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COARSE-GRAINING OF OVERDAMPED LANGEVIN DYNAMICS VIA THE

MORI-ZWANZIG FORMALISM

THOMAS HUDSON AND XINGJIE HELEN LI

Abstract. The Mori–Zwanzig formalism is applied to derive an equation for the evolution of linear
observables of the overdamped Langevin equation. To illustrate the resulting equation and its use in
deriving approximate models, a particular benchmark example is studied both numerically and via
a formal asymptotic expansion. The example considered demonstrates the importance of memory
effects in determining the correct temporal behaviour of such systems.

1. Introduction

Molecular dynamics (MD) is a widely–used simulation technique which captures the atomistic
details of material systems, allowing the prediction of their properties and behavior [19, 51]. How-
ever, despite the vast increases in computational capacity over recent decades, it is still not always
possible to work with MD models at full resolution, particularly when studying large, complex sys-
tems over long time–scales. Fortunately, in many cases, the objectives of a simulation occur within a
small region of interest. This observation has led to the development of coarse–grained MD (CGMD)
models, in which excess degrees of freedom are incorporated implicitly [16–18,20,27,29,49,55,62].

Building reliable and efficient CGMD models attuned to the quantities of interest is a difficult
problem. First, the simulator must find appropriate variables which capture the quantities of inter-
est [24], often termed reaction coordinates or resolved variables. Once these are fixed, an appropriate
proxy model for the reaction coordinates must be obtained, which implicitly incorporates the in-
teraction between the reaction coordinates and unresolved degrees of freedom [16,17,34,39,51,65].
If the objectives of a simulation are ‘static’ macroscopic equilibrium properties such as free energy
or reaction rates, then a wide variety of choices of proxy dynamics which appropriately sample the
relevant measures are available. However, if the objective is to capture a dynamical property of
the physical system such as kinematic viscosity or a diffusion rate, then it is important to capture
the correct effective dynamics of the reaction coordinates arising due to the relevant dynamics of
the full system over moderate timescales [9, 19,25,47,51,64].

In recent years, a variety of studies of CGMD schemes have been undertaken, aiming to analyse
the predictions of such schemes. In all cases, the ultimate goal is to obtain verifiable, statistically
accurate predictions of the true dynamics for various applications. The wide variety of mathematical
techniques used includes

• optimal prediction techniques [8, 10,11,21];
• information-theoretic tools [5, 15,28,48,49];
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• statistical filtering and ensemble methods [1, 6, 45];
• identification of an appropriate parametrization [12,23,38,50];
• series expansion [37,60,69];
• pathwise estimates [30,35,36,40]; and
• conditional expectations [33].

Here, our focus is on the Mori–Zwanzig (MZ) approach to CGMD benchmark problem [3,4,32,54,
57, 71, 72]. The MZ formalism provides an exact expression of the dynamics for a CGMD scheme,
and is governed by three terms which separate out different contributions to the true dynamics,
each of which has a different statistical physical meaning. This decomposition allows a study of the
sources of error: the first term accounts for a conservative dynamics due to the effective interactions
between the coarse grained variables; the second is a history-dependent term determined by a time
integral of a memory kernel which represents the interactions between the resolved and unresolved
variables; and the third term represents the random thermal fluctuations arising from unresolved
variables. In different situations, each of these terms may have a more or less important role, but to
correctly capture the dynamical properties and validate an effective model, it is critical to measure
the relative size and behaviour of these terms accurately.

Our study concentrates particularly on the memory term, which may heuristically be thought of
as measuring the extent to which the set of reaction coordinates is decoupled from the unresolved
degrees of freedom. In recent years, there have been tremendous efforts to investigate memory
terms from MZ projections for a variety of classes of dynamics, see for example [3, 7, 10, 13, 24, 41–
43,63,66–68]. One common approach is to hope that a time-scale separation between the resolved
and unresolved variables occurs, i.e. the fluctuations of the unresolved variables occur on a much
faster timescale than those of the resolved variables, and therefore the two sets of variables are
weakly correlated. In such cases, the memory kernel decay rapidly, approximating a delta function
in time [9].

Our aim in this paper is to demonstrate that while such delta approximations of the memory
kernel are appropriate in many situations, it is not generally to be expected that the memory
kernel is independent of the value of the reaction coordinate, even in the simple situation where the
chosen reaction coordinates are linear. To capture the correct dynamics, further careful analysis
and sampling of the memory is therefore required.

As an illustration of this issue, we consider the dynamical behaviour of a gradient flow with
stochastic forcing (often called the overdamped Langevin equation), demonstrating that at least in
this case, a näıve approach to approximating the memory kernel yields a poor approximation of
the dynamics. We hope that the benchmark problem we consider here will provide insight which
will enable the study of CGMD derived from full Langevin dynamics based on reliable asymptotic
analysis in future.

1.1. Outline. This paper is organized as follows. In Section 2, we review the Mori–Zwanzig for-
malism applied to general gradient flow systems, and in Theorem 2.1, derive an exact equation
for the evolution of linear observables within an abstract framework. Our benchmark example is
discussed in Section 3, and an asymptotic analysis is performed to obtain approximations of the
various terms in the MZ equation. Finally, we study this particular example numerically in Sec-
tion 4. Throughout the rest of this paper, we choose to refer exclusively to resolved degrees of
freedom as reaction coordinates, and unresolved degrees of freedom as orthogonal variables.
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2. Formulation of the problem

As our reference fine–scale dynamical system, we consider the following overdamped Langevin
dynamics defined on RN :

dXt = −∇xV (Xt)dt+
√

2β−1dBt. (2.1)

Here, Bt denotes a standard vector–valued Brownian motion, V (·) is a potential energy and β is
the inverse temperature. Throughout this work, we assume that V is at least of class C2, and
satisfies the following conditions:

(1) V (x)→ +∞ as |x| → +∞ and e−βV (x) ∈ L1(RN ).

