersion relationship is shown in figure (2.3). D is known as the

Figure 2.3: The spin-wave dispersion curve for a ferromagnet, in the absence of 

an external field w = 0 as q —► 0.

spin-wave stiffness coefficient and can be related to exchange parameter Jij. As 

can be seen from above, in the absence of any anisotropic effects and zero applied 

field, u) =  0 as q  —► 0.

2.3 Itinerant systems

As the processes responsible for magnetism in itinerant systems would seem to be 

considerably different from those where a local moment picture is more applicable,
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then the corresponding magnetic excitations could be expected to differ also. 

However, although the possibility of spin-waves in metallic systems had been 
postulated earlier, some of the first theoretical investigations were undertaken 

by Herring and Kittel [28]. In an itinerant system the question of timescales is 

crucial. The magnetic moments are set up by the interacting electronic system, 
any change in the orientation of the moments is on a much slower timescale than 

the actual electron motion.
Initial calculations of the dynamic response of itinerant magnetic systems 

were based on a single conduction band model. They showed the type and en­
ergy ranges of the various magnetic excitations, the single spin-wave branch and 

the broad region of localised, Stoner excitations. It could possibly be thought 

that such a simple single band picture would not hold for systems such as the 
transition metals, with their 5 d-bands, however, theories based upon a multiple 
band approach have shown that such a simple picture is surprisingly good.

The addition of multiple bands was shown to have an effect on the disper­

sion, including the production of more than one spin-wave branch and a general 
smearing of spin-wave intensity. Theories based on a random phase approxima­

tion of multi-band models (a Hubbard type approach) include work by Lowde and 

Windsor [29] and Cooke [30]. The calculations of the generalised susceptibility 
by Cooke [31] reproduce the various dispersion relationships well for Ni and Fe. 

The free parameters involved in this calculation were chosen to give the correct 

magnitude of the magnetic moment and its orbital component.

2 .3 .1  Theoretical approach

To investigate the nature of these magnetic excitations then we should look at 
the response of the system to a magnetic perturbation. If we assume that the 

system under investigation responds linearly, to first order, to such a change in

25



magnetic field then we can define a susceptibility, y,

X =
¿M
ÓB (2.19)

A generalised treatment of the magnetic response of a system leads to the idea 
of longitudinal susceptibility, response parallel to the moment, and transverse 

susceptibility, response perpendicular to the magnetic moment. Unfortunately, 

as shown by Rajagopal [32] and Callaway and Chatterjee [33] the longitudinal 
susceptibility has an additional complication in that the charge and magnetic 

densities are coupled. However in the region of linear response and hence long- 

wavelength excitations, the relevant quantity to deal with is the transverse sus­

ceptibility. Magnetic excitations will correspond to poles in this susceptibility,

i.e. a response in the absence of a perturbing field.

Dynamic susceptibility via the Hubbard Hamiltonian

To introduce the concepts involved, we consider the derivation of the dynamic 

susceptibility from a single band, many-body Hubbard Hamiltonian, responding 

to a time and space varying external magnetic field, Hej:<(r, t). The resultant 

Hamiltonian in second quantised form is [42],

H “  Xrf £kCk,iTCk,<T “t"
k,<r i  i.a

k
+ (^k+q.tCk .l+ Ck-q.tCk.l)C" iW‘ ] (2-20)

The components of magnetisation, A/+(q) and M_(q),  introduced earlier, can be 

defined in terms of creation and annihilation operators, i.e,

M+(q) = -2 p fl ¿ 2  <  4 _ q,tckil > (2.21)
k

Therefore, to attempt to solve the Hamiltonian above, a reasonable first step 

would be to construct an equation of motion for this spin-fluctuation, < jCk j >,

i h Tt <  Ck-«l.tck,l >  =  <  tck -q .tck .l -H l > (2.22)
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The general form of a number of the terms which result from evaluating the 

commutator in equation (2.22), is impossible to deal with, hence to proceed 
further requires the use of an approximation. The random phase or dynamical 
Hartree-Fock approximation corresponds to retaining only those terms which 

can be written as a product of a number operator, ha, and the spin fluctuation 
operator, <  ck_q |Ck ( >. As a result, the equation of motion becomes,

ih J l  <  Ck -q ,tCk,l >  =  ( £k -  £k -q )  <  C k -q .t^ .l >

+  -  rV l )  <  Ck -q .t Ck.l >
k'

—-^(?,k -q ,t  — **k ,j)^ Z  ^  ck -q -q ',| c k -q ',t
q'

+ i /1fl//“ '(nk. qit- n k,l )ei“ ' (2.23)

By defining an exchange-corrected electron energy,

£k<r =  £k “  1 5 Z  ” k v
k'

(2.24)

and assuming that all the spin fluctuations have a time dependence of the form 

e,ut, equation (2.23) becomes,

t . _  ^(^k-q,t ~  ^k .l) ^ q ' <  ^ -q - q '. t ^ -q M  >
ck -q ,Ick,l (fcw _  (£k q j _  n kjJ))

^ B/ / erl(nk_q , - n ktl)
+- (2.25)

(5 w  -  (<k-q,| ~  « k ,i ) )

By substituting for the expression for the magnetisation, equation (2.21), and 
using the definition for the susceptibility, equation (2.19), an expression for the 

transverse susceptibility can be obtained,

•(q ’ w) ( l_ /x ° (q ,u > ))X<ran.fq,U>J = ,, ' (2-26)

X°(q,u>) is known as the non-interacting susceptibility and is defined as,

(2 .2 7 )
k -  (fk -q,t -  £k,i);
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Figure 2.4: The excitation spectrum of an itinerant electron ferromagnet showing 

the two types of possible excitations, the spin-wave branch entering a broad region 

of Stoner excitations.

The example given above leads to the production of two forms of singularity in 

the susceptibility, as shown in figure (2.4). One type are singularities in x°(q,u;) 
itself, which correspond to localised or Stoner excitations. The second type occur 

when 1 — /\°(q,u>) =  0. These lead to poles at real frequencies dependent on the 

value of q and are the spin-waves discussed earlier.
The transverse susceptibility, or 2-particle Green’s function, also has the 

added advantage in that it is directly comparable with experiment via inelastic 

neutron scattering [34]. The inelastic neutron scattering differential cross-section 

is given by,

«  /mxir«n.(q,‘*>) (2.28)

2 .3 .2  First principles description

Attempts to produce first principles calculations of spin-wave spectra have cen­

tred on the use of Density Functional Theory. Such a theory is valid for a descrip­
tion of the ground state of an interacting electronic system. To extend it into the 
situation of non-equilibrium systems with time dependent variations in electronic
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density and exchange correlation potentials is fraught with difficulties. However, 

as the excitations under investigation here are of long-wavelength and the motion 

of any moment is slow compared to the electronic motion, then to a reasonable 
approximation we can take the effective potentials to have their instantaneous 

equilibrium values. This allows the use of the Density Functional Theory single 

particle equilibrium state equations.
Callaway [35] used a single band picture together with the Local Density Ap­

proximation to calculate the spin-wave spectrum of Ni. The dispersion curve is 

broader than that produced by Cooke [31] and there is an absence of multiple 
branches, however this is to be expected, being a single band calculation. Cal­
culations have also been made for iron, Blackman etc. [36], indicated interesting 

behaviour at higher spin-wave energies including ‘optical’ modes together with 
discontinuities in the branches. All these effects are due to the existence of more 
than one band and indicate that considerable structure exists in the excitation 

spectra for the itinerant case compared to the localised situation.

Dynamic susceptibility via DFT

One of the earliest attempts to produce a method for the calculation of the 

transverse susceptibility was that of Callaway and Wang [37]. They used a lo­

cal exchange approximation together with a perturbation theory approach to 
demonstrate the existence of collective excitations, spin-waves. To proceed with 

a first principles calculation requires a modification to Density Functional Theory 
as presented so far, namely that we are now dealing with a spin-polarised sys­

tem with the ground state magnetisation aligned along a fixed spatial direction, 
taken to be the z axis. The derivation below follows the route taken by Stenzel 
and Winter [38] in their derivation of a dynamic susceptibility for paramagnetic 

metals.
Now the ground state energy is a functional of both charge density, n(r,<)
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and magnetisation density, m(r, t). The Green’s function for the time dependent 
single particle equations becomes,

The addition of a magnetic dependence in the energy functional has introduced

an effective field, B f-flr[n(r, <), m(r, <)], which couples to the spin current, m(r, t),

the interacting many electron system.
For the calculation of the transverse susceptibility, the time-dependent applied

the region of linear response the magnetisation, and therefore B'^[n(r, f), m (r, <)], 

will just rotate, the magnitude remains constant. As stated earlier, these Den­

sity Functional Theory equations are only really valid for the description of an

m (r, i), in reality they would be calculated at the equivalent instantaneous equi­

librium densities.
As in the previous non-magnetic case, to proceed further we require the use 

of the Local Density Approximation. As this involves the energy functional due 
to a homogeneous electron gas, its dependence upon the magnetisation density 

must only be through the magnitude of the magnetisation, also the densities will 

lose their time dependence, therefore,

only. This field, or ‘moment’ is set up by the exchange and correlation effects of

field B°(r, t) is perpendicular to the ground state magnetisation, and as we are in

equilibrium state. Hence it should be noted that although V'-flr[n(r,<), m (r ,<)] 

and B'^[n(r, <), m (r, <)] appear to have a time dependence through n(r,t) and

£ * cM r ,< ).m (r ,< )]  =  £ x c [n(r), |m(r)|]

=  J  n (r)eXc(n(r),|m(r)|)c/r

(2.32)

(2.33)
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The charge and magnetisation densities can be obtained from the single particle 

Kohn-Sham Greens function, equation (2.29) via,

n(r,t) =  —t7YG(r, r, <,< +  e) 

m (r ,t) =  — ¿7>erG(r, r, t ,t  +  t)

(2.34)

(2.35)

Perturbing the system with a time-dependent transverse field, £B(r, t), results in 
a change in G, to first order, of,

Using the approximation introduced earlier, that the moment and hence the

Solving for 6n(r,t) and the components of ¿m (r, t) using equations (2.36) 

and (2.37), gives 6n(r,t) =  0 and 6m ,(r,t) =  0. This confirms that the charge 

response is decoupled from the magnetic response and that the magnitude of the 

magnetisation remains constant.
The magnetisation can be calculated via equation (2.36) and using the def­

inition for the susceptibility, equation (2.19) an expression for the transverse 
susceptibility can be produced. Finally, Fourier transforming, gives,

As with the Hubbard case, x° *8 known as the non-interacting susceptibility and

6 G =  -G o iH G o (2.36)

effective field, B'-^, just rotates whilst its magnitude remains constant, gives the

following expression for the change in the Hamiltonian, ¿H,

a • ¿m(r, t) 

(2.37)

Xiran*(Ç|i )̂ — (i - i / * x o (q,u»))
(2.38)

where,
v ,g _  ¿£xcM r),|m (r)|]

im (r)
(2.39)

m =m Q,n=no

is defined for a system where n(r) and m(r) are fixed at the ground state values,

i.e ,
6 H  = (2 .4 0 )
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In agreement with the previous derivation of the dynamic susceptibility via the 

Hubbard Hamiltonian, the various forms of magnetic excitation which exist, 

Stoner and spin-waves, are contained in equation (2.38).
Formally it is possible to obtain a dispersion relation for these collective exci­

tations, the form of which will depend upon the energy scale set up by the band 
splitting, this in turn will determine where the the spin-wave branch will enter 

the region of single particle excitations. In this region there will be a broadening 

of the spin-wave modes due to decay into the Stoner excitations as well as possi­

ble spin-wave interaction effects. By making a small q expansion of \° it can be 

shown,
hto =  Dq2 (2.41)

where D is known as the spin-wave stiffness coefficient and is given by,

D =  |m 0|p- (2.42)
l i m ,^ o  X ° ( < 7 ,0 )

Derivations of D have included simple band models to first principles calcu­

lations. Approaches using DFT include work by Edwards and Rahman [39], Liu 

and Vosko [40] and Callaway et al. [41], where the sign and upper bounds on D 

have been calculated It should be noted that \°(q, 0) and hence D, are ground 

state properties and therefore can be legitimately calculated via DFT.
The following chapter introduces the concepts of magnetic anisotropy and de­

tails methods of how such effects can be dealt with in both localised and itinerant 

magnetic systems.
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Chapter 3

Magnetic anisotropy

In this section another important aspect of magnetically ordered systems is con­

sidered, that of magnetic anisotropy. Its origins in a relativistic description of 
electronic interactions are investigated and a phenomenological model introduced. 

The difficulties encountered when dealing with an itinerant magnet are discussed 

and a review made of recent first principles magnetic anisotropy energy calcula­

tions. Finally the effects of magnetic anisotropy on the excitations of a magnetic 

system are investigated.

3.1 Magnetic anisotropy

It is known experimentally that single magnetic crystals are magnetically anisotropic. 

This describes the situation where the magnetic moment preferentially points 

along a particular spatial direction, defined by the crystal lattice. Formally this 
means that there exists a term in the Free energy of the system which couples 
the magnetisation to the crystallographic axes. The difference in free energies 

from the lowest energy configuration of the moment to the others is known as 
the magneto-crystalline anisotropy (MAE). Initial work on magnetic anisotropy 
concentrated upon ferromagnetic metals, however, as the theory for such systems



itself was still open to discussion, theoretical investigations into the origins of 
anisotropy in such itinerant systems was limited. Progress in the case of mag­

the following main sources,

1. effects due to the spin state of a single ion, e.g spin-orbit coupling,

2. the electrostatic coupling between ions, both dipole-dipole and quadrapole- 

quadrapole as well spin-orbit coupling,

3. magnetic dipolar coupling.

