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Abstract 
 
Directed cell migration poses a rich set of theoretical challenges. Broadly, these are concerned 
with 1) how cells sense external signal gradients and adapt; 2) how actin polymerisation is 
localised to drive the leading cell edge and Myosin-II molecular motors retract the cell rear; 
and 3) how the combined action of cellular forces and cell adhesion results in cell shape 
changes and net migration. Reaction-diffusion models for biological pattern formation going 
back to Turing have long been used to explain generic principles of gradient sensing and cell 
polarisation in simple, static geometries like a circle. In this minireview we focus on recent 
research which aims at coupling the biochemistry with cellular mechanics and modelling cell 
shape changes. In particular we want to contrast two principal modelling approaches, 1) 
interface tracking where the cell membrane, interfacing cell interior and exterior, is explicitly 
represented by a set of moving points in 2D or 3D space, and 2) interface capturing. In 
interface capturing the membrane is implicitly modelled, analogously to a level line in a hilly 
landscape whose topology changes according to forces acting on the membrane. With the 
increased availability of high-quality 3D microscopy data of complex cell shapes, such 
methods will become increasingly important in data-driven, image-based modelling to better 
understand the mechanochemistry underpinning cell motion.  
 
 
Introduction 
 
Directed migration of cells in response to extracellular signals is of fundamental importance 
during development [1], in the immune response [2] and in cancer [3]. It has been studied in 
great detail in experiments, but theoretical models helped tremendously to understand the 
regulatory principles of cell motility. Figure 1 gives an example of Dictyostelium amoeba 
responding to inversion of a signal gradient of mechanical shear flow by localising activators 
of actin polymerisation to the cell front. There we also sketch one widely used framework for 
modelling gradient sensing, namely that of Turing-type reaction diffusion models, and the 
principal steps of linking gradient sensing to cell polarisation, force generation, and net 
movement. Fully integrated models that include cell shape changes and actual movement are 
still scarce, but thanks to increased computational power and new mathematical methods, 
impressive progress has been made recently. Examples are models by [4] who showed that 
a smooth transition between amoeboid cells moving with multiple, round protrusions and 
keratocyte-like cells moving with a single flat lamella can be achieved by changing one 
parameter in a Cellular-Potts model. In the Cellular-Potts model cell shape is modelled as a 
connected set of points on a grid. Cells can locally expand and shrink by incorporating new 
grid points or loosing points, depending on what is energetically more favourable. Camley et 
al. [5] investigated how cell turning can arise from a coupling between the reaction-diffusion 
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mechanism and cell shape, and Alonso et al. [6] considered cell-to-cell variability in models of 
amoeboid motility. The latter two use what is called an interface capturing approach to model 
the evolution of the cell membrane, which has become increasingly popular, because of its 
mathematical rigor and the ability to efficiently model complex cell shapes. In the current 
minireview we want to highlight recent developments in mathematical models for membrane 
evolution, with a specific focus on describing methods for interface tracking and capturing. 
More extended reviews of mathematical models of cell motility can be found in [7–10].  
 
 
Modelling paradigms for membrane movements 
 
The cell membrane has a unique role in cell migration. It is the interface upon which 
intracellular forces act in the form of pushing, through growth of actin filaments against the 
membrane, and pulling, through Myosin-II mediated contraction of the cortical actin network 
attached to the membrane. Furthermore, it will exchange forces with the environment, for 
example through sites of attachment to the extracellular matrix, or experience drag forces by 
moving through the extracellular fluid. Membrane tension and resistance to bending are 
additional (internal) forces at play, determined by the physical properties of the membrane.   
 
Treating the cell as a continuous domain with the membrane as domain boundary, a set of 
partial differential equations can be employed to describe the movement of the membrane 
under the influence of all external and internal forces. The exact geometry of the cell boundary 
at a certain point in time is then found by solving the system of equations, and mathematically 
we term this a free boundary problem. Closely related problems describing either evolving free 
surfaces, or interfaces of two fluids or a fluid with a solid, appear in many applications of fluid 
dynamics. In this community, two main paradigms have evolved that underpin modelling and 
computational approaches: Interface tracking approaches and interface capturing 
approaches.  
 