(2) The gradient ∇V (x) is globally Lipschitz, i.e. there exists α > 0 such that∣∣∇V (x)−∇V (y)
∣∣ ≤ α |x− y|.

Under the regularity assumption and condition (1), it is well–known (see for example Proposition 4.2
in [59], Theorem 2.1 in [61], or the general results of [52, 53]) that the dynamics defined by (2.1)

are ergodic with respect to the Gibbs measure, µG, given by dµG(x) = 1
Z e
−βV (x)dx where Z is the

partition function

Z :=

∫
e−βV (x)dx.

Given a regular function F : RN → Rm, which may be thought of as describing a family of
reaction coordinates which are our variables of interest, we may apply Itô’s formula to deduce that
the value of F(Xt) is governed by the Itô SDE

dF(Xt) =
(
−∇V (Xt) · ∇F(Xt) + β−1∆F(Xt)

)
dt+

√
2β−1∇F(Xt) · dBt. (2.2)

To be compatible with the notion that we are interested only in the dynamics of F(Xt), we will
assume throughout that the initial conditions X0 for (2.1) are distributed according to the marginal
of the Gibbs measure conditioned on the value of the reaction coordinates at time zero, F(X0).

In particular, if we consider a linear coarse–graining selector F(x) := Φx, where Φ ∈ Rm×N is a
constant matrix, (2.2) becomes

dF(Xt) = −Φ∇V (Xt)dt+
√

2β−1Φ dBt. (2.3)

Such linear coordinates are commonly used in CGMD schemes, particularly for large molecules
such as polymers [14,18,58]. If we are interested in the value of the reaction coordinates described
by F alone, then (2.3) provides an equation for their evolution. In general however, since the first
term on the right–hand side of the equation depends on the full process Xt, this is not a closed
equation for the value of F(Xt).

In order to formulate a closed approximate equation for F(Xt), we use the Mori–Zwanzig for-
malism, which uses projection operators to decompose the equations describing observables of a
dynamical system into terms involving the value of the observables alone, and ‘error’ terms describ-
ing the contribution of variations of Xt which do not directly change the value of the observable.

In this case, the natural projection operator we choose to apply is the Zwanzig projection, which
involves taking a conditional expectation with respect to the Gibbs distribution, i.e.

Pg = EµG

[
g
∣∣F(x) = h

]
:=

∫
F−1(h) g(x) e−βV (x)dx∫

F−1(h) e
−βV (x)dx

; (2.4)
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note that in the above formula, we have cancelled the common factor 1
Z from the numerator and de-

nominator.1 It may be verified that P is an orthogonal projection on the space of square–integrable
observables, i.e. L2(RN ; e−βV (x)dx), and we can therefore define its orthogonal counterpart,

Q := I − P.

In particular, we note that the evolution of (2.3) can be divided into the stationary, mean–zero
process induced by the Brownian motion, and the evolution of the mean value of F(Xt). To consider
the behaviour of the latter quantity given knowledge of X0, we define

ht(x) = E
[
F(Xt)

∣∣F(X0) = x]. (2.5)

The evolution of this quantity is governed by the usual generator of the SDE (2.1),

L := −∇V · ∇+ β−1∆. (2.6)

Using this definition, the Feynmann–Kac formula governing the evolution of h states that the
function h solves the PDE

∂tht = Lht with h0 = F. (2.7)

Using the definition of P, we apply the Mori–Zwanzig formalism to provide a different expression
of (2.7), stated in the following theorem.

Theorem 2.1. Let Xt satisfy the SDE on RN

dXt = −∇V (Xt)dt+
√

2β−1dBt,

and given a constant matrix of full rank Φ ∈ RN×m, the observable

ht(x) = E
[
F(Xt)

∣∣F(X0) = x]; (2.8)

satisfies the following integro–differential equation:

∂tht(x) = −ΦΦT ∇S
(
ht(x)

)
+

∫ t

0
Ms

(
ht−s(x)

)
·∇S

(
ht−s(x)

)
− 1

β
divMs

(
ht−s(x)

)
ds+Ft(x), (2.9)

where:

(1) S : Rm → R is the effective potential, defined to be

S(h) := − 1

β
logZΦ(h) with ZΦ(h) :=

∫
F−1(h)

e−βV (x)dx, (2.10)

(2) Ms : Rm → Rm×m is the memory kernel, defined to be

Ms(h) := β E
[
esQLQLF⊗QLF

∣∣F(x) = h
]

= β E
[
Fs ⊗F0

∣∣F(x) = h
]
, (2.11)

(3) and Ft : RN → R is the fluctuating force, defined to be

Ft := etQLQLF. (2.12)

A proof of this result is given in Appendix A, and involves adapting standard variants of the
Mori–Zwanzig formalism already present in the literature to this stochastic setting.

1Note that to be completely technically correct, the right hand side should be understood in the sense of Radon–
Nikodym differentiation of measures.
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Remark 2.1. The Mori–Zwanzig formalism [54, 56, 70, 71] uses projection operators to rewrite the
equations governing observables of a dynamical system. Various formulations have been devel-
oped in recent years with a variety of applications in mind, and influence our own derivation,
including: [41] treating crystalline solids via the harmonic approximation; [69] for the harmonic os-
cillators based on operator series expansions of the orthogonal dynamics propagator; [46] for the full
Langevin dynamics model based on reduced-order modeling; [26] for a model based on dissipative
particle dynamics; and [58] for a ‘hybrid’ coarse–graining map of a Hamiltonian model.

Recombining the evolution of the mean ht given by (2.9) and adding back the Brownian motion,
we find that (2.3) can be written

dF(Xt) = −ΦΦT ∇S
(
F(Xt)

)
dt+

∫ t

0
Ms

(
F(Xt−s)

)
· ∇S

(
F(Xt−s)

)
ds dt

−
∫ t

0

1

β
divMs

(
F(Xt−s)

)
ds dt+ dFt +

√
2β−1ΦdBt.