3 .1 .1  R elativistic  treatm en t

As the electrons are ultimately responsible for most of the magnetic properties 

we encounter and it is known that they possess an intrinsic magnetic moment or 

’spin’ , we therefore need to consider a relativistic treatment of the motion of an 
electron about a charged nucleus. Our starting point for the case of a magnetic 

insulator is the Dirac equation involving an external vector potential, A  [42]. The 

resulting Hamiltonian is given by,

where a  and /? are the Dirac matrices. As the energies encountered in magnetic 
anisotropy calculations and spin-waves are very much smaller than me2 we can 

use a transformation due to Foldy and Wouthuysen to decouple the positive and 

negative energy solutions to equation (3.1) [43]. The result of such a transforma­

tion is,

netic insulators, where the moment is determined by localised electrons, increased 
at a faster rate. In such systems the origin of anisotropy can be shown to be from

(3.1)

H = - i — f  p — -  * + c<)>— -¿——a • H'*‘ +  A1 • <7 —2m \ c /  2mc
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This shows the existence of a term which couples the intrinsic spin of the electron 

to its angular momentum, which itself is directly linked to the atomic arrange­
ment, and hence introduces a coupling between the moment, partly due to the 

electrons spin, and the crystal structure. This spin-orbit coupling is one of the 

major contributors to the MAE. If the effects that the electron experiences whilst 
orbiting the charged nucleus are taken into account, then by making a multipole 

expansion it can be shown that an electrostatic quadrupole term will enter the 

Hamiltonian.
Now it is necessary to consider the effects of other electrons and ions. It is 

relatively easy to picture some of the terms produced in the case of a magnetic 

insulator, whether they are valid in an itinerant picture will be discussed later. 

The effects of the other electrons in the system will lead to terms describing 
screening and exchange. In the insulator example, taking exchange effects into 

account leads to the concept of the Heisenberg exchange Hamiltonian,

(3.3)
ij

where S, and Sj are spin operators acting upon atomic sites i and j ,  and Jt] is a 

measure of the exchange energy.
Effects from other ions can also contribute to the Hamiltonian, such as the 

coupling of orbital momenta, both from electrons on the same or different ions. 
Also electrostatic dipole-dipole and quadrupole-quadrupole coupling between the 

charge clouds of different atoms, the form of which depends upon the moment 

through spin-orbit coupling, can contribute to the energy. In a crystalline en­
vironment the electrons responsible for the magnetic behaviour experience the 
inhomogeneous electric fields set up by the surrounding ions. This may mean 

that the expectation value of the orbital contribution to the magnetic moment 
vanishes, in which case the orbital angular momentum is said to be quenched 
[42]. This is an important point, its consequences and validity will be discussed 
in later chapters. The coupling of magnetic moments between ions leads to the



familiar magnetic dipole-dipole interaction.

Not all these terms will contribute to the MAE of a system. The simple ex­

change interaction depends only upon the relative orientations of the ’spins’ , and 
hence no coupling to the lattice vectors. The magnetic dipole-dipole interaction 

is relatively weak and long ranged. It contributes to a form of anisotropy known 
as shape anisotropy, for cubic system its effect is minimal, it has zero contribution 

from a first order perturbation approach. However it does play an important role 

in macroscopic phenomena such as domain structure and domain size.

The dominant term for anisotropy considerations is spin-orbit coupling.

3 .1 .2  P henom enological approach

Many magnetic anisotropy calculations start with a phenomenological approach, 
particularly in the case of insulators. For low temperatures, the magnitude of 

the magnetic moment can be thought of as being constant, to lowest order any 

applied field will just rotate the magnetisation. The anisotropy energy of such a 

system can then be expanded in powers of the components of the magnetisation, 
subject to certain symmetry conditions. Invariance under time reversal requires 

that only even powers can be present and the symmetry of the underlying crystal 

structure will also impose limits on the form of the anisotropy energy.
For an uniaxial crystal, of ion density N, the anisotropy energy per ion is,

=  - ^ ( n - M )2 (3.4)

where the value of the constant K , the anisotropy energy density, will determine 
the equilibrium orientation of the magnetisation, if K  > 0 then M is parallel to 

n and if A' < 0 then M  lies in the plane perpendicular to n.
For a cubic system the first terms which satisfy the symmetry conditions are 

of fourth order,

Ea n ,.o  =  +  M lM ]  +  A / 2M 2) +
A'-j
N

(M l M 2y M 2, )  + , (3.5)
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if K i >  0 then M  is parallel to one of the edges of the cubic structure and if 

A'i < 0 then M  lies along one of diagonals of the cube.

The anisotropy constants K\ and A'2 can be experimentally measured using 

magnetic torque and ferromagnetic-resonance (FMR) techniques [23]. Originally 

there was some dispute as to whether the anisotropy constants measured from 
’static’ methods (torque) were comparable to those from ’dynamic’ approaches 

[23].

3 .1 .3  Itinerant system s

The majority of the above discussion can be seen to be readily applicable to 

the case of magnetic insulators, the situation of itinerant systems has an equally 

long history. Work by van Vleck [44] described the origin of MAE as being 
electrostatic, being dependent upon the orientation of the local spin and orbital 

magnet moments. His spin Hamiltonian contained a molecular field term as well 

as dipole-dipole and quadrupole-quadrupole terms, both electrostatic in origin. 

The MAE was then calculated via a perturbation theory.
Brooks [45] performed the first calculations for an itinerant model of a cubic 

system. Expressions for the MAE and an explanation for the quenching of the 

orbital angular momentum were produced. The spin-orbit coupling was treated 
as a perturbation and terms up to fourth order were required to obtain the 

anisotropy energy. Brooks noted that the proper treatment of many-body effects 
was required for a correct description of the MAE. A large part of subsequent 
MAE calculations have elaborated on this earlier work, many using more realistic 

band structures for their calculations. Later work by Mori et al. [46] identified 

areas of the Brillouin zone which provided the dominant contributions to the 
anisotropy energy, and their calculations were based upon only including these 

regions.
Other investigations of MAE have looked at systems with reduced symmetry,



such as thin films and surface effects. Examples of work on Fe and Ni include 

papers by Gay and Richter [47], [48].

The most recent attempts at calculating bulk MAEs from first principles have 

centred on Density Functional Theory as a method for describing the itinerant 

nature of the system. These include calculations by Daalderop et al. [49] for Fe, 

Ni and Co and those by Strange et al. [50] for Fe and Ni. Fritsche et al. [51] used 
a single particle approach, though not based upon the Hohenberg-Kohn-Sham 

formalism. Guo et al. [52] used a similar method to that of Daalderop in their 

investigation of Ni and Fe, but as with most of the MAE calculations the values 
obtained were of the correct magnitude but incorrect easy axes were predicted.

Any first principles calculation will be difficult as it is not clear what are the 

exact origins of many of the contributions to the anisotropy. The general con­
sensus appears to be that a proper treatment of the many-body effects, exchange 

and correlation for example, is required.

M AE via Density Functional Theory

In order to perform a first principles anisotropy calculation we require a rela­
tivistic formulation of Density Functional Theory. Ramana and Rajagopal [53], 

[54] and MacDonald and Vosko [55] have shown that the ground state energy 

of such a system with external fields (K (r), A (r)) is a functional of the ground 

state four-current (n(r), J(r)). Rasolt and Vignale [56] have explored the gauge 
invariance of this approach.). The Hamiltonian describing this situation is,

//(r) - :0 '( r ) — o V  -f (/? — i)m c2 — e<f>(r) + eoA (r) t/>(r) : + H r a j  (3.6)

where tp(r) are 4-component second quantised Dirac spinors, a and 0 are the 
Dirac matrices. Hrad denotes the quantised electromagnetic field, <f>(r) and A(r) 
are the scalar and vector potentials arising from such a field. The external fields 
are treated classically, they only couple to the charge and current densities, which
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are given, in the notation of [57], by,

(3.7)

(3-8)

n = :

J = :

By using the Gordon decomposition [58] of the current and retaining the ’spin- 

only’ component m(r), then the Kohn-Sham-Dirac equations reduce to

[ca ■ p +  /3mca + , m] + /?<r • Br / / [n, m]]G(r, r') =  6(r — r') (3.9)

where the charge and magnetisation densities are given by,

n(r) =  T r G(r, r) (3.10)

m(r) = Tr /3<rG(r, r) (3.11)

and the effective fields {r) and Br77(r) are,

V '" ( r )  = V(r) +  6EH/6n(r) +  6E*/6n(r) (3.12)

B '" ( r )  =  - ( B “ ‘ (r) +  6E*/6m{r)) (3.13)

Here a,/3 are the standard Dirac matrices, a the 4 x 4  Pauli matrices. EH is the 

Hartree energy. W a is the effective field which couples to the ’spin-only1 current 

m (r), and not to the orbital component. If this were the case then a large orbital 
moment would result, which for transition metals, where the orbital angular 

momentum is quenched, is not observed. Usually a local approximation is used 

to evaluate the exchange correlation energy, in terms of the homogeneous 
spin polarised relativistic electron gas, as in the non-relativistic situation.

Using the relativistic spin density functional formalism together with the local 

density approximation, the total energy of a system of interacting electrons is 

given by,

£ [n ,m ] =  J dcen(e) — ea/2  J J drdr
- 1  dr{T $ ) n {t) -  ' m (r)) + £*"l', •n,| (3 ,4)

39



where n(e) is the Kohn-Sham single particle density of states and the magneti­

sation m(r), is orientated according to the directions {n,} associated with the 
magnetic moments at positions indexed t , £p is the Fermi energy.

The majority of the first principles calculations of MAE use the ’force’ the­

orem. This is the assumption that for magnetic anisotropy calculations, if the 

direction of the magnetisation at the various sites is altered, then due to the 
stationary nature of the energy functional and the use of the local density ap­

proximation, to lowest order the total energy is unaffected by any change in the 

magnitude of the magnetisation at each site. Also arising from the stationary 
property, to first order the energy functional is uneffected by a change in charge 

density. Hence the same charge density, n(r) can be used throughout. This can 

be seen by examining the expression for the total energy as given by equation 
(3.14). Hence the magnetic anisotropic contribution to the total energy is con­

tained in the first ’single particle1 term. Therefore the MAE can be calculated 
by looking at the energy difference between two systems of magnetic moments or 

effective fields, B '^, which differ only by their orientations.

Previous investigations

Jansen [59] started from a relativistic formulation of DFT and attempted to in­
vestigate the origin of some of the contributing terms to the MAE. In a relativistic 

treatment of the many body problem there exist terms which do not appear in the 
normal DFT equations. For example, the electron-electron interaction is modi­

fied, resulting in an additional Breit interaction. Jansen showed that a Hartree 

treatment of this term leads to the familiar magnetic dipole-dipole (magneto­
static) interaction responsible for the shape anisotropy and domain structure. In 
subsequent papers [60], [61] he stressed the importance of orbital angular mo­
mentum. Angular momentum is created by spin-orbit coupling in the kinetic 

energy operator of the Dirac equation, however Jansen suggests that it should
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also originate from many-body correlation terms, perhaps from the introduction 

of orbital angular momentum in the exchange-correlation functional, although 
some of its effects may exist in the Hartree treatment of the Breit interaction.

In the calculations of Fritsche et al.[51] instead of the usual Kohn-Sham equa­

tions, a set of Dirac-type single particle equations were solved self consistently. 
By using a non-standard LDA potential they calculated the MAE and easy axes 

for Fe, Ni and lattice expanded Pd. The correct easy axis for Ni was predicted 

but not for Fe.

Daalderop et al. [49] calculated the MAE of iron, cobalt and nickel using the 

Density Functional approach incorporating the LDA. By using the LMTO method 

[62] to solve the single particle equations, the spin-orbit coupling was added on the 

last iteration to achieve self consistency. Although the energies calculated were of 
the correct order of magnitude, the incorrect easy axis was predicted for Ni and 

Co. They found that the results were highly dependent upon the energy bands 

near the Fermi surface and they paid particular attention to the convergence of 

the Brillouin zone integration. They considered the variation of the MAE due 

to strain, changes in magnitude of the spin-orbit coupling and different choices 
of the exchange correlation potential and concluded that none of these could be 

responsible for the errors in the values they obtained. Their suggestion was that 
the primary source of uncertainty was the use of the force theorem, although 

they did comment that the addition of an orbital momentum dependence in the 

exchange correlation potential could remedy some of the deficiencies experienced.

Strange et al. [50] used a relativistic spin-polarised multiple scattering theory 

to solve the single particle Density Functional equations within the local density 

approximation. They predicted the correct easy axes for Fe and Ni but with 

errors in the magnitudes. They also concluded that the main areas of concern 
were the use of the force theorem and the possibility of needing to include full 
self-consistency in order to include various many-body effects such as the Breit 

interaction. In theory this approach should be superior to that of Daalderop et



al. as the effects of spin-polarisation and spin-orbit coupling are treated on an 

equal footing. Work by Ebert [63] compared the two approaches and concluded 
that the difference was not sufficient to explain the errors in the calculations of 

anisotropy energies.