 
Interface tracking 
 
Interfaces such as the cell boundary may be modelled by evolving surfaces (in 3D) or curves 
(in 2D) if the scales allow to neglect their thickness, which for a lipid bilayer of approx.10 nm 
is true when compared to typical cell sizes in the range of tens of micrometres. Interface 
tracking approaches are based on explicitly describing the position and movement of the 
interface, typically by inferring it from knowledge about its local velocity 𝒗""⃗  (Figure 2). Numerical 
methods based on this paradigm then compute trajectories of points with coordinates 𝒙""⃗ (𝐭) on 
the interface at timepoints 𝒕 by integrating their velocity, i.e., solving 𝝏𝒕𝒙""⃗ (𝒕) = 	𝒗""⃗ (𝒙""⃗ (𝒕), 𝒕). Note 
that points on the interface may move in normal direction and in tangential direction, within the 
plane of the interface. Only movement of points in the normal direction results in a change of 
the shape itself. The tangential motion describes transport along the membrane surface but 
has no impact on the geometry. 
A common way of finding the velocity is to formulate a force balance for the cell boundary. 
This modelling ansatz is illustrated in Figure 2C. Forces arise from the viscoelastic properties 
of the cell membrane, such as resistance to stretching (tension) and bending. A drag force 
proportional to the membrane velocity may be postulated due to the fact that the ambient 
(viscous) fluid has to move during protrusion or retraction. This approach has been used in 
[11] and in [12] for modelling and simulations of cells moving on substrates in 2D, and in [13] 
and [14] for the nucleation and evolution of blebs, which are rapid hemispherical membrane 
protrusions driven by intracellular pressure (also in 2D). The portability to surfaces in 3D is 
illustrated in [12], a figure of which is reproduced in Figure 2A. Further contributions to the cell 
membrane’s force balance may arise from other cytoskeletal components such as 
microtubules, which can be modelled as point forces. In [15] a discrete model for microtubules 
with a simplified description of the membrane is used for computing membrane tethers in 2D. 
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Such tethers have also been computed in 3D with a continuum model for vesicles formed by 
biomembranes and prescribed point forces [16].  
 
One approach to describe how actin polymerisation pushes the cell membrane outwards is to 
make the forces acting in the normal direction of a model membrane directly dependent on 
the concentration of the activator variable in Turing-type models for front activation. A 
generalised formulation of such Turing models is outlined in Figure 1D, [17] and [18]. In [17] 
pulling forces resulting in rear retraction (in real cells this is linked to high Myosin-II activity) 
were made dependent on curvature of the cell contour, assuming that regions which show no 
protrusive activity tend to be round  and retract. 
 
On a moving interface with associated velocity field 𝒗""⃗  it is convenient to take a Lagrangian 
view to derive balance equations for interface resident species (molecules), for example 
receptors embedded in the membrane or activators of actin polymerisation. The time 
derivative 𝝏𝒕 is then replaced by the material derivative 𝝏𝒕𝒗##⃗  which, in addition to the time 
derivative, contains a term to account for transport with the velocity field of the interface. For 
any interfacial field 𝒄 of for example concentrations of molecules, the material derivative is its 
instantaneous change of its value with respect to time in a material point  𝒙""⃗ (𝐭), i.e., 
𝝏𝒕𝒗##⃗ 𝒄(𝒙""⃗ (𝒕), 𝒕) = 	

𝒅
𝒅𝒕
𝒄(𝒙""⃗ (𝒕), 𝒕). A typical system of reaction-diffusion equations for a vector of 

species densities 𝒄 on the evolving cell membrane 𝚪 reads as in Figure 2C, with a detailed 
description of individual terms given in the legend. 
 
