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Abstract

The manufacturing of biopharmaceuticals requires substantial investments and necessi-

tates long-term planning. Complicating the task of determining optimal production plans

are large portfolios of products and facilities which limit the tractability of exact solution

methods, and uncertainties & stochastic events which often render plans obsolete when

reality deviates from the expectation. This thesis therefore describes decisional tools that

are able to cope with these complexities.

First, a capacity planning problem for a network of facilities and multiple products was

tackled. Inspired by meta-heuristic approaches to job shop scheduling, a tailored construc-

tion heuristic that builds a production plan based on a sequence — optimised by a genetic

algorithm — of product demands was proposed. Comparisons to a mathematical program-

ming model demonstrated its competitiveness on certain scenarios and its applicability to

a multi-objective problem.

Next, a custom object-oriented model was introduced for a manufacturing scheduling

system that utilised a failure-prone perfusion-based bioprocess. With this, process design

decisions such as cell culture run time and process configuration, and single-product fa-

cility scheduling strategies were evaluated whilst incorporating simulations of stochastic

failure events and uncertain demand.

This model was then incorporated into a larger hyper-heuristic to determine optimal

scheduling policies for a multi-product problem. Various policy representations are tested

and a few policies are adapted from the literature to fit this specific problem. In addition, a

novel policy utilising a look-ahead heuristic is proposed. The benefit of parameter tuning

using evolutionary algorithms is demonstrated and shows that tuned policies perform much

better than a policy that estimates parameters based on service level considerations. In

addition, the disadvantages of relying on a fixed or rigid production sequence policy in the

face of uncertainty is highlighted.
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Chapter 1

Introduction

1.1 Motivation

The production of biopharmaceuticals is an expensive and time-consuming endeav-

our requiring large investments and long-term production planning. The average

cost to bring a new biopharmaceutical to market is estimated at $1.2-1.8 billion

given the high attrition rates (DiMasi and Grabowski, 2007; Paul et al., 2010), and

building large multiproduct manufacturing facilities can take 4-5 years to complete

and costs $40-650 million (Farid, 2007) in addition to the decade-long timeline

required for drug development.

Due to the high cost and long timeframes, biopharmaceutical companies have

to plan production well in advance, often utilising demand forecasts to guide their

decision-making. However, biopharmaceutical production has a number of charac-

teristics that make it challenging to optimise including: interdependent decisions;

multiple conflicting objectives; heterogeneity in product and manufacturing facil-

ity portfolios; options for third-party partnerships or outsourcing; batch and semi-

continuous manufacturing processes; uncertainties in the manufacturing process or

external factors; and product lability (Lim et al., 2006; Lakhdar et al., 2007; George

and Farid, 2008).

Literature in the pharmaceutical or biopharmaceutical industry on planning and

production scheduling is small but growing (Vieira et al., 2015). However, the

models used either are restricted to deterministic problems, only model one mode

of processing, or do not focus on scheduling. In addition, there is a dependence,

in much of the existing literature, on exact solution methods which whilst useful

and powerful, become intractable with increasing problem size. They also may be

1



restricted in their ability to model real-life systems due to simplifying assumptions

made in order to formulate the problem(s).

As a result, there exists a gap to use heuristic, meta-heuristic, and/or hyper-

heuristic techniques to: (i) provide alternative solution approaches to previous

problems by providing improvements in speed or objective value performance, or

a more accurate model of reality; (ii) pose questions and investigate aspects of

biopharmaceutical production planning that have so far not been within the scope

of the current literature; and (iii) deal with the stochastic and uncertain nature of

planning and manufacturing systems.

1.2 Research Questions

The challenges and opportunities described above may be mitigated by process

design & scale-up, planning, strategy, and decision-making which is efficient and

effective (in terms of cost, time and effort). Within this context, the questions posed

by this thesis and which it will attempt to answer include:

• What is a suitable meta-heuristic alternative to exact solution methods to

capacity planning and scheduling for a network of biopharmaceutical manu-

facturing facilities?

– How does the performance of this meta-heuristic compare empirically

with existing approaches?

– What is the scope for providing a decision-maker with ‘equally good’

solutions with different trade-offs regarding multiple conflicting objec-

tives?

• What is the effect on scheduling of uncertainty due to fluctuating demand

and randomly failing processes?

– What process design decisions (i.e., process run time and process con-

figuration) deliver optimum performance in the face of random process

failure?

– Given process configuration and uncertain demand, what is a suitable

strategy to simultaneously determine optimum run times and schedule

manufacturing batches for a single product?

2



• Additionally, given instead, a system of multiple products with uncertain

demand and process failure:

– What are good representations and parameters for scheduling policies

to dynamically allocate facility capacity optimally between products?

– What is the benefit of implementing flexible process run times?

To answer these questions, decision tools based on heuristic, meta-heuristic,

and hyper-heuristic techniques are developed and problem instances are formulated

to test and validate them. These tools can support biopharmaceutical companies in

planning and scheduling decisions.

1.3 Structure of Thesis

This thesis is composed of six more chapters plus some additional appendices and

is structured as described below. The earlier chapters aim to provide necessary

background to the research questions whilst the latter chapters develop the tools

required and tackle these questions head-on.

Chapter 2 on page 5 provides an overview of the biopharmaceutical industry,

detailing the effort required in drug development and describing a typical manu-

facturing process. The aim of this chapter is to demonstrate the opportunities but

also the challenges facing the companies operating in the industry.

Chapter 3 on page 14 delves into a detailed survey on literature related to pro-

duction planning research. This focuses on lot sizing and scheduling models with

purely deterministic or part stochastic components. There are also brief introduc-

tions to the algorithms utilised in this thesis. Additionally, it highlights the gaps in

the planning literature for the biopharmaceutical industry.

In Chapter 4 on page 28, a meta-heuristic is proposed to solve the complex

combinatorial optimisation problem of deterministic scheduling and planning of

multi-site biopharmaceutical manufacturing. This novel proposal is subsequently

compared with an exact solution method from the existing literature in an attempt

to highlight its usefulness in certain scenarios.

A novel hyper-heuristic framework is proposed and developed in Chapter 5 on

page 62 which incorporates a custom object-oriented model simulating schedul-

ing decisions and operational events in semi-continuous perfusion processes. This

3



framework is then evaluated in terms of determining optimal process design and

scheduling decisions in the face of stochastic and uncertain events.

Further to that, Chapter 6 on page 98 uses this framework and tests a range of

scheduling policies on a synthetic case study of a single multi-product facility. In

addition to demonstrating the benefit and robustness of policies compared to more

basic rules, the usefulness of flexible process run times is explored.

Chapter 7 on page 139 wraps up this thesis by revisiting and summarising the

contributions of the thesis while giving an outlook on possible future work.
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Chapter 2

Background on the
Biopharmaceutical Industry

The biopharmaceutical industry is concerned with the development, manufactur-

ing, and marketing & commercialisation of biopharmaceutical drugs1. These bio-

pharmaceuticals are complex biological molecules which are marketed and com-

mercialised for therapeutic or diagnostic uses. Worldwide sales of biopharmaceuti-

cals totalled $140 billion in 2013 (La Merie Business Intelligence, 2013), growing

to $228 billion in 2016 (Troein, 2017), and represent the fastest growing sector of

the overall pharmaceutical market. Biopharmaceuticals are usually distinguished

from other pharmaceuticals or small molecule drugs which, unlike biopharmaceu-

ticals, can be synthesised chemically and can be described atom-by-atom (Rader,

2005). Biopharmaceuticals require biotechnology methods for manufacture, often

in a host cell organism which often has been genetically engineered to produce the

biopharmaceutical.

A non-exhaustive list of the types of biopharmaceuticals includes vaccines,

gene therapy products, recombinant proteins, cultured cells and tissues, human

blood products, enzymes, and monoclonal antibodies (mAbs). Table 2.1 on the fol-

lowing page lists pharmaceuticals (including small molecule drugs) with the high-

est worldwide revenue in 2017, highlighting the clout of biopharmaceuticals in the

broader market, especially mAbs. A mAb refers to therapeutic antibodies which

are made from a cell line of identical clones sourced from a single unique parent.

Antibodies — which are large protein molecules — have very strong affinity and

1These may also be referred to as biologics.
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specificity to targets (antigens) unique to each antibody clone. These antigens can

be pathogenic bacteria, viruses or even cancer cells.

2.1 Drug and Process Development

Biopharmaceutical drug development refers to the process of taking a molecule

from first discovery of the potential therapeutic action to a commercial product on

the market available for use by patients and the healthcare providers administering

them to the patients (see Figure 2.1 on the next page). This drug development

is extremely lengthy (Werner, 2004), expensive (DiMasi and Grabowski, 2007),

complex, and risky (DiMasi et al., 2010). The estimated total capitalised cost for

each new biopharmaceutical molecule to achieve market approval can exceed $1.2

billion (DiMasi and Grabowski, 2007).

Part of this R&D effort takes place on two parallel but interacting and inter-

dependent tracks. On one track is clinical development which involves a series

of clinical trials and essentially aims to ascertain if the therapeutic is safe and if

it works. The other track is process development in which a manufacturing pro-

cess for producing the therapeutic for testing in clinical trials and for commercial

production is designed and undergoes scale-up. Decisions made in clinical devel-

opment affect process development and vice versa. This is because the molecule

that goes through clinical testing comes from the manufacturing process that is

concurrently undergoing development. Due to the complexity of biologics and bi-

ological systems, the molecule’s identity is often linked to (and in part determined

by) its manufacturing process. As a result, process design decisions have to be con-

sistent through development to ensure that it is the same molecule going through all

stages of clinical development. Similarly, decisions made in clinical development

on dosage and method of delivery mean that the manufacturing process will need to

be productive enough and produce the molecule in the correct formulation to match

the clinical efforts. In addition, in the early stages of development, a company will

often need to commit capital towards a facility to house the manufacturing process

without the guarantee that the drug candidate will successfully clear clinical trials.

In the stages of developing a biopharmaceutical, the initial drug discovery

comes before clinical or process development. This drug discovery is composed

of four stages: target identification, target validation, lead identification, and lead

optimisation. This process involves identifying potential targets for therapeutic ac-
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tion that are involved in the model of the disease in question and selecting the most

promising of those targets. Then these targets are used to screen a large number

of molecules to test and identify the molecules (leads) that have specificity for the

target and cause the desired changes to the target. The leads are subsequently op-

timised to improve activity. Selection of the optimal lead or drug candidate moves

the process into clinical development. The potential difficulty or feasibility of man-

ufacturing is often a factor in drug candidate selection.

Clinical development is made up of several different stages. Before any in-

human trials, pre-clinical testing is carried out to assess if the drug candidate is

safe to administer to humans. To commence human clinical trials in the US, an

investigational new drug (IND) application has to be made to and successfully

granted by the regulatory body — the FDA. Usually, between this point and drug

candidate selection, a patent would have been applied for and granted. This patent

protection gives market exclusivity to the patent holder for the molecule for 20

years from the patent application date.

There are three major stages of human clinical trials for drug candidates to go

through. Phase I focuses on the safety of the drug and will involve around ten

healthy subjects. Phase II is the major stumbling block for most drugs as it has

the highest attrition rate (i.e., probability of transition to the next phase is lowest in

Phase II). This is where the efficacy of the drug is determined and tested as well as

further safety studies. Phase III requires up to thousands of volunteer subjects to

determine the range and severity of side effects on a larger sample size, final dose

sizes, as well as further safety and efficacy testing. Results and findings from these

studies are filed and submitted to request regulatory approval in the form of a new

drug application (NDA), which when granted allows the drug to be marketed and

sold.

Process development aims to take the techniques from synthesizing the molecule

at a lab-scale to an economical manufacturing process capable of producing the

therapeutic at commercial scale. The process evolves in stages at intermediate

scales (e.g., pilot-plant scale), progressively increasing and optimising equipment

sizes and productivities. As previously mentioned, clinical manufacturing takes

place concurrently to provide the drug that is used during clinical trials. Ultimately,

process development ensures that the manufacturing process is validated, safe, con-

sistent, and robust whilst also trying to be as economical and cost-effective as pos-

sible. For biologics, in addition to an NDA, a biologic licence application (BLA)
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is required for approval and this BLA is needed for each different manufacturing

facility it is produced in.

This drug development process may take up to 12 years. So that means that a

patent granted at the start of the development process therefore only leaves eight

years of market exclusivity (in this case). Work done on optimising the structure

and development pathway of biopharmaceutical drug portfolios includes the study

by George and Farid (2008).

2.2 Biopharmaceutical Manufacturing

Biopharmaceutical manufacturing is a substantial endeavour as it involves growing

single-cell organisms on a large scale. As experience and expertise has built up in

this area, a lot of biopharmaceuticals especially mAbs have started to adopt more

standardised processes (Fahrner et al., 2001; Shukla et al., 2007).

The bioprocess for manufacturing mAbs is normally a batch process and com-

prises of many steps (unit operations) but can be broadly divided into two main

parts: upstream processing (USP) and downstream processing (DSP). USP is the

part of the manufacturing process where the cells are grown and the biopharmaceu-

tical is actually made (by the cells). DSP separates the biopharmaceutical molecule

from its host cell and removes any impurities from the product stream(s). Bulk

manufacturing ends after DSP, and after that the purified bulk product undergoes

final fill, formulation, and packaging (usually in a secondary facility or location) to

put the molecule in the delivery format that is administered to patients.

USP starts from the expansion and thaw of frozen seed cells in cell banks and

goes on to make the actual drug molecule using cells grown in one or more biore-

actors. The selection of expression system depends on a number of factors (Verma

et al., 1998), and the available choices range from bacterial (e.g., E. coli), yeast,

insect, to mammalian cells (e.g., Chinese hamster ovary (CHO)). Generally, mAbs

are produced in mammalian cells (Farid, 2006) because other cells, like E. coli,

cannot secrete antibodies — this makes the purification process more cumbersome

as the cells have to be broken up to release the antibodies. Also, they may not

be able to carry out post-translational modifications such as glycosylation — this

glycosylation is often necessary for antibody specificity and effector functions, and

also improves half-life.

There are two main types of processing modes in USP: fed-batch and perfusion

10



(Chu and Robinson, 2001; Birch, 2003). In fed-batch processes, the bioreactor is

seeded and the cells are grown for a certain period of time (with a few intermittent

feed additions) at which point the entire contents are harvested and passed on to

DSP for purification. Perfusion processes, on the other hand, are semi-continuous.

The bioreactor is seeded as normal and cells are grown for a specified amount

of time (with regular feed additions) until they reach a steady-state cell density —

this period of time is called ramp-up. From this point onwards, regular harvests are

made from the bioreactor (which is replenished by equally regular feed additions);

these harvests can be purified separately, or pooled and/or frozen for later down-

stream processing. As a result, the perfusion processes last significantly longer

than the fed-batch processes — a CHO fed-batch cell culture is typically 14 days

long but a perfusion cell culture can be as long as 60 days. The fed-batch process is

more prevalent in industry, though the industry is showing new interest in perfusion

processes. There are advantages and disadvantages to both processing modes (Chu

and Robinson, 2001; Birch, 2003; Bibila and Robinson, 1995): fed-batch is easier

to control but is less productive, and perfusion offers a smaller facility footprint but

is more susceptible to process contamination and failure.

The unit operations involved in DSP for a platform mAb process generally in-

clude: clarification steps to separate the whole cells from the product stream; multi-

ple chromatography steps; and orthogonal viral clearance steps (FDA, 1998; Sofer

and Lister, 2003) (depending on the cells used). Although most mAb downstream

processing trains tend to consist of the same unit processes, each mAb introduces

unique differences which means process engineers must tune unit operations and

the DSP as a whole to each mAb molecule (Marichal-Gallardo and Alvarez, 2012).

The chromatography unit operations, particularly the affinity chromatography step

which uses Protein A resin for mAbs, have recently been identified as the bottle-

neck (in time and costs) in the overall process (Kelley, 2007) as cell culture titres

have increased. Work done by Allmendinger et al. (2012, 2013) has sought to deal

with this by optimising cost-effective chromatography column-sizing strategies for

mAb manufacture while also incorporating user preferences.

In addition to decisions on equipment sizes and selection of unit operations, it is

possible to choose process configurations where there are multiple staggered biore-

actors to one DSP train. Rouf et al. (2000) investigated the economy of scaling-up a

bioreactor by using multiple units versus one larger bioreactor. This found that the

flowsheet with multiple reactors had a higher return on investment resulting from
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the smaller size of DSP units since DSP accounts for such a large proportion of

processing costs. Multiple reactors however will incur higher equipment purchase

costs even as their DSP is smaller and more utilised.

Manufacturing can take place in a dedicated facility or suite (i.e., a single-

product facility) or in a facility where equipment and resources are shared between

different manufacturing processes (i.e., a multi-product facility (MPF)). Operat-

ing an MPF brings up a few more concerns in addition to those experienced in a

single-product facility. First of all, there needs to be an adequate cleaning and ro-

bust validation procedure to ensure there is no product carryover from one process

to another. Secondly, as well as the potential to cause cross-contamination and

product carryover, the changeovers between different products can be labour and

time intensive (with the extra cleaning and validation). So it may be operationally

beneficial to manufacture in campaigns2, and minimise product changeovers.

2.3 Emerging Trends and Challenges

The unique qualities of biopharmaceuticals and its market bring many varying chal-

lenges to biopharmaceutical companies (Närhi and Nordström, 2005). As briefly

implied above, these companies face great uncertainty and risk. They have to man-

age uncertain development times and costs, uncertain phase transition probabilities,

and uncertain market forecasts — ideally in a cost-effective and efficient manner.