(2.13)

It is important to note at this point that (2.13) is equivalent to considering the full evolution
(2.3), in particular because Ft (which appears in (2.13) through the definition ofMs) is unknown.
Equation (2.13) therefore remains unclosed; however, the power of this formulation is that if Ft has

statistics which are well–captured by some proxy process F̃t, and S is either known or accurately
approximated, then we can obtain a closed–form approximate dynamics

dht = −ΦΦT∇S(ht)dt+

(∫ t

0
M̃s(ht−s)∇S(ht−s)−

1

β
div M̃s(ht−s)ds

)
dt

+ dF̃t +
√

2β−1ΦdBt,

where M̃s(h) is the autocovariance function of F̃t(h) (see for example §1.3.1 of [44]).

To explore this formulation and better understand the relationship between the terms involved,
the remainder of the paper is devoted to an exploration of a particular illustrative example where
an accurate approximation of the terms within (2.9) can be performed.

3. A benchmark problem

In this section, we will consider the overdamped Langevin equation (2.1) in the particular case
where x ∈ R2, and the potential energy is defined to be

V (x, y) :=
µ

2
x2 +

λ

2

(
τ sin(ωx)− y

)2
(3.1)

with µ, λ, τ , ω ≥ 0 being parameters. Specifying even further, we will focus on the case where
λ� µ, so that there is a separation between the timescale of relaxation for the x and y variables.
Here and throughout the paper, the symbols�,� and ∼ are all intended in the formal asymptotic
sense, as described in Section 3.4 of [2]. Typically, if we require that f � g, then f ≤ 1

10g is usually
sufficient to provide a good approximation.

As such, x is a ‘slow’ variable, and is a natural candidate for a reaction coordinate of the system;
as in Section 2, we therefore consider

F(x) = Φx where Φ :=
(

1 0
)
.

The second term in (3.1), i.e. λ
2

(
τ sin(ωx) − y

)2
, has been chosen to emulate a form of free

energy barrier to the dynamics, since when τ ∼ 1, ω � 1 and β � 1, we expect trajectories of the
dynamics to remain close to the manifold y = sin(ωx); see Figure 1 for representations of different
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(a) µ = 2, λ = 20, ω = 10, τ = 2
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(b) µ = 2, λ = 20, ω = 4, τ = 0.2

Figure 1. Contour plots of the potential energy V (x, y) defined in (3.1): λ/µ� 1
and ωτ is chosen to be � 1 for figure (a) and < 1 for figure (b), respectively.

energy landscapes. As a consequence, we expect that as τ and ω increase with λ
µ � 1, the dynamics

should to take progressively longer to approach a fixed neighbourhood of the global equilibrium
at 0 from a generic initial condition, since the dynamics must effectively ‘travel further’ along the
meandering valley in the potential to get there.

3.1. Derivation of approximate dynamics. Under the assumptions described above, we com-
pute PLF and QLF, and use these to derive formal approximations of the terms involved in (2.9).

(1) Computation of PLF. The effective potential S(x) defined in (2.10) is equal to

S(x) =− 1

β
log

(∫
R
e−βV (x,y)dy

)
=
µ

2
x2 + const, (3.2)

as the orthgonal variable y follows normal distribution y ∼ N(τ sin(ωx), 1
βλ), and hence

PLF =

(
−µx

0

)
. (3.3)

(2) Computation of QLF. Clearly QLF = LF− PLF, so using (3.3), we have

QLF = QL
(
x
y

)
=

(
−λτω (τ sin(ωx)− y) cos(ωx)

−λ (y − τ sin(ωx))

)
.

(3) Formal approximation ofMs. Recalling the definition of the memory functionMs(F) from
(2.11), we must compute or otherwise approximate the expression QLesQLF⊗QLF. To do
so, we define characteristic curves of the orthogonal dynamics, x̃s = (x̃s, ỹs) = esQLx̃0, and
find that

QLesQLF(x̃0)⊗QLF(x̃0) = Φ ˙̃xs ⊗ Φ ˙̃x0

= λ2τ2ω2 (τ sin(ωx̃s)− ỹs) cos(ωx̃s) · (τ sin(ωx̃0)− ỹ0) cos(ωx̃0).
(3.4)

We now change variable with the intention of linearizing, setting ũs := x̃s − x̃0 and ṽs :=
ỹs− τ sin(ωx̃0). Expressed in these new variables, the action of the orthogonal dynamics is
equivalent to solving the ODE system(

˙̃us
˙̃vs

)
=

(
−λτω (τ sin(ω(x̃0 + ũs))− τ sin(ωx̃0)− ṽs) cos

(
ω(x̃0 + ũs)

)
−λ
(
τ sin(ωx̃0) + ṽs − τ sin

(
ω(x̃0 + ũs)

)) )
.
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Since we have assumed that λ � µ, given knowledge of x̃0 alone, we expect that initial
conditions for the orthogonal dynamics to be concentrated near (x̃0, ỹ0) = (x̃0, τ sin(ωx̃0)),
and so linearising on this basis, we obtain(

˙̃us
˙̃vs

)
= λ

(
−τ2ω2 cos2(ωx̃0) τω cos(ωx̃0)
τω cos(ωx̃0) −1

)(
ũs
ṽs

)
+O(ũ2

s, ṽ
2
s , ũsṽs). (3.5)

Noting in particular that ũ0 = 0 since ũs = x̃s − x̃0, and neglecting higher–order terms in
(3.5), the solution is approximately(

ũs
ṽs

)
≈ 1

1 + τ2ω2 cos2(ωx̃0)

(
ṽ0τω cos(ωx̃0)
ṽ0τ

2ω2 cos2(ωx̃0)

)

+
e−λ
(

1+τ2ω2 cos2(ωx̃0)
)
s

1 + τ2ω2 cos2(ωx̃0)

(
−ṽ0τω cos(ωx̃0)