The LMTO method undertaken by Guo et al. [52] to solve the single particle 
DFT equations differs from that of Daalderop in that the energy calculations were 

fully self consistent, and hence the force theorem was not used. However although 

the anisotropy energies produced were of the correct magnitude the identification 

of the easy axes for both Fe and Ni were wrong. The authors suggest the reasons 

for failure lie in the use of spherical potentials, i.e, the angular momentum plays 

a small role, and the use of the LDA, possible improvements involve the addition 

of orbital momentum effects in the exchange-correlation functional.
Further evidence for the need for an adequate treatment of the orbital com­

ponents of momentum come from work by Eriksson [64]. They were interested in 

explaining the magnitudes and trends in the orbital contribution to the magnetic 

moments for Fe, Co and Ni. The local spin density approximation deals with 

Hund’s first rule, maximum spin, in its application to exchange splitting. The 

third rule, for total angular momentum, is dealt with by taking spin-orbit cou­

pling into account, either self consistently during an iteration as with Daalderop 
[49], or by solving a spin-polarised Dirac equation, as with Strange [50]. However, 

only by taking the second rule, maximum orbital momentum, via an orbital po­
larisation term could they get better agreement with experimental results. When 

the details of the crystal structure were included, they found they could explain 
the trends in orbital contributions across the transition metal series.

Table (3.1) gives a comparison between experimental and theoretical values 
for the MAE for Fe and Ni. A is the experimental value [65], B is from ref. [49], 

C from ref. [50], D from ref. [51] and E from ref. [52].
In all of the above cases the MAE is obtained as the difference between an 

energy calculation where the magnetic moments lie along (0,0, 1) and one where
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Eooi — E\i\ A B C D E

Fe -1.4 -0.5 -9.6 7.4 1.8

Ni 2.7 -0.5 10.5 10.0 -2.7

Table 3.1: The magnetocrystalline anisotropy energy in 10 6 eV per atom for Fe 
and Ni.

the moments lie along (1, 1, 1), i.e.

EMAe =  ^ (0 ,0 ,1) -  £7(1,1, 1) (3.15)

In view of the fact that the MAE is going to be very small, the chance for 

numerical inaccuracies with the above approach, the difference between two large 
numbers, is high, hence we would like to go for a route which would minimise 

this possibility, by calculating the anisotropy energy directly.

3 .1 .4  A nisotrop y and m agnetic dom ains

By considering the total energy of a ferromagnetic crystal, including the magne­

tostatic energy, equation (2.11), it is found that a uniform direction of magneti­

sation throughout the system is not the lowest energy configuration [66]. It is 

in fact energetically favourable for the system to form domains of uniform mag­

netisation, as illustrated in figure (3.1), Between each of these magnetic domains

Figure 3.1: The total energy of the magnetic system is reduced by forming do­

mains, in this case giving no net magnetisation.
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exists a transition region, where the magnetisation rotates from one orientation 

to another, as demonstrated below in figure (3.2).

Figure 3.2: Between the domains of uniform magnetisation exist a region of spin 

rotation, known as a Bloch wall.

The exchange energy, equation (2.7 ), required for this transition is minimised 

if the rotation occurs over a range of spins, however, if this were the only factor 

then the domain or ’Bloch’ wall would spread throughout the whole system. It 

is the effects of anisotropy which limit the width of the transition.
If the angle between the rotated spins, <fi, is small and the total spin rotation 

after N  spins is n, then the exchange energy per pair of spins is given by,

(3.16)

(3.17)

& “  &cx “f“ Ganiao (3.18)
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where <rex =  Jn2Na2, a is the lattice constant, and the anisotropy energy is 

approximately the anisotropy energy density, A', multiplied by the wall thickness,
Na.

Therefore a will reach a minimum when,

(3.19)

i.e, 1
2

N = (3.20)

Hence the study of domain walls can give some insight into the magnitude and

effects of magnetic anisotropy.

3 .1 .5  A n isotrop y and dynam ics

In addition to calculating the anisotropy energy itself, it is interesting to examine 

the effect of a preferred spatial direction on the low energy, long-wavelength 

excitations, namely spin-waves. To give an indication of one of the particular 
consequences we consider a simple phenomenological model, as introduced earlier.

The addition of anisotropy for a cubic system, the form of which is given 

by equation (3.5), will result in an additional term to the effective field experi­

enced by the moment. The new effective field, including the exchange and static 

external field terms is,

given by Solving the equation of motion as in equation (1.24)
with the new effective field gives,

(3.21)

If we assume that the equilibrium magnetisation lies along the z axis then in the 
linear regime the moment only deviates slightly from this position, its components

w  =  2 7 ^ f  +  Dq2 +  7 / / " ' (3.22)
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As q —► 0 then u> =  for zero external field. The existence of magnetic

anisotropy in the system has opened up a gap in the spin-wave spectrum, as 

demonstrated in figure (3.3). If the equilibrium magnetisation lies along the di-

Figure 3.3: The existence of magnetic anisotropy opens up a gap in the spin-wave 

spectrum at q =  0, even in the absence o f an external field.

agonal of the unit cell, i.e along ^ -(1, 1, 1), then we can transform to a new coor­

dinate frame, where the new z axis is orientated along the direction of equilibrium 

magnetisation, i.e. ^-(1,1,1) in the old reference frame. Once the anisotropy 

energy has been re-written in terms of the new coordinate frame then a similar 

equation of motion can be solved together with the same linearisation condition, 

= (f)M'x,6M'y, M0). This leads to an expression for u>,

u> = S -£ j- +  Dqi + 1H'*t (3.23)

The gap in the spin-wave spectrum can be experimentally determined via FMR 
and through neutron scattering experiments. However in transition metal systems 
the value for the anisotropy energy is rather small, making any small q neutron 

experiments particularly hard.
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The spin-wave gap and the MAE

In the formulation of the phenomenological model we can relate the expression 

obtained from the spin-wave gap to the Magnetocrystalline Anisotropy Energy 
(MAE), as discussed earlier. If we assume that the total energy of the magnetic 

system can be expressed as an isotropic part plus an anisotropic contribution,

Therefore, for a magnetic system which follows the phenomenological description 
of magnetic anisotropy, i.e. equation (3.5), then,

Using equation (3.28), the magnetic anisotropy energy is given by,

Etot =  E ,,0 +  Et (3.24)

where, for a cubic system,

(3.25)

The MAE, defined as

Em a e  =  £ ( 0, 0, 1) - £ ( 1, 1, 1)

= £ani*o(0, 0, 1) — £am,o(l> 1, 1)

(3.26)

(3.27)

(3.28)

From the derivation of the spin-vyave gap,

2 ^ -  i f  Mo = (0,0,1)

“  «7 Mo = (1,1,1) (3.30)

(3.29)

Emae =  i f  M0 = (0,0,1)6 7

= i f  Mo = (1,1,1)4 7

(3.32)
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So far we have introduced the concept of dynamic susceptibility and shown 

that the relevant single particle equations for any magnetic anisotropy calculation 

are those of Kohn-Sham-Dirac. Hence it would seem logical that in order to obtain 

a first principles theory of the effects of anisotropy on spin-dynamics, we should 

combine the two to attempt an approach similar to that described for the non- 

relativistic case earlier in the chapter. However we shall see that considerable 

theoretical problems exist in following such a route, this is discussed in Chapter 

5.
The following Chapter introduces the multiple scattering solutions to the sin­

gle particle Kohn-Sham Dirac equations.
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Chapter 4

Anisotropy in magnetic 
interactions

In order to introduce the concepts behind the multiple-scattering solutions to 

the single particle equations, discussed in Chapter 1, the formalism is used to 

investigate the magnetic anisotropic effects resulting from the treatment of a 

number of magnetic impurities embedded in a non-magnetic, metallic host. Also 
it gives some indication as to whether such a formalism is capable of allowing the 

calculation of such small energies numerically.

4.1 Magnetic impurities and spin-glass systems

When a magnetic impurity is placed in an insulating host then the impurity mo­
ment usually shows behaviour consistent with Hund’s rules, with possible mod­

ification due to crystal field effects. However when such an impurity is situated 
in a non-magnetic conducting host, then whether a magnetic moment remains or 
not is a complex problem. The presence of a conduction band and its interactions 
with the localised electrons associated with the impurity lead to a wide variety 

of behaviour [67]. Friedel considered the free electron scattering off a charged
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impurity potential [68], and found that this resulted in an oscillating charge den­

sity surrounding the impurity. It also lead to a self consistency relation for the 
effective potential. If the impurity potential is strong enough to bind one of the 

electrons, then by treating the potential plus this bound state as an impurity in 

the electron gas, then the self-consistency relation indicates that there will be 

strong, resonance scattering of the electrons by this virtual bound state. This 

level is termed virtual as it sits in the continuum of the free electron gas and 
is therefore not localised. Anderson [69] set up a model Hamiltonian where all 

the levels of a magnetic impurity ion were replaced by one localised level. The 
coupling between this and the band levels was reduced to a minimum. Even with 

this massive simplification, solutions to this complex problem of dealing with 

magnetic impurity potentials in metallic hosts have been hard to find.
Attempts at a first principles approach include the work of Oswald et.al [70].

They used a KKR Greens function method to investigate the magnetic interac­

tions of Cr, Mn and Fe embedded in a metallic host, Cu or Ag. The concentration 

of impurities plays a crucial role, leading to a range of systems, from dilute mag­

netic alloys to a spin-glass phase. In the dilute limit, where only a few impurities 

per million host atoms exist, then the interaction between impurity moments is 

minimal, the self energy of each moment dominates. An individual moment is 

effectively screened by a polarised cloud of conduction electrons. In such a limit 
we see phenomena such as the Hondo effect [71], the existence of a resistance 

minimum at low temperatures, due to the exchange scattering of the conduction 

electrons by the magnetic moment. At higher concentrations of impurities the in­
teraction between moments will no longer be negligible. In this case the existence 

of a localised moment sets up an oscillating polarisation in the surrounding con­

duction electrons, another moment can then experience this effective interaction 
which can be ferromagnetic or anti-ferromagnetic depending upon the separation 

distance.
This form of interaction, as shown in figure (4.1), where E oc J.jS.-Sj c,on(k/Hij)/fi3,
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Figure 4.1: Typical ‘classical’ spin configuration and corresponding RKKY-type 

interaction. As the temperature is lowered the spins become ‘locked’ into certain 
orientations.

is known as the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction, it is sim­

ilar to the Friedel oscillations which exist when an electron gas attempts to screen 

out a charge impurity [68]. The ground state of such a system, a spin-glass, ap­

pears disordered, the moments are locked into certain orientations in order to 

minimise the total energy. Only above a temperature, Tj, are the moments free 
to rotate. However the ground state is not unique, there will be many other 

spin orientations with a similar energy. Also the concept of ‘frustration’ can be 
applied, that is there exist situations where no orientation of spins can satisfy 

all the various interactions. A spin-glass can be defined as having the following 

properties,

1. The moments appear ’frozen’ below a temperature 7 /, leading to a peak in 

the susceptibility.

2. Lack of long range magnetic order.

3. Remanence and magnetic relaxation on a macroscopic timescale at temper-
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atures below Tj due to changes in the magnetic field.

Any attempt at a theoretical solution to the problems of spin-glasses requires 
considerable simplification. Typical approaches include those reviewed in [72] 

etc.
Magnetic anisotropy plays an important role in such systems, including the 

possibility of inducing phase changes in the system, responsibility for the long 

timescales associated with large part of the static and dynamic behaviour and 

in the existence of hysteresis effects. Considerable attention has been focussed 
on spin-glasses with single-ion uniaxial anisotropy after it was suggested that 

two phase transitions are possible on lowering the temperature. For ‘easy-axis’ 

anisotropy the longitudinal spin components are frozen before the transverse com­

ponents. For easy plane anisotropy the reverse holds true. Bray [73] investigated 

the low energy excitation spectrum within the Sherrington-Kirkpatrick model [72] 

for spin-glass systems. He found that in the longitudinal phase, a gap was opened 

up in the spin-wave spectrum which vanished at a non-zero value of the anisotropy 
strength. This work underlines the difficulties encountered when attempting to 
relate microscopic interactions, i.e the effects of anisotropy on magnetic interac­

tions, to the magnetic behaviour of such disordered systems. Most approaches 
assume a simple form for the interactions and then use various theoretical tech­

niques to deal with the large scale behaviour [72].

4 .1 .1  A nisotropic m agnetic im purity interactions

It has been known for some time experimentally [74] that the addition of heavy, 
non magnetic impurities, Pt for example, to such dilute magnetic alloy systems, 
e.g CuMn. AuFe. can dramatically alter the magnetic anisotropy of the system. 

Levy and Fert [75], showed that this enhancement of the anisotropy could be 
accounted for by the existence of Dzyaloshinsky-Moriya (DM) type interactions 

between the magnetic atoms, mediated by a third non-magnetic impurity. The
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form of such an interaction is shown below,

H dm «  (R i x R2) • (5| x J2) (4.1)

They applied perturbation theory to the conduction electrons and kept terms 
to lowest order in the spin-orbit coupling. Subsequent papers [76] included the 

possibility of other anisotropic interactions, such as pseudo-dipolar type, equation 

(4.2), although of much reduced magnitude.