Biosimilars are a growing trend in the biopharmaceutical industry and pose an

increasing competitive threat to manufacturers of originator biopharmaceuticals.

Biosimilars refer to close copies of branded biologics marketed after the expiration

of the patent and regulatory protection period of the established branded biologic

(Weise et al., 2011). The sales erosion in the first year after generic entry for small

molecule drugs can cause the originator’s unit share to fall to 11% (Grabowski

et al., 2013). It is unlikely that such drastic sales erosion will occur in the bio-

pharmaceutical market. However, new biosimilars are set to reap the benefits and

success of the originator when put in context with the highly profitable, growing

market and potential selling prices 20-30% lower than the originator (Walsh, 2010).

Biopharmaceutical companies are also faced with manufacturing bottlenecks;

2Here a campaign means a long sequence of batches of one product which is uninterrupted by
batches of other products. It has a second similar meaning: after changeover from product b, starting
the first batch of another product, a, can be referred to as starting a campaign of product a (regardless
of how many more batches of a are planned). Both meanings are used interchangeably within context
throughout this thesis.

12



strict risk-averse regulation (Eichler et al., 2013); and long, difficult and complex

manufacturing processes (Ransohoff, 2004; McGurk, 2004). There have been re-

cent efforts to improve the productivity and utilisation of bottlenecked chromatog-

raphy processes by introducing semi-continuous chromatography (Mahajan et al.,

2012; Warikoo et al., 2012). Pollock et al. (2013a) evaluate the potential of semi-

continuous chromatography systems for clinical and commercial manufacture.

The pursuit of efficiency and cost-effectiveness is coupled with the increas-

ing need for flexibility (Kelley, 2009) as companies compete for limited resources

whilst bringing their products to market. Legacy facilities were designed and built

to manufacture large amounts of just one blockbuster drug each (i.e., single-product

facilities), and it has been forecast to no longer be the norm (Carson, 2005). Com-

panies designing new facilities will need multi-product facilities that are more flex-

ible — i.e., facilities that are capable of manufacturing several mAbs with diverse

characteristics and process variations. This is to account for several different leads

going through the development process and the inherent uncertainty in which spe-

cific mAb candidates will be approved. A main problem facing MPFs is the risk of

cross-contamination, but this can be mitigated by the correct facility design (GEN,

2006). MPFs require more rigorous cleaning procedures and extra validation costs

between each product campaign but these extra procedures and costs have been

found to still be economically feasible (Sofer and Nyström, 1991). The use of dis-

posable systems further extends the flexibility of an MPF as it reduces the costs and

time related with cleaning validation and product changeover respectively. In ad-

dition, they reduce some running costs by minimising water and reagents used by

clean-in-place (CIP) and sterilization-in-place (SIP) operations. However they in-

cur higher consumables and waste disposal costs. Disposable components that can

be used include but are not limited to single-use bioreactors (up to 2000L scale),

filters, filter housings, pipes, pre-packed columns or membrane adsorbers; dispos-

able technology finds many applications in both MPFs and single-product facilities

(Allison and Richards, 2013; Shukla and Gottschalk, 2013).

Finally, decisions faced by biopharmaceutical companies are interdependent,

i.e., the decision about which drugs to develop depends on the available capacities

and resource needs of the other drugs, and vice versa. At the same time, process

development determines the technical characteristics of the manufacturing process

producing drugs either for clinical development or the commercial market.
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Chapter 3

Literature Review

3.1 Introduction

Production planning aims to make best use of production resources in order to

satisfy production goals or demand over a planning horizon. It is omnipresent in

any manufacturing environment including bioprocessing and the manufacture of

biologics. Determining a good or an optimal production plan is not a new problem

and various approaches exist that tackle it wholly or focus on specific aspects in

order to achieve the stated objectives.

This chapter aims to lay out the current state-of-the art in production planning

research especially in the realm of lot sizing and scheduling and in a pharmaceu-

tical or bioprocessing context. This interfaces between deterministic and stochas-

tic lot-sizing, scheduling, capacity planning, bioprocess optimisation, and prod-

uct cycling problems and solution techniques such as meta- and hyper-heuristics,

simulation-optimisation, and exact methods.

Literature on lot sizing and scheduling, will be discussed first in Section 3.2 on

the following page. This will include descriptions of its deterministic and stochas-

tic types as well as the distinctions between their many variants. Secondly, Sec-

tion 3.3 on page 19 will describe and compare several solution methods and al-

gorithms which have been used in prior work. Following that, relevant research

tackled in a bioprocessing or biopharmaceutical context will be outlined in Sec-

tion 3.4 on page 26, and the conclusion of this chapter will summarise the present

research gaps this thesis attempts to fill.
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3.2 Lot Sizing and Scheduling

Lot sizing models determine the optimal timing and level of production. The sim-

plest of these was formulated by Wagner and Whitin (1958) whereby production

levels for a product on a single machine (or facility) over a finite planning horizon

are determined. Lot sizing models mostly focus on the trade-off between set-up

cost and inventory cost.

Scheduling was defined by Graves (1981) as “. . . the allocation of available

production resources over time to best satisfy some set of criteria”. Framinan

et al. (2014) provided an extensive overview on scheduling systems models, and

algorithms for exact and approximate solutions. Within the context of lot sizing,

scheduling has to do with the precise sequencing and timing of jobs within time

periods. Usually the lot sizing is solved first before the scheduling problem which

is based on the results from the lot sizing model.

Different extensions have been developed and investigated for lot sizing in gen-

eral (Jans and Degraeve, 2008), and also with scheduling considered as part of

the problem (Drexl and Kimms, 1997). One of the main distinctions between the

variants (when using mathematical programming) is whether they are classed as

a ‘small-bucket’ formulation or a ‘big-bucket’ formulation. This refers to the size

of the time periods and how sequencing and scheduling is handled within them.

The former describes models or formulations which can only have at most one

product per machine produced in each time period which effectively determines a

sequence. On the other hand, ‘big-bucket formulations’ may have more than one

product produced on a single machine per time period. As a result, these models

usually do not deal with sequencing or explicit scheduling.

Other characteristics that may differentiate model variants are as follows:

• The planning horizon which determines the length of the production sched-

ule. This can either be finite or infinite.

• A single-level system is one where end products or items are produced di-

rectly from raw materials. Conversely, a multi-level system involves parent-

component relationships among the products. That is, one product serves

as an input or raw material for the processing or production of another, so

demand for one operation (level) is dependent on a prior one.

• The number of products has an important effect on complexity, with single-

product problems significantly simpler than multi-product cases.
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• Capacity or resource constraints can be put on the production operations

leading to capacitated problems. If these constraints are not present, the

problem is said to be uncapacitated.

• Demand is classed as static if it remains constant (or stationary) over the

entire planning horizon and dynamic if it changes with time. In addition, it

may be uncertain or stochastic if not known ahead of time — usually based

on probabilities and probability functions. Otherwise if it is known exactly,

it is deterministic. Related to the number of levels, independent demand

has products where their demands do not depend on the decisions of other

products but dependent demand has products with demands depending on

demands of other products.

• Implementation of setup can take many forms. Usually, changeover (switch-

ing) from one product to another incurs a setup cost and/or setup time. If the

setup applied at the start of production of an item differs based on the pre-

ceding item, this is classed as sequence-dependent setup. In addition (and

specific to mathematical programming), a problem has setup-carryover if

production of an item over two periods only required one setup before pro-

duction in the first period.

• Finally, the flow of inventory may have several constraints. There may be

maximum inventory levels (maximum storage capacity) imposed per prod-

uct, per facility (or machine), globally, or combinations thereof. In addition,

inventory may be perishable. This can either be by defining a maximum

holding time (or shelf-life) or a spoilage rate (i.e., a fraction of inventory

spoils each period and needs to be discarded). Also, inventory shortage may

be allowed in two ways1. Backlogging means that the demand of the cur-

rent period can be delivered in future periods and lost sales means that not

meeting demand at all is allowed.

The rest of the discussion in this chapter will distinguish primarily between

deterministic and stochastic lot sizing and scheduling problems. That is, of the

characteristics just mentioned, the type of demand is what shall be focused on.

1It is possible for both forms of inventory shortage to be used in the same system simultaneously.
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3.2.1 Deterministic Models

As has previously been mentioned, there are several extensions for the lot sizing

and scheduling problem which generally evolved from the economic order quan-

tity (EOQ) problem — a single-product single-item problem with deterministic

stationary demand, infinite planning period, and no capacity constraints (Erlenkot-

ter, 1990).

Some of the deterministic variants include: the economic lot scheduling prob-

lem (ELSP) which has an infinite planning horizon, where products have stationary

demand, and time is continuous (instead of discrete) (Gallego and Shaw, 1997);

the capacitated lot-sizing problem (CLSP), which considers capacity constraints

for the machines and as a ‘large-bucket’ model, allows several items to be pro-

duced per period (Eppen and Martin, 1987); the discrete lot sizing and scheduling

problem (DLSP), where periods are very short, only one product can be made per

period, and if so, the production uses the full capacity (Lasdon and Terjung, 1971);

the proportional lot sizing and scheduling problem (PLSP), in which not more than

two products can be made in a time period (Drexl and Haase, 1995; Drexl and

Kimms, 1997); and the general lot sizing and scheduling problem (GLSP) which

attempts to take take a ‘large-bucket’ model and simultaneously do scheduling by

assigning each lot in a period a unique number to determine a sequence (Fleis-

chmann and Meyr, 1997).

In addition, Potts and Wassenhove (1992) highlighted the close relationship

between scheduling, and lot sizing and scheduling. This idea of a relationship

between lot sizing problems and scheduling models in general was motivation for

two efforts to solve the DLSP as a batching and scheduling problem. Here, each

demand is interpreted as a job and characterised by its size and deadline and must

be processed in one piece without splitting: one by Jordan (1996), and another by

Jordan and Drexl (1998).

Of these deterministic models, CLSPs have received a large share of research

attention and been the subject of several extensive reviews and surveys (Drexl and

Kimms, 1997; Karimi et al., 2003; Jans and Degraeve, 2008).

3.2.2 Stochastic Models

Historically, most research has been on problems that assume deterministic demand

and no randomness or uncertainty in general. However, real-life systems often are

not as simple and suffer from uncertainty either in demand, production rates or
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setup times.

This different class of the problem is termed the stochastic lot scheduling prob-

lem (SLSP). In their review of the SLSP, Sox et al. (1999) made a distinction be-

tween the stochastic economic lot scheduling problem (SELSP) and the stochastic

capacitated lot sizing problem (SCLSP) to be consistent with their deterministic

counterparts. The former assumes continuous time, an infinite horizon, and sta-

tionary demand while the latter assumes a finite planning horizon, discrete time

periods, and may have non-stationary demand. However, Winands et al. (2011)

blurred this by defining the SELSP as allowing finite planning horizons but re-

stricting it to stationary demand.

In addition to these surveys, Aloulou et al. (2014) compiled an extensive bibli-

ography of publications on the non-deterministic lot-sizing problem and classified

them according to the number of products, time-periods, machines, the uncertain

parameters, and the modelling approaches. Li and Ierapetritou (2008) reviewed

the main methodologies that have been developed to address the problem of uncer-

tainty in production scheduling as well as to identify the main challenges in this

area. Ouelhadj and Petrovic (2009) surveyed dynamic scheduling in manufactur-

ing systems, covering the limitations of static schedules and approaches in dynamic

scheduling.

An extension looks at production processes which are prone to random ma-

chine/equipment failure. In the case of equipment failure, corrective maintenance

is done to restore the machine to its ‘normal’ state and any imperfect product items

are either reworked or discarded. Also, preventive maintenance may be carried out

in order to mitigate the occurence of failure events. For example, Liao and Sheu

(2011) presented an economic production quantity (EPQ) model for randomly fail-

ing production process with minimal repair and imperfect maintenance.

In general, a production or control policy is required for the SELSP which

defines decisions to make for the possible states of the system. These decisions are:

whether to continue production of the current product; whether to switch to another

product; or whether to idle the machine. The implication is that finite production

capacity has to be dynamically allocated between products in order to be responsive

to stochastic demands. This adds to the complexity of the problem and means that

determining an optimal control policy is non-trivial (Sox et al., 1999). The critical

aspects of these policies are the lot-sizing decisions and the sequencing decisions.

The lot-sizing decision may either depend on the state of the entire system (i.e., a
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global lot-sizing decision) or just on the stock level of the product currently set up

(i.e., a local lot-sizing decision). In addition, the production sequence can either be

dynamic, fixed with variable cycle length, or fixed with the cycle length fixed as

well (Winands et al., 2011).

Though there are formulations of these stochastic models that can be solved

analytically — e.g., Tempelmeier (2013) and Tempelmeier and Hilger (2015) —

often, to evaluate solutions to the SLSP, stochastic simulation is employed over a

set of specific or random scenarios and instances.

3.3 Solution Approaches

This section will outline the application(s) of popular approaches to both determin-

istic and stochastic versions of the lot sizing and scheduling problem while briefly

describing the algorithms underlying them where necessary.

3.3.1 Exact Methods

Very often, CLSPs are modelled as mixed-integer linear programming (MILP)

problems and solved with software such as IBM’s CPLEX (Ramya et al., 2016;

Dangelmaier and Kaganova, 2013; Walser et al., 1998). However, the CLSP is NP-

hard (Bitran and Yanasse, 1982), and so there is a limit to the size and complexity

of CLSPs that can be tackled with exact mathematical programming methods. Sim-

ilarly, the SELSP can be formulated as a Semi-Markov Decision Process (SMDP)

but this approach does not scale well (Graves, 1980). It is also possible to for-

mulate an SCLSP with service-level constraints as a linearised model and solve

with a standard MIP solver, but this too means prohibitive computation times with

increasing products and time periods (Tempelmeier, 2013).

3.3.2 Heuristics, Meta-Heuristics, and Hyper-Heuristics

For larger and more complex scenarios, various approaches based on meta-heuristics

or heuristic solution approaches have been proposed for both deterministic and

stochastic lot sizing and scheduling problems. These algorithms are invaluable

when problem sizes become intractable to solve with exact methods and computa-

tion costs are prohibitively large.

A heuristic is an algorithm which does not guarantee that the optimal solution

to the problem will be found. They trade optimality for speed in order to gener-
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ate ‘good enough’ solutions in a reasonable time frame. What counts as a ‘good

enough’ solution will depend on the use case or specific problem. For example,

for a problem where it is difficult to manually construct a (feasible) solution, a

‘good enough’ solution is one that is feasible and quickly generated. Similarly, a

heuristic can be said to give a ‘good enough’ solution if subject to a computation or

time budget, the solution is close in quality to known optima or benchmarks. Or in

the case where this information does not exist, the solution improves significantly

on random ones. Heuristics may be implemented by themselves or in conjunction

with other heuristics or optimisation algorithms.

On the other hand, a meta-heuristic is a class of heuristic that does not make

assumptions about the structure or characteristics of the underlying problem that is

to be solved. Meta-heuristics work to efficiently direct the search of a subordinate

heuristic on a larger decision (or search) space. To quote a more pithy definition:

“Metaheuristics are typically high-level strategies which guide an underlying,

more problem specific heuristics, to increase their performance. The main goal is

to avoid the disadvantages of iterative improvement and, in particular, multiple de-

scent by allowing the local search to escape from local optima. This is achieved by

either allowing worsening moves or generating new starting solutions for the local

search in a more “intelligent” way than just providing random initial solutions.

Many of the methods can be interpreted as introducing a bias such that high qual-

ity solutions are produced quickly. This bias can be of various forms and can be

cast as descent bias (based on the objective function), memory bias (based on pre-

viously made decisions) or experience bias (based on prior performance). Many

of the metaheuristic approaches rely on probabilistic decisions made during the

search. But, the main difference to pure random search is that in these algorithms

randomness is not used blindly but in an intelligent, biased form.” (Stützle, 1998).

Blum and Roli (2003) and Luke (2013) have other definitions of meta-heuristics

and extensive descriptions of many popular algorithms as well as intuitive expla-

nations as to their particular use cases.

In addition to heuristics and meta-heuristics, there have been some applica-

tions of hyper-heuristics to lot sizing and scheduling problems. Hyper-heuristics

are heuristic search methods that attempt to automate the selection or design of sub-

ordinate heuristics to solve hard computational problems (Burke et al., 2013). The
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distinction between a hyper-heuristic and a meta-heuristic is that the latter searches

a solution space (i.e., the search space is comprised of solutions to the problem),

however, the former searches within a space of heuristics.

3.3.2.1 Heuristic solution methods

Variations of construction heuristics have been used for various types of lot sizing

problems — a construction heuristic is one that starts with an ‘empty’ solution and

gradually builds or assembles a complete solution as determined by its algorithm

procedure.

For example, Ho et al. (2006) developed two construction heuristics for the

uncapacitated dynamic lot-sizing problem that are extensions of earlier heuristics

by Silver and Meal (1973), and show that they outperform six other construction

heuristics including the original Silver and Meal heuristic. James and Almada-

Lobo (2011) proposed, along with other heuristics, a MILP-based ‘relax-and-fix’

construction heuristic for the parallel-machine capacitated lotsizing and scheduling

problem with sequence-dependent setups (CLSD-PM). This construction heuristic

solves a sequence of decomposed ‘sub-MILPs’ in order to construct an initial so-

lution for the various search algorithms it is coupled with. Finally, Almada-Lobo

et al. (2007) proposed a five step heuristic for finding good feasible solutions. Each

step of the heuristic is either a forward or backward pass (or a combination of both)

through the schedule.