ṽ0

)
,

and therefore
˙̃xs = ˙̃us ≈ λτωṽ0 cos(ωx̃0)e−λ

(
1+τ2ω2 cos2(ωx̃0)

)
s. (3.6)

When conditioning on knowledge of x̃0, it follows that ỹ0 ∼ N (τ sin(ωx̃0), 1
λβ ), and

therefore ṽ0 ∼ N (0, 1
λβ ): the memory kernel is therefore approximately

Ms(h) = β E[QLesQLF⊗QLF |F(x) = h]

≈ β
∫
R

˙̃us(h, ỹ0)⊗ ˙̃u0(h, ỹ0)e−βλ(ỹ0−τ sin(ωh))2dỹ0

= λτ2ω2 cos2(ωh)e−λ
(

1+τ2ω2 cos2(ωh)
)
s,

(3.7)

where in the above formula, ˙̃u0 = lims→0+
˙̃us. Recalling the form of (2.9), we note that we

must also approximate the divergence of Ms; using the expression derived in (3.7), in this
case we obtain

divMs(h) ≈ −λτ2ω3 sin(2ωh)
(
1− λτ2ω2 cos2(ωh)s

)
e−λ
(

1+τ2ω2 cos2(ωh)
)
s. (3.8)

(4) Formal approximation of memory integral. Our next step is to approximate the first integral
term involving the memory kernel in (2.9). Noting the form of (3.7), we see that this is an
integral of exponential type, and therefore we apply the method of steepest descent (also
known as Laplace’s method) to derive a formal approximation of the memory integral (see
Chapter 6 of [2]).

Viewing λ as a large parameter, using (3.7) and (3.2) we note that∫ t

0
Ms(ht−s) · ∇S(ht−s)ds ≈

∫ t

0
λτ2ω2 cos2(ωht−s)µht−se

−λ
(

1+τ2ω2 cos2(ωht−s)
)
sds.

Setting

p(s) := τ2ω2 cos2(ωht−s)µht−s and q(s) := −
(
1 + τ2ω2 cos2(ωht−s)

)
s,

this integral takes the general form

I(λ) =

∫ t

0
λp(s)eλq(s)ds.

Noting that q(s) is maximal on the domain of integration at s = 0, since

−
(
1 + τ2ω2 cos2(ωht−s)

)
s < 0 for all s > 0,
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the main contribution to the integral therefore comes from the interval s ∈ [0, ε), and
arguing as in Section 6.4 of [2] and noting q(0) = 0, q′(0) = −(1 + τ2ω2 cos2(ωht)) and
|p(0)| ∼ µ, we have∫ t

0
λp(s)eλq(s)ds ≈

∫ ∞
0

λp(0)eλq
′(0)s +O

(
µ

λ

)
=
p(0)

q′(0)
+O

(
µ

λ

)
.

This approximation therefore yields∫ t

0
Ms(ht−s) · ∇S(ht−s)ds

≈
∫ ∞

0
λτ2ω2 cos2(ωht)µhte

−λ
(

1+τ2ω2 cos2(ωht)
)
sds+O

(
µ

λ

)
≈ τ2ω2 cos2(ωht)

1 + τ2ω2 cos2(ωht)
µht +O

(
µ

λ

)
,

and via a similar procedure applied to the divergence term, we have∫ t

0
− 1

β
div (Ms(ht−s)) ds

≈ 1

β

τ2ω3 sin(2ωht)

(1 + τ2ω2 cos2(ωht))2
+O

(
1

βλ

)
.

Combining these expressions, we obtain a final approximation of the memory contributions
in (2.9) as∫ t

0
Ms(ht−s) · ∇S(ht−s)−

1

β
divMs(ht−s)ds

≈ τ2ω2 cos2(ωht)

1 + τ2ω2 cos2(ωht)
µht +

1

β

τ2ω3 sin(2ωht)

(1 + τ2ω2 cos2(ωht))2
+O

(
µ

λ
,

1

βλ

)
.

(3.9)

Notably, if τ ∼ 1, the second term is negligible compared with the first both when ω � 1,
and when ω � 1. We will therefore discard the second term in these cases.

(5) Formal approximation of fluctuating force. Above, we have shown that the memory kernel
can be approximated as

Ms(h) ≈ τ2ω2 cos2(ωh)

1 + τ2ω2 cos2(ωh)
δ0(s).

Indeed, defining
γ(h) = 1 + τ2ω2 cos2(ωh),

with the delta approximation of the memory derived above, and neglecting the term arising
from the divergence of Ms, we may combine the first three terms in (2.13) to obtain

−∇S(ht) +

∫ t

0
Ms(ht−s) · ∇S(ht−s)−

1

β
divMs

(
ht−s(x)

)
ds ≈ −γ−1(ht)∇S(ht). (3.10)

We next note that since the dynamics of Xt are ergodic with respect to the Gibbs measure
µG under assumption (1) given in Section 2, it follows that F(Xt) is ergodic with respect

to the pushforward F∗µG, which in this case has a density proportional to e−βS(h). If
we wish to maintain this property in our choice of approximate dynamics, it is natural to
approximate the combination of the fluctuating force and the Brownian drift by

dFt +
√

2β−1ΦdBt ≈
√

2β−1γ−1(ht)dWt, (3.11)
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where Wt is a 1–dimensional Brownian motion. This choice ensures that the infinitesimal
generator of the process is

Ωf = −γ−1∇S · ∇f + β−1γ−1∆f,

with formal adjoint

Ω∗g = γ−1 div
(
g∇S + β−1∇g

)
,

and hence the unique invariant measure under this dynamics remains proportional to
e−βS(h) as in the case of the true dynamics.

Alternatively, a physical justification for this choice arises from the Fluctuation–Dissipation
Theorem, which in the case of overdamped Langevin dynamics (see for example Section 3
of [31]) requires that if

dQt = −γ−1∇U(Qt) dt+ σ dWt,

where −∇U are forces derived from a potential energy U , then at thermal equilibrium it
must hold that σ2 = 2β−1γ−1. The choice made in (3.11) indeed therefore satisfies this
relation.