Edip oc (ii • R\2)(s2 • R\i) (4-2)

A first principles multiple scattering approach to investigate the possible 

anisotropic interactions in these dilute magnetic systems was carried out by 

Staunton et al. [77] in 1988. It was based on a relativistic multiple scattering 
approach formulated from an earlier paper by Strange et al. [78]. A relativis­

tic RKKY interaction was derived between two magnetic impurities leading to 

the existence of DM interaction terms, the magnitude of this interaction energy 
between two Fe and two Co impurities was then calculated. Further work in 

1989 [79] investigated the situation of three magnetic impurities, where both uni­

axial and unidirectional anisotropies were observed and approximate numerical 

calculations carried out.

The next section describes the formalism used by Staunton et al. in their cal­
culations of the anisotropic interactions between magnetic impurities. It also con­

tains a description of work by [89] on the effects of a third, heavy, non-magnetic 

atom on the interactions of two magnetic impurities.

4.2 Scattering Theory

4 .2 .1  Single site scattering

A physical picture for a scattering description of the system is that the electrons, 
modelled as a plane wave, are scattered by the impurity potentials, which have
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a magnetic component. To show the consequences of such an event we start by 

considering single impurity, non-relativistic scattering [80], [81]. The scattering 
particles involved are spinless, the potential is finite ranged and spherically sym­

metric and embedded in a non-interacting ‘jellium’ background. The principles 
behind the approach can be given as follows,

1. The appropriate wave equation, here the Schrodinger equation, is solved 

both inside and outside the potential region.

2. The resulting wavefunctions are smoothly matched at the potential bound­

ary.

As the potential is spherically symmetric and the scattering elastic, then an­
gular momentum is conserved. This allows the wavefunction to be written in 
terms of radial and angular components,

<M r) =  RL(r)Y,m(0,<f>) (4.3)

/¿¿(r) satisfies the following differential radial equation,

=  «  «■«>

and Ytm(0, <t>) are the spherical harmonics, the eigenfunctions of the angular mo­

mentum operator. The radial wavefunction outside the potential region will con­

sist of a linear combination of free-space solutions, such a wavefunction is given 

below.
fli-(r) = A/(e) (cos 6i(c))ji(y/er) -  (sin ¿/(c)) n,(y/er) (4.5)

where ji(y/er) and ni(y/er) are regular and irregular Bessel functions. For illus­

tration, assuming a square-well potential of depth Vo, then the solution of the 

radial Schrodinger equation inside the potential region is,

R U r )  <x j i ( V F ' r )  (4 .6 )
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where e' =  e +  Vo- The second condition must now be satisfied, that is that the 

two solutions must be smoothly matched at the potential boundary. This defines 

the constants in the above equation, giving,

tan ¿/(e) = (4.7)
y/in\(y/ia)ji(V£'a) -  Ve'ni(y/ea)j[(y/e'a)

¿/(e) is known as the ’phase shift’ . The reason behind this can be seen if the 

asymptotic form of the radial wavefunction, equation (4.5), is calculated,

firn RL(r) = —U  siniv'er -  y  +  ¿/(e)) (4.8)

This form of radial wavefunction differs from the free space case only by a phase 

factor, ¿/(e), therefore the total effect of the potential on the scattered particle is 
described by the phase shift. The radial solution can be expressed in a number 
of ways [81], one such is,

Hl(v) =  ji(V èr) +  iy/htht(y/er)

where hf is a Hankel function,

h*(y/èr) =  ji(y/er) +  in,{y/er)

(4.9)

(4.10)

¿/(e) is known as the transition factor, which can be shown to describe the rate 

of scattering into the Ith channel and is function of the phase shift [82]. The 
transition factor can be related to the scattering amplitude and cross sections 

[80].

Resonance

Equation (4.7) shows that for certain positive values of E, 6i(e) will jump by 

nearly tt, this is a form of resonance behavior. The resonance, or meta-stable 
state can be thought of as arising from the /(/ + 1 ) /r a term in equation (4.4). 
This is a form of centrifugal barrier to the scattering particle, and hence it can 

become ’trapped’ before tunnelling out.
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Green’s Function method

For a more general treatment, the integral form of the scattering equations prove 
to be more convenient than the differential approach. If we consider the relevant 

wave equation, the Schrodinger equation,

( e -H o )* ( r )  =  / ( r )  (4.11)

where H0 is the free particle Hamiltonian, then a solution to this has the form,

vl»(r) =  <t>(r) +  J dr' G0(r ,r ';e ) /(r ')  (4.12)

where <j>(r) is a solution of the homogeneous equation ( /( r )  =  0) and G0(r, r ’ ; e) 
is the corresponding Green’s function, which is defined in operator form as [80],

G 0(e) =  P— - ¿ ^ ( e - H 0) (4.13)
£ ~ H0

where P is the Principal value. If f (r ')  is replaced with f (r ')  =  t>(r,)'P(r’ ) then 

equation (4.12) becomes,

'l'(r) =  <A(r) +  J dr' G o(r,r ';£ )V (r')*(r ') (4.14)

or, in operator form,

| 4»(r ) >=| <t>(r) > + G 0(e)V \ M'(r) > (4.15)

This is known as the Lippmann-Schwinger equation. It indicates that the scat­
tering wavefunction contains an incident plane wave and a scattered wave, hence 
the equation contains the outgoing boundary conditions. One of the problems 

with obtaining a solution to this equation is that the right hand side contains the 

full wavefunction, ^(r). Another operator, T(e) can be defined,

T(e) =  V  + G0(e)T(e) (4.16)

using this, equation (4.15) can be re-written,

| * (r )  > = | <t>(r) > + G o(£)T(£) | *  > (4.17)
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The introduction of this T operator does not seem to be particularly useful, its 

calculation is as hard as solving equation (4.15). However the ‘on energy-shell’ 
elements of the T matrix are related to the transition factors in equation (4.9),

T (M ';e )  =  T , i - ‘+,'yrC k)Y ,r'(h t,,'(e)( 4*)’  (4.18)
LL'

where i/(< are the angular momentum components of the on energy-shell matrix. 

In the case of a spherically symmetric potential, <((> will be diagonal, describing 

conservation of angular momentum, and will be equal to the transition factors.

The Green’s function approach allows a number of important quantities to be 
expressed in a concise form. From equation (4.13) it can be seen that the number 

of states per unit energy range, the density of states n(e), is given by,

n(e) =  X ^ (e -£ m )  (4.19)
m

= - - I m  Tr G(e) (4.20)
7T

where the Trace is carried out after G  has been evaluated in an appropriate basis. 

Similarly, the integrated density of states, Af(e) =  f  den(e), can be shown to be 

[8 1 ],

N(e)  =  - - I m  Tr  InG(e) (4.21)
7T

The difference between the integrated density of states for a system with an added 

impurity potential, given by equation (4.21), and a free electron background, 

N ,re,(c) =  — £/m  Tr In G 0, is known as the Friedel sum. As discussed earlier, 
it describes the build up of excess charge around an impurity scattering site.

4 .2 .2  R elativistic Spin-Polarised Scattering

In treating the scattering electrons relativistically, a number of changes are re­
quired, as discussed in Hose [43]. The following explanation follows the work 
of Strange et al. [78]. Due to the inclusion of spin, the wavefunction is now a

57



4-component spinor and the Hamiltonian contains a spin-orbit term. The cor­

responding wave equation for the relativistic situation is the Dirac equation. In 

polar form,

+  -  -  - « )  +  V  +  =  e 9  (4.22)or r r

where k =  j}(o.L +  1). Due to the k term, and X™* are no longer eigen­

functions. It can be shown [43], that the correct eigenfunctions are x * ' , defined 

as,

X :>(r)=  £  (4.23)
m,=± J

where Ytm(r) and X ” * are the eigenfunctions of the angular momentum and spin 

operators, and is a Clebsch-Gordan coefficient. The index k contains

information on the eigenvalues of both J and L,

1. a =  / for j  =  l — j

2. /c =  — / — 1 for j  =  ¡ + 2

k takes all integer values except for zero. The upper and lower components 

of the wavefunction are proportional to x*J and X -i respectively, hence the 

wavefunction can be written, in relativistic units, as,

f </«(r)xS*'(r) 

{ « /« (r)x - i( r )
(4.24)

g(r) and f ( r )  are radial functions which, in general will have a k dependence. 

Using such an expansion in equation (4.24) together with the orthogonality of 

the spin-angular eigenfunctions, then g(r) and /(r) can be shown to satisfy the 

following radial equations,

l a  + (1 ~ *)') M r )  +  (e -  V  -  l )gK(r) =  0 (4.25)
\dr r

( o  
( *  +

(1 + k )') 9n(r) -  (€ -  V  +  l)/„(r) = 0 (4.26)
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The appropriate wave equation used for the case of relativistic scattering off a 

potential with a magnetic (spin-dependent) component, which has been set up 

by an interacting itinerant electron system, is the Kohn-Sham-Dirac equation. 
This arises from a relativistic Density Functional treatment of the corresponding 

many electron system as introduced earlier. In the notation used so far, the 

Kohn-Sham-Dirac equation with an effective field, B (r), defining a z axis, is,

[t75cfr  ̂ ^ -  ^ k j  + K (r)i +  B '/f(r)j3.a3]^ = erj> (4.27)

The integral solution to the above equation is the relativistic Lippmann-Schwinger 

equation,

4'+(r,m .) = 'l»0(r,m ,) + J dr G0(r, r'; e )(V (r)î +  ■£?'-^(r)/3.<73)'I'+(r', m,) (4.28)

Go is now a 2 X 2 matrix and 4<+, *P0 are four component spinors. Following the 

earlier approach, by using the following expansions in the Lippmann-Schwinger 

equation,

'M r , m.)

4'+(r,m .)

(4.29)

(4.30)

a set of coupled radial integral equations are produced, the solution to this set 

satisfy the following radial differential equations,

( - £  +  — )  / S " <( r ) + ( V - « + l ) » ; im<( r ) + ^ ( r )  £  G(k", =  0
V dr r )  H«m’;

(4.31)

( i  +  — ) 9 T ’ ( r )H V -e - l ) f : '> m>{r ) -B - ' ' ( r )  £  G ( - k", - ^ m j ) / ^  =  0
\ "r r )  n"m‘l

(4.32)
mnwhere G (k", m") =  Tr f  dr \H,i (r)if3x K,‘ (r). The above are obtained by acting

upon the integral equations with the radial operator equation, (4.22) with V =  0, 
and using the definition of the Greens function, H G (,(r, r ';c) =  6(r — r').

59



The radial functions have two sets of indices, k and /c", the first corresponds to 

the incident electron, the second to the final scattered particle, i.e. all the radial 
components labelled by k satisfy the same set of radial equations, equations 

(4.31)-(4.32), but each individual radial function will satisfy a different boundary 

condition, depending upon the index /c, describing the incident electron.

The above radial equations form an infinite set, coupled by the non-zero values 
of G(/c", m"). It can be shown [83], that this occurs for each mj between,

1. j  =  / +  5 and j  =  1 - 1

2. l , j  and / ±  2 ,j  ±  1

If 2 is neglected (it can be shown that this is reasonable if B  varies slowly in 

space) then the infinite set reduces to just four coupled equations. As before, the 

resulting wavefunctions must then be matched to the free space solutions at the 
potential boundary,

vj/« =  V  am>/ - KU
i/(«*i *a) •

m. m.
9*iy 9qk\k

: fmi1Jk\v iiEÏ c 
&II 1J0k\k

m*
9* 7*

m,
9ok2«

. fm, . çmj
lJ* 7» 1J0k2K

(4.33)

for each value of k, i.e K|,/c2. The g0 and f 0 are the free space radial functions, 
containing the t matrices between the different k states,

Eliminating the coefficients a™,'i produces expressions for the corresponding t 

matrices, i.e <K|K, etc [78] . Unlike the non-relativistic case the t matrices have 

a rnj dependence (through mj). It is sometimes easier to visualise the effects of 

the t matrices in the /, m, m, representation rather than the k, mj representation. 

The two are linked [78] via Clebsch-Gordan coefficients,

=  Z  C ^ - m‘ 0 ( e ) C ± ^ ~ m‘ (4.34)

If the coupling between l ,j  is neglected then the t matrix becomes,

f m'.m' =  ( 4 .35 )
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So far the case has been considered for scattering off a potential with the mag­

netic component orientated along the axis of quantization, z. We now consider 

the situation where the magnetic component is orientated along an arbitrary di­
rection, z'. Therefore we need to relate the t matrix in the local frame (B'^ along 

z) to that in the rotated frame (B cS along z'). Figure (4.2) demonstrates the 
relation of the original to the rotated frame. The effect of this rotation on the

z
a about Oz Oy-» Ou 
P about Ou Oz-» OZ 
y about OZ Ou-» OY

Figure 4.2: Definition of the Euler angles used in rotating to a new local frame.

spin and angular eigenfunctions, Ytm and X™‘ , is as in [84],

Y r& ) =  £  A0)Y,m'(fi)
m1

giving

* mV ) = £  R l,m,(0)x < (* )

(4.36)

(4.37)

(4.38)

where 0 corresponds to the Euler angles, a , /?, 7, and li!mmi(0), are the

rotation operators, as in Messiah [84] .
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4 .2 .3  M u ltip le-site  scattering

The step now is to use the concepts of the Green’s function approach to single 

site scattering and apply them to the case of many sites. The multiple site 
configurations used contain no overlap, i.e a cluster of independent potentials. 