For the SCLSP, Leachman and Gascon (1988) developed a dynamic cycle

lengths heuristic in a discrete-time model under the assumption of non-stationary

demand and deterministic production and setup times. The first step in their heuris-

tic is the calculation of target cycle lengths in each review period via a determin-

istic approach by using moving averages of the demand forecasts. Graves (1980)

proposed a composite-product heuristic with a composite-product defined as an ag-

gregation of the products in the scenario. Graves then tested this heuristic against

a naive procedure and other heuristics based on (Q,R)2 and (s,S)3 policies using

simulation and showed that the novel composite-product heuristic outperforms the

others. Tempelmeier (2013) focused on discrete time SCLSP models with ran-

dom demands, fixing production periods and fixing lot sizes under service level

2This policy requires that Q items are ordered whenever the inventory position falls to the reorder
point, R (Gallego, 1992).

3This policy dictates that no new orders are made until inventory falls to or below s, at which
point an order is made to restore inventory to the level S (Caplin, 1985).
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constraints. In addition, Tempelmeier and Hilger (2015) proposed linear program-

ming models with non-linear constraints approximated by piecewise linear func-

tions and compared a variant of the Fix-and-Optimise heuristic with the column

generation heuristic proposed by Tempelmeier (2011) on a large number of test

problem instances. Wagner and Smits (2004) described a model for the SELSP

with the objective of minimising long-run average holding and setup costs whilst

fulfilling a given service level. They used a cyclic scheduling approach with cycle

times of each product a multiple of a fundamental cycle (or base period). A local

search algorithm was implemented along with a myopic construction heuristic as

the solution method and compared with deterministic benchmarks and on a large

set of stochastic instances.

3.3.2.2 Evolutionary algorithms and genetic algorithms

Most of the deterministic lot sizing and scheduling meta-heuristic approaches use

evolutionary algorithms (EAs), particularly genetic algorithms (GAs). EAs are a

class of population-based meta-heuristics inspired by biological evolution. They

maintain a population of candidate solutions which are improved by applying one

or more of recombination, reproduction, and mutation operators on them and then

selecting the fittest individuals (Vikhar, 2016; Michalewicz et al., 1997). In ad-

dition, EAs have already demonstrated some promise in dealing with problems

that integrate uncertainty (Jin and Branke, 2005). The most popular of evolution-

ary algorithms are GAs. These GAs generally ‘evolve’ a set candidate solutions,

each represented by a chromosome, over a specified number of generations (or

iterations) to produce high-quality solutions to a search problem (Holland, 1975;

Goldberg and Holland, 1988; Goldberg, 1989). Chromosomes are versatile and

flexible, and can take a wide range of representations e.g., binary or bit strings,

permutations, real-valued numbers, rule-sets, or combinations thereof. The set of

candidate solutions is improved on generationally by mimicking the concept of nat-

ural selection and survival-of-the-fittest. Fitter individuals are generally selected to

be ‘parents’ and be combined in some fashion to create ‘children’ that will make

up the subsequent generation. As these progeny generally share traits with their

parents, mutation operators are applied that make small random changes to them

in order to explore more of the search space.

The GA-based approaches to lot sizing can be broadly divided into approaches

using a direct representation or an indirect representation, where the former ap-
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pears much more often. In a direct representation, the sequence and lot sizes are

directly encoded in the chromosome. The main challenge with such an approach

is that mutations and crossovers can generate infeasible solutions, which is usually

dealt with by discarding those solutions or by special repair operators (Özdamar

and Birbil, 1998). Methods with an indirect representation use a mapping function

or heuristic to derive a production plan from a solution’s chromosome. An indi-

rect GA representation has been proposed by Kimms (1999). In Kimms’ paper,

a two-dimensional matrix is used as chromosome, with each entry representing a

rule for selecting the set up state for a machine at the end of a period (e.g., the item

with maximum holding costs, minimum set up cost, maximum depth, maximum

number of predecessors). To compute the fitness value of a chromosome, a con-

struction scheme is called, which constructs the solution backwards, starting from

the end of the planning horizon.

A lot more work has been published on GAs for the job-shop scheduling prob-

lem (JSP), and they typically use a permutation-based representation, and then

apply a construction heuristic to actually construct the schedule based on the per-

mutation (Cheng et al., 1999; Branke and Mattfeld, 2005; Bierwirth and Mattfeld,

1999). A typical construction heuristic is the Giffler-Thompson algorithm (Giffler

and Thompson, 1960), which generates active schedules by iteratively selecting

the job with the highest priority (lowest permutation index) from the set of eligible

jobs, and then scheduling it at the earliest possible time. This approach is used

in work such as Branke and Mattfeld (2005) where the objective is to minimise

tardiness. However, this approach does not directly transfer to biopharmaceutical

capacity planning or lot sizing, because (i) scheduling as early as possible would

lead to excessive storage costs and (ii) the existence of a heterogeneous set of al-

ternative facilities.

3.3.2.3 Other meta-heuristic approaches

Apart from GAs, other meta-heuristic approaches to the deterministic problem in-

clude tabu search (TS) or particle swarm optimisation (PSO), see, e.g., Piperagkas

et al. (2012), and Guner Goren et al. (2008). Ant Colony Optimisation (ACO) has

also been used for uncapacitated and capacitated multi-level problems (Pitakaso

et al., 2007; Almeder, 2010). In both cases, ACO was used to determine produc-

tion decisions from top items to raw materials and a MILP solver is used to calcu-

late the corresponding production and inventory levels. Almada-Lobo and James
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(2010) extended previous work of Almada-Lobo et al. (2007) by using their five-

step heuristic as an initial starting solution for a TS and variable neighbourhood

search meta-heuristic to solve the CLSP with sequence-dependent times and costs.

In the case of a bi-objective CLSP problem, Mehdizadeh et al. (2016) devel-

oped two novel multi-objective meta-heuristic algorithms and compared them with

the non-dominated sorting genetic algorithm II (NSGA-II).

In general, Jans and Degraeve (2007) reviewed and compared meta-heuristic

solution approaches for the CLSP, and there are good introductions to these other

meta-heuristic approaches in Luke (2013), Eberhart et al. (2001), Dorigo and Stützle

(2010), Glover and Laguna (1999), and by Deb et al. (2000). Usually, TS and ACO

are more suited to combinatorial optimisation problems whilst PSO can be used on

problems that have a real-valued decision space.

3.3.2.4 Hyper-Heuristics

Branke et al. (2016) surveyed the use of hyper-heuristics in generating or designing

reusable construction heuristics for production scheduling. In the indirect GA rep-

resentation proposed by Kimms (1999) (which was mentioned previously), since

the entries in the chromosome represented a rule for selecting set up states, the ap-

proach can be seen as a selection hyper-heuristic as the search space is on potential

rules and not direct solutions to the problem.

Hyper-heuristics may incorporate machine-learning techniques such as Artificial

Neural Networks (ANNs) or genetic programming (GP). GP is an EA technique

where computer programs, usually based on a tree-representation, are searched

for and evolved (Koza, 1992). Burke et al. (2007) have demonstrated automated

heuristic generation with genetic programming. For a complex dynamic schedul-

ing problem, Pickardt et al. (2013) proposed a two-stage hyper-heuristic for the

generation of work centre-specific dispatching rules. This hyper-heuristic com-

prised a genetic program that evolves a composite rule and an EA that searches for

good allocation of rules between the work centres. An ANN is a computing system

that comprises a set of connected nodes (artificial neurons) which can transmit sig-

nals to each other computed as a function of each neuron’s inputs (Haykin, 1994).

The edges connecting neurons have associated weights which determine the con-

nection strength — i.e., it weights the effect of the respective incoming signal in

the computation of a neuron’s output signal. Branke et al. (2015) investigated three

different rule representations for optimising rules to compute priority indices for
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new/arriving jobs in a jobshop environment. In addition to a linear representation,

a feed-forward ANN, and GP with tree-representation was employed.

3.3.3 Simulation Optimisation

For the SELSP simulation optimisation is often used as an alternative approach.

This refers to, as the name suggests, attempts to couple optimisation techniques

with simulation analysis. Its objective is to find decision variables for optimal

system performance with performance being evaluated via simulation. Simulation

optimisation is a powerful technique useful for problems with complex or unknown

structure where uncertainty is present (Amaran et al., 2016) and its applications in-

clude supply-chain management, inventory replenishment, process design, and bio-

process control (Chu et al., 2015; Jalali and Van Nieuwenhuyse, 2015; Caballero,

2015; Renotte and Wouwer, 2003) with heuristics and meta-heuristics often used

as the optimisation algorithm.

Recent work in terms of the multi-item SELSP includes the study by Löhndorf

and Minner (2013) who formulated the problem as a SMDP, and compared dif-

ferent solution approaches including approximate value iteration and global search

on simple production policies that had either fixed or dynamic cycles. They found

that global control policy search outperforms average value iteration on large prob-

lems. For their global search algorithm, Löhndorf and Minner utilised a type of

EA called Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen

and Ostermeier, 2001). CMA-ES generates individuals by sampling from a multi-

variate normal distribution. Each generation, the underlying distribution is mu-

tated to explore the search space. Dependencies between the different coordinates

in the chromosome vector are described by a covariance matrix which is updated

each generation in order to guide the search to more promising regions. Löhndorf

et al. (2014) then extended that work to consider sequence-dependent setup times.

Both of these papers use meta-heuristics to conduct the global search for control

policies, and both of these papers’ approaches can also be classed as a hyper-

heuristic. Briskorn et al. (2016) presented a fixed cyclic production scheme for

multiple products with control strategies to stabilise the cycle length and consider

sequence-dependent setup times, backlogging with service level constraints, and

limited storage capacity. They used a nested solution approach comprising three

levels utilising iterative and neighbourhood search procedures.

Nourelfath (2011) determined robust production plans for the SCLSP to ensure
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that specified service level is met with high probability. The model accounted for

random machine breakdowns and random repair times independent of product type

and lot size. It did not consider random demand nor preventive maintenance plan-

ning. On the other hand, Purohit and Kumar Lad (2016) presented a mathematical

model to provide an integrated plan incorporating job sequencing, lot sizing, and a

schedule for preventative maintenance which is solved with the use of a simulation-

based GA approach and outperforms previous conventional approaches.

3.4 The Bioprocessing Context

Literature on capacity planning or lot sizing and scheduling in the pharmaceutical

or biopharmaceutical industry represent complicated extensions to the CLSP, with

multiple products and facilities, product-specific manufacturing rates and costs,

multi-stage processing, and perishable products. This also applies to the SLSP

which must also consider semi-continuous processes that are prone to different

types of failure events, as well as variable reactor titres. For the deterministic

problem, they have applied primarily mathematical programming models based on

discrete time-periods which are solved using MILP solver software.

For example, Lakhdar et al. (2005) developed a deterministic mixed-integer

linear program for the planning and scheduling of a multi-product biopharmaceuti-

cal manufacturing facility and later extended it for use with a multi-facility model

where multiple criteria were considered using goal programming (Lakhdar et al.,

2007). Siganporia et al. (2014) also developed a MILP model, in this case to op-

timise an eight-year planning horizon for a mixture of fed-batch and continuous

bioprocesses while considering capacity decisions in a few scenarios with different

demands and bioreactor titres. Siganporia et al. utilised rolling-time horizons to

improve computational performance. Each of these models is based on discrete

time periods and allows only one product to be manufactured in each time-period.

In the case of Lakhdar et al. (2007), where discrete 90 day periods are used, this

means that at most four different campaigns (lots) can be scheduled per year and

facility. As a result, this effectively artificially restricts the search space.

Recently, the work done by Lakhdar et al. (2005), has been extended to alterna-

tive approaches by other authors. First, Vieira et al. (2016) solved a set of example

problems based on a Resource Task Network (RTN) continuous-time single-grid

formulation focusing on addressing specific operational characteristics of biopro-
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cesses. Jankauskas et al. (2017) then used a continuous-time model optimised by

a GA which is underpinned by a dynamic chromosome structure that is allowed to

vary in length.

For problems with stochastic elements considered, Gatica et al. (2003) and

Levis and Papageorgiou (2004) presented a mathematical programming approach

for the capacity planning problem, but with a focus on long-term planning and

capacity investment decisions under clinical trials uncertainty rather than schedul-

ing. Lakhdar et al. (2006) extended their deterministic medium-term planning for-

mulation to include uncertain production rates and dealt with this using chance-

constrained programming. Marques et al. (2017) presented a simulation optimiza-

tion approach combining a MILP model and Monte Carlo simulation procedure to

integrate process design and planning decisions under clinical trial and demand un-

certainty for the pharmaceutical industry. Finally, Pollock et al. (2013b) developed

a discrete-event simulation model focused on investigating the economic benefits

of continuous perfusion culture and single-use technology for a mAb. As part of

this evaluation, stochastic process failure events and their consequences are con-

sidered using simulation. This is then extended by Pollock et al. (2017) to include

an assessment of various integrated continuous process flowsheets.
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Chapter 4

Lot-Sizing & Scheduling for
Biopharmaceuticals

4.1 Introduction

To spread risk, companies usually have a portfolio of various products, and man-

ufacturing takes place across a network of different facilities, including in-house

facilities and outsourced manufacturing at contract manufacturing organisations

(CMOs). The facilities’ capabilities usually vary with respect to the set of products

they can produce and technical, operational and economic characteristics will often

differ between facilities as well as for different products that can be manufactured

on the facility. Furthermore, products have a finite shelf-life and cannot be stored

for very long.

Given the large investments, high costs, and long time-frames they face, bio-

pharmaceutical companies have to plan ahead over a long time horizon, based on

a demand forecast for each time period. It is important that production schedules

are optimised to make best use of the available production capacity, and even small

improvements can have a substantial impact on a company’s profit. Taken together,

these characteristics make biopharmaceutical capacity planning and scheduling

challenging to optimise. The result — a variant of the capacitated lot-sizing prob-

lem — constitutes a complex combinatorial optimisation problem.

Because of the simplifications required to model the problem in a mixed-integer

linear programming (MILP) approach — such as large discrete time periods that

permit the manufacture of only one product in each period on a facility — the solu-

tion potentially suffers from an artificial restriction of the search space. This chap-
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ter describes the development of a more flexible meta-heuristic approach for the

biopharmaceutical lot sizing and scheduling problem, and contrasts it with the pro-

posed mixed-integer programming approach as described by Lakhdar et al. (2007).

The work in this chapter is based on a 2017 publication in Journal of Hueristics

(see Appendix D).

To this end, a genetic algorithm (GA) with an embedded problem-specific con-

struction heuristic is designed which is inspired by previous GA approaches to job

shop scheduling. The GA uses an indirect permutation encoding, i.e., the specifi-

cally developed construction heuristic schedules demands sequentially in the order

prescribed by the chromosome. As will be demonstrated, the use of a GA allows

for a more flexible and realistic model of the real-life problem and avoids some of

the simplifications necessitated by available mathematical programming models.

It is interesting to note that the construction heuristics previously reviewed (see

Chapter 3) operate sequentially in either a forwards or backwards pass through the

schedule, or a combination thereof. Instead, the construction heuristic proposed

here inserts jobs in an order of importance determined by the GA and not neces-

sarily in any chronological order.

The chapter is structured as follows. First, the problem is formally described

in Section 4.2. Section 4.3 describes in more detail the case study used to evaluate

the approach. The GA and the associated construction heuristic are explained in

Section 4.4. The results of the empirical evaluation, including a comparison with

an MILP approach, are reported in Section 4.5. This chapter closes with a section

summarising the major conclusions of the sections preceding it.

4.2 Mathematical Formulation

This section summarises the mathematical formulation used here and introduced

by Lakhdar et al. (2007) to solve a deterministic long-term multi-product schedul-

ing/capacity planning problem on multiple facilities.

4.2.1 Notation

The indices i, p, and t denote individual facilities, products, and time periods re-

spectively. The subsets characterising the facilities being considered are: PIi, the

set of products produced by facility i; IPp, the set of facilities that can produce

product p; and T Ii, the set of time periods in which facility i is available for use.
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Binary Variables
Yipt 1 if product p is produced over period t at facility i; 0

otherwise

Zipt 1 if a new campaign of product p at facility i is started

in period t; 0 otherwise

Integer Variables

Bipt amount of product p produced over period t at facility

i, batches

Continuous Variables
Ipt amount of product p stored over period t, kilograms

Kipt amount of product p produced over period t at facility

i, kilograms

Pro f expected operating profit, RMU1

Spt amount of product p which is sold over period t, kilo-

grams

Tipt production time for product p at time period t at facil-

ity i

T f tot
it total production time over period t at facility i

Wpt amount of product p wasted over period t, kilograms

∆pt amount of product p which is late over period t, kilo-

grams

1relative monetary units (RMU)
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Parameters
Cp storage capacity of product p, kilograms

Dpt demand of product p at time period t, kilograms

rip production rate of product p at facility i, batches per unit time

Ht available production time horizon over time period t

T max
ip maximum production time for product p

T min
ip minimum production time for product p

ydip yield conversion factor, kilograms per batch

αip lead time for production of first batch of product p at facility i

ζp life time of product p, number of time periods t

υp unit sales price for each kilogram of product p, RMU per kilo-

gram

ηip unit cost for each batch produced of product p in facility i, RMU

per batch

ψp unit cost for each new campaign of product p, RMU

δp unit cost charged as penalty for each late kilogram of product p,

RMU per kilogram

ρp unit cost for each stored kilogram of product p, RMU per kilo-

gram

π rate of backlog decay

4.2.2 Constraints

4.2.2.1 Production constraints

Constraint (4.1) represents batch processing. The number of batches produced in

facility i of product p at time period t, Bipt , is determined by a continuous produc-

tion rate, rip, production lead time, αip, and production time Tipt . The lead time

allows for the duration of the first batch of a campaign plus the setup and cleaning

time before the first batch commences. Incorporation of lead time is enforced by a

binary variable Zipt .