Combining the approximations above, in the case where ω � 1, we obtain the closed–form approx-
imate equation

dht = − µht
1 + τ2ω2 cos2(ωht)

dt+

√
2β−1

1 + τ2ω2 cos2(ωht)
dWt (3.12)

Notably, the drift term in this equation is independent of β.
We remark that the derivation given above relies on formal asymptotic methods and arguments,

and we will assess the approximation numerically in Section 4, leaving a rigorous treatment of our
approach in a more general setting for future study.

3.2. Other choices of approximate dynamics. The derivation of the effective dynamics (3.9)
was informed by the Mori–Zwanzig formalism, but other choices could be made, and may be more
appropriate in other circumstances.

(1) Discarding memory and fluctuating force. In [33], the authors consider another choice of
effective dynamics, which in our setting, amounts to considering

dξt = −ΦΦT∇S(ξt)dt+
√

2β−1ΦΦTdBt. (3.13)

This is equivalent to (2.13) where the memory and fluctuating force terms have been ne-
glected entirely. For the evolution of the mean ht, this choice of dynamics yields

∂tht = −ΦΦT∇S(ht)dt (3.14)

as the effective equation for the observable we consider. The authors have proved error
bounds on the time marginals of the resulting probability distribution when compared the
true dynamics captured by (2.3); applying [33, Proposition 3.1] to our case gives the bound

H(ψt|φt) ≤
βτ2ω2

4
[H (ψ0|µ)−H (ψt|µ)] , (3.15)

where:
(a) H(µ|ν) is the relative entropy of a measure µ with respect to ν, i.e.

H(µ|ν) :=

∫
log

(
dµ

dν

)
dµ;

(b) µ is the Gibbs measure;
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(c) ψt is the distribution of the ‘true’ dynamics at time t; and
(d) φt is the distribution of solutions to (3.13) at time t.

Clearly, the constant in (3.15) is large when τω � 1; this reflects the fact that neglecting
the memory in this case is not sufficient to accurately capture the dynamical properties of
the system, and a more sophisticated approach is needed.

(2) A more näıve memory approximation. To highlight the need to conduct dynamical sampling
to approximate Ms correctly, we remark that the approximation of the memory terms
obtained in (3.9) is notably not the same as simply choosing to approximate

Ms(h) ≈ M̃s(h) := β E[QLx⊗QLx |F(x) = h] δ0(s),

=

(√
λβ

2π

∫
β λ2τ2ω2(τ sin(ωh)− y)2 cos2(ωh)e−

1
2
βλ(τ sin(ωh)−y)2dy

)
δ0(s)

= λτ2ω2 cos2(ωh)δ0(s).

Using M̃s would result in the approximate dynamics

∂tht =
(
λτ2ω2 cos2(ωht)− 1

)
µht +

λ

β
τ2ω3 sin(2ωht). (3.16)

Since we have chosen λ� 1, we see that this approximation will yield qualitatively different
dynamics to both the true dynamics for F, (2.3), and the approximate dynamics given by
(3.9); we investigate this numerically in Section 4.

The remarks above suggests that in general, careful dynamical sampling of the memory kernel is re-
quired to accurately capture the interaction between chosen reaction coordinates and the neglected
degrees of freedom.

4. Numerical simulations

In this section, we conduct a numerical study of the various choices of approximate effective
dynamics for the observable in the benchmark example considered in Section 3. We first study
the temporal and spatial behaviour of the memory kernel and the approximation derived in (3.7),
and propose a possible measure for the quality of the chosen reaction coordinate based on the
covariance of the orthogonal dynamics. We then compare different approximation strategies for the
full dynamics, both with and without thermostat.

4.1. Investigation of the memory kernel.

(1) Time decay and spatial oscillation of the memory kernel. The derivation of the effective
dynamics for ht made in Section 3.1 relies crucially upon a series of formal approximations
to both the orthogonal dynamics and the memory integral in (2.9); we therefore first numer-
ically test the validity of these assumptions by computing the memory kernel empirically.

To do so, trajectories of the orthogonal dynamics were statistically sampled. The results
of these simulations are shown in Figure 2, and are compared to the explicit approximate
form derived in (3.7). The empirical memory exhibits rapid exponential decay in time for
all values of x0 considered, in agreement with (3.7).

(2) Assessing the choice of reaction coordinate. For practical applications, it is difficult to
compute and then integrate over long trajectories of the memory term, so a well–chosen
coarse–graining selector should lead to both a small correlation between the reaction coor-
dinate and the orthogonal dynamics and rapid decay of the memory kernel [24].
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Figure 2. Empirical computation of the memory kernel Ms(h) for various values
of s and h = F(X0), compared with the approximate h–dependent form of the
memory (3.7) evaluated at s = 0. The empirical memory clearly shows rapid decay
with increasing s, and oscillates strongly in space. Parameters for V in this case are
ω = 10, τ = 2, λ = 20 and µ = 2.
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Figure 3. Empirical computation of log |Ms(h)12| to assess the coupling between
reaction coordinate and orthogonal variable for different initial values of the reac-
tion coordinate h = F(X0). 2000 compatible samples of the orthgonal variable as
prescribed in (4.5) have been used. In both cases parameters of V are λ = 20, µ = 2,
τ = 2 and ω = 10, and we observe exponential decay, but with significantly different
initial magnitude.
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With this in mind, we set Σ =
√

ΦΦT , and consider the covariance matrix

Ms(h) := βE
[
esQLQLX⊗QLX

∣∣ΦX = h
]

= βE
[(

esQLQLΣ−1ΦX⊗QLΣ−1ΦX esQLQLΣ−1ΦX⊗QLΨX
esQLQLΨX⊗QLΣ−1ΦX esQLQLΨX⊗QLΨX

) ∣∣∣∣ΦX = h

]
=

(
Ms(h)11 Ms(h)12

Ms(h)21 Ms(h)22

)
.