The problem can be approached in a number of ways, either the Green’s function 

can be formulated in terms of the total potential of the system or equivalently, 
in terms of the total T matrix. The T matrix can be expanded in terms of the 

individual site t matrices by defining excitation amplitudes [81] or in terms of a 

Scattering path operator [85], Here the latter method is used.

The Scattering path operator is defined as,

r” (e) =  US» +  £  t,G|*(e ) T « ( e )  (4.39)

where matrix elements of <, are similar to those of the t matrix defined earlier, 

except that now the potential is centred at /2, and not at the origin. The Scat­

tering operator approach can be explained as follows, the i, matrix generates the 

scattered wave from an incident wave at a particular site i. Therefore r ‘J acting 
on an incident wave at R, creates all the scattering from that site. This can be 

seen from equation (4.39). The first term produces the direct scattering, the sum 

term includes all the effects from all the other sites. Therefore Ylij T'J produces 
the total scattering from the cluster of potentials, and hence is equivalent to the 

total T  matrix.
This method allows a solution to be found for the multiple site problem in 

terms of the solution to the single site case. The information about the poten­
tial at each site is contained in the t matrix, the G'^(e) are independent of the 

potential, they describe the spatial arrangement of the scattering sites and are 
known as the structure factors. As mentioned earlier, the scattering potentials 

do not overlap, this is reflected in the notation

<  », £  | G q(c) | j , L1 > i * j  (4.40)
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0 * =  J (4.41)GjU' =

Neglecting the effects of spin, it can be shown [85] that the on energy shell 
components of equation (4.39) are given by,

r°(e)z,z.< =  */(e)*M«« + £ £ tf(e)GLL»(Ri -  Rk; c )r # t ,(£) (4.42)
**. L"

where Gll"(R> — Rk',e) are the structure factors and are related to the Green’s 
functions defined earlier. As with the single site case, it is possible to produce an 

expression for the integrated density of states. Pre-multiplying equation (4.39) 

by t ,-1 gives,

£ ( t 7\e)6ik -  G •t(£))r*> =  (4.43)
k

For a regular crystalline array of scatterers, taking the Fourier transform of equa­

tion (4.43),

TLL'(q, e) =  [ ( r *(£) -  Goto; z) ) - x)ll> (4.44)

T  (and r) generate the scattered waves from the incident plane waves, so therefore 

if r(e) diverges this will correspond to scattered waves existing without incident 

waves, i.e allowed energy states. Equation (4.44) will diverge if,

|<r, ( £ ) - < W ? ; £)| =  0 (4.45)

where the determinant is over the angular momentum, l. Equation (4.45) arises 

from the definition of matrix inversion, and is the well known KKR condition for 
an energy band. It can be shown [85] , that the real space integrated density of 

states is given by,

N(e) =  --Im\n\\tT}(e)6ij6w - G LL.(R i -  « * ;£)|| (4.46)7r

where the determinant is over / and the site indices.
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4.3 Magnetic impurity calculations

The starting point for the impurity calculations is a relativistic treatment of an 
inhomogeneous electron gets which can be accomplished using a generalisation of 

Density Functional theory as introduced in chapter 1.
Using the relativistic, spin density functional formalism together with the 

local density approximation, the total energy of a system of interacting electrons 

is given by,

1K H  =
- f  pR £ pR

- J dr( m ? ) n(r) - ¿^j •m (r)) +  E*[ m] (4-47)

where n(e) is the Kohn-Sham single particle density of states and the magneti­

sation m (r) is oriented according to the directions {n^} associated with the scat­

tering potentials at positions indexed *, £p is the Fermi energy.

As stated earlier, the magnetic anisotropy energy can be calculated as just 

the difference between the single particle energies of two systems, identical except 

for the orientations of the moments, which are described fully by the t matrices. 

Therefore, in the notation used so far the anisotropy energy is given by,

A Ea «  £[nj] -  £[n?] (4.48)

=  J en\(e)de -  J eni(e)de (4.49)

where rti(e) and « 2(e) are the single particle densities of states with potentials 
whose magnetic components are directed according to the sets of unit vectors 

{ n '}  and {n ?} respectively. £/rt, are the corresponding Fermi energies such 
that f ,r ' ni(c)d£ = f ‘ F1 n2(£)d£ = N, the total number of electrons in the system. 

Using f ' r £n(£)d£ =  yVcf — f*r N(£)d£ it can be seen that

/ *F\ n
(JV,(e) -  N2(e))de + 0 (£FX -  £n )2 (4.50)
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The Lloyd formula [81] for the integrated density of states N(e) can be modified 

to deal with the case of electrons moving relativistically through a system of 

potentials, each with their magnetic components orientated along a different set 
of directions {n ,}.

N(e) =  N0(e) -  1/ ttIm In ||r‘ (e) -  G°(e)|| (4.51)

given in matrix notation (the angular momentum etc. indices have been sup­

pressed). No(e) describes the free electron density of states. Therefore, the 
energy difference between two orientations is given by,

/ eFl
(/n||l -  <{n?} • G°|| -  /n||l -  <{nj} • G°||)<fc (4.52)

Relativistic multiple scattering puts spin-orbit coupling on a par with spin 
polarisation unlike many theories of magnetocrystalline anisotropy which treat 

spin-orbit coupling as a perturbation [86], [87]. Such approaches have been re­

viewed by [49], [50], [88].

4 .3 .1  2-site  calculation

Staunton et al. [77] applied this formalism to the case of two magnetic impurity 

potentials embedded in a non-interacting relativistic jellium, used to model a 
nobel metal host. They showed how magnetic anisotropic effects could arise as 

a function of both the orientation of the moments together with the relative 

positions of the impurities.
Examining equation (4.52), we see that the interaction energy for the two site 

case is given by,

E » (l/ir)Im J  '

(l/ir)Im J  F

dt In || 1 — ti • G°||

1 — ttGl2

—ttGix 1
d( In

(4.53)

(4.54)
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where the determinant is over site, angular momentum and spin. In the work of 

Staunton [77] the site determinant was evaluated in the limit of large impurity 

separation distances, in this region equation (4.53) has the form,

Eimp =  ( l / ’r)Im f  £  £aa'^ a'A"*a"a,"6 !a1'"a (4.55)
J AA'A"A"'

where A =  /, mi, m,. This was evaluated numerically for a number of impurity 
potentials, their magnetic components orientated in various directions. As well as 

the familiar oscillating RKKY interaction between the impurities they also found 

that the anisotropy energies, the difference between E\\ and £L._ for example, 

also oscillated. However, the magnitude of such anisotropy energies was small, 

of the order of 10-6 Rydbergs. An analytic form for the anisotropy energy was 
produced,

2 Imax
£.2 =  £  6nllBJ,„s • [6.2 • i . 6.2 • ¿2]"' [6.2 • (i, X s2)]*n> [ ( • i ,)2 -  (6 12 • s2) T 3

ttl »712*̂3
(4.56)

where ¿.,¿2 are unit vectors specifying the orientations of the impurities’ mag­

netic moments and R 12 is the vector connecting them. lmaz =  2 for transition 

metal impurities and lmax =  3 for rare earth impurities (although the approxima­

tion used that only the spin part of the current was retained is no longer really 

justified). The coefficient 6n,,nj,n3 depends only on the relative orientation of ¿1 

and ¿2 and the distance Ru between the two impurities. Both uniaxial and unidi­

rectional magnetic anisotropic effects are contained in equation (4.56), although 
in the case of two identical impurities only uniaxial terms remain (ns = 0).

4 .3 .2  3-site  calculation

On adding a third, non-magnetic, impurity these anisotropic effects can be en­

hanced, as shown by Levy and Fert [75] with their model calculations. In the 
non-relativistic limit nj =  n2 =  n3 =  0 and the coefficient ¿Axx. contains the usual
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RKKY term varying as cos(2kp Rii)si • s2/ when the impurities are separated 
by a large distance.

In the work published [89], the formalism developed in the papers of Staunton 

[77], [79], was generalised for the case of three impurities, two with magnetic com­

ponents and the third, a heavy strong spin-orbit scatterer. The exact interaction 
expression was evaluated, valid at all impurity separation distances, unlike the 

work of Staunton et al [79] where all three impurities were assumed to be far apart. 
The purpose of this work was to investigate further the form of the anisotropic 

interactions and obtain a measure their magnitude , in particular the applicabil­

ity of the DM interaction of [75] was investigated. Numerical calculations were 

carried out using two magnetic iron impurities together with a non-magnetic plat­

inum atom, embedded in a non-interacting electron gas. This model system was 
used to extract the qualitative nature of the magnetic anisotropy of noble metals 

alloyed with small concentrations of magnetic metals. It should be noted that 

this multiple scattering formalism can be extended to a more accurate description 

of such impurity systems [90].

4 .3 .3  R esults

By placing the platinum impurity at the origin it is possible to define vectors R\ 

and Rj defining the positions of the two iron impurities. This can be seen in 

figure (4.3). Also vectors «i, s3 define the orientations of the effective magnetic 

moments at the two iron sites.
The DM type interaction can then be written as,

Hdm =  A (it ■ s3, R, ■ R2)((R, x R3) • (s, x J2)) (4.57)

as shown in [75]. The coefficient A depends upon the relative orientations of the 
spins as well as the positions of the three impurities. A range of configurations was 

examined in order to explore the nature of the interactions including the range
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Pt

Figure 4.3: The geometry of the system under investigation.

of validity of equation (4.57). In order to reduce the possible combinations, two 
cases were focussed on.

DM-type interaction

Figures (4.5)-(4.6) shows the change in the interaction caused by varying the ori­
entation of the magnetic moments with respect to the plane of the three atoms 

keeping the relative orientation of the moments fixed, perpendicular to each other. 
This situation is demonstrated in figure (4.4), the separation distances are in 

atomic units (a.u). The usual DM interaction should show a simple cosine varia­

tion with respect to the moments being rotated. Figure (4.5a) corresponds to the 

iron impurities being separated by a distance equivalent to two lattice spacings 

in a FCC crystal and the platinum atom is situated at a nearest neighbour to 
one of the magnetic impurities. This anisotropic effect is measured on the scale 

of an effective "exchange” interaction (the difference in energy between the con­
figurations of the two moments being aligned and anti-parallel). Figure (4.5b) 

describes a similar situation but now the two iron atoms are nearest neighbours. 
As shown in this example, the anisotropy can in some circumstances be on the 
same scale as the exchange energy and have a rough DM functional form. In other

f>8



z*

/

Figure 4.4: The impurity rotation of angle 0 for DM-type interaction.

cases it can be smaller and deviate significantly from this. Figures (4.6c)-(4.6e) 
illustrate some of the anisotropy energies obtained for particular configurations, 

each with various values for R i ,R 2 and R 12. Certain arrangements also show a 

RKKY like oscillating form for the anisotropy energy as a function of both mag­

netic and non-magnetic impurity separation distances. It was also noted that the 
anisotropy can change dramatically when the platinum impurity no longer lies in 

the plane which bisects and is perpendicular to the vector R 12 joining the two 
iron atoms, this is illustrated by figures (4.6c) and (4.6d).

Non-DM interaction

The figure (4.8) shows an anisotropy not contained in a DM type expression, i.e 

that (Hi x R?) • (s) x S3) is fixed and the magnetic moments are rotated about 

the axis Jj x sa. The geometry of such a rotation is shown in figure (4.7). Again 
the relative orientation of the moments is fixed, and a true DM interaction will 
be zero for all, rotations of the spins about ¿1 x at . The form of the anisotropy
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Energy Energy

Energy

Figure 4.6: DM type anisotropy energies, measured on a scale o f an effective 

exchange energy, as 0 increases from 0 to 2ir. c) Rl=2.8 a.u, 112—1.64 a.u, 

R3=2.45 a.u, d) Rl=2.8 a.u, R2=2.45 a.u, R12=1.64 a.u, e) Rl=2.8 a.u, R2=1.4 

a.u, R12=1.4 a.u
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Z *

Figure 4.7: The rotation for non-DM type interaction.

Energy

Figure 4.8: Non-DM type anisotropy energy, measured on a scale of an effective 

exchange energy, as 6 increases from 0 to 2ir.
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energy suggests a pseudo-dipolar effect, These anisotropy energies are typically 

an order of magnitude smaller than those exemplified by figures (4.6a)-(4.6e). As 

with the previous results, the anisotropy energies are measured on a scale of an 
effective exchange interaction.

4 .3 .4  C onclusion

A generalisation of the impurity scattering formalism was used to investigate 
the anisotropic effects of a heavy, non-magnetic atom on the interaction between 

two magnetic impurities. The formalism allows the calculation of the interac­

tion energy as a function of the relative positions of the impurity scatterers and 

orientations of their moments. It can also be extended to more realistic calcu­
lations. It was found that the anisotropy can be fitted to a DM form in some 

cases, particularly at large impurity separation distances, however in some con­

figurations where the impurities are fairly close, i.e nearest or second nearest 

neighbours, then the anisotropy is not purely of this type and contains a pseudo- 

dipolar component. Remarkably the magnitudes of the anisotropy energies of 

particular configurations were found to be on the same scale as an appropriate 

effective exchange energy. In work by Jagannathan [91], he considered the effects 
of multiple scattering ofT spin-orbit impurities in a dilute magnetic spin-glass. He 

found the the anisotropic interactions which were produced were of longer range 

than usually proposed. A later paper [92], suggested that at certain impurity 
separation distances then the DM interaction could be of equal strength as a 
effective exchange interaction.