Bipt = Zipt + rip(Tipt −αipZipt) ∀ i, p ∈ PIi, t ∈ T Ii. (4.1)

Constraint (4.2) converts the number of batches into kilograms produced using

a yield conversion factor ydip which differs for each combination of facility and
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product. Lead time is only avoided in a facility if the same product is manufactured

in the preceding period; this is covered in (4.3), with Yipt being a variable that

specifies whether product p is produced by facility i in time period t. Constraint

(4.4) ensures that at most one product p is manufactured in any given facility i per

time period t.

Kipt = Bipt ydip, ∀ i, p ∈ PIi, t ∈ T Ii. (4.2)

Zipt ≥ Yipt −Yip,t−1, ∀ i, p ∈ PIi, t ∈ T Ii. (4.3)

∑
p∈PIi

Yipt ≤ 1, ∀ i, t ∈ T Ii. (4.4)

4.2.2.2 Timing constraints

Constraints (4.5) and (4.6) represent the appropriate minimum and maximum pro-

duction time constraints. These are only active if Yipt is equal to 1, otherwise the

production times are forced to 0.

T min
ip Yipt ≤ Tipt , ∀ i, p ∈ PIi, t ∈ T Ii. (4.5)

Tipt ≤min{T max
ip ,Ht}Yipt , ∀ i, p ∈ PIi, t ∈ T Ii. (4.6)

4.2.2.3 Storage constraints

The following constraints enforce an inventory balance for production and force

total production to meet product demand. In (4.7), the amount of product p stored

at the end of the time period, Ipt , is equal to the amount stored in the previous pe-

riod, plus the total amount produced across all facilities i, less the amount sold, Spt ,

and the amount of product wasted, Wpt , in the current time period t. Product stored

cannot be negative and should not exceed maximum product storage capacity in

(4.8); and total inventory at any point cannot exceed the global storage capacity in

(4.9).

Ipt = Ip,t−1 +∑
i

Kipt −Spt −Wpt , ∀ p ∈ PIi, t ∈ T Ii. (4.7)

0≤ Ipt ≤Cp, ∀ p, t. (4.8)
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0≤∑
p

Ipt ≤Ctot
P , ∀ t. (4.9)

The duration a product can be stored in inventory is limited by its shelf-life in

(4.10). Stored material will not be left to expire whilst in inventory and this is done

by ensuring that the final product is sold in less than ζp time periods from when it

is first stored.

Ipt ≤
t+ζp

∑
θ=t+1

Spθ , ∀ p, t. (4.10)

4.2.2.4 Backlog constraints

A penalty is incurred for every time period t that a given amount of product p is

late. For a given product p at time t, the amount of product that is late, ∆pt , is

equal to the amount of undelivered product from the previous time period, ∆p,t−1,

multiplied by a factor, πp (which allows for the backlog to decay), plus demand at

time t, Dpt , less the sales at time t, Spt .

∆pt = πp∆p,t−1 +Dpt −Spt , ∀ p, t. (4.11)

4.2.3 Objective Functions

4.2.3.1 Single objective

The objective function is to maximise profit, which is the difference between total

revenue (sales in kilogram times price υp), and total operating costs which include

the changeover cost at ψp per setup, storage cost at ρp per kilogram of product,

late delivery penalties of δp per kilogram of product, and batch manufacturing cost

at υip for every product-facility combination. All costs and prices are in relative

monetary units (RMU).

max Profit = ∑
p

∑
t∈T Ii

(υpSpt −ρpIpt −δp∆pt − ∑
i∈IPp

(ηipBipt +ψipZipt)). (4.12)

The equations (4.1) – (4.12) comprise the complete formulation of the MILP

problem to be optimised and subsequently compared with the GA approach.
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4.2.3.2 Other objective(s)

In addition to single-objective of maximising profit, there is a second objective of

maximising customer service level (CSL) which is used in multi-objective optimi-

sation(s).

max CSL = (∑
p

∑
t

Spt)/(∑
p

∑
t

Dpt). (4.13)

4.2.4 Formulation Assumptions

This derived formulation assumes (and consequently makes the restriction that) not

more than one product can be manufactured in any given period. As a result, the

MILP requires this to be solved but the GA does not which is an advantage of the

GA approach that will be elaborated on later in Section 4.5.1 of this chapter.

In addition, in any given period, lead times and associated setup costs can be

avoided on a facility if the same product is manufactured in the preceding period.

What this means is, that for the MILP, there could potentially be as much as pe-

riod’s length of time between two batches which are in two different but adjacent

periods. In order to fairly compare with the MILP, the GA is implemented such that

lead times and associated setup costs are accrued if the time between two batches

of the same product is greater than the time period used by the MILP. This maxi-

mum idle time allowed between two batches before setup time and cost is accrued

is referred to as the setup ‘expiration’ period.

4.3 Industrial Case Study

An industrial case study presented by Lakhdar et al. (2007) was used to evaluate

the proposed method. This is anonymized real world data comprising anticipated

market demand and manufacturing facility characteristics. This benchmark prob-

lem features multiple products to be produced on multiple facilities with different

efficiencies and costs, setup times, batch production, perishable inventory, and the

ability to backlog demand.

The demand forecast comprises a time horizon of 15 years and 15 products

(p1 – p15). The forecast indicates yearly market demands, assumed to be fulfilled

at the end of each year (Table 4.1)2. The demand can be scheduled across 10

2Note that the product 1 demand for year 10 in Table 4.1 in Lakhdar et al. (2007) was 63, which
is not consistent with the general trend of the other years, so it was changed to 163.
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facilities (i1 – i10), but not all facilities can produce all 15 products. All facilities

are assumed to be available for the entire time horizon apart from facility 6 (i6)

which is unavailable until Y2, and facility 9 (i9) which is unavailable until Y11.

Of the ten manufacturing facilities, i1, i4, i6, and i9 are in-house facilities while

the rest are owned by CMOs.

Production rates (Table 4.2), manufacturing yields (Table 4.3) and manufactur-

ing costs (Table 4.4) are specified for all facility-product combinations (RMU in

these tables denotes relative monetary unit). The manufacturing yield determines

how many kilograms of a specific product are produced in a batch for a specific

facility. The manufacturing cost of a product is thus also dependent on the yield.

Setup cost and time are incurred when a facility is switching between products. For

consecutive batches of the same product, no setup time/cost is involved.

The setup ‘expiration’ time is 90 days (equal to the discrete time period used by

the MILP) which defines the maximum amount of time that a facility can be idle

without accruing setup times and costs on the subsequent batch produced. This

accounts for the extra equipment preparation activities (cleaning, sterilisation, etc.)

required after prolonged idle time. There is also a restriction on the time a product

may be stored before it has to be thrown away which is the maximum shelf-life.

In the case that the demand cannot be fulfilled in time, it is backlogged, but there

is a backlog penalty for every unit that is not delivered on time. Also, backlogged

demand decays exponentially at a rate of 50% every three months. For example,

if a demand of 100 kg cannot be delivered on time, 6 months later, only 25 kg

could actually be sold, and 75 kg of the demand would have been lost, reducing

the revenue correspondingly.

The case study assumes a fixed sales price, changeover cost, storage cost, and

setup time for all products (Table 4.5)3. The setup time includes the time of pro-

duction of the first batch. In addition, it is assumed that a month is 30 days and,

subsequently, a year is equal to 360 days.

The objective is to maximize the overall profit, calculated as total revenue mi-

nus the cost for production, storage, setups and backlog penalties. Given a set of

heterogeneous facilities with different manufacturing yields, manufacturing cost,

and batch production rates for different products, this takes into account maxi-

mizing the amount of products sold, and minimizing the manufacturing cost, the

3Note that the description by Lakhdar et al. (2007) had some inconsistencies in the units specified,
so in Table 4.5 the units for setup cost, sales price, storage cost and backlog penalty were updated to
be consistent with the other data.
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Table 4.2: Production Rates of Facilities (i1–i10) for Case Study [batch/day]
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 0.35 0.39 0 0.45 0 0.29 0 0.35 0.25 0.39 0.41 0.39 0 0.12 0.35
i2 0.6 0 0 0.61 0 0.6 0 0.6 0 0.43 0.56 0 0.6 0.6 0.6
i3 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0
i4 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0
i5 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45
i6 0 0 0 0.45 0 0 0 0.45 0 0.45 0.45 0 0 0.45 0.45
i7 0 0 0 0 0 0 0.45 0 0 0.45 0 0 0 0 0
i8 0 0 0.58 0 0.45 0 0 0 0 0 0 0 0 0 0
i9 0.45 0 0 0.45 0 0.45 0 0 0 0.45 0.45 0 0 0.45 0.49
i10 0.45 0.45 0 0.45 0 0.45 0 0.45 0.45 0.45 0.49 0.45 0.45 0.45 0.45

Table 4.3: Manufacturing Yields of Facilities for Case Study [kg/batch]
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 10 1 0 8 0 6 0 10 2 9 7 1 0 12 12
i2 9 0 0 8 0 6 0 9 0 8 10 0 10 12 11
i3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0
i4 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0
i5 0 0 0 10 0 0 0 10 0 8 8 0 0 11 11
i6 0 0 0 12 0 0 0 10 0 8 17 0 0 17 14
i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0
i8 0 0 36 0 10 0 0 0 0 0 0 0 0 0 0
i9 10 0 0 12 0 5 0 0 0 8 16 0 0 12 13
i10 9 1 0 12 0 5 0 10 2 8 14 1 10 12 12

Table 4.4: Manufacturing Costs of Facilities for Case Study [RMU/batch]
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

i1 1 1 0 10 0 3 0 1 1 1 3 1 0 1 1
i2 10 0 0 5 0 2 0 5 0 10 2 0 2 5 2
i3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
i4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
i5 0 0 0 20 0 0 0 20 0 20 20 0 0 5 20
i6 0 0 0 10 0 0 0 10 0 10 10 0 0 1 10
i7 0 0 0 0 0 0 10 0 0 10 0 0 0 0 0
i8 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0
i9 10 0 0 10 0 10 0 0 0 10 8 0 0 1 10
i10 15 15 0 15 0 15 0 15 15 15 15 15 15 15 15
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Table 4.5: Case Study Parameters

Parameter Value [Unit]

Setup time 14 days
Setup cost 2 RMU/changeover

Setup ‘expiration’ time 90 days
Sales price 2.5 RMU/kg

Storage cost 0.01 RMU/(kg ×period)
Storage period 90 days

Shelf life 2 years
Production time per year 360 days

Backlog decay 0.5 per 3 months
Backlog penalty 0.1 RMU/kg

storage cost, the setup cost, and any backlog penalty.

Lakhdar et al. (2007) used mixed-integer linear programming (MILP) to solve

this problem (described in Section 4.2) and the GA proposed in this chapter is sub-

ject to the same constraints, except that production on each facility is not restricted

to one product per time period. This seemed to be an artificial restriction imposed

only to reduce the modelling complexity of the MILP.

4.4 The Proposed Genetic Algorithm with Construction
Heuristic

For job shop scheduling, many successful GAs use indirect encodings (e.g., Branke

and Mattfeld (2005) and Cheng et al. (1999)), with the GA only searching the

space of permutations of jobs. For evaluation, a schedule is constructed from the

permutation by a construction heuristic, often Giffler-Thompson, which iteratively

selects the job with the highest priority (lowest permutation index) from the set

of eligible jobs, and then schedules it at the earliest possible time. This avoids

infeasible solutions and introduces a desirable heuristic bias, in the sense that it

excludes obviously bad solutions (such as schedules with big gaps) from the search

space. Inspired by this work, an indirect, permutation-based encoding combined

with a construction heuristic is proposed. The construction heuristic, however, had

to be carefully designed for the problem at hand.

The following two subsections first explains the proposed construction heuris-

tic, then provides details on the GA used.
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Product 1

Product 2

Product 3

Product 4

Y1 Y2 Y3 Y4

Facility 1

Facility 2

Demand
due end of

Year 3 to be
scheduled:

Current Schedule

(I): Schedule as late as possible (II): Schedule adjacent to previously scheduled
demand of the same product

(III): Schedule by shifting other demands to left (IV): Schedule by splitting over two facilities

(V): Schedule later than due date by backlogging
and apply a penalty to the demand

(VI): Split over two facilities and schedule the first
part late by backlogging

Facility 2

Facility 2

Facility 2 Facility 2

Facility 2

Facility 2

Facility 1 Facility 1

Facility 1

Facility 1

Figure 4.1: Visualisation of construction heuristic, based on a simple example with
two facilities and four demands. Items (I) — (VI) show the alternatives the heuristic
considers when identifying the most profitable place to insert a new demand into
the schedule. The rectangle representing a demand includes the setup time (so
length varies depending on where the new demand is inserted). Note that just using
(I) or (II), feasible options are found on Facility 1 but not on Facility 2. Therefore
the heuristic will terminate its search on Facility 1 but continue on Facility 2 using
(III), (IV), (V), and (VI).
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4.4.1 Construction Heuristic

The construction heuristic works on the basis of forecasted demands, in this case

demands for each year and product (see Table 4.1). Its task is to schedule the

production to satisfy the demand (referred to as demand from now for the sake

of simplicity) sequentially, in the order prescribed by the GA. When deciding at

what time and what facility to insert a new demand into the schedule, the heuristic

explores a number of different alternatives, and then greedily picks the alternative

that creates the smallest additional cost. So, the heuristic will consider each facility

in which the product may be produced. It then tries to schedule the entire demand

in an uninterrupted way as late as possible to minimise storage cost, and as late as

possible but adjacent to already scheduled demand of the same product to avoid

setup cost and time.

Only if these alternatives are not feasible for a facility, e.g., because a facility

does not have a sufficiently large gap in its schedule, further options are explored

that either move some of the already scheduled demands to make sufficient space

for the new demand, split the demand into two parts and schedule the second part

in another facility, or backlog the demand.

Figure 4.1 provides a simple example based on just two facilities and four prod-

ucts, while Algorithm 1 lays out brief pseudo-code of the construction heuristic.

The six alternatives considered shall now be explained in detail.

(I) Schedule as late as possible. The first alternative considered is to schedule

the entire demand as late as possible but before the due date, as one uninter-

rupted block, which minimizes storage cost at this facility. In the example,

this is possible for Facility 1, see Figure 4.1 (I), but not for Facility 2, since

there is not sufficient uninterrupted capacity available to schedule the entire

demand.

(II) Schedule next to previous demand. To avoid setup times and setup costs,

it may be beneficial to schedule a demand adjacent to the same product al-

ready scheduled. The heuristic picks the latest time slot before the due date

that allows it to link to a previously-scheduled demand of the same product,

and has sufficient available capacity to schedule the entire demand - see Fig-

ure 4.1 item (II). Again, this is only possible on Facility 1, as Facility 2 does

not have sufficient uninterrupted capacity. Note that due to the avoided setup

time, the overall time required to produce the demand is smaller.
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Algorithm 1 Pseudocode of the construction heuristic.
procedure CONSTRUCTION HEURISTIC(job J)

Determine possible time window for J ensuring batches finish before
due date but do not expire before due date
for each facility i do

Gi1 = latest gap that can fit J . (I)
Gi2 = latest gap that fits J and links to job of same product . (II)
if Gi1 +Gi2 == {} then

Find latest gap that can fit at least one batch, Gi3
Split J into two parts r1 and r2 such that r1 is largest size that
can fit in Gi3
Gi3 = Gi3+ SECOND FACILITY SEARCH(i,Gi3,r2) . (IV)
Find latest gap
Attempt to enlarge gap by left-shifting already scheduled jobs
without violating shelf-life dependencies, Gi4 . (III)
Gi5 = the first gap past or straddling due date, that is big
enough for penalized job, J′ . (V)
Find earliest gap past or straddling due date that fits at least
one batch, Gi6
Split J′ into two parts r′1 and r′2 such that r′1 is largest size
that can fit in Gi6
Gi6 = Gi6+ SECOND FACILITY SEARCH(i,Gi6,r′2) . (VI)

end if
end for
Evaluate overall cost for each facility and gap, and pick the one with
minimal cost, min Cost(Gi j) ∀ i, j . Construct and add to schedule

end procedure

procedure SECOND FACILITY SEARCH(facility i, gap G, remainder of job R)
for each facility k 6= i do . The remaining facilities

Fk1 = latest gap that can fit R
Fk2 = latest gap that fits R and links to job of same product
if Fk1 +Fk2 == {} then

Fk3 = the first gap past or straddling due date,
that is big enough for penalized remainder of job, R′

end if
end for
Evaluate overall costs, Cost(Fk j) ∀ k, j, and return cheapest option

end procedure
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If, on a particular facility, none of the above two alternative insertion attempts

resulted in a feasible solution, the following options are explored. Specifically, the

steps attempted are: to move already scheduled demands, to split a demand, and to

backlog a demand.