(4.1)

We see that Ms(h)11 = Σ−1Ms(h)Σ−1, recalling the definition ofMs from (2.11). We also
note that if dynamical sampling of the orthogonal dynamics is used to approximate Ms in
practice, all of the information needed to compute Ms is available.

Intuitively, the off–diagonal blocks of Ms describe the correlation between the action of
the fluctuating force on the reaction coordinates and orthogonal variables, and in particular,
Ms(h)12 describes the influence of the orthogonal variables ΨX at the current time on the
dynamics of the reaction coordinates ΦX at later times. We can therefore test the strength
of the ‘coupling’ between the reaction coordinates and the other degrees of freedom by
considering the magnitude of Ms(h)12.

In Figure 3, we perform such a comparison for our benchmark example, providing a
log scale plot of Ms(h)12 for two different initial conditions. In both cases, we observe
exponential decay of the corresponding entry, although the initial value is significantly
different. Despite the considerable spatial oscillation of the memory kernel, the exponential
decay in time indicates rapid decorrelation between the reaction coordinate and orthogonal
variable, and hence suggests that the formula derived in (3.7) provides a good approximation
uniformly in space.

4.2. Comparison of different effective dynamics.

(1) Simulations without thermostat. To compare the different approximation strategies pro-
posed in Section 3, we first simulate the evolution of the mean value of the observable
F(Xt) for various choices of dynamics without thermostat. For convenience, we recall the
relevant governing equations are:

Effective system: ∂tht = −µht (4.2)

Approach 1: ∂tht = − µht
1 + τ2ω2 cos2(ωht)

(4.3)

Approach 2: ∂tht =
(
λτ2ω2 cos2(ωht)− 1

)
µht +

λ

β
τ2ω3 sin(2ωht), (4.4)

where the Effective system is driven by the effective potential only, Approach 1 is based
on the approximation of MZ derived in Section 3.1, and Approach 2 is based on the näıve
approximation of the memory proposed in (3.16). In each case, we fix an initial condition
h0 = x0, and compare with the full dynamics also without thermostat, i.e. we consider
ht := E[F(Xt)|F(X0) = x0] by sampling

dF(Xt) = −Φ∇V (Xt)dt, where F(X0) = x0 and ΨX0 ∼ N
(
τ sin(ωx0), 1

βλ

)
, (4.5)

where as before ΨX0 denotes the orthogonal variables. This corresponds to the assumption
that initial conditions are distributed according to the marginal of the Gibbs distribution
conditioned on the value of F(X0), as assumed in Section 2. Here, we choose β = 10.
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Figure 4 shows the results of these simulations, and indicates that the average trajectories
of (4.3) and (4.5) closely correspond. On the other hand, the effective system (4.2) in which
the memory contribution is neglected relaxes much faster than the full dynamics, and the
näıve choice of memory made to arrive at (4.4) yields qualitatively incorrect behaviour.

(2) Simulations with thermostat. As a second comparison of our approximation strategies,
we now include the thermostat once more, and consider sample averages of the different
dynamics, which are respectively governed by

Effective system: dht = −µht +
√

2β−1ΦΦTdWt (4.6)

Approach 1: dht = − µht
1 + τ2ω2 cos2(ωht)

dt+

√
2β−1ΦΦT

1 + τ2ω2 cos2(ωht)
dWt. (4.7)

These choices are again compared with the full dynamics of ht including the thermostat,
which is driven by

dF(Xt) = −Φ∇V (Xt)dt+
√

2β−1ΦdBt. (4.8)

Simulations are performed at different choices of inverse temperature, and averages are
taken over 500 identical realisations of the Brownian motion, aiming to minimise statistical
error. In each case, initial conditions are randomly chosen such that

cos(ωΦX0) = 0, ΨX0 ∼ N
(
τ sin(ωΦX0), 1

βλ

)
.

The results of these simulations are shown in Figure 5.
We note the surprising level of agreement between the results obtained using Approach 1

(4.7) and those using the full dynamics (4.8) for both choices of β shown here. Moreover,
we also observe improving accuracy as β → ∞. This seems to be consistent with the
observation that the factor γ which appears in (3.10) is independent of β, and that some
of the error terms in the formal expansion derived in (3.9) are O( 1

λβ ). In comparison,

the results obtained using the Effective system (4.6) again poorly reflect the dynamical
properties of the system in all cases.

5. conclusion

In this paper, we have employed the Mori–Zwanzig framework to rigorously derive an effective
equation for linear reaction coordinates, describing features of an underlying overdamped Langevin
dynamics. Such models are appropriate for a variety of applications where we wish to capture only
limited aspects of a complex model, such as MD systems in the high friction limit. The equation
we derived enables us to understand the sources of error and thereby inform a choice of effective
dynamics which better captures dynamical features of the evolution which are not well–represented
by the dynamics of the effective potential alone. We hope that this approach can serve to aid
practitioners in understanding the sources of error in a coarse–grained model, particularly in the
presence of entropic barriers.

We validated our analytic results by considering a benchmark example of overdamped Langevin
system in a case where relaxation is impeded by a winding free energy barrier. This necessitated the
careful asymptotic treatment of interactions between reaction coordinates and orthogonal variables
in order to correctly capture the dynamical behaviour of the system. In particular, although a
time-scale separation occurs within the system we considered, we nevertheless showed that careful
asymptotic analysis or dynamical sampling is required in general to ensure accuracy. The approxi-
mate model we constructed based upon the equations we derived exhibited a drastic improvement
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Figure 4. Mean trajectories of ht computed over 1000 realisations of the full dy-
namics (4.5), the Effective system (4.2), approximation Approach 1 (4.3) and ap-
proximation Approach 2 (4.4). Parameters of V are λ = 20, µ = 2, and the time
step was ∆t = 10−5 and T = 80.
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Figure 5. Mean trajectories of ht averaged over 500 realisations for two different
values of β, respectively computed via the full overdamped Langevin dynamics (4.8),
via the Effective system (4.6) and via the approximation Approach 1 (4.7). Identical
realisations of Brownian motion are used in each case. Parameters of V are λ = 20
and µ = 2, τ = 2, ω = 10, and the time step was ∆t = 10−5, total time was T = 320.
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in predicting the dynamical behaviour of the reaction coordinates over the common approach of
using the effective potential alone to describe the dynamics.