The essence of numerical methods for interface tracking is that the position of the cell 
boundary is represented by marker points that are advanced by a time stepping scheme 
according to the forces acting on them. A key difficulty is finding a suitable discretisation of the 
moving cell boundary 𝚪, usually using a triangulation as depicted in Figure 2B. In particular, 
the resolution, both of the geometry and for any fields on the cell boundary, must be sufficiently 
high in regions of high curvature of the boundary, or steep concentration gradients of a 
chemical species. Parametric approaches attempt to reformulate the problem on a reference 
domain. For example, 2D models can be conveniently based on closed curves for the cell 
boundary as used in [13,14], and for 3D problems the corresponding reference domain can 
be is a sphere as used for modelling blebbing by [19]. Note that the definition of a reference 
domain that is topologically equivalent to the cell surface is only needed for obtaining 
numerical solutions. The actual cell surface can be arbitrarily complex (see Figure 2B). 
 
When considering interaction of the cell membrane with the extracellular fluid, the movement 
of the cell boundary will transfer momentum onto the extracellular fluid creating a flow, which 
can be determined from the momentum equation. Assuming viscous, Newtonian fluids for 
which Stokes flow is a suitable model the equation of fluid motion can be written in the form 
 

𝟎 = 𝛁 ⋅ 𝚺 + 𝛅𝒇𝒎𝒆𝒎𝒃 (1) 
 
where 𝚺 is the stress tensor that incorporates viscous friction between the extracellular fluid 
and the cell surface, as well as the pressure of the fluid resting on the surface, 𝒇𝒎𝒆𝒎𝒃 are all 
the force densities located at the membrane, and 𝜹 is the surface Dirac delta function (which 
lets each point of the surface mesh used to model the cell boundary behave like a point force). 
Equation (1) underpins immersed boundary methods for fluid-structure interaction problems, 
and we refer to [20–23] for the specific case of cell boundaries immersed in surrounding fluid.  
 
Moving mesh methods that monitor and attempt to keep a good mesh quality have been 
developed for two-dimensional domains [24]. For 3D modelling where the reference domain 
is a sphere, numerical schemes are less straightforward to implement. Schemes where the 
reference domain is explicitly used are termed extrinsic. In intrinsic schemes there might be a 
notion of a reference domain, but all computations are performed on the physical domain. For 
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instance, the scheme in [12] uses finite elements on a triangulated surface to compute the 
forces and to advance the vertices. Figure 2B gives an impression of such a triangulated 
surface. Combining this with a system of reaction-diffusion equations from [17], 3D simulations 
as in Figure 2A have been performed. 
 
Let us consider now the case of bulk-surface coupled problems, which means that model 
equations have to be solved inside or outside of the cell and are coupled to models on the cell 
membrane. The development of computational tools for such problems is very challenging. 
The discretisation has to enable transfer model data from the surface to the equations 
governing the bulk fields and vice versa. With regards to mesh based numerical methods, 
there is a distinction between fitted and unfitted methods. A mesh for the interface can be 
obtained by taking the boundary of a bulk mesh, so the two meshes perfectly fit and exchange 
of data is relatively straightforward. In [18] a reaction-diffusion model for cell polarisation with 
equations inside and on the boundary of a (stationary) cell is solved based on triangulating 
the 3D cell domain and using the triangular boundary faces for a triangulation of the 2D 
membrane surface. Similarly, in [24] the outside of a moving 2D cell domain is triangulated so 
that the moving boundary edges approximate the cell boundary. 
 
Such fitted methods involving moving meshes are not easy to implement though some 
software packages already provide functionality to change the mesh geometry and even 
extract submeshes [DUNE 2016]. In turn, the idea behind unfitted approaches is to us a fixed, 
standard bulk mesh that is not adjusted to the geometry of the problem, and the interface 
mesh then moves through the bulk mesh. Here, the challenge is to determine intersections of 
elements of the interface domain with elements in the bulk domains to compute contribution 
of interface terms to the bulk equations, or contributions of bulk terms to the interface 
equations. Such functionality usually doesn’t come as a standard in software packages. But 
approaches have been developed and implemented for a variety of problems including multi-
phase flow [25] and transferred to cell motility. We refer to [26] for simulations of vesicles 
formed by biomembranes, which feature mechanical properties similar to cells, and to [22] for 
simulations of cell motility.  
 