(III) Move previously scheduled demands. Since there was not a sufficiently

long gap in the current schedule to allocate the entire production for the

new demand, one possibility to create a feasible schedule may be to shift

previously-scheduled demands to an earlier time to make space for the new

demand. Thereby, the heuristic identifies the latest gap in the considered

facility before the due date. All conflicting scheduled demands before this

gap are shifted backward in time (towards the start of the planning horizon),

without changing the order, and just enough to make space for the new de-

mand. This can be seen in Figure 4.1 item (III) for Facility 2, where four

previously scheduled demands had to be left-shifted to make space for the

new demand.

(IV) Split demand. Another option to fit the demand may be to split the new

demand. In this alternative, the heuristic will again consider the latest gap

before the due date, and use all available consecutive capacity. Then, it will

attempt to schedule the rest of the demand at each of the other facilities, but

only considering options (I), (II), and (V) (which is described below). An

example is provided in Figure 4.1 item (IV), where only a small fraction of

the demand can be scheduled at Facility 2, and the remainder is then moved

to Facility 1. Note that splitting the demand may cause an additional setup

time and setup cost. A demand can only be split into two i.e., a demand

cannot be split more than once.

(V) Backlog. If the facilities are really busy, it may be best (or the only feasible

option) to backlog the demand. This means that the time slot allocated to

produce the material to meet the demand falls partly or wholly later than

the due date for the demand. As described in the case study, this will result

in a monetary penalty and part of the demand being lost, as is reflected in

Figure 4.1 (V) by the smaller rectangle for the scheduled demand. In order to

reduce the magnitude of the penalty, the heuristic will schedule the demand

as early as possible in a gap that either straddles, or is later than, the due

date. An example is provided in Figure 4.1 item (V).
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(VI) Backlog and split. As a kind of last resort, with this alternative, the heuristic

will combine steps (IV) and (V). As in (IV), the demand is split, but rather

than using the latest gap before the due date, the first part of the demand is

scheduled in the earliest gap after the due date. The remaining portion of

the demand is attempted again to be scheduled in all other facilities, but only

using options (I), (II) or (V). This is illustrated in Figure 4.1 item (VI).

The above alternatives will be evaluated for all the facilities that are capable of

producing the product. Then, the demand is inserted into the schedule according to

the most profitable alternative examined, and the algorithm moves on to schedule

the next demand.

Overall, if there are n facilities, in the worst case the heuristic considers 6n2−
2n alternatives: (n) alternatives for each of the options (I), (II), (III) and (V), and

then 3n(n− 1) alternatives each for option (IV) and option (VI), due to different

possibilities in scheduling the remaining part of a demand in case of a split. This

means that in the worst case the complexity of the construction heuristic is O(mn2),

where m is the number of demands and n the number of facilities. In practice,

however, as will be shown later, in the majority of cases, only options (I) and (II)

are explored per facility.

Note that batch production means that unless the demand is exactly equal to an

integer multiple of the batch size (which itself is different for different facilities) it

is not possible to produce exactly the required demand. In such cases, the number

of produced batches is always rounded up to the minimal integer number of batches

necessary to fulfill the demand. The amount overproduced in such a case is put in

storage, possibly to be used to (partly) fulfill future demand. Before going through

the steps above to insert a demand into the schedule, the construction heuristic

will always check whether the product is in the storage, and try to partially fulfill

the demand from storage. The cost associated with this is storage cost only, as

manufacturing costs are invoked at the time of production, i.e., when a previous

scheduled demand produced that overcapacity. Products left in storage that the

heuristic can not use in later steps are considered lost and have no value.

It is interesting to note that the construction heuristics previously reviewed (see

Chapter 3 on page 14) operate sequentially in either a forwards or backwards pass

through the schedule, or a combination thereof. Instead, the construction heuristic

proposed here inserts jobs in an order of importance determined by the GA and not

necessarily in any chronological order.
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4.4.1.1 Reneging

With reneging, the heuristic has the choice of either producing as much of the

demand as it can or deciding not to produce the whole demand or just a part of it.

This is simultaneously implemented in two ways.

1. Demand reneging: In all options (I)-(VI) the heuristic can decide based on a

cost evaluation, whether it will schedule the entire demand or just fulfil what

it can from storage and renege on the rest of the obligated demand.

2. Split reneging: In options (IV) or (VI), after the job/demand has been split

into two, the heuristic can decide based on a cost evaluation whether to

schedule the second part of the split or renege on it.

The cost evaluation is done by comparing the cost of scheduling the most prof-

itable alternative as normal, CA, and the cost of reneging (i.e., not producing), CR.

The cost of reneging includes the backlog costs and also the lost revenue(s). This

comparison is of the form:

CR < RcCA. (4.14)

Where Rc is an arbitrary coefficient and 0.0 < Rc ≤ 1.0. The comparison is such

that if Equation (4.14) evaluates as true, the heuristic will renege on the demand

(or second part of the split) so manufacturing capacity is not allocated for its pro-

duction. However, as with demands that are scheduled, part of the demand would

still be fulfilled by any existing material in storage.

4.4.2 Genetic Algorithm

The quality of the solution produced by the above construction heuristic is to some

extent dependent on the order in which the demands are inserted into the schedule

since available production capacity is more restricted the later a demand is consid-

ered. By giving priority to certain demands, mainly three situations can be created.

1. Demands of the same product that should be ideally scheduled consecutively

to avoid setup costs, can be assigned similar priorities, making it very likely

that the construction heuristic will link them together.

2. Demands that are best scheduled just before the due date to save storage

cost can be given a high priority. This will lead to the construction heuristic
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scheduling these demands early on, at a time where still a lot of capacity is

available, and the cheapest option just before the due date would be selected.

3. Demands that benefit most from a highly utilised facility (e.g., because all

other facilities are much more expensive), can also be given high priority,

which will lead to early scheduling when this highly demanded facility is

still available.

Optimising this order is left to the GA, which was implemented in JavaTM using

the ECJ library (Version 23) (Luke, 1998). It used a permutation representation of

all the demands to be scheduled, i.e., 225 demands in the industrial case study used

here (the number of elements in Table 4.1). Specifically, each demand was given a

unique ID number (from 1 to 225), and the chromosome is a permutation of these

numbers. The ordering of the numbers on the chromosome determines the order

by which the construction heuristic processes the respective demands (from first

to last position) and thus influences the resulting schedule (see Figure 4.2 on the

previous page). In the cases that reneging was turned on and the coefficients were

being optimised, the chromosome would resemble that which was just described

but two extra genes would be appended to the chromosome. The 226th gene would

correspond to the reneging coefficient for ‘demand reneging’ whilst the 227th gene

would hold the value for that of ‘split reneging’. The range of values allowed

for these two extra genes was 0.0 < x ≤ 1.0 to correspond with the description of

reneging coefficients in Section 4.4.1.1.

Originally, individuals were initialised randomly, but then it was determined

that better solutions are produced if demands from a single year are grouped to-

gether on the chromosome. Unless stated otherwise, the results in this chapter are

thus based on runs where 50% of the population is initialised randomly, whereas

the other 50% only randomise the sequence of demands from the same year, but

maintain the sequence of years (i.e., all demands of a particular year appear in the

permutation before the demands of later years).

The genetic operators shared by both single- and multi-objective optimisations

are as follows. For crossover, the operator used was the Precedence Preserving

Crossover (PPX) proposed by Bierwirth et al. (1996) which ensures that if a de-

mand i is before a demand j in both individuals, this will also be true in the off-

spring. To ensure the absolute precedence relations of two parent permutations, an

empty child is initialised and a vector equal to the lengths of the parent is randomly

filled from the set {1,2} to determine the order in which genes are picked from the
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first and second parent respectively. When a gene is picked from either parent, it

is appended to the child and deleted from both parents. This ends when both par-

ents are empty and the child contains all the genes. In the case that genes 226 and

227 were included in the chromosome, one of each was picked from either parent

(with equal probability) to be in the resultant child of the PPX procedure. Selec-

tion of potential parents for crossover was done using stochastic universal sam-

pling (SUS). SUS is a fitness proportionate selection method that has minimum

spread and zero bias (Baker, 1987). Compared with standard fitness proportionate

roulette selection where there is a single pointer indicating the ‘winner’, SUS has

N equally spaced pointers where N is the number of samples to keep. This gives

members of the population with weaker fitness a chance to be chosen by sampling

the population at evenly spaced intervals. The mutation operator used was shift

mutation, which iterates through every element of the permutation and, with prob-

ability pm = 0.02, removes a demand and re-inserts it at a new random position.

The reneging coefficient genes were mutated also with the same probability but

with Gaussian mutation and a standard deviation σ = 0.1.

The operators and parameters specific to either one of single- or multi-objective

optimisation runs are described separately below. In either case, for fitness eval-

uation, the GA called the construction heuristic described in Section 4.4.1 which

builds a schedule by inserting demands iteratively in the order prescribed by the

solution’s chromosome.

4.4.2.1 Single objective

In the single objective case the actual fitness is the overall profit of the resulting

schedule, i.e., revenue minus storage, production, setup cost and backlog penalty.

This objective function is Equation (4.12) defined in Section 4.2. Experiments

with different population sizes and mutation rates showed that results were rather

insensitive to the parameter settings (see Table 4.6).

For the rest of the chapter, the GA parameters used were: a population size of

30, and generational reproduction with elite of 6. The algorithm was run for 1500

generations, and all results are based on averages over 50 runs (unless otherwise

stated). These, and the other parameters used were chosen based on preliminary

experiments and rules-of-thumb for evolutionary computation practice.
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Table 4.6: Profit performance for base case (in RMU) ± std. err. for three different
population sizes and mutation rates.

Population Size Mutation Rate

0.01 0.02 0.03

20 66612 ± 0.9 66601 ± 1.0 66594 ± 0.9
30 66613 ± 0.8 66604 ± 0.9 66593 ± 0.9
60 66612 ± 0.8 66603 ± 0.8 66592 ± 0.8

4.4.2.2 Multiple objectives

In addition to the single-objective of maximising profit, investigations were con-

ducted into multi-objective optimisation. The other objective considered was CSL.

This multi-objective optimisation maximised both profit and CSL, and there-

fore was a bi-objective optimisation. The profit objective is as described previously

and the CSL is likewise described in Section 4.2 as Equation (4.13) on page 34.

The optimisation algorithm used was the non-dominated sorting genetic algorithm

II (NSGA-II) which was also implemented in JavaTM using the ECJ library (Luke,

1998). The evolution parameters were such that a population size of 150 was run

for 300 generations with a 0.9 crossover probability for 50 separate runs. These pa-

rameters were chosen after preliminary experiments to give a suitably sized Pareto

set and enable clear visualisations of the attainment surfaces.

4.5 Empirical Evaluation

4.5.1 Comparison with Mathematical Programming

The algorithm was run on the case study described in Section 4.3, and results for

this are reported in Table 4.7 on the next page as “Standard case/GA Model”. As it

turns out, the case study has ample production capacity, which is due to modelling

the option of outsourcing production at higher cost as additional facilities. To see

how the algorithm would perform in a more loaded scenario, variations of the case

study were also tested where the demand is increased in each year by a factor of 2

or 3, and the results of these experiments are reported in Table 4.7 as well.

To judge the performance of the proposed algorithm, it was compared with

the MILP implementation as described by Lakhdar et al. (2007) and replicated in

Section 4.2. However, there is one important difference that deserves discussion.
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The MILP model has variables that specify how much is produced for each facil-

ity, product and time period. It thus requires the problem to be broken down into

discrete time periods, and it allows for at most one product to be produced in a

particular facility and time period. The choice of the length of a time period is

somewhat arbitrary, but has huge implications. If the time period is chosen very

large, then most demands would require only a fraction of a time period to be pro-

duced. The facility would then be idle in the remaining part of the time period,

leading to poor solutions. On the other hand, if the length of a time period is cho-

sen to be rather short, because the number of batches to be produced is integer,

often a fraction of the time period remains unused (e.g., if a time period is 5 days,

and producing a batch takes 3 days, only one batch can be produced in each time

period and 2 days in each time period remain unused — up to the point where a

time period is too short for even one batch and there is no feasible solution). Fur-

thermore, reducing the length of the time period increases the number of variables

and constraints quite significantly, with corresponding drastic implications on run-

ning time. Some experimenting concluded that the 90 day period used by Lakhdar

et al. (2007) indeed performs well, and all results are based on this time granularity.

In contrast to the MILP model, the GA can work with arbitrary time periods,

and even continuous time, without any implications on running time. In this im-

plementation, the smallest time unit was chosen to be a single day. This allows a

model closer to reality than the mathematical programming implementation. As a

result, the GA sometimes is able to produce solutions with a higher profit than the

MILP approach, even if MILP is run to optimality. Note that it is not claimed that

the MILP implementation by Lakhdar et al. (2007) is the best possible, or that it is

not possible to design an MILP formulation that circumvents or at least reduces the

impact of the time period length. However, the MILP model is the only one found

in the literature for this problem, and one of the advantages of GAs is their greater

flexibility in modelling the real world, and that solving a problem heuristically that

is close to reality can sometimes work better than a model further from reality but

solved to optimality.

All these being considered, although the GA and the MILP are attempting to

solve the same problem, the two approaches are actually solving very similar (but

not exactly the same) models. Hence, in the comparison between both approaches

they will be distinguished by calling the former ‘GA model’ and the latter ‘MILP

model’ from here on.
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Figure 4.3: Exemplary Gantt chart of a schedule generated by the GA model (top)
and MILP model (bottom), for the standard case. The profit and customer service
level (CSL) for each schedule is also indicated.
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Table 4.8: Runtime of MILP until it reached an optimality gap of 0.25%, and
runtime of GA to reach the same solution quality as was reached by MILP, for
different problem sizes, depending on problem size.

15 years 23 years 30 years

Target (RMU) 66284 90236 111229
MILP Time (s) 200.86 824.134 1332.59
GA Time (s) 0.07 0.131 0.195

Results from the MILP model and the GA model are compared in Table 4.7. As

can be seen, in the standard case as taken from Lakhdar et al. (2007), the GA model

solution has lower manufacturing costs (i.e., utilises the low-cost facilities better),

and lower storage costs. It also manages to satisfy all the demand (CSL of 100%),

whereas the MILP model chooses to backlog some of the demand. This is because

the GA tries to satisfy all the demand as first priority and only backlogs if there is no

other feasible option. The MILP model, however, has an explicit trade-off between

backlog and other costs, and backlogs if the resulting solution has a higher profit.

On the other hand, the setup costs of the GA model solution are higher. Overall,

the profit generated by the GA model solution is consistently higher, and by more

than the 0.25% optimality gap, i.e., the difference between the best solution found

and the upper bound determined by the MILP solver. This is possible because

the MILP model, due to its imposed time granularity, has an artificially restricted

search space. It can switch less often between products, resulting in lower setup

cost and higher storage cost. Also, it sometimes wastes part of a time period,

which may mean the need to use occasionally more expensive facilities, resulting

in higher manufacturing costs. These differences can be seen also by comparing

the Gantt charts of the optimal solutions found in the MILP model and the GA

model which are depicted in Figure 4.3. The Gantt chart of the MILP solution

generally shows shorter campaigns (sequences of batches of the same product),

and, especially visible on facility i4, small gaps between production in different

time periods, simply because the time period (of 90 days) is not equivalent to a

duration spanned by a multiple of batches for this product in this facility. The

schedule optimised by the GA model has longer un-interrupted idle time, which

may be advantageous if a new product is introduced to the facility or if a third

party is seeking to rent and use production capacity.

For the scenario with twice the demand, the conclusions are similar to the base
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case. However, for three times the demand, it seems backlogging becomes cru-

cial, and the MILP model approach seems better in doing that. While backlogging

reduces the products sold due to lost demand and thus reduces revenue, the sav-

ings that can be achieved in terms of manufacturing cost and setup cost seem to

outweigh this loss, and the overall profit of the MILP model approach is higher in

this scenario. Whether a slightly higher profit justifies a lower CSL is a different

issue. The GA’s construction heuristic, always tries to meet all the demand, even

if this may lead to a possibly lower profit. Finally, it can be observed that the GA

model’s solution still has lower storage cost and higher setup cost, probably due to

not being constrained by the coarse time periods.

Runtimes strongly depend on the implementation skills of the developer, the

hardware used, and software tools used, and thus have to be handled with caution.

Nonetheless, Table 4.7 also reports on the runtime of the two algorithms. For the

MILP, the stopping criterion was 600s, so the runtime remained the same, but the

optimality gap increased as the problem became more difficult by increasing the

demand and thus utilisation level. The GA was run for a fixed number of gener-

ations. The computational time still increased with increasing demand level. The

reason is that an increasing demand raises the utilisation level and the construction

heuristic is then less likely to be able to schedule a demand in steps (I) or (II), and

thus more often has to look at the other alternatives for scheduling it. This will be

explored further in the next subsection.

Also, the scaling behaviour of both optimisation methods with increasing prob-

lem sizes. To do this, the GA and MILP were run for problems with longer time

horizons of 23 years and 30 years (in addition to the 15 year-long base case). For

the longer time horizons, the demand forecasts for the years after year 15 were set

equal to the forecast for each product in year 15. To compare the two methods,

the MILP was first run for all three problem sizes with a stopping criterion of a

0.25% optimality gap, at which point, the solution quality (profit) was recorded

along with the time taken to achieve the solution. This profit value was then used

as a target for the GA. The average time over the 50 runs that it took for the GA to

match or beat those targets was recorded. The results of this experiment are shown

in Table 4.8. As can be seen, the time required for the MILP model and GA model

increases roughly linearly with problem size, however the factor by which runtime

increases when moving from 15 to 30 years is 6.6 for the MILP model, but only

2.8 for the GA model.
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Table 4.9: Breakdown of how often each part of the heuristic is used in optimised
solutions, mean ± std. error. Also detailed is the percentage of separate jobs that
are delivered late.