Our work prompts several questions, which we hope to address in future:

(1) Practical sampling algorithms and error analysis. It would be of practical interest to devise
an algorithm to generate effective dynamics based on the asymptotic approximation we
considered here, and conduct a rigorous error analysis in this case.

(2) Extensions to nonlinear coarse–grained variables and full Langevin dynamics. In this work,
we have considered the overdamped Langevin setting with linear reaction coordinates.
It would be of significant interest to extend this analysis to nonlinear variables and full
Langevin dynamics using our reliable asymptotic analysis approach in future.

Appendix A. Proof of Theorem 2.1

In this section, we provide a proof of our main mathematical result, Theorem 2.1. The proof
follows a similar strategy to other derivations using the Mori–Zwanzig formalism given in the
literature, notably [11,22,26].

A.1. Construction of ‘orthogonal’ variables. Our first step to construct variables which cap-
ture directions in phase space which are ‘orthogonal’ to those captured by the reaction coordinates
F, i.e. a foliation of the phase space.

Recall that Φ ∈ Rm×N is a matrix of full rank by assumption, and therefore it follows that

the symmetric strictly positive definite square root matrix Σ :=
√

ΦΦT ∈ Rm×m exists. Recalling
the construction of the singular value decomposition, we find that there exist orthogonal matrices
U ∈ Rm×m and V ∈ RN×N such that

Σ−1Φ = UDV T , where D =
(

Im 0
)
∈ Rm×N ,

where Im ∈ Rm×m is the identity matrix, and 0 denotes a submatrix of zeros. Defining

E :=
(

0 IN−m
)
∈ R(N−m)×N ,

where again IN−m ∈ R(N−m)×(N−m) is an identity matrix and 0 denotes a matrix of zeros, we set

Ψ := EV T ∈ R(N−m)×N , and Φ∗ := ΦTΣ−2 ∈ RN×m

and it follows that

Φ∗Φ + ΨTΨ = IN×N . (A.1)

From the construction above, we see that Φ∗Φ ∈ RN×N is an orthogonal projection acting on
the phase space RN , and the matrix Ψ ‘selects’ exactly the orthogonal variables, so that if Φx = h
and Ψx = x̃, we have

x = Φ∗Φx + ΨTΨx = Φ∗h + ΨT x̃.

Given Φ, we may use the construction of Ψ in order to define the partition function ZΦ : Rm → R,

ZΦ(h) :=

∫
e−βV (Φ∗h+ΨT x̃)dx̃.
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A.2. Dyson–Duhamel principle. Next, we define

ht(x) = E
[
F(Xt)

∣∣X0 = x
]
.

Applying the Feynman–Kac formula, we recall that ht solve the PDE

∂tht = Lht = −∇V · ∇ht + β−1∆ht, with h0(x) = F(x).

In semigroup notation, we will write ht = etLF, and so the Feynman–Kac formula becomes

∂tht = etLLF. (A.2)

Given mutually orthogonal projection operators P and Q, applying the Dyson–Duhamel principle
entails that we have the identity

etL =

∫ t

0
e(t−s)LPLesQLds+ etQL, (A.3)

which can be verified by differentiation with respect to t. Writing LF = PLF +QLF in (A.2) and
applying (A.3), we find that

∂tht = etLPLF +

∫ t

0
e(t−s)LPLesQLQLF ds+ etQLQLF. (A.4)

Our main focus will now be on the first two terms in (A.4), since the latter term is Ft as defined in
(2.12). To rewrite the former term, we apply the definition of projection operator P, the definitions
of Φ, Ψ and ZΦ and the chain rule, giving

PLF(x) = Σ2 E
[
− Σ−2Φ∇V

∣∣F(x)
]

=
Σ2

ZΦ

(
F(x)

) ∫ −(Φ∗)T∇V (Φ∗F(x) + ΨT x̃)e−βV (Φ∗ F(x)+ΨT x̃)dx̃ = −Σ2∇S
(
F(x)

)
,

where we recall the definition of the effective potential S given in (2.10).

A.3. Orthogonal dynamics. Next, we consider the action of esQL, which will subsequently allow
us to treat the integral term in (A.4). We begin by noting that

QLF(x) = LF(x)− PLF(x) = −Φ∇V (x) + Σ2∇S
(
F(x)

)
,

and define gt : RN → Rm to be the solution to

∂tgt(x) = QLF(x) · ∇gt(x), g0(x) = QLF(x);

using semigroup notation, we write this as gs = esQLQLF.
Under assumptions (1) and (2) made in Section 2, it can be verified that Σ2∇S ◦ F is globally

Lipschitz. Using this fact, it can therefore be shown using the method of characteristics that gs
exists and is a C1 diffeomorphism on RN ; for similar results in the Hamiltonian setting, see [22].

Moreover, defining as := gs(x) ∈ Rm and bs := gs(y) ∈ Rm, then we use the fact that ∇S and
∇V are Lipschitz along with Young’s inequality to deduce that

d

ds

1

2
|as − bs|2

= −
(

Φ∇V (Φ∗as + ΨTΨx)− Φ∇V (Φ∗bs + ΨTΨy)− Σ2∇S(as) + Σ2∇S(bs)
)
· (as − bs),

.
(∣∣Φ∗(as − bs) + ΨTΨ(x− y)

∣∣+ |as − bs|
)
|as − bs|,

. |as − bs|2 + |x− y|2.
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Applying Gronwall’s inequality in the usual way, it follows that there exists α > 0 such that

|gs(x)− gs(y)| ≤ |x− y|
√
seαs, and thus |∇gs(x)| ≤

√
seαs. (A.5)

A.4. Memory integral. Now that we have established properties of gs, we return to the integral
term in (A.4). For now, we fix x ∈ RN , and set h := F(x).