 
Interface capturing 
 
In interface tracking surfaces are explicitly defined, that is coordinates of points on the surface 
are known. In contrary, in interface capturing the interface representing the cell boundary is 
implicitly given. To explain this concept, consider a closed smooth surface enclosing a domain 
which here is the cell volume. One can then define a signed distance function close to the 
surface, i.e., a function that is positive inside the domain, negative outside, that values zero 
on the surface, and its absolute value is the distance to the surface. Inversely, if the distance 
function is known then the surface can be recovered. 
 
This idea can be generalised beyond distance functions. The level sets of any smooth scalar 
bulk function 𝝓 are surfaces in general. An evolving surface is obtained if the bulk function 
changes in time. The velocity of a level set in the direction of 𝛁𝝓, which is normal to the level 
set, is given by −𝝏𝒕𝝓/|𝛁𝝓|. If now a velocity field 𝒗""⃗ , by which material points on the membrane 
move, is known (or can be computed) then we obtain the identity 𝝏𝒕𝝓+ 𝒗""⃗ ⋅ 𝛁𝝓 = 𝟎.  
 
Level set methods (see [27,28] for overviews) are based on numerically solving this transport 
equation. Regarding cell motility, the membrane forces that determine the membrane’s 
velocity 𝒗""⃗  have to be expressed in terms of the level function 𝝓 in a suitable way. The 
normalised gradient 𝛁𝝓/|𝛁𝝓| is the unit normal of the level set. Also, other geometric fields of 
the surface such as the mean curvature can be expressed in terms of 𝝓. In particular, the 
force balance in Figure 2C can be written as a partial differential equation for 𝝓. A common 
way to treat the Dirac delta function in (1) is by smoothing it so that it is defined in a thin layer 
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around the interface [29]. Regarding  applications to cell motility we refer to [30] and [31] where 
simulations in two spatial dimensions have been performed on uniform meshes. In [32] 2D 
simulations of the level set equation have been performed with additional equations to model 
adhesion. Neilson et al. [17] use a level set method for the membrane of a migrating cell in 
2D, too. In the spirit of a hybrid approach they then construct a surface mesh from the zero 
level set of the discrete solution in each time step and then use a surface finite element method 
to solve a reaction-diffusion system on the thus computed evolving membrane. 
 
A great advantage in comparison with interface tracking approaches is that the level set 
equation 𝝏𝒕𝝓+ 𝒗""⃗ ⋅ 𝛁𝝓 = 𝟎 is a transport problem for which there is a variety of numerical 
methods such as finite difference methods, finite volume methods, discontinuous Galerkin 
methods, or (pseudo-)spectral (Fourier) methods. As the numerical method and the underlying 
mesh are independent of the geometry of the problem but rather aligned with the view of an 
external, fixed observer such approaches are termed Eulerian. They are in contrast to 
Lagrangian approaches discussed before where moving marker points indicate the position 
of the interface. In Lagrangian approaches, changes to the topology and, consequently, to the 
mesh topology are challenging to detect and implement. In turn, they are naturally captured in 
Eulerian, implicit approaches. Figure 3D shows a simulation of phase separation on a 
biomembrane forming a vesicle where the topology of the phases (red versus blue) changes. 
The black region indicates the position of the phase interface, which is captured using a phase 
field method (explained below). Note that the shape of the vesicle changes concomitantly with 
phase separation, because here it is assumed that each of the phases has a preferred 
curvature. A typical equilibrium shape with different parameters is depicted in Figure 3E.The 
evolution of the shape has been solved using an interface tracking method discussed in Figure 
2.  
 
Another interface capturing approach is the phase field method. Interfaces are represented by 
thin layers, giving rise to the notion of diffuse interface approaches. An order parameter, or 
phase field variable, denoted by 𝝋 here, is introduced that is constant within the cell and 
outside of the cell away from the cell boundary, and smoothly but quickly changes its value 
across the interfacial layer representing the cell boundary, see Figure 3A for an illustration. A 
small parameter 𝜺 determines its thickness. Phase field models have been derived for systems 
where the interface carries some sort of energy, for example a potential energy resulting from 
stretching that is proportional to the area of the membrane. This energy can be written in terms 
of 𝝋, and the corresponding force approximates 𝝈 𝜿""⃗ , which is the tension force introduced in 
Figure 2C. Similarly, the velocity of the interface and the other forces can be expressed in 
terms of 𝝋. The force balance as in Figure 2C thus can be approximated by the bulk partial 
differential equation for 𝛗 in Figure 3B for which again standard numerical approaches can be 
used. 
 