The evaluation of these anisotropic interactions between magnetic impurities 

suggests that the multiple scattering approach to the solution of the single particle 
equations is capable of calculating anisotropy energies accurately and also that, 
although such energies are very small, numerical investigations are possible. The 

next chapter takes the relativistic multiple scattering formalism and attempts to
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Chapter 5

Anisotropy and excitations

In the preceding chapters the ideas leading to a first principles treatment of in­

teracting electrons in an itinerant system were introduced. The concepts behind 
the excitations of such systems were also examined, leading to an expression for 

the ‘dynamic susceptibility’ , the poles of which indicated the existence of Stoner 
excitations and spin waves. The origin and role of magnetic anisotropy in elec­

tronic systems was also discussed, in particular, a relativistic treatment of Density 

Functional Theory was shown to offer a route towards the calculation of mag­

netic anisotropy energies. The effects of anisotropy on the excitation spectrum 

of a simple, localised, spin system were demonstrated, namely the creation of a 

gap at q = 0. Chapter 4 indicated how a multiple-scattering theoretical solution 
to the single particle equations could be used to calculate anisotropic magnetic 

interactions in dilute magnetic alloys.
We now wish to turn our attention to the main purpose of the thesis, an 

investigation into the effects of anisotropy on the long wavelength excitations 

of an itinerant magnetic system. As stated earlier, the approach needs to be 
relativistic in nature to capture the full effect of any spin-orbit or other anisotropic 
interactions.

75



5.1 Dynamic susceptibility

As introduced in chapter 2, the logical approach would be to set up a relativistic 

two-particle Greens function, i.e. a dynamic susceptibility. The starting point 

for such a scheme is a linear response treatment of the Kohn-Sham-Dirac density 

functional Hamiltonian, as described earlier for the non-relativistic case.

The aim of this work is to investigate the long wavelength excitations via some 

form of local density approximation, therefore we consider the perturbation of the 

time-independent density functional equations, which describe the equilibrium 

state, by a time-dependent transverse external magnetic field, <*)B(r, t). The 
Hamiltonian, in relativistic units, together with the self consistent expressions 

for the charge and magnetic densities in a Greens function approach, are given

by,

[ca ■ p+/?mc2+iV 'e-^[n, m]+/3er. B'-^[n, m]— »5-^-]G(r, r' : t,t') = 6(r—r')6(t—t')
ot

(5.1)

n(r, t) =  TV G (r,r; : t , t  +  e)t—0 (5.2)

m(r, t) =  Tr /?<rG(r, r ' : t ,  t  +  e)t_ 0 (5.3)

Ve"(r ,< ) =  V ( r , t )  +  6 E H  l 6 n { r , t )  +  6 E * / 6 n { r , t )  (5.4)

Be" ( r ,t )  = -(B '* (r ,< ) + M £/im (r,< )) (5.5)

where a  and 0 are the Dirac matrices, a is the corresponding 4 x 4  Pauli spin 

matrices vector and the effective field, 3 r̂ (r ,t ) ,  couples to the spin current only, 

as described earlier in Chapter 2. E ĉ is the relativistic form of the exchange and 
correlation functional. The trace is carried out once G has been evaluated in an 

appropriate basis.

The Greens function, G(r, r' : t,t') is now given by,

G = ( Gl‘ r" a ) (5-6)

76



and each component is a 2 x 2 matrix in spin-space. Following the same route 

as in the non-relativistic case, the starting point is the operator definition of the 
ground state Greens function,

H 0G 9. = i  (5.7)

and the change, to first order, in the Greens function due to a perturbing trans­
verse magnetic field is,

6G =  —Gg.SHGg, (5.8)

where ¿H includes changes to the effective potential, , and magnetic field, 
H 'ff. The resultant change in charge and magnetic densities due to the pertur­
bation are given by,

6n(r,t) = Tr ¿G(r, r ' : t, t + e) (5.9)

=  Tr (-G g , [ lA V ^  + /?<r • (6 B "‘ + ABe" ) ]  G „ )  (5.10)

¿m;(r, t) =  Tr /?o\($G(r, r ' : t,t  + e) (5.11)

= Tr fioi(—Gg, [ iA V eJ + /?<r • (¿B 'r‘ + ABr //)] G „ )  (5.12)

where,

&V'B = _  r ,  6 r ^ ir , +  < H c [« [r ; 0 ,m (,.l)|
[J |r — r  | on(r, t)

, 6Vxc[n(r, t), m(r, <)] r 
+ ------------------------------- 6mi(r’ <) (5.13)

A B r// ,  J»(r . <)*ystgls tr -fJtT i»--01 +  r < m / v ^ l" (r ; l ) ’ " >(r- l(H.n )
on(r, i) im (r, t)

and,

Vxc[n(r,<),m(r,<)] -  6E*/6n(r,t) (5.15)

v x c [n(p»0 »m (p.0 ]  =  ¿E?c/6m(r,t) (5.16)

Our approach is based upon a perturbation of the equilibrium state, in using 
the bocal Density Approximation we use the time independent exchange correla­

tion energy, E'c, calculated from a homogeneous electron gas at the equilibrium
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ground state charge density, n0(r). Also ETXC will only depend upon the magnitude 

of the ground state magnetisation, which is taken to define a z axis. As a result 

of introducing the LDA, the effective field, B'-^, will just rotate, its magnitude

remains constant. Therefore A V 'S and A B '^  become,

¿V-vcMr), |m(r)|]

By writing the spin components of G n , Gu  etc. explicitly as,

and evaluating the spin algebra contained in equations (5.10)-(5.12) then a set 
of coupled equations involving 6n, 6mx, 6my and 6m, are produced. These are

6n =  — [g „ (  A V '"  +  B '" ) G U +  Glt(A V e"  + B ',")G n 

+G n (A V e"  -  B 'iJ)Gn + Gn ( A V '"  -  B ',")G n  

+G U(AB'X"  +  iAB'y" ) G u + Gn ( A B l "  + iAB'v" ) G n  

+G V(A B 'P  -  iAB'v" ) G n +  G „ ( A B ^  -  i A 0 ^ ) G u] (5.20)

6m, =  -  [Gtt(A V '"  +  B :n )Gn -  Gtf(A V ”  +  B \ ")G n  

- G U( A V '"  -  B ;" )G u  + G „ ( A V "  -  b ; " ) g Jt 

+G U( A B ? ' +  iA B ;" )G u -  Gn ( A B '"  + iAB'v" ) G u 

+G n (AB't"  +  iAB'y" ) G u -  GJt( A / i ; "  -  iA B ;f/)Gn ] (5.21)

(5.19)

simplified by forming the linear combinations, 6m+ =  6mx + i im , and 6m_ =  

6mx — i6my leading to the following equations for each of the components of G, 

i.e. Gn, G12 etc,
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6m+ =  - 2  [Git(A V '"  +  AB',f i )Gv  +  Gu (A V e"  -  A B '” )Glr

+ G U(A B I "  + iA B '" )G u + G R A B 'S ' -  iAB'y" ) G u] (5.22)

6m . =  - 2 [ G tT(A V '"  +  A £ | ")G n +  Gu ( A V ' " - A f l ; / ')G u

+ G Ti( A B ^  +  iA B '" )G u +  G U(AB'X"  -  ¿A £y'" ) G u ] (5.23)

where 6n(r, t) = <  r, <|£rc|r, t > ,6m +(r,t) = <  r, i|6m+|r, t > etc.

These constitute a full set of coupled equations, and therefore we would try to 

make a suitable approximation to proceed further. In the non-relativistic case it 

was possible to show that the charge and magnetic densities could be decoupled 
and that the Local Density Approximation was consistent with the solution of 

the appropriate wave equation, however if we attempt to do this here we then 

encounter a number of difficulties. If the ground state magnetisation is calculated 

using equation (5.12) then it can be seen that it possesses 6mx and 6my compo­

nents. But in the derivation of the response equations, and in particular in the 

use of the local density approximation, we have assumed that the ground state 

magnetisation lies along the z axis. It would appear that the local density approx­

imation is not consistent with solving the Kohn-Sham-Dirac equation. Possible 

solutions to this problem involve going further than the usual LDA, such as some 

form of gradient expansion, or introducing an explicit dependence of the energy 

functional on the orbital current, as suggested by Jansen [61].

In the light of this, it would seem reasonable that we should use a method 

which builds upon the advances made in the recent calculations of magnetocrys­

talline anisotropy energies, i.e. the anisotropy energy is obtained by allowing 
the magnetic moment to just rotate, its magnitude remaining constant. This, 

hopefully, would remove any inconsistencies arising from the coupling of charge 

and magnetic densities.
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5.2 Landau equations

Due to the problems outlined in the previous section we now attempt an ap­

proach which arises from ideas originating in phenomenological models of mag­

netic anisotropy and current ‘state of the art’ first principles calculations. At 
this stage we say nothing about the type of magnetic ordering in this magnetic 

itinerant system, merely that a set of ‘spins’ or moments exist, and are orientated 
along a set of directions denoted by {n ,}.

As introduced in the second chapter, the motion of an individual moment, 

experiencing a magnetic field H ^ ,  is given by,

^  =  7 ib x H '"  (5.24)

The effective field at a site i can be expressed as the functional derivative of the 

total energy of the magnetic system with respect to the moment at that site,

= (5'25)

where fi is the total energy of the magnetic system and n< denotes the orientation 

of the moment at site i. Our aim is to use fl calculated via a relativistic density 

functional theory.

Although this approach was originally used in a phenomenological sense the 
justification for its use in this situation, namely that of an itinerant magnet, is 

as follows. As we are interested in the long-wavelength, q —► 0, region of the 

spin-wave spectrum, then the interacting conduction electrons which set up the 

effective magnetic moment at an atomic site, move between sites on a timescale 

much shorter than that in which the moments are rotated by any effective field 
due to exchange or anisotropic interactions. As the basis for the formalism is a 

linear response approach and therefore a small deviation and low energy situation, 

then the use of an equation of motion for the magnetic moment, equation (2.3), 
seems reasonable. We now look at how such an effective field experienced by the 
magnetic moment can be derived from a first principles scheme.
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The energy of such a system of spins can be expressed in a scattering formal­

ism, as shown in Chapter 4, and hence the change in the energy of the system 
due to a rotation of one of the ‘spins’ , the effective field, can be produced. With 

the use of the ‘force’ theorem we can express ¿fi as the difference between single 

particle energy states of a system with its ’spins’ orientated along a set of direc­

tions and a system with one of the spins, at site i, rotated such that the change 
in its orientation is given by ¿nj. Hence,

6SI =  - 1 J d e Im  (in ||r‘ (e) -  G(e)|| -  In ||r‘ (e) -  G(e)||) (5.26)

where f-1 corresponds to the system where the spin at site i has been rotated. 

In the scattering formalism the rotation of the moment or ’spin’ at a site i cor­

responds to rotating only the t-matrix at that site, in operator form, <_1(e) = 

R t- l (e) This is due to that fact that all the information about the electrons 

interaction with the potential at the particular site is contained in the t-matrix, 
the physical positions of the scattering potentials are described by the structure 
factors.

Therefore under a local rotation at site t the change in energy becomes,

(in ||(r'(i) -  G (e ))(l +  ( r ‘ (e) -  G (e))-* (H ,rl («)Jli -  r ‘ (e)))|| 

-ln | | r ‘ (e)-G (e)||) (5.27)

where the rotation Rit~t(e)Rj acts only upon site ». Using the definition of the 

r (e) operator, equation (4.39) in site notation, reduces to,

SO =  “ / de Im (in ||i + rii(e)(R it~l(e)Rl -  <r‘ (c))||) (5.28)

Here, and in the following formalism, the angular momentum and spin indices 

have been suppressed. This expression can be simplified further using the matrix 
relationship,

Im  In ||M|| = ImTr In M (5.29)
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and a Taylor expansion of In, as the second term in equation (5.28) will be small 

compared to unity, due to the fact that the deviations from the ground state 
orientations have been assumed to be small. This allows the change in energy to 
be expressed as

¿ft =  ~ ^ J  de ImTr (rn{Rit~x R\ — i f 1)) (5.30)

It can be shown [84] that the operator corresponding to a rotation /3 about 

an axis m „ can be expressed in terms of infinitesimal rotations,

~  i  — t/3m, • J (5.31)

where J is the total angular momentum operator. If, after rotation, the original 

orientation n? becomes nt- then an axis m, can be defined as,

m, = n° x n< 
In? x n,|

(5.32)

with |n°| = 1. 

therefore,

For rigid, infinitesimal rotations, n,- =  n? +  ¿n,-, and /3 ~  |c$ni|

/3m, ~ (5.33)

The geometry of the rotation is shown in figure (5.1). The effects of the rotation 

operators can now be expressed,

Rit:\n 0)i?t -  f,- 1 ( n 0) =  (1  -  i/Nku- S)tTl(n°)(l + t/3m, • j )  -  < - ‘ (n ° )  (5.34) 

or keeping to first order,

Ri t ; ' ( n ° )  R\ -  ■ 3t~'(n °)  -  t~'(n°)0m, • J )  (5.35)

=  - « [ / S r f i r . U r V ) ]  (5.36)

=  - ¿ [ ( n f x n O - J . i r V n 0)] (5.37)

This allows the change in energy of the system to be written in terms of the 

relevant direction-vectors,

6 i l = - ± - J d t  Im T r  (-»r«[(n? x ¿n.) • J, «"‘ (n0)]) (5.38)
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Figure 5.1: The geometry of the rotation.