1 × Demand 2 × Demand 3 × Demand

(I) 71.9% ± 0.18% 70.7% ± 0.27% 64.1% ± 0.25%
(II) 20.9% ± 0.19% 16.8% ± 0.22% 12.8% ± 0.20%
(III) 0.3% ± 0.03% 2.8% ± 0.13% 4.9% ± 0.14%
(IV) 6.9% ± 0.03% 8.3% ± 0.17% 10.4% ± 0.12%
(V) 0.0% 1.3% ± 0.18% 7.7% ± 0.22%
(VI) 0.0% 0.0% 0.04% ± 0.02%

Total Backlogged Jobs 0.0% 1.8% ± 0.25% 9.2% ± 0.25%

Overall, from these results, the conclusion is that the suggested GA approach

is competitive with the MILP approach, but does not suffer from the introduction

of artificial time periods and thus is sometimes able to find better solutions than

MILP. The trend seems to be that the computation times for both optimisation

methods are going up linearly. However the increase of the GA approach is of a

smaller factor than that of the MILP optimisations. This suggests that the relative

performance of the GA is less susceptible to the detrimental impact of increasing

the scale of the problem.

4.5.2 Algorithm Components

In order to better understand the importance and robustness of the various compo-

nents of the algorithm, some additional experiments were done.

Table 4.9 examines how often the various alternatives to insert a demand are ac-

tually selected by the construction heuristic, averaged over the best solution found

in each of the 50 runs. As can be seen in the table, in the standard case, the major-

ity of demands (92.8%) are inserted by either scheduling it as late as possible (I),

or adjacent to a previous demand of the same type (II). This is reassuring, since if

such an insertion is possible, the other options are not tested, which significantly

speeds up the algorithm. Moving to the scenarios with higher demand, the percent-

age drops from 92.8% to 78.9%. This still constitutes the majority of cases, but

clearly the other insertion alternatives of the heuristic become more important.

Figure 4.4 looks at the relevance of the alternatives (III)-(VI) in terms of their

impact on profit. It shows the ratio of the obtained profit depending on whether

the construction heuristic during the GA search was limited to looking at alterna-
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Figure 4.4: The ratio in profit of the full model compared to the simple model,
optimized by the GA, shown for multiples of the base market demand as presented
in the case study. The increasing ratio indicates the increasing benefit the full model
will have in more complicated scheduling problems than the basic case study. Error
bars represent the standard error.

tives (I) + (II) (denoted as “Simple”), or all alternatives (“Full”). A profit ratio

of 1 means that the two models obtain the same profit, while a greater profit ra-

tio indicates that the full model is able to achieve higher profits than the simple

model. It confirms that the more complicated cases with splitting, backlogging and

moving previously scheduled demand are responsible for an increasing share of the

profit as the overall demand is increased. Especially once the demand is increased

to three times the original values, there seems to be a step change and the more

complicated alternatives seem to become indispensable.

Figure 4.5 shows the convergence of the GA over generations. This is com-

pared with random search using fully random permutations, and random search

using limited random permutations generated in the same way as the GA’s initial

population (i.e., when half of the permutations are only random amongst demands

of the same year, but the order on years is kept). Both random search algorithms

evaluate N points at random, where N is the product of the number of generations

and population size used by the GA. As can be seen, the results optimised by the

GA are considerably better than the results obtained by random search. The lim-

ited randomisation helps in particular for the less loaded problems (1 × Demand),

but is no longer better than fully randomised permutations for the case of 3 × De-

mand. This also makes sense, as with higher utilisation of the facilities, there is
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Table 4.10: Comparison of profit, CSL, and other characteristics for the GA at 3×
demand with reneging turned off, and the reneging coefficients fixed or optimised.
Figures are mean ± std. error over 50 runs, and units are in RMU unless otherwise
indicated. Best mean is highlighted in bold - where the difference is not significant,
both are highlighted.

Reneging

No Reneging Fixed Optimised

Revenue 222704 ± 36.8 222492 ± 37.3 222475 ± 38.4
Manufacturing 42331 ± 56.13 41132 ± 55.36 41244 ± 58.45
Storage 1710 ± 11.8 1732 ± 9.1 1702 ± 9.9
Setup 355 ± 1.65 326 ± 1.55 330 ± 1.98
Backlog penalties 58 ± 3.0 90 ± 3.5 84 ± 3.2

Profit 178251 ± 54.2 179213 ± 34.9 179116 ± 48.2
CSL (%) 99.601 ± 0.0164 99.506 ± 0.0167 99.498 ± 0.0172

increasing need to schedule demands outside the year the demand is delivered, and

the artificial limitation of randomisation to within a year is no longer helpful.

To examine the effect of reneging on performance, the heuristic was run three

more times at the 3×Demand case. In the first, the option to renege was turned off.

In the second case, the reneging coefficients were both fixed to be 1.0. However,

in the third, the reneging coefficients were allowed to be independently optimised

by the GA. In all of these cases, any reneged or otherwise unscheduled demands

could be partly fulfilled from stored material in inventory if any was available.

The results from this are summarized in Table 4.10. As expected, with reneg-

ing, the heuristic is able to achieve higher profits than without but at the expense

of a lower CSL. This shows that the Reneging component can be an improvement

to the performance of the optimisation on the whole because it enables the GA

to explore more of the search space. Comparing the results of when the reneging

coefficients are fixed or are allowed to be optimised by the GA, it is seen that the

former approach performs better in terms of profit achieved but the difference in

CSL is not significant. This seems to suggest that, for single-objective of max-

imising profit, the best strategy in implementing a reneging rule is to choose a

common-sense value, like 1, for the coefficients and there is no apparent benefit in

trying to search for potentially more optimal values.

It is worth noting that these results are significantly better than the correspond-

ing results for the GA at 3× Demand in Table 4.7 with the ability to partly fulfil
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demands that are not scheduled (or that are reneged) which demonstrates that this

addition to the heuristic is an improvement to its performance4. Also, with reneg-

ing turned on, the GA is actually now able to produce solutions that achieve a better

profit than the optimal MILP solution though the mean profit is still slightly lower.

One of the drawbacks of heuristic methods is that they do not always guarantee

that the optimum solution can be reached. This is true of the GA and heuristic that

has been presented and evaluated here. In fact, in this case, the optimum cannot

be guaranteed to be in the search space as the heuristic cannot cover the entire

search space. For one, it excludes schedules that are not as close to their deadline

as possible or linked to another demand. Secondly (and more importantly), the

heuristic can only split a demand once. This limits the ability to spread heavy

demand loads over all available facilities. As previously shown in Table 4.9 on

page 54, the splitting mechanics — i.e., (IV) and (VI) — become more important

with increased load. Therefore, there are solutions the heuristic can never reach

even with brute-force approaches.

4.5.3 Multi-Objective Optimisation

In order to demonstrate the versatility of the algorithm in dealing with more than

one objective, it was run twice as a multi-objective problem using NSGA-II at 3

× Demand case. In both cases reneging was turned on but for one, the reneging

coefficients were fixed to be equal to 1 and in the other the coefficients were left to

be optimised by the algorithm. The parameters used by NSGA-II are as previously

described in Section 4.4.2.2 on page 48.

4.5.3.1 Bi-objective: profit and customer service level

As was seen in Section 4.5.1, at increasing demand loads a trade-off begins to ap-

pear between maximising profit and CSL. Therefore this multi-objective optimisa-

tion would enable a decision-maker to select a solution that meets their priorities.

First, the multi-objective results from fixing reneging coefficients and from op-

timised reneging coefficients were compared. In both cases, the non-dominated

final solutions (an approximation/nondominated set) from each of the 50 NSGA-II

runs were used to generate 50 attainment surfaces using the method and source

4The only difference between the ‘3×Demand - GA’ results column in Table 4.7 and the ‘No
Reneging’ results column in Table 4.10 is that the latter has this ability to partly fulfil demands that
are not scheduled (or are reneged) from material held in inventory.
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Figure 4.6: Attainment surfaces from the bi-objective optimisation at 3 × Demand
to simultaneously maximise profit and CSL over 50 runs. OC = optimised reneging
coefficients; FC = fixed reneging coefficients.
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code by Knowles (2005). Figure 4.6 compares these two cases by plotting the

best and worst attainment surfaces for each. The figure shows how allowing the

NSGA-II to optimise the reneging coefficients may lead to better multi-objective

results. In the best case (i.e., the first attainment surfaces) having optimised reneg-

ing coefficients leads to a superior performance — this set largely dominates the

corresponding set for the fixed coefficients. The likely reason for this is because

fixed reneging coefficients don’t allow a wider sampling of potential solutions, i.e.,

it has a narrower search space. In the worst case (i.e., the 50th attainment surfaces),

the attainment surface corresponding to fixed reneging coefficients appears to be

dominating the optimised reneging coefficients, meaning that optimised reneging

coefficients have a larger variance across its 50 approximation sets. This obser-

vation is not surprising because, as mentioned earlier, having optimised reneging

coefficients allows for a wider search space. In either of the best cases, the attain-

ment surfaces include solutions that achieve a 100% CSL.

Then, in Figure 4.7, the single-objective results (from Section 4.5.2) were com-

pared with the multi-objective results at the 3×Demand case. This shows the first,

median, and last (worst) attainment surfaces for the multi-objective optimisation

where the reneging coefficients are allowed to be optimised plotted with the final

solutions from the single-objective case where the reneging coefficients were fixed

(to equal 1). As can be seen, the single-objective solutions clearly dominate the

multi-objective solutions with regard to profit which is unsurprising as its single

objective is to maximise profit. However, as previously mentioned, the NSGA-II

was able to capture a solution which manages to achieve 100% CSL which may be

of benefit to a decision-maker who prioritises meeting all customer demand over a

higher profit; the maximum CSL the single-objective GA can manage in its final

solutions is 99.7%. In general, the NSGA-II captures a greater spread of different

solutions whilst the GA produces a smaller cluster of similar solutions.

4.6 Summary

In this chapter, the lot sizing and scheduling problem was considered for a com-

plex biopharmaceutical production scenario featuring multiple products, multiple

facilities, and batch processing. For this challenging optimisation problem, a GA

was proposed based on an indirect permutation encoding that is decoded into a full

schedule by a novel construction heuristic tailored to the problem at hand.
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As noted, e.g., by a recent survey (Jans and Degraeve, 2008), most meta-

heuristics developed for lot sizing are validated only on artificial test data, failing

to demonstrate that they can tackle the complexities of real-world problems. How-

ever, the work in this chapter validates the proposed meta-heuristic approach on

industrial data.

A comparison with an MILP approach from the literature showed that the GA

is at least competitive, and often produces even better results than the MILP ap-

proach. The reason is that the MILP model artificially imposes a time granularity

by dividing the time into discrete periods that is not needed in the GA approach.

This shows that although GAs are heuristic methods, they can sometimes outper-

form exact methods not only in terms of running time, but also because they are

able to work with a model closer to reality. In addition, the performance of both

approaches were compared at increasing problem scale (by investigating longer

planning horizons) with the results suggesting that the relative performance of the

GA is less sensitive to the effects of increasing the problem size.

Finally, the heuristic was extended such that it was able to explore more of the

search space. As a result, it was demonstrated that this approach is easily adaptable

to multiple-objectives by optimising a set of non-dominated solutions that max-

imised profit and CSL which provides a decision-maker with a set of optimised

alternatives.
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Chapter 5

Scheduling Strategies for
Continuous Bioprocesses

5.1 Introduction

The run time1 of a continuous operation is determined by several factors including

cell line stability, culture productivity, product quality, process economics, and

operational reliability and consistency (Ozturk, 2015). Clearly, this can have an

effect on any scheduling or capacity planning that takes place on the facility that

it is processed on. This is because there is a trade-off between short and longer

run times. As the process goes on for longer, the probability of failure increases,

which has associated costs, clean-up, and long lead-times to restart the process. On

the other hand, if the process is too short, because of the seed train, ramp-up and

changeover costs, these setup costs become dominating. That is sales of product

are not sufficient to cover these costs as not enough product is made before the

process is ended and restarted.

This is illustrated in Figure 5.1 on the following page: given the turnaround on

a bioreactor, and the seed train duration, one can choose a target batch run time

from which then follows the time (relative to the progress of the USP operation)

at which to start a new seed train so that it ends just before the bioreactor is able

to start its next batch (if the current batch runs for the target batch time). Here the

seed train takes 14 days, the target USP duration is 30 days, and the turnaround for

the bioreactor is 4 days. Therefore the stagger left for the seed train is such that the

1Alternatively: process/batch length or process/batch duration.
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seed train for the next batch (Batch 2) starts on the 21st day of the USP operation. In

the case of failure (e.g., Batch 2, Day 66), the seed train is started immediately for

the next batch. However this means that there is a greater period of downtime for

the bioreactor (a maximum of 14 days) as compared to the cases where the process

runs to completion without a failure. Given these considerations it is important to

determine the optimal cell culture duration, in a capacity planning context, for a

particular process given its process economics data, technical characteristics and

commercial targets.

Further to previous work on integrated continuous bioprocessing, the aims of

this chapter are to investigate the consequences to be considered when scheduling

and/or capacity planning for these types of processes. The optimal scheduling and

capacity planning strategy for these continuous processes that are prone to failure

are to be investigated as previous models did not aim to optimise schedules or

capacity plans.

Process configuration — i.e., the number of parallel bioreactors and the ratio

between the number of reactors and the number of DSP trains — has an impact on

the decision making. Given that all the parallel bioreactors share and are fed by the

same seed train, the trade-off between a large single reactor and multiple smaller

reactors with the same failure profiles is such that with more reactors the proba-

bility of achieving a low output is minimised. This is at the cost of also reducing

the likelihood of achieving maximum output from the process. In addition, there is

obviously increased probability of a failure event (because there are more reactors)

although each failure event has a reduced magnitude.

Thirdly, there needs to be consideration of the decision-making required after

a reactor fails in the context of multiple bioreactors or a more complex scenario

of scheduling & capacity planning for a multi-product facility. In the case of the

former, one decision is to let any reactors that haven’t failed run to its planned end

(e.g. if there are four reactors started at the same time and planned to last 60 days

but one fails before that time, the other reactors are run until the 60 days are up or

they all fail). Another decision is to stop the process early and restart it as soon as

possible. The trade-off there is that with a ‘normal’ restart, the remainder of the

batch proceeds at an indeterminate lower productivity but with the ‘early’ restart

there is an inital period of zero productivity as the reactors restart (due to the ramp-

up) but after that the productivity is back to the maximum for an indeterminate

time period (there may be another failure).
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This chapter attempts to factor scheduling and capacity planning concerns into

this decision-making while dealing with failure-prone perfusion processes and the

consequences of failure. First a model for perfusion processes that allows man-

ufacturing schedules to be simulated is developed. It comprises a new stochastic

simulation framework for evaluating operational decisions for a facility utilising

perfusion bioprocesses, as well as optimisation algorithms which may be utilised

to tune any scheduling strategy or policy as part of a larger hyper-heuristic frame-

work. Second, based on a mAb production process with peak production capability

of ca. 460 kg/annum, this chapter demonstrates that selecting the run time of the

cell culture operation based on the expected process economics of a singular batch

is inferior to decision-making that considers the expected annual demand or utilisa-

tion for a given facility and process. Third, strategies are developed and applied —

inspired by the EPQ and inventory replenishment model(s) — to simultaneously

optimise the selection of process run time and scheduling of batches. These are

compared with a standard scheduling approach at different facility utilisations in a

dynamic simulation environment. Finally, investigations on the impact of process

configuration are undertaken with respect to determining an optimal run time for

the cell culture process and any operational decisions that need to be taken after a

cell culture failure event.

In Section 5.2 the proposed modelling framework is detailed. This includes

the design of its components and their interactions as a hyper-heuristic. This is

followed by an evaluation of the bioprocess and simulation models as part of an

effort to ascertain the impact of failure rates and process configuration on optimum

process run times. Section 5.4 on page 85 evaluates the hyper-heuristic on a simple

scenario featuring a single-product facility by tuning two scheduling policies to

dictate operational decisions in the face of uncertain demand. Finally a section

summarising the work preceding it concludes this chapter.

5.2 Model Framework

The modelling framework proposed in this chapter is designed as a custom frame-

work comprising: a model for the manufacturing bioprocesses; an object-oriented

discrete-event model used to simulate the scheduling environment on the manufac-

turing facility in which the bioprocesses are operated; policies that dictate schedul-

ing decisions; and optimisation algorithms to tune the parameters of the scheduling
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policies. Figure 5.2 on the preceding page gives an overview of this framework.

Detailed descriptions of the components of the hyper-heuristic framework follow.

5.2.1 Bioprocess Model

The basis of the bioprocess used is a platform mAb manufacturing process utilising

a perfusion bioreactor with an alternating tangential flow (ATF) filtration system

for cell retention. Perfusion bioreactor systems equipped with an ATF filter have

been shown to perform well in economic analyses compared to other cell-retention

filter systems and do not suffer consequences as severe in the event of filter failure

(Pollock et al., 2013b). A flow sheet of this process is shown in Figure 5.3. In gen-

eral, the economic, operational, and technical data for the continuous process(es)

used for the bioprocess model is adapted from Pollock (2013) and summarised in

Appendix B.

For simplicity, the unit operations of the process can be grouped together into

three main steps:

• A seed train which encompasses all cell thawing and expansion operations;

• USP which is just the cell culture; and

• DSP which accounts for all unit operations from the capture chromatography

step (Protein A) to the final finish & polishing steps (UF/DF).