 
Any equations on the cell membrane for the biochemistry also have to be reformulated to 
account for their representation by a thin layer. Theory and techniques have been developed 
to render this process relatively straightforward. A reaction-diffusion system as in Figure 2C 
can be written in the following form, which again involves the Dirac delta function that was 
used for the membrane forces in (1): 
     

𝝏𝒕 (𝜹 𝒄)  +  𝜵  ⋅  (𝜹 𝒄 𝒗""⃗ )  =  𝑫 𝜵  ⋅  (𝜹 𝜵𝜞 𝒄)  +  𝜹 𝒓(𝒄) (2) 

By smoothing the delta function this system can be incorporated into a level set or a phase 
field model. See Figure 3A for a sketch of a profile of such a smoothed 𝜹𝜺 across the interfacial 
layer and Figure 3B for the smoothed system. With regards to numerical approaches, the 
reaction-diffusion system now lives in the bulk domain and, as for the level set equation or the 
phase field equation, one can attempt to treat it with standard numerical methods. One 
difficulty, however, consists in the degeneracy of 𝜹𝜺. Without special consideration it leads to 
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unstable schemes. Techniques to address this problem are presented in [33] and [34] for a 
generic surface partial differential equation, and in [35] in the context of cell motility. 
 
Similar ideas can be used to account for partial differential equations within or outside of the 
cell’s domain. For instance, see [36] for a phase field model that accounts for actin filament 
and myosin concentrations in the cell. Adhesion to a substrate can also be incorporated, which 
is the focus of the recent work in [37] in 2D. Simulations in 3D for a cell moving in a fibrous 
environment have been performed by [35] and [38]. 
 
In relation to level set methods, one could consider the zero level set of 𝛗 as a representation 
of a sharp interface. But as an important difference, the derivation of phase field models is 
based on energy or entropy functionals, which can be further exploited for deriving robust and 
stable numerical schemes. For instance, numerical level set methods occasionally require re-
initialisation of the level set function for accurate simulations [27,28], which is not the case for 
numerical phase field methods. We refer to [39] for a recent review of computational methods 
for phase field equations, where also the relation to level set approaches is discussed. 
 
To obtain accurate results in numerical simulations, the thin layer around the interface has to 
be resolved by the numerical method. Mesh-based methods then become quickly very 
expensive if the mesh is refined to the required level everywhere on the computational domain. 
One way to make simulations cheaper is using finite element methods with adaptive 
refinement as discussed in [39]. Figure 3C gives an impression of a mesh that is refined only 
in the interfacial layer for an ellipsoidal droplet in 2D. Regarding cell motility, we refer to [40] 
and [41] for the use of adaptive finite element methods for simulations in 2D, where the latter 
work is on vesicles formed by biomembranes.  
 
In comparison with the interface tracking paradigm, computational methods based on interface 
capturing are generally easier to analyse, to stabilise, and to implement within standard 
software packages (Matlab, The MathWorks Inc.; COMSOL, The COMSOL Group; DUNE [42]) 
that nowadays provide parallel mesh management, discretisation tools for assembly, and 
solvers. The natural way to capture topological changes might also make them beneficial for 
problems involving cell division or similar. With regards to efficiency, comparative studies of 
numerical schemes for cell motility don’t seem to exist. But accounting for fluid flow can be 
expected to be a (if not the most) significant contribution to the computational cost. Therefore, 
comparative studies on two-phase flow [43,44] give some insight and suggest that the effort 
of develop tracking methods pays off. But we also note that parallel test and benchmark 
computations of 3D problems are missing, and capturing methods involving only bulk 
differential equations seem more straightforward to parallelise and load-balance. Although 
generic software packages exist, and highly customised code was developed by experts in 
numerical methods, to date there are no packages that are easily available to biologists, where 
models can be adapted and conveniently implemented with ease. Ideally, advanced numerical 
tools for dealing with changing geometries would be included in tools such as virtual cell [45], 
which provide a high-level interface for implementing and sharing models. 
 