Using the vector identity,

(a x b) • c = a • (b x c) (5.39)

then the effective field at site i experienced by a moment orientated along a 
direction n,, is given by,

Sii 
6 n,

^ J  de ImTr (tr„[(n, x J, tf^n,-)])

(5.40)

(5.41)

It should be noted that the above is valid for any spin configuration {n ;}, the 

electronic structure corresponding to such a ‘spin’ state is described by t„.

5 .2 .1  Expansion o f G round State

So far nothing has been said about the state of the spin system described by r„, 

only that a set of moments exist and their orientation is described by the set of 

unit vectors {n^}- As a spin-wave excitation is a collective event we should allow 
all of the spins of the system to respond, i.e. we need to make some form of
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expansion about a fixed state. In the spirit of linear response we should look for 

small deviations about the chosen ground state, i.e. expand the r,,- thus,

TVi(ni,na,...) ~  r„(n° +  ¿ni,n2 + £n2,„ . )  (5.42)

The type of spin system indicated by this expansion of Ty, is shown in figure (5.2). 

Using the definition of the multiple scattering operator, r„, an expansion can be

Figure 5.2: The expansion o f the original spin system.

made about a particular ground state, described by t° =  r(n°, n!{,...),

i  ~  T- , (n° + c5n1,n!j + 6na,...)T (5.43)

(r *  -  G)r (5.44)

~  (<o1 +  A r ‘ -  G)(r° + A r) (5.45)

Keeping to first order, the change in t becomes,

Ar = —r°A<- , r0 (5.46)

rewriting in terms of site indices,

Ar.i = ~ 5 I r y(n?,nS,...)A<7lr><(n?,nS,...) (5.47)
i

where,

A t j l = t j ' (n0j +6nj ) - t j ' ( n ° )  (5.48)

= -i(n° x 6tij) • (J,ijVn®)) (5.49)
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T h e re fo re ,  th is  a llo w s  th e  o r ig in a l t ,,- to  b e  exp resse d ,

This gives an expansion of the r operator which describes a system of spins

ground state directions, n°, etc.

5 .2 .2  Spin-w ave equations

The expansion about a particular ground state, equation (5.50), can be intro­

duced into the vector equation for the effective field, equation (5.41). Using this 

expression in the Landau equation gives an equation of motion describing the 
behaviour of a magnetic moment at site i, orientated along a direction, n,,

where the r„ is replaced by the expansion given in equation (5.50). The trace 

in the above equation is evaluated once the operators have been expressed in an 

appropriate basis set, i.e the spin-angular eigenfunctions introduced in Chapter

4. In the linear regime, n, =  n° +  6n,, then evaluating equation (5.51), keeping 
everything to first order in 6n, and using the linear response condition, n°*in =  0, 

as introduced in Chapter 2, gives,

aligned along a set of directions, {n ,} , in terms of small deviations, ¿n about the

i
where A and B are given by,

(5 .5 3 )
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This set of equations describes the spin-wave excitations as set up in a global

However it is possible to write a set of equations where each of the magnetic 

moments lie along a local z axis. This simplifies matters to a large extent, as in 

this situation, due to the requirement that the response is linear, the change in 

the orientation of the moment can be expressed as ¿n = (6nx,6ny, 0), i.e. the 

magnitude of the moment remains constant. The geometry of this situation is 
illustrated in figure (5.3).

Figure 5.3: Motion o f a ‘classical’ spin about ground state position.

The relationship of various quantities between the two frames is given in the 

table below,

where the rotation operators, R and R\ describe the rotation from the local

frame, where the ground state magnetic moments lie along the directions {n °}.

z

fin

y

X

local global

z —» n° = R

86



frame to the global frame. They have the same form as the rotation operators 

introduced earlier to deal with the case of scattering of a potential with a magnetic 
component not aligned along the z axis.

The purpose of this work is to investigate the effects of anisotropy on the low- 

lying excitations of a ferromagnet therefore we should choose the ground state 

to be the system in which the moments on all the sites are aligned, defining a 

local z axis. All the vectors, t-matrices and angular momentum operators in the 

following equations correspond to the local frame, to evaluate them with respect 

to the global frame requires the use of the rotation operators, as in equations 

(5.54). This would occur in order to evaluate the spin-wave spectrum for a 

system where the ground state magnetisation lay along the diagonal of the unit 
cell, i.e. M 0 =  (1,1,1).

The vector equation, equation (5.52), can be resolved into its components, 

6nx, 6nv and 6n,. The condition for linear response is that the magnitude of the 

moment remains constant, i.e. Snz =  0. The z component of equation (5.52) is,

6n, =  — f de ImTri(rn(z)7r  J
([•/*> <r‘ (*)]tfn, +  [Jy, t~x(i)\6nv +  2[J,y < f'(z)]^«,) (5.55)

Therefore 6nz =  0 is a solution to the above, if both,

rrt(r„(t)[J .,< r*(4 )]) =  0 (5.56)

T r .(r i,(i)[Jv,< -1(i)]) =  0 (5.57)

This can be shown analytically in the non-relativistic case and can shown to be 

true by numerical means in the relativistic extension.

The formalism can be used for any type of magnetic ordering, however we 
shall now concentrate of the ferromagnetic case, =  f " 1. Using the definition 

of a spin-wave, i.e. it is a collective excitation such that the precession of the 

moments on each site is related by a phase factor, i.e.

Srij! =  6nxe,‘,R'-> (5.58)
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th e n  t h is  a llo w s  th e  c o m p o n e n ts  o f  th e  v e c to r  e q u a tio n  to  b e  w r i t t e n  as,

- - ¿ f -  =  Ai6nz +  Bi6nv (5.59)
1 66nv . „ „  ,
- - ¿ f -  =  A26nx +  B26nv (5.60)

The component 6nz can be shown to be zero, as expected, due to the requirement 
that the rotation of the moment is rigid. The coefficients A\ etc. are given below,

where,

At = ^ J  de ImTri(An + Ai2) (5.61)

A2 = — J  de ImTri(Att + An) (5.62)

B\ = ~ J  d£ ImTri(Bt\ + Bn) (5.63)

B2 = — J  de ImTri(Btt + Bn) (5.64)

1̂1 = too(z) ([7,, r ‘ (z)] + i[Jx, [Jy, r ‘ (z)]])
/  V

(5.65)

Ait (5.66)

An = T-oo(z) ([•/,,, [•/„.«"‘ (z)]])
/ V

(5.67)

An = -  I E ^ (* ) ( ‘ [^ .‘ ' ,(*)KqRj)^0(4)J K , r ‘ (z)]
\ f

(5.68)

Bu =  —Too(z) ([t/*, [J*, <“*(&)]])
/ V

(5.69)

Bt2 = i E r « ( * ) ( i [ J . , r l (i)]e<q-RO rio( i ) )  [^,r*(4)] 
\ /

(5.70)

B-n = Tbo(*) (^ „ « - » ( i ) ]  -  •V*.[ -̂.<-l(i)]l)
/  V

(5.71)

Bn = T0>(4)(|[J«, r ' ( « ) ] e ^ ^  )r>°(l)J [<7 „ r l (l)l (5.72)

Rewriting equations (5.59) and (5.60) in matrix form,

1 6 (  6nx \ _  /  At B\ \ /  6nx \ 
1 6t {  6nv )  ~ B2 )  \ 6nv )

(5.73)
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By making the assumption that the time-dependence of the spin deviation can 
be described by 6n+ oc e~,ut then,

(  Bi

\ ^2 #2

leading to,

,uj A\ +  Bi \J(Ai B i)2 — 4(AiBi — B tAi)
- ' 7 ' — 5—  * - -------------------2-----------------------

The introduction of the Fourier transforms,

t°° = L dqV(q,)
r0j =  f  dq r (q ’ )e,q 

J BZ
r>° =  f  dq"r(q")e ,q" Rj 

Jbz

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

allows the coefficients A\, Ai etc to be rewritten in terms of an integration over 

the whole Brillouin zone, i.e. in the ease of Ai,

Ai = - f de ImTri [  dq 'dq (r (q ', z) ([J„, [Jv, t ‘ (z)]]) )7TJ JBZ
—t(c|', z)(*[^w, i_1 (z)])x(q' + q^H Jy.r^z)] (5.80)

Evaluation of equation (5.76) together with equation (5.80) etc. will produce the 

spin-wave dispersion curve. In order to calculate the gap in the spectrum due to 

the effects of anisotropy then equation (5.80) etc. are evaluated with q = 0. The 

results of this will be presented in Chapter 6.

5 .2 .3  N on-relativistic lim it

One rigorous test of the formalism is to evaluate the spin-wave gap non relativis- 

tically, as this implies an absence of anisotropy then the gap should disappear. 
This can be demonstrated formally and numerically.
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In this situation the t-matrix, <_1, no longer has any magnetic quantum num­

ber dependence and therefore it can be expressed in terms of spin basis functions. 
Also now it only contains diagonal spin elements, i.e,

(5.81)

This also means that the rotation operators in equations (5.54) act only upon the 
spin blocks and allow the effects of rotating from a local z axis to a new direction 
n to be written as,

R r 'R '  =  + tZl<r • n (5.82)

where,

*+ =  ¿(«F’ + i r 1) (5-83)

tz1 = |(<r* -  «r1) (5-84)

As the structure constants, G tJ, are independent of spin and the t-matrices are 

now diagonal in spin, then the Ty have the following form in the spin represen­

tation,

0
(5.85)

Evaluating the commutators in equations (5.65)-(5.72), noting that now the total 

angular momentum operator, J, is replaced by the spin operator, <7, and that for 
q = 0 then fitij = 6n, gives,

An =  0 (5.86)

= - ( e ^ ( * ) ( - ‘ : ,^ ) ’->° ( * ) ) ( - ‘ : V v) (5.87)

A3i =  TtofftKC1* .) (5.88)

An  =  - ^ i ; ^ ( » ) ( - i : V ( l ) j ( - C V f ) (5.89)

Bn =  -W & K C V .)  (5.90)

90



B »  =  ( | > 0' ( z ) ( - < :V v)r>0(z )j ( - C 1^ ) (5.91)

£?2i =  0
/  \

(5.92)

B a  = (5.93)

Evaluating the spin algebra gives,

A \ t  =  Y  (7-tUj(z)r/°(z) -  ri0, (z)r/°(4)) t~ lt~ 2  
R,

(5.94)

A 2i  =  ( r™ (z )  -  T f° (z ) )  t~} (5.95)

A n  =  Y  (rt0j (z)r/°(z) +  ri°-’ (z )rtj0(z)) tJ±t~J 
R,

(5.96)

f l „  =  - ( r T” ( z ) - r f ° ( z ) ) t - ‘ (5.97)

5 12 =  - £  (rf0j (z)rf°(z) +  T f  (z )T f(z )) f j l t j }  
R j

(5.98)

B i i  =  Y  ( ^ ( ¿ K ^ z )  -  Ti0, (* )rt°(4)) tJ -tT -
R,

(5.99)

Using a similar expansion of Too as in equation (5.50) but also in 
blocks,

terms of spin

Toot(z) -  Tooj(z) =  -  Y  T°, ( 4 ) ( i7i1 -
R,

(5.100)
j

=  -  Y  r i°'’ (4 ) ( i7t1 -  l Ji W 0( 4 )
R,

(5.101)

=  -  Y  r t0,( 4 ) ( <7tI ~  *7iI) r / ° ( 4 )
R,

(5.102)

This, together with the ferromagnetic condition, i.e t j x =  t~ ' gives

A n  =  0 (5.103)

A i  —- A n  "b 2̂2 =  0 (5.104)

B i — B \ i +  B n  — 0 (5.105)

B n  ~~ 0 (5.106)

and therefore gives the non-relativistic result,

£ C II o II o (5.107)

91



i.e. there is no longer a gap in the spin-wave spectrum.

5 .2 .4  Stiffness coefficient

It is possible to show that in the low energy limit the q dependence of the disper­
sion relationship will go as q2. This can be shown with formalism as developed 

here and is mainly a consequence of the symmetry properties of the underlying cu­

bic lattice and the ferromagnetic ground state. If equation (5.52) is Fourier trans­

formed and the magnetic ordering is assumed to be ferromagnetic, i.e. rij =  n, ,  

then,

— ̂  =  — f de ImTri f dq'dq fr(q ', z) A 
7  bt k J Jb z  '

-  r(q ',z)t[(in  x n0) • J, <- I (z)]7-(q' +  q, z) B) (5.108)

A and B are given in equation (5.53) and (5.53). By making a small q Taylor 

expansion of r (q ’ +  q, z),

r(q ' +  q, z) =  r(q ', z) +  q(— -r(q ', z) +  «l'*£) +  -  (5.109)

From the definition of the multiple scattering operator r, it can be seen that the 

q dependence is contained in the structure factors. As these remain invariant 

under inversion of the crystal lattice it can be shown that the first non-zero q 

dependent term is q2. Hence the dispersion relation can be written as,

u> ImT ri

J ^ d q T ( q \ » ) i 1 ( i n x « i o ) - J , r V » ) ] ^ ^ ) B f a (5.110)

An advantage of this method of dealing with the effects of anisotropy on spin- 
wave excitations is that the formalism is independent of the way the t-matrix, 

and hence the description of the effects of scattering off the potential, are derived. 
Hence it should be possible to see the effects of different methods of calculating 

t on the spin-wave spectrum, such as a more refined treatment of the relativistic 

interactions.
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Chapter 6

Results and discussion

6.1 Results

The purpose of the formalism is to investigate the effects of anisotropy on the 

long-wavelength excitations of itinerant electron ferromagnets, in particular the 

existence of a gap in the spin-wave spectrum at q = 0.