Processes may have more than one DSP train per bioreactor and so are not

limited to a 1:1 USP:DSP train configuration. In the case that there are multiple

bioreactors, all bioreactors are fed from the same seed train simultaneously. This

means that all the bioreactors have to be started at the same time.

The seed train takes 14 days and then the production bioreactor can be innoc-

ulated. The ramp-up time to reach the desired cell density for harvests is ten days.

In this period, no harvests are collected as the process has not yet reached steady-

state. From day 11 onwards, daily harvests are collected from the bioreactor and

then taken through DSP. Each DSP ‘batch’ then takes two days to be fully pro-

cessed and product coming out of it then can be put in inventory, sold or otherwise

delivered. Therefore, a process that has a cell culture run time of 60 days and

ramp-up time of 10 days will produce 50 separate DSP batches. The turnaround

on the bioreactor determining the earliest time it can be reused is four days and

accounts for clean-in-place (CIP) and sterilization-in-place (SIP) operations and
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Figure 5.3: Process sequence and suite configuration for the model perfusion-
based bioprocess. CC = cell culture, ProA = Protein A chromatography, VI =
virus inactivation, Pool = daily perfusate volume pooling, CEX = cation exchange
chromatography, UFDF = ultrafiltration/diafiltration, AEX = anion exchange chro-
matography, VRF = virus retention filtration. Adapted from Pollock et al. (2013b).
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Table 5.1: Process scheduling parameters.

Parameters Value units

Seed train 14 days
Bioreactor turnaround 4 days
Ramp-up Time 10 days
DSP duration 2 days

other activities in preparation for a new cell-culture operation. As it is possible for

parts of the seed train process to use a different suite, the earliest portion of the

seed train of a product can take place concurrently with the latter days of the USP

of a previous batch (of the same or a different product). A threshold can then be

defined, in the case the facility is not idle, as the minimum time elapsed for a USP

operation before a decision on starting a new batch (i.e., a new seed train) can be

made. The seed-restart threshold is for starting a new batch of the same product

and the changeover threshold is for starting a new batch of a different product.

Process timing information is contained in Table 5.1.

The economics associated with this process are such that a seed train cost is

attributed to every seed operation that is started, and a cell culture setup cost for

the setup and prep activities that go into starting up each bioreactor in a batch.

The daily cell culture perfusion costs are accrued for every day a bioreactor is in

operation, and for every DSP batch commenced, DSP batch cost is accrued. A cost

is associated with replacing a fouled ATF filter; this is also captured in the batch

setup costs as a new ATF filter is needed for each one. Finally, if the process is

idle for more than the setup expiry period, there is a cost of re-establishing sterile

and clean holds for all equipment before another batch/campaign is started. This is

referred to as changeover costs and also captures the costs of setting up the facility

when changeover to manufacturing another product occurs.

To capture the stochastic failure events and the consequences, previous data

adapted from Pollock et al. (2013b) and Pollock (2013) was used and this is pre-

sented in Table 5.2 on the next page. Those studies used a fixed perfusion duration

of 60 days so the probability of ATF culture contamination and ATF filter failure

events were within the 60 days. As this study is looking at various process du-

rations, this requires some adjusting. Ideally, the rate of failure should be low in

the early stages of the process and be relatively high towards the end. The process

for Pollock (2013) choosing a 6% failure rate for the cell culture contamination
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Table 5.2: Process failure events, consequences, and the associated risk (adapted
from Pollock et al. (2013b).

Process Event p(Failure) Consequence

ATF culture contamination 6% Batch loss & discard two
pooled perfusate volumes

ATF filter failure 2% Replace filter & discard next
24 hours of perfusate
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Figure 5.4: The probability distribution functions illustrating the probability of a
failure event occurring on a particular day of the USP operation for different rates,
6−25%. These failure rates are defined as the probability of failure event occurring
within the first 60 days.

is that each addition to (or sample from) the bioreactor has a 1 in 1000 chance of

introducing contamination to the system — the 60 day batch had approximately

sixty such additions leading to the 6% chance of failure. This has the result that the

chance of failure on any specific day is independent of how far along in the process

it currently is.

It is reasoned that not only additions can cause contamination, but also equip-

ment that wears or stresses over the course of the process (such as tubing, gaskets,

valves, O-rings, filters, seals or connectors). For the equipment failure due to filter

fouling, however, Pollock chooses a probability of 2% and then weights failure to

occur at latter stages of the cell culture.
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To this end an exponential function of the form shown below is used to describe

the probability of a failure event occurring P(x), on a specific day x:

P(x) =
exp(x/a)−1

b
. (5.1)

Here, a is benchmarked to 60 and also represents the amount of time it takes (in

days) for the probability of failure to increase by a factor of e; and b is a scaling

constant

The significance of the difference in this assumption is illustrated in Figure 5.5

which shows the cumulative probability of a cell culture contamination event oc-

curring within the duration of a process. For profiles where the daily absolute risk

of failure is constant, the cumulative probability of failure in the early parts of

the process can be significantly larger than profiles modelled from an exponential

function.

Mainly seven failure rates were investigated for culture contamination: 6%,

8%, 10%, 12.5%, 15%, 20%, and 20%. These are defined as the probability of

failure event occurring within the first 60 days unless otherwise specified. Some

additional failure rates were also used in experiments: 10% failure within 45 and

30 days. In addition, a 2% rate is used for the ATF filter failure. The probability
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distribution functions are shown in Figure 5.4 on page 70.

5.2.2 Discrete-Event Simulation Framework

Based on the bioprocess model discussed in Section 5.2.1, a custom discrete-event

simulation model was developed in JavaTM (Oracle Corp., Redwood Shores, CA,

USA). Other software for simulating bioprocesses exist. For example, BioSolve

Process (Biopharm Services, Chesham, UK) is an Excel-based software package

that enables detailed cost analysis and scheduling for a single batch. INOSIM

(INOSIM Software GmbH, Dortmund, Germany) also allows for process design

and optimisation at the process level. Both of these software packages are not suit-

able for high-level planning and scheduling. Commercial discrete-event simulation

software such as ExtendSim (ImagineThat! Inc, San Jose, USA) could have been a

candidate as it allows for detailed simulation models to be designed and stochastic

events implemented, even if it is not generally used for capacity planning.

However, the choice was made for a custom discrete-event simulation model

so that it could be better integrated with the overall hyper-heuristic framework (and

the optimisation algorithms). These would all be developed in the same program-

ming language (i.e., Java). In addition, using these external programs for evaluating

solutions would add a considerable computation expense as they are quite complex.

It seemed reasonable to design a custom model that was detailed enough for the

purposes of this research without being a large drain on computation resources.

The model simulated the processing of batches on a facility as a multi-stage

process comprising of a seed train, USP, and DSP. In addition, based on the state of

the facility (i.e., what it is currently manufacturing), inventory levels, and stochastic

events, it evaluates the economics of operational decisions and reports key metrics,

inventory profiles, and the facility schedule of the given time horizon. Finally, it al-

lows the use of dynamic scheduling rules or policies to make operational decisions

based on the state of the simulation so these policies can react to any changes.

On each day:

• any new activities or operations are started if required whilst any existing

ones have their durations advanced by a day;

• any manufacturing takes place and the random variables (such as demand,

process failure events, or yield) are realised by sampling the associated prob-

ability distributions once each;
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• the process economics related to the model are evaluated;

• scheduling decisions are made if necessary; and

• activities or operations are brought to an end at their target run time (or

terminated early due to equipment failure).

The timing of scheduling decisions and the set of decisions available to make are

determined by the specific type of scheduling policy or strategy (see Section 5.2.3).

Decisions made on one day are implemented and take effect the following day.

In the event a decision is made to start a batch and/or campaign, a seed train

operation is created and started up. When that is completed, it triggers the start of a

USP operation which proceeds until it reaches its natural/intended end — specified

by the process run time — or is terminated because of a process failure event.

During the course of USP but past its ramp-up, the daily harvests trigger separate

DSP operations which deposit product in the inventory when completed. Over the

course of the simulation, these operations are recorded in a local history. This is so

that at the end of the simulation, a facility schedule can be generated describing the

history of operational decisions taken, the workload of the facility, and identifying

any batches terminated early due to contamination. Similarly, the inventory levels

for each product are recorded at each time point so a decision-maker can evaluate

the impact of scheduling decisions on inventory levels.

Depending on the assumptions made for the purposes of the simulation, de-

mand constraints may be set to be periodic (yearly or monthly), or set to be contin-

uous (i.e., daily). According to the set demand frequency, any available product in

inventory is used to satisfy the demand for that period. If the inventory is not suf-

ficient, unfulfilled demand is added to backlog on which a decay function may be

applied. Also, any product that has exceeded its shelf-life is deleted from inventory

and discarded.

5.2.3 Scheduling Strategies

The scheduling strategies employed in a dynamic simulation environment are based

on control policies. They initiate new production orders (batches in this case) based

on current inventory levels as well as the state of the facility (i.e., the product cur-

rently being manufactured), m, in a make-to-stock fashion. In addition, these poli-

cies may have parameters that determine the run times of the processes.
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As previously mentioned, when decision-making takes place, the set of avail-

able decisions is determined by the type of scheduling policy or strategy imple-

mented. Generally, simpler policies make decisions at the end of a batch — either

because it has suffered process failure or because it has reached its predetermined

run time — or if the facility is idle. Specifically, because the seed train for a subse-

quent batch can be started before the completion of the current batch, the decision

epoch begins at the seed-restart threshold or the changeover threshold. These are

determined respectively by: the bioreactor turnaround time, and the changeover

time between products. As a result of the lag between the point when a decision

is required and the end of the current batch, policies will need to (implicitly or

explicitly) take into account the expected extra product that would be produced by

the end of the current batch (if the facility is not idle). In cases of those simpler

policies, the set of decisions is usually whether to start a new batch of the current

product, or to changeover to another product (in a multi-product scenario), or to

keep the facility idle. A more flexible policy would allow decision-making at any

point in the horizon. Specifically, everyday it would be able to cut short a batch

currently in production to either switch to a new product (in a multi-product sce-

nario), or to make the facility idle, or simply to start a new batch of the product

currently being produced.

5.2.4 Optimisation Algorithms

In the case that the scheduling strategies or policies required tuning, evolution-

ary algorithms (EAs) were used to optimise their parameters. These EAs include

a genetic algorithm (GA) and a Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES) implemented using the ECJ Library (Version 24) in JavaTM (Luke,

1998). The representation used for the chromosomes of the tuned policies was

tailored to each specific type of policy to enable efficient search procedure. As a

result, the EA parameters will be discussed in tandem with the specific policies

utilised.

5.3 Evaluating the Bioprocess and Simulation Model

In this section the results from experiments on determining optimal processing

run times are discussed. First the economics of a singular batch are considered,

followed by separate analyses of the effect of demand targets, capacity constraints
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and process configuration on the optimal cell culture run time.

5.3.1 Optimal Processing Run Time

5.3.1.1 Optimal run time of a typical batch without demand constraints

Given the costs for an ATF filter, cell culture setup costs, daily cell culture perfusion

batch costs, DSP batch costs, costs for the seed train, and process yields (all in rel-

ative monetary units (RMU)), the simulation could be used to assess the expected

performance — the Cost of Goods (CoG) — of each batch length for each failure

rate . Each failure rate, P(x), is the probability the batch will fail within the first 60

days. The failure rate used for the ATF units was 2%. In addition, a batch termina-

tion penalty is incorporated which was applied if the batch suffered a cell culture

contamination and was subsequently aborted. This is because when analysing the

expected performance of a single batch in isolation, the lost production time in a

manufacturing campaign discussed earlier and illustrated in Figure 5.1 on page 63

cannot be directly modelled (because there are no subsequent batches to delay). So

this batch termination penalty is used as a surrogate for this scheduling inefficiency

and is heuristically set to be roughly equal to the observed worst case CoG/g (ca.

20 RMU/kg) multiplied by the time that would be lost in a scheduling scenario in

the worst case (i.e., 10 days). The values for the process economics parameters are

listed in Table 5.3 on the next page.

Optimal process run time at different failure rates The simulation environ-

ment was set up to start a seed train (at the beginning of the simulation horizon)

which eventually triggered a USP operation. This operation was run until it ended

either by reaching its target duration or termination due to process failure. The

simulation environment would then be terminated after the completion of the last

DSP operation. The process economic data and process failure statistics would be

captured as well as how much product was made. This procedure was replicated

10,000 times to evaluate the metrics for each process run time.

From this it is possible to ascertain the most cost-effective process duration in

isolation by evaluating the CoG/g. In this scenario, CoG/g is calculated by dividing

the amount of product manufactured by the costs associated with operating the

process. This is illustrated in Figure 5.6 which shows the trend of CoG/g decreasing

to an optimal point, increasing after it and then plateauing with increasing process

duration. At very short process durations, the ratio of costs to material produced
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Table 5.3: Process economics parameters. Only the first seven parameters are used
for evaluating the Cost of Goods (CoG) in Figure 5.6 and Table 5.4. The remaining
parameters are used in the experiments that take into account demand.

Parameters Value Units

Replacement ATF filter cost 16 RMU
Cell culture setup cost 29 RMU
Daily cell culture perfusion cost 3 RMU/day
DSP batch cost 12 RMU
Seed train cost 5 RMU
Batch termination penalty cost 200 RMU
Process yield 1.55 kg/DSP batch
Sales price 100 RMU/kg
Inventory cost 0.01 RMU/kg/day
Waste cost 5 RMU/kg
Changeover cost 35 RMU
Backlog decay 0.25
Backlog decay period 1 year
Backlog penalty 0.1 RMU/kg/day
Setup expiry period 30 days
Shelf-life 720 days

is heavily dominated by the fixed costs involved in operating a batch, hence the

high CoG/g. Batch failures are unlikely at these process durations. As the process

duration is increased, so does the amount produced which offsets those fixed costs

and leads to lower CoG/g. However, an increasing likelihood of batch failure and

associated penalty cost tempers this decrease in CoG/g up to the optimum duration

where the trend reverses and an increasing CoG/g is observed. The CoG/g value

stabilises and remains more or less the same at very long process durations where

the probability of batch failure is practically 100%. In addition, one can see that the

optimum decreases with increasing failure rates and also that the CoG/g in general

increases with more failure-prone processes.

Sensitivity analysis The process run time with the lowest CoG/g for each failure

rate2 is shown as well as results of a ±50% sensitivity analysis in Table 5.4 on the

following page.

Looking at the base case, intuitive results are observed where the optimum

2The values for the optimum process run time are the average of the process lengths that have
CoG/g values within the standard error of the lowest CoG/g value.
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Figure 5.6: Expected CoG/kg for differing process run times and contamination
rates

cell culture duration gets smaller with increasing probability of failure — from an

average of 97.9 days at a 6% failure rate to 85.5 days at 10% failure rate and the

extreme of 61 days when the probability of failure is one-in-four within the first 60

days of the process.

Table 5.4 also shows that the optimal batch duration was not affected by the cost

of a replacement ATF filter and was also barely sensitive to variations in the cost

of the seed train. The cost of the replacement ATF filter has no impact because it is

only applied in the event of a filter failure (which does not terminate the process)

and is not very likely3. Similarly, the cost of the DSP batches does not affect the

optimum batch durations when varied. The daily cell culture perfusion and cell

culture setup costs have a moderate positive effect on the optimum when compared

to the bioreactor failure penalty cost which has the greatest but opposite effect on

process duration. That is to say, a decrease in the cell culture setup cost or daily

perfusion cost reduces the optimum process duration while an increase would make

it longer while the inverse relationship applies to the failure penalty cost.

3Although the cost of an ATF filter is used in deriving the value of the cell culture setup cost, in
the sensitivity analysis the knock-on effect the ATF filter would have on the cell culture setup cost
— and consequently the optimal process duration — is not considered. Instead, for ease and clarity
in determining dependencies, each parameter is treated independently of the others in this analysis.
Otherwise, increasing the cost of an AFT filter would increase the optimum process duration.
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One can explain these trends by considering these parameters as either de-

pending on how much product is manufactured or independent of the output. For

example, the cell culture setup is applied regardless of how much is produced, so

the higher its value, the more product has to be manufactured (and consequently

the longer the process duration has to be) to offset this cost. Conversely the total

DSP cost is more or less a function of how much is manufactured. One of the con-

sequences of process contamination is that product is discarded. This discarded

product may have been in the middle of DSP processing and thus accrue DSP costs

regardless. A larger DSP batch cost exacerbates this inefficiency and so a shorter

batch would be better as the chance of process contamination is lower. Clearly,

this particular effect was not large. These effects apply to the cell culture perfusion

cost because it is applied during the ramp-up period as well as during the produc-

tive period of the process; in this scenario the former effect is more significant. The

effect of the bioreactor penalty cost is more obvious — if there is a larger direct

penalty for process failure, longer processes that are more likely to fail become

more costly.

Although the differences in the optimum process duration are reduced when

comparing the 6% and 25% failure rates, there does not seem to be an overall trend

when considering all the other failure rates examined. In fact, these differences are

not strictly monotonic (as a function of changing failure rates) even as the reported

optimum durations are. This observed behaviour is due to the simulation noise

and the shape of the CoG/g curves which means that the average of the process

lengths within the standard error of the minimum CoG/g value can be skewed.

With increasingly failure-prone processes, there may be a limit to how much the

parameters can affect the optimum process duration. If this is true, it would be at a

failure rate that is higher than those considered here and so would be unrealistic in

a real-world scenario.