Perspectives 
 

• Novel and modern methods to tackle free boundary problems for modelling cell motility 
are required if we want to account for realistic complex cell shape changes. 

• Two main paradigms currently exist, which rely on either tracking the cell boundary 
explicitly, or reformulating the problem using additional fields in which the cell boundary 
is embedded. Both approaches have been successfully used in 2D. The 3D case is 
more challenging because no straightforward parametrisation of the free boundary is 
at hand, and secondly because computations in three dimensions are significantly 
more costly, particularly if fluid flow is involved. 



 7 

• An important future application is the inference of parameters from experimental data 
which requires numerous simulations and thus highly efficient solvers. Although 
significant progress has been made, it is still a long way to go before biologists could 
routinely use such modelling tools to explore different hypotheses in an interactive 
manner. 
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Figure Captions 
 
Figure 1: Modelling the mechanochemistry of cell migration 
A) A Dictyostelium cell labelled with a marker for F-actin (green) undergoes repolarization in 
response to inverting the direction of hydrodynamic shear flow (𝜎 = 2.1𝑃𝑎) indicated by 
white arrows. 𝑇 = 0	𝑠𝑒𝑐 is the time of flow reversal. Bar: 10	µ𝑚. B) Time-space plot of the 
actin fluorescence averaged over 18 responses from 14 cells as in A) (red: high intensity, 
blue: low). Numbers along the cell contour in A indicate the position along the circumference 
(y-axis) in B). 
C) Spatial profiles of actin along the cell contour at selected time points. Green curves show 
model fits of a modified Meinhardt model [46] for cell reorientation. (A,B,C adapted from 
[47]). 
D) A large number of models for gradient sensing, such as the Meinhardt model, are based 
on Turing-type reaction diffusion models, with a caricature of a generalized 2-variable model 
sketched here. An external signal 𝑺 stimulates the production of an activator variable 𝑨, 
through a reaction 𝒇𝑨. 𝒇𝑨 is required to be non-linear, which can be met by assuming, for 
example, that 𝑨 stimulates its own production in an autocatalytic way. The production of 𝑨 
will be counteracted by an inhibitor 𝑰 entering  𝒇𝑨, either in a linear or non-linear way. Here, 
𝑨 will stimulate the production of its own inhibitor through  𝒇𝑰. This system of equations 
which describe the rate of change of 𝑨 and 𝑰 is extended by assuming diffusion of 𝑨 and 𝑰. 
In our example in C) the actin concentration has been considered a read-out for the activator 
variable 𝑨. Diffusion has been considered to take place along the cell contour. Other models 
allow diffusion throughout the entire cell interior. In Turing-type models a shallow signal 
gradient can result in a sharp activator profile at the cell front. To obtain such a pattern the 
diffusion of the inhibitor is required to be larger than that of the activator. Many variations on 
this theme of models exist, for example to allow for perfect adaptation, stochasticity, limited 
numbers of molecules, molecules that can shuttle between active and inactive states, etc. 
E) Gradient sensing as described in D) has been shown to be independent of the actin 
system. However, the activator/inhibitor system can stimulate localized polymerization of 
actin at the cell front and Myosin-II recruitment ot the cell rear, thus establishing cell polarity 
which defines the axis of cell migration (left). Middle: Diagram illustrating the combined 
action of actin, Myosin-II and differential substrate adhesion. Right: The net result is 
protrusive activity of the cell front and retraction of the cell rear. Details of internal membrane 
forces will be presented in the following figures. 
 