Consider PLgs; using the partition of the identity constructed in (A.1) we may write

PLgs(x)

=
1

ZΦ(h)

∫ (
−∇gs(Φ

∗h + ΨT x̃) · ∇V (Φ∗h + ΨT x̃) + β−1∆gs(Φ
∗h + ΨT x̃)

)
e−βV (Φ∗h+ΨT x̃)dx̃

=
1

ZΦ(h)

∫ (
−∇gs(Φ

∗h + ΨT x̃)Φ∗Φ∇V (Φ∗h + ΨT x̃) + β−1∆gs(Φ
∗h + ΨT x̃)Φ∗Φ

−∇gs(Φ
∗h + ΨT x̃)ΨTΨ∇V (Φ∗h + ΨT x̃) + β−1∆gs(Φ

∗h + ΨT x̃)ΨTΨ
)

× e−βV (Φ∗h+ΨT x̃)dx̃.

We collect terms involving matrix products with Φ and Ψ separately, and using the chain rule, we
find that

PLgs(x) =
1

ZΦ(h)

∫
divx̃

(
1

β
∇x̃gs(Φ

∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)

)
dx̃︸ ︷︷ ︸

=:T1

+
1

ZΦ(h)

∫
divh

(
1

β
∇hgs(Φ

∗h + ΨT x̃)Σ2e−βV (Φ∗h+ΨT x̃)

)
dx̃︸ ︷︷ ︸

=:T2

,

where subscripts denote the variable with respect which derivatives are taken. In particular, in the
formula above, gs(Φ

∗h + ΨTx) is treated as a composition of functions. We now consider each of
the terms T1 and T2 separately.

To treat T1, we apply the divergence theorem. Truncating the domain of integration to BR(0) ⊂
RN−m, a ball of radius R centred at 0, and considering the limit as R→∞, we have

T1 =
1

ZΦ(h)
lim
R→∞

∫
BR(0)

divx̃

(
1

β
∇x̃gs(Φ

∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)

)
dx̃

=
1

ZΦ(h)
lim
R→∞

∫
∂BR(0)

(
1

β
∇x̃gs(Φ

∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)

)
· ~ν dS̃.

(A.6)

Applying (A.5) and the growth assumptions on V to pass to the limit, we see that T1 = 0.
For T2, we note that we may commute differentiation and integration, and so multiplying and

dividing by ZΦ(h), we obtain, we obtain

T2 =
1

ZΦ(h)
divh

(∫
1

β
∇hgs(Φ

∗h + ΨT x̃)Σ2e−βV (Φ∗h+ΨT x̃)dx̃

)
=

1

ZΦ(h)
divh

(
ZΦ(h)

β

1

ZΦ(h)

∫
∇hgs(Φ

∗h + ΨT x̃)Σ2e−βV (Φ∗h+ΨT x̃)dx̃

)
.

(A.7)
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A.5. Memory kernel. To complete our analysis, we must show the identity

Ms(h) = − 1

ZΦ(h)

∫
∇hgs(Φ

∗h + ΨT x̃)Σ2e−βV (Φ∗h+ΨT x̃)dx̃, (A.8)

where we recall that Ms was defined in (2.11).
Since we may again commute differentiation and integration, we use the product rule to write

− 1

ZΦ(h)

∫
∇hgs(Φ

∗h + ΨT x̃)Σ2e−βV (Φ∗h+ΨT x̃)dx̃

= − 1

ZΦ(h)

∫
∇h

(
gs(Φ

∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)
)

Σ2dx̃

− 1

ZΦ(h)

∫
gs(Φ

∗h + ΨT x̃)⊗ β (Φ∗)T∇V (Φ∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃) Σ2dx̃

= − 1

ZΦ(h)
∇h

(∫
gs(Φ

∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)dx̃

)
− 1

ZΦ(h)

∫ (
gs(Φ

∗h + ΨT x̃)⊗ β Φ∇V (Φ∗h + ΨT x̃)e−βV (Φ∗h+ΨT x̃)
)
dx̃,

= − 1

ZΦ(h)
∇h

(
ZΦ(h)E[gs|F(x) = h]

)
︸ ︷︷ ︸

=:T11

+β E[gs ⊗ LF|F(x) = h]︸ ︷︷ ︸
=:T12

.

Next, we recall that gs = esQLF, and PQ = 0, so

E
[
gs
∣∣F(x)

]
= E

[
esQLQLF

∣∣F(x)
]

=
(
PQLesQLF

)
(x) = 0, (A.9)

and therefore T11 = 0. To treat T12, we note that since P +Q = I, we may split T12 into

T12 = β E[esQLQLF⊗QLF|F(x) = h] + β E[esQLQLF⊗ PLF|F(x) = h]

=Ms(h) + β PesQLQLF⊗ PLF.

Once again, the latter term vanishes thanks to (A.9), and so we have proved identity (A.8).

A.6. Conclusion of the proof. Applying identity (A.8) to (A.7) and using the product rule and
the definition of the effective potential given in (2.10), we find that

T2 =
1

ZΦ(h)
div

(
−ZΦ(h)

β
Ms(h)

)
=Ms(h)∇S(h)− 1

β
divMs(h).

Combining our analysis of each of the terms, we have therefore shown that

∂tht = −Σ2∇S(ht) +

∫ t

0
Ms(ht−s)∇S(ht−s)−

1

β
divMs(ht−s) ds+ Ft

Hence, we prove the theorem.
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