Spin-wave gap

Non-relativistically (i.e. no anisotropy) the absence of a gap was found ana­

lytically, for the relativistic situation the values obtained for the spin-wave gap 

for bcc iron, fee nickel and fee cobalt about the equilibrium moment directions 

(0,0,1) and (1,1,1) are summarised in table (6.1). They were obtained by eval­
uating equation (5.76) together with the Fourier Transformed coefficients, e.g. 

equation (5.80) etc.

Spin-wave gap ratio

Table (6.2) contains the ratios of the spin-wave gaps evaluated for the moment 

orientated along (0,0,1) and (1,1,1). The phenomenological theory as described 
in Chapter 3, indicates that this ratio should have the value 3/2 if the magne-
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system
u)gaPh  x 10 6 eV 

Equilibrium direction

(0, 0 , 1) (1, 1, 1)
iron (b.c.c) -0.89 -0.60

nickel (f.c.c) 6.98 5.10
cobalt (f.c.c) 11.7 6.86

Table 6.1: The spin-wave gap due to magnetic anisotropy for bcc iron, fee nickel 

and fee cobalt, evaluated for the moment equilibrium directions (0, 0, 1) and 

(1, 1, 1).

tocrystalline anisotropy energy follows the form given in equation (3.5).

system “W ( 0, 0, l) /«* w (l, 1, 1)
iron 1.48

nickel 1.37

cobalt 1.70

theory 1.50

Table 6.2: The ratio of the spin-wave gaps for moment equilibrium directions (0, 

0, 1) and (1, 1, 1) for bcc iron. The result for the theory corresponds to the 

phenomenological model discussed in Chapter 3.

Magnetocrystalline Anisotropy Energy

By using the approach demonstrated in Chapter 3, a value for the magnetocrys­
talline anisotropy energy (MAE) can be calculated from the expressions for the
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spin-wave gap. The relevant equations are,

JP 1 Wgap
& M A E  = -------6 7 *7 Mo = (0,0,1) (6.1)

_ 1 ĝap
4 7 *7 Mo =  (1,1,1) (6.2)

The calculated MAEs for the three systems under investigation is contained in 
table (6.3) below. There is no experimental value for cobalt as it only exists in a 
hexagonal structure at low temperature.

system \MAE\ in 10 6 eV per atom

iron 0.15 1.40
nickel 1.28 2.7
cobalt 1.72

Table 6.3: The MAE for bcc iron, fee nickel and fee cobalt

6.2 Discussion

Table (6.4) gives a comparison between experimental and theoretical values for 

the MAE for Fe and Ni. A is the experimental value [65], B is from ref. [49], C 

from ref. [50], D from ref. [51], E from ref. [52] and the final column are the 

results of this thesis. The values obtained for the gap in the spin-wave spectrum 

and hence the magnetocrystalline anisotropy energies are of the correct order of 
magnitude compared with previous experimental work [65].

We now go on to compare with previous theoretical investigations and to 
discuss possible explanations for the discrepancies between the calculated values 

and those obtained from experimental data.
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|£ooi — E\w | A B C D E F

Fe 1.4 0.5 9.6 7.4 1.8 0.15
Ni 2.7 0.5 10.5 10.0 2.7 1.28

Table 6.4: The magnetocrystalline anisotropy energy in 10~6 eV per atom for Fe 

and Ni, A is the experimental result and F is the work of this thesis.

This work

A particular advantage of the approach taken by the formalism presented in this 

thesis in the calculation of magnetic anisotropy energies is that the anisotropy 

is calculated directly. This compares with previous theoretical approaches where 
the anisotropy energy is obtained as the difference between two single particle 

energies, i.e. the total energy of the system is calculated for the case where the 

magnetic moment lies along one particular crystallographic direction and then 
for the situation where the moment is aligned along another axis, the anisotropy 

energy is the difference between the two. In attempting to evaluate the anisotropy 

directly the formalism should reduce the possibility of numerical inaccuracies.

Table (6.2) gives the ratio of the MAE calculated for magnetisations lying 

along the (0,0,1) and (1,1,1) directions. In Chapter 3 it was noted that for the 

phenomenological approach this ratio should be 3/2, the result for iron is very 
close to this. This would seem to indicate that the phenomenological expression 
for the anisotropy energy,

Eani.o =  + M\M] + M] M] )  (6.3)

holds well for iron but not for nickel and cobalt. Previous work [93], [94] and 

[95] have indicated that indeed this is the case, it is possible to fit the anisotropy 
energy of iron to a simple functional form, but for nickel this is not seem reason­

able.
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Energy and Brillouin zone integration

The energy integral in equation (5.80) is replaced by a Matsubara sum over a 

discrete set of complex energy points off the real axis [96], with a cut-off at a 
suitable value.

Numerical accuracy is particularly important in the case of evaluating the 

integration of equation (5.80) etc. Concerns over convergence in the necessary 
Brillouin zone integrations have been expressed in other work on MAEs. Exten­

sive numerical calculations by Daalderop et.al. [49] show that these are not likely 

to be responsible for the variation of results between the different approaches to 

calculating the MAE.
At each energy point the Brillouin zone integration, of equation (5.80) for 

example, was carried out by dividing the Brillouin Zone into 48 tetrahedra. The 
integration of each of these tetrahedra was approximated by performing an in­

tegration along a number of weighted rays. The integrand, equation (5.80), was 

evaluated at a number of points along each ray before being fitted to a cubic 

function. This was then integrated analytically, the total BZ integration being 

the sum of the rays and 48 tetrahedra.

The Brillouin zone integration required for the results presented here was 

performed with 36 rays and 50 points per ray for each energy point. The tables 

below give the imaginary part of the integration for the case of bcc iron, firstly 
as the number of points on each ray is increased, and then the total integration 

as the number of rays used is varied. Each is carried out for one energy point.
Previous theoretical investigations of magnetic anisotropy in itinerant electron 

systems have focussed on a number of possible causes of the differences between 
theory and experimental data, in particular, the approximations contained in the 

use of the ‘ force theorem’ and the Local Density Approximation.
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Number of points along one ray Integrand

50 3.623 x 10-6

75 3.600 x 10-6

100 3.600 x lO”6

125 3.600 x lO”6

Table 6.5: The value of the integration of equation (5.80) depending upon the 
number of points along a ray

Number of rays Value of integration

1 3.623 x 10"6

3 3.366 x 10-7

10 7.760 x 10"6

15 1.216 x 10" s

36 1.111 x 10-®

45 1.200 x 10"5

Table 6.6: The value of the BZ integration of equation (5.80) depending upon 
the number of rays, each ray evaluated at 50 points.

Force theorem

Although in a numerical sense the force theorem is not used, it is implicit in 

our construction of the effective field, equation (5.41). Previous theoretical in­

vestigations of magnetic anisotropy energies have questioned the use of such an 

approximation. These include calculations via the LMTO method of solution to 

the single particle density functional equations by Daalderop et. al. [49] and 
those using a multiple scattering approach, such as Strange et al. [50]. However, 
a self consistent LMTO approach by Guo [52] does not use this approximation
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and the differences in the values for the MAE remain.

The local density approximation

The majority of opinion on the discrepancy between theoretical calculations and 

experimental results seems to lie in questioning the form of the local density ap­

proximation. Jansen [59], [61] believes the lack of an orbital current dependence 

in the exchange correlation functional is crucial, other investigations have indi­

cated that this, together with other many-body effects, could play a leading role 
in the origin of the discrepancies. The experience reported here in the attempt to 

calculate a relativistic dynamic susceptibility would seem to indicate that there 

is a problem with consistency. Whether or not this could be resolved with the 
addition of approximate orbital current effects remains to be seen.

In summary, the results obtained here for the MAEs are of the correct order 

of magnitude. The analysis of the ratio of the spin-wave gaps indicate that the 

phenomenological description of the magnetic anisotropy is quite successful for 
iron, however, for nickel and cobalt this appears not to be the case.
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Chapter 7

Conclusion

The main purpose of this thesis is the presentation of a formalism for calculat­

ing the effects of magnetic anisotropy on the long-wavelength excitations of a 
magnetically ordered itinerant system. It is based upon a relativistic multiple 

scattering theory solution of the Kohn-Sham-Dirac density functional equations. 

Numerical calculations for bcc iron, fee nickel and fee cobalt have been presented 
and compare favourably to experimental results.

The multiple scattering formalism has been shown to be capable of producing 
the small anisotropy energies involved via work on the effects of anisotropy on 

magnetic interactions in dilute magnetic alloys. The theory was used to evalu­
ate the consequences of the addition of a heavy, non-magnetic, strong spin-orbit 

scatterer to a system consisting of two magnetic transition metal impurities em­
bedded in a relativistic jellium. It was found that the magnetic anisotropy of 

the system was significantly enhanced, as predicted in papers by Fert and Levy 

[75]. However the form of the anisotropic interaction was not as simple as that 

suggested earlier, and in certain configurations the anisotropy energy was on the 
same scale as an effective exchange interaction.

The low lying excitations of an ordered magnetic system are known as spin- 

waves. They are collective excitations and correspond to a precession of each
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moment about its ground state position, the relative phase between successive 

moments is determined by a wave-vector, q. In the absence of any magnetic 
anisotropy the energy of these modes goes to 0 as q —¥ 0. However the addition 
of anisotropy, via spin-orbit coupling for example, opens up a gap in the spin-wave 

spectrum at q =  0.

Our initial investigation into these effects followed the example set in the 

non-relativistic case, the construction of a dynamic susceptibility from the two 

particle Green’s function, the poles of which determine the excitation spectrum. 

However it was soon found that problems arose in attempting a first principles 
investigation, namely the use of the local density approximation in solving the 

Kohn-Sham-Dirac equations consistently. As a result a new approach was tried, 

avoiding the previous difficulties.
The theory is based upon a linear response framework, it builds on advances 

made in recent magnetic anisotropy calculations, i.e. the anisotropy is calculated 

by just rotating the magnetic moment, keeping its magnitude constant. The 

question of timescales is an important one in discussing the validity of any ap­

proach. As the excitations under investigation are of long-wavelength( q —+ 0) 
then the movement of the magnetic moments under the influence of any effective 

field is slow compared to the electronic motion which is responsible for generating 
the moments. This allows the use of the Landau, or phenomenological equation 

as a starting point for our equation of motion of the magnetic moment. A result 
of this approach is that the effective field which the moment experiences can be 

formulated in terms of the total energy of the spin system, which, for a itiner­
ant magnetic system, is achieved via a multiple scattering theory solution to the 
relativistic Kohn-Sham-Dirac density functional equations together with a local 

density approximation. The result of this is a set of expressions describing the 

motion of a magnetic excitation, a spin-wave, in a general reference frame. These 
can be solved analytically in the non-relativistic case to show the absence of a gap 

in the spin-wave spectrum, and numerically for the relativistic situation leading
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to values for the energy gap. In particular these have been evaluated for bcc iron, 
fee nickel and fee cobalt.

The numerical values obtained for these itinerant ferromagnets are of the cor­

rect order of magnitude compared with experimental evidence, the deviations 

could be due to a number of factors. These include the use of the force theo­
rem, the convergence of the Brillouin zone integrations and the validity of the 

local density approximation. This formalism has an advantage over previous 

investigations into magnetic anisotropy energies in that the anisotropy is calcu­

lated directly rather than the difference between two configurations. It is hoped 

that this has considerably reduced any problems regarding numerical accuracy, 
in particular the calculation of the Brillouin zone integration.

An interesting point regarding this formalism is that if the magnetic systems 
follow the much used phenomenological description of magnetic anisotropy, i.e. 

equation (3.5), then the ratio of the spin-wave gaps calculated for moment ori­
entations (0,0,1) and (1,1,1) should be 3/2. Our calculations indicate that this 

is the case for iron but not so for nickel and cobalt. Whether this indicates that 

such a description for these systems is no longer valid remains to be seen, previous 

work, [93], [94] and [95], indicate that this is the case.

In the light of previous work together with our experience in attempting to 

calculate a relativistic dynamic susceptibility, attention is focussed on the use of 

the local density approximation. Other authors [49], [50], have indicated that 
possible many body effects, described by the exchange-correlation functional, 

could have a role to play in anisotropy calculations, in particular the possibility 
of an orbital current dependence as described by Jansen [61].

The formalism, as shown here, is not only valid for ferromagnetic ordering 
and is not just restricted to calculating the spin-wave gap, but also the excitation 

spectrum for small q. Finally it should be noted that the spin-wave equations 
are independent of the method used to obtain the i matrix. This means that the 
addition of other relativistic effects as well as improvements in the treatment of
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