Figure 2: Modelling cell shape changes using interface tracking 
A) Snapshots of a surface finite element simulation from [12] of a model as depicted in C. 
The reaction-diffusion system is of Turing-type (see Figure 1D). Colours: Concentration of 
an activator variable 𝐴 (red: high, blue: low). The deformation along the surface normal is 
directly coupled to the activator concentration. 
B) Surface mesh obtained from 3D image data [48]. Numerical methods such as the finite 
element method can be set up on such triangulations to solve models as in C. 
C) Model of the form as used for the simulation in A; All forces 𝒇"⃗  acting on each point of the 
surface sum up to zero. The force balance yields an equation for the velocity 𝒗""⃗  in the 
direction of the surface normal 𝒏""⃗ . It  is coupled with a reaction-diffusion system from [49] on 
the evolving membrane. The chemical species in the reaction diffusion system can be 
expressed in vector form, for example 𝒄 = (𝑨, 𝑰) would include the activator and inhibitor of a 
Turing-type system in a single vector. The individual forces are as follows: 𝒇"⃗ 𝒅𝒓𝒂𝒈 = −𝝁𝒗""⃗  
accounts for friction the surface experiences when moving through the extracellular medium 
(𝝁 > 𝟎 is a friction parameter), 𝒇"⃗ 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 = 𝒑𝒏""⃗ : hydrostatic pressure which prevents the 
surface from collapsing, 𝒇"⃗ 𝒄𝒐𝒖𝒑𝒍𝒊𝒏𝒈 = 𝒈(𝒄)𝒏""⃗ : describes how c	deforms the surface by an 
activator dependent force 𝒈(𝒄)	pushing in direction of the surface normal 𝒏""⃗ . 
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 𝒇"⃗ 𝒕𝒆𝒏𝒔𝒊𝒐𝒏 = 𝝈𝜿""⃗ : surface tension, resisting stretching of the model membrane with 𝜿""⃗  being the 
curvature and 𝝈 a material tension parameter. Additional forces may be due to resistance to 
bending etc. The terms in the reaction-diffusion system can be interpreted as follows:  
(𝝏𝒕 + 𝒗""⃗ ∙ 𝛁)𝒄 = 𝝏𝒕𝒗##⃗ 𝒄: material derivative of 𝒄, describing how the chemical species contained 
in 𝒄 change at a given node of the surface mesh in time; 𝒄𝛁𝚪 ∙ 𝒗""⃗  : this term, with 𝛁𝚪 being the 
gradient of the surface 𝚪, models changes to the densities in 𝒄 due to stretching or 
compressing of the membrane during the movement ; 𝑫𝚫𝚪𝒄 : Diffusion of chemical species 𝒄 
within the surface, with 𝚫𝚪 being the Laplace-Beltrami operator and 𝑫 the diffusion constant ; 
𝒓(𝒄) reaction term describing production and decay of 𝒄. 
 
 
Figure 3: Interface capture approaches for modelling cell shape  
A) Left: Profile of a phase field function across an interface. Middle: Diffuse interface. Right: 
smoothed surface Dirac delta function 𝜹𝜺. 
B) Force balance and reaction-diffusion system from Figure 2D, smoothed by the phase field 
method. 𝜺 is a small parameter, 𝝋 is the phase field variable, 𝒘9 is the derivative of a double 
well potential with minima that correspond to the interior and exterior of the cell (±1	in A), 𝒄𝜺 
are chemical species which are smoothed across the interface. The other parameters (𝝁, 𝝈, 
𝒑, 𝑫) and functions (𝒈 and 𝒓) are explained in the legend to Figure 2.  
C) Finite element mesh for solving phase field models, which consist of bulk partial 
differential equations. The solutions feature thin layers. Adaptive mesh refinement can 
improve computational efficiency.  
D) Interface capturing and tracking methods can be combined. Here, a surface finite element 
method is used for tracking a deforming surface with phase separation (phases are red, 𝝋 =
1, and blue, 𝝋 = −1) for which a phase field equation is solved. The topology of the phases 
changes during the evolution due to differing material properties, which generally can 
implemented with ease in capturing approaches. First published in [50] by Global Science 
Press.  
E) Simulated equilibrium shape, using the same method but different parameters as in D. 
First published in [50] by Global Science Press. 
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