5.3.1.2 Optimal duration with demand targets or time constraints

In comparison, when examining a scenario that takes into account demand require-

ments over the course of years, or one where there are capacity constraints on the

manufacturing facility (or both) the optimal process duration changes. The differ-

ence between this and previous analysis is that here, sequences of batches (rather

than isolated batches) are examined.

Another way of describing this difference is that in the previous analysis, for
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each process run time that is tested, the facility is assumed to have infinite time

available to schedule a fixed number of batches, after which the average economic

statistics of the average batch is analysed. In the following analysis, however, for

each process run time tested, this facility has a finite fixed time available so as many

batches as possible need to be manufactured in that time frame to either maximise

production output or meet a demand target. Hence, the consequence of process

failure is captured as a loss in available production time instead of relying on an

explicit failure penalty cost4.

Time constraints This is first illustrated with time constraints by Figure 5.7 on

the next page which shows the expected throughput for each process run time if

the facility was run at maximum utility — i.e., the objective was to maximise the

amount of product manufactured within a time horizon of five years. The trend

observed for all failure rates is such that with increasing process duration, the pro-

ductivity increases until it peaks, goes down a little and then plateaus shortly after-

wards. This is because at one extreme, if the process is very long, it will always

fail well before it reaches its ‘threshold’ where the seed train for the next batch is

started. So there is always wasted time equal to the difference between the seed

train duration and turnaround time. As the process duration gets smaller (towards

the optimum) the failure will tend to happen after its threshold but before the sched-

uled run time. For example, if a 130-day process will fail on its 127th day (wasting

the last three days), it is more productive to have scheduled a 129-day process as

there is only two days wasted, which is less productive than a 128-day process,

and a 127-day process would be better still. A 126-day process would be best as

the 127-day process would require previous days’ harvests to be discarded making

it as productive as a 125-day process. Processes shorter than 126 days would be

increasingly less productive.

From this figure, the maximum throughput achievable by the facility is deter-

mined to be 456 kg when the process duration is 126 days at a failure rate of 10%

within 60 days. This means that the maximum fraction of productive days is 81.9%

in that time horizon. Comparing with the longest batch possible of 180 days and a

perfect process (i.e., there is no failure) the facility has a peak productivity of about

89% of its capacity. The figure also shows the profiles for 10% failure within 30

and 45 days where the maximum throughputs are 378 kg if the process duration

4Therefore, bioreactor failure penalty cost is not used in cost calculations from this point onward.

80



 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100  120  140  160  180

Y
ea

rl
y 

th
ro

ug
hp

ut
 (

kg
)

Process duration (days)

P(F) = 10%
60 days
45 days
30 days
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is 64 days, and 429 kg at 96 days respectively. Compared to the previous analy-

sis, this suggests that at a 10% failure rate within 60 days, the most cost-effective

processes (those minimising costs) are shorter than the most productive processes

(those maximising production) — i.e., ca. 85 days vs. 126 days).

Demand targets To demonstrate this also with demand targets, a simulation of

a facility with one product over an extended time horizon (fifty years in this case)

and yearly deterministic demand (i.e., demand is delivered from inventory once

each year at the end of the year) was carried out.

To determine when the campaigns to meet the demand each year were started, a

simple heuristic was implemented. This heuristic starts campaigns at the latest

possible date (for a perfect process) so that enough product is made to meet the

demand at the end of the year whilst taking into account any product already in

inventory and the expected production of any batches that are currently in progress.

A consequence of the demand being delivered at the end of each year and the shelf-

life of inventory being measured in days is that during a year, a lot of product may

expire before the end of the year if it was not delivered at the end of the previous

year. This means that there would be material in inventory accruing storage costs

that would never be used. To deal with this, at the end of each year, material
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Table 5.5: The optimal process durations at various yearly demand targets and
10% contamination rate for different objectives: maximising profit and minimising
CoG/g. The values for the optimum process length are the average of the process
lengths that have profit or CoG/g values within the standard error of the highest
profit or lowest CoG/g value respectively.

Best process run time (days)

Demand (kg) Profit CoG/g

30 49 49
75 42 43
155 67 63.5
230 94 64
310 84 81.5
455 119.5 120

that will expire before the next delivery date is thrown away to avoid unnecessary

storage costs.

In a real-life bioprocess scenario, facilities and the processes they house are

designed to maximise utilisation. This means it is unrealistic and inefficient to pro-

duce a small fraction of the facility’s maximum output. However, if it is assumed

that the different demand targets represent different products that can be manufac-

tured in a multi-product facility, a ball-park estimate of an efficient choice when

deciding the processing length for such products can be determined.

Different processing lengths for the given parameters in Table 5.3 were sim-

ulated and performance captured at various yearly deterministic demand targets.

The demand targets investigated were 30, 75, 155, 230, 310, 465 kg per annum

and the cell culture contamination rate was 10% (per first 60 days) while the ATF

fouling rate was 2%. The processing lengths with the best profit and CoG/g perfor-

mances are listed in Table 5.5. Profit is calculated as the difference between rev-

enues (product of sales price and amount sold) and the total costs which is sum of

inventory costs, waste costs, and manufacturing costs (replacement ATF filters, cell

culture setup, daily cell culture perfusion, DSP batches, seed train costs). CoG/g,

meanwhile is calculated as the total costs divided by the amount of product sold.

From these results, it is observed that when considering demand targets, the

optimal process duration is not necessarily the same as when demand is not taken

into account. Although the trend shows that the best process duration when judged

based on the overall profit and the CoG/g is going up with increasing demand, at
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various points there appears to be some interaction of different factors causing the

optimal process duration based on either performance measure to fluctuate. This

is partly due to a lot-sizing trade-off between long and short process durations.

With a long(er) batch, setup costs are minimised and enough is made for each year

without needing to store much for the next year or that is wasted. However it

is more susceptible to failure leading to uncompleted demand. On the other hand,

multiple (i.e., more than one) shorter batches are less likely to fail and miss demand

but incur greater setup costs. This explains the drop in optimal process duration

from 30 kg to 75 kg and again from 230 kg to 310 kg with respect to profit. In

addition, at 230 kg, the optimal process durations with respect to profit and CoG/g

are significantly different.

The best process duration for a minimal CoG/g may be significantly different

from that which gives maximum profit. This is because the CoG/g measures the

ratio of total costs to the amount of product made (or in this case, sold) while

profit is simply the difference between revenues and total costs. A low CoG/g

may indicate an ‘efficient’ process but does not reveal the whole story as it is also

possible that not enough product was sold. For this reason, it is better to use profit

as a metric rather than relying solely on the CoG/g measure. Finally, given these

assumptions and process, really short batches (less than three to four weeks) are

always sub-optimal.

5.3.2 Process Configurations and Multiple Bioreactors

In investigating the impact of multiple reactors in determining an optimal runtime

for the cell culture process, process configurations with one to four parallel reac-

tors were investigated. The processes that utilised multiple parallel reactors were

designed such that they were comparable to the scenario with one reactor. This

means that absent failure, the productivity of each configuration would be identi-

cal. So taking the single reactor case as a basis, if that reactor can produce a daily

yield of Y , a process configuration comprising n reactors would have a daily yield

per reactor of Y/n. The parallel reactors all share the same seed train, i.e., they are

innoculated from the same seed source so they always start at the same time. In

addition, the harvest from all reactors are pooled together and fed into one single

downstream train so DSP is identical in all process configurations. Table 5.6 con-
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Table 5.6: Process economics parameters for multiple parallel bioreactor scenarios
in RMU. The replacement ATF filter cost is per bioreactor in the configuration
while the other costs represent the entire process configuration.

Number of parallel reactors

2 3 4

Seed costs 5 5 5
Cell culture setup costs 52 68 54
Daily cell culture perfusion costs 3 3 3
Replacement ATF filter 16 16 7
DSP batch costs 12 12 12

tains the process economics parameters for the three new process configurations5.

Firstly, the performance and productivity of the multi-bioreactor configurations

was assessed and compared with the base case of a singular bioreactor. To do this,

a five year horizon was simulated for each configuration without any demand or

shelf-life constraints and recorded the total inventory at the end of the period. The

purpose of this was to measure how much can be manufactured in each design

scenario. This simulation was carried out over 10,000 replications and the mean

amount of product manufactured was captured for each process duration from 14 to

180 days inclusive at a 10% cell culture contamination rate and a 2% ATF fouling

rate.

In event of a cell culture contamination event, two different strategies were

employed. In the normal case, the next seed train would only be started at the pre-

determined threshold point unless all the bioreactors had become contaminated and

failed — a normal seed restart. The second strategy/response was such that if a

bioreactor became contaminated and failed, a new seed would be started immedi-

ately and the current cell culture operation would be terminated early so as to turn

around the bioreactors and prepare them to receive the innoculum from this new

seed train. This is referred to as an immediate or early seed restart. The results

from these are shown in Figure 5.8 on page 86.

This shows that a process configuration that utilises only one bioreactor is able

to manufacture more than the other process configurations that comprise multiple

5The cell culture setup costs increase in a non-monotonic manner because the single use biore-
actors (SUBs) come in discrete set sizes of 2000, 1000, and 500 litres which cost about 9.8, 8.3,
and 5.5 RMU respectively. The one-reactor process needs just one 2000L SUB; the two-reactor and
three-reactor processes require identical 1000L SUBs; the process with four parallel reactors needs
its SUBs to be only 500L each.
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bioreactors. In fact, a trend can be observed such that with increasing number of

reactors, the maximum output of the process reduces across all process durations.

In addition, when comparing the normal seed restart decision to the early or im-

mediate seed restart decision, it is clear to see that the latter strategy is superior

to the other. This indicates that the trade-off does not favour a prolonged period

of indeterminate low(er) production as compared to an interval with no production

followed by an indeterminate period of maximum production.

Some of the insights from Figure 5.8 are made clearer in Figure 5.9. For in-

stance, one can see that the gap between the multiple reactors and a single reactor

widens with increasing process duration. With the normal seed restart this trend

holds true for the entire scope of process durations examined. However, when

the seed is restarted immediately upon a failure, this is only true until a process

duration of about 130 days at which point the trend reverses and the difference

in productivity begins to narrow. This is because at higher process durations, the

single reactor process starts to decline in productivity whilst the productivity of

configurations with multiple reactors merely plateaus.

In addition, the marginal difference in productivity reduces with increasing re-

actors is observed. That is to say that, at any given process duration, the difference

in productivity between one reactor and two reactor configurations is larger than

that between two reactors and three reactors which is larger than between three re-

actors and four. This is evident with normal seed restart decisions and more muted

with immediate restart decisions. This observation may be useful in the case of

facility retrofitting if there is a decision to make about adding more bioreactors to

the USP suite(s) in order to increase the scale or capacity of the facility.

5.4 Single-Product Scheduling Strategies

Here, control strategies for a single-product facility are introduced and evaluated.

These strategies are based on simple stock replenishment policies that determine

when to order a new batch (by starting a new seed train) and how much to order

(by setting the process run time).

5.4.1 The (s,B) Inventory Policy

One of the approaches to dealing with stochastic uncertain demand is by trying to

sustain strategic inventory levels at a certain amount. In other words, some safety
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stock is maintained as a buffer to mitigate fluctuations in actualised demand, and

in this case, failure-prone processes.

In this case two decision variables are defined:

1. The re-order level, s

2. The size of batches in the campaign, B

The logic for determining when to start a new seed train is detailed in Algo-

rithm 2. This essentially says that each day the inventory is compared with the

re-order level and will attempt to start a new seed train to start the following day if

the amount in inventory is less than that. Obviously, a new seed train is not started

if one already exists in operation, or if there is an existing USP process that has not

been in operation for as long as the threshold time.

Algorithm 2 Pseudocode of the (s,B) strategy.
1: procedure NEW SEED TRAIN(current time t)
2: STt = the existing seed train at time t
3: USPt = the existing USP operation at time t
4: T ST = the seed train run time
5: T USP = the USP run time
6: T USP

t = time elapsed in USP operation at time t
7: T BT = time required to turnaround bioreactor
8: T THD = threshold
9: T THD = T USP +T BT −T ST

10: if STt == {} then
11: It = the inventory level at time t
12: if USPt == {} OR

(
USPt 6= {} AND T USP

t ≥ T THD
)

then
13: if It ≤ s then
14: Start seed train, STt+1
15: end if
16: end if
17: end if
18: end procedure

With this policy, s has to be sufficiently high so that stock-outs do not occur but

must not be too high such that large inventory holding costs are not accrued. This

must be balanced with an optimal B which if too small would mean more batches

would be needed and lead to an increase in setup costs.
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5.4.2 The (s1,s2,B) Inventory Policy

The second inventory policy was designed to be a potential improvement on the

(s,B) policy by including a third parameter. All three decision variables are identi-

fied below:

1. The re-order point, s1

2. The size of batches in the campaign, B

3. The campaign re-order point, s2

The significance of the campaign re-order point, s2, is such that it (instead of s1)

is compared with inventory in the case where a potential new batch would be part

of the current campaign (i.e., the time between the USP of the latest batch and the

USP of the new batch does not exceed the setup expiry period) to determine if a new

seed train should be started. The reasoning for this policy especially in contrast to

the (s,B) policy is that the new parameter s2 is an attempt to allow the optimisation

to choose values for the policy parameters so that batches can be linked together

or manufactured in close proximity to each other in order to minimise changeover

costs that apply if there is a sufficiently long idle time between two consecutive

batches.

These three decision variables were optimised using a GA for the objective of

maximising expected profit. The logic for determining when to start a new seed

train is detailed in Algorithm 3.

5.4.3 Evaluation of the Scheduling Strategies

Next, the performance of the scheduling strategies previously devised were anal-

ysed. These strategies would identify the best way to schedule batches in the face

of imperfect processes and stochastic demand by determining an optimum process

duration and the right time to start a new seed train (and ultimately a new cell

culture operation). They would be applied in a simulation environment similar to

previous experiments but with a few differences.

Firstly, and most importantly, the demand is due daily and (as previously men-

tioned) is stochastic. The random variable of daily demand is defined as a Normal

distribution, N(µ,(σ)2), where µ is the expected demand and σ is its standard de-

viation; sampled demand is truncated and not allowed to be negative. In practice,
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Algorithm 3 Pseudocode of the (s1,s2,B) strategy.
1: procedure NEW SEED TRAIN(current time t)
2: STt = the existing seed train at time t
3: USPt = the existing USP operation at time t
4: T ST = the seed train run time
5: T USP = the USP run time
6: T USP

t = time elapsed in USP operation at time t
7: T BT = time required to turnaround bioreactor
8: T SEP = the setup expiry period
9: T SEP

t = the time elapsed in setup expiry period
10: T THD = threshold
11: T THD = T USP +T BT −T ST

12: if STt == {} then
13: It = the inventory level at time t
14: if T SEP

t +T ST > T SEP AND It ≤ s1 then
15: if USPt == {} OR (USPt 6= {} AND T USP

t ≥ T THD) then
16: Start seed train, STt+1
17: end if
18: else if T SEP

t +T ST ≤ T SEP AND It ≤ s2 then
19: if USPt == {} OR (USPt 6= {} AND T USP

t ≥ T THD) then
20: Start seed train, STt+1
21: end if
22: end if
23: end if
24: end procedure

this means that:

µ =
yearly demand

360
(5.2)

and,

σ = 0.025× yearly demand√
360

. (5.3)

In addition, the inventory cost is 0.6 RMU/kg/day and since demand is delivered on

a daily basis, material is only discarded when it has reached the end of its shelf life.

The backlog decay is also applied daily at a pro rata rate of the yearly value. This

is detailed in Equation (5.4) where ∆t is the amount of product that is undelivered

at time t, θ is the daily backlog decay rate, Dt is the observed demand at time t,

and St is the product sales at time t.

∆t = θ∆t−1 +Dt −St , ∀ t. (5.4)
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Meaning that each day, any outstanding demand is multiplied by the equivalent

of 360
√

0.25 and the product of that is carried over to the next day. Otherwise, the

parameters used are as detailed in Table 5.3 & 5.6, the cell culture contamination

rate is 10%, and the ATF fouling rate is at 2% (both rates are per the first 60 days).

5.4.3.1 Genetic algorithm parameters

In order to evaluate the performance of the two strategies, they were tested at vari-

ous demand rates. This was also to determine if there were any discernible trends

dependent on the facility utilisation (i.e, the demand).

A GA was designed to tune the parameters in each strategy and its parameters

are as follows: The number of generations was set to be 100, the population size

was 30 with elites of six. The chromosome was made up of three genes for the

(s1,s2,B) strategy: the first two representing s1 and s1 respectively are real-valued

whilst the third representing B is integer. In the case of the (s,B) strategy, there are

two genes — the first for s and the latter for B. The selection process for individ-

uals to be crossed over was a tournament with a size of two. The probability of

crossover being applied was 0.9 and the crossover operator was uniform crossover.

Probability of a gene being mutated was 0.3 and 0.5 for the (s1,s2,B) strategy and

(s,B) strategy, respectively. Gaussian mutation was used (with a standard deviation

of 10) for the real-valued genes whilst the integer gene used (±1) random walk as

its mutation operator with the probability 0.9 that the walk continues. Random

walk mutation performs a random walk starting at the current value of the gene. At

each step in the walk it sets a variable k to either 1 or −1 (with uniform probabil-

ity). It then attempts to add k to the current value. Then with a probability value

of 0.9 it iterates another step, or else it immediately quits the walk. At the end of

the walk, the gene is set to the current value, as was modified during the walk. The

minimum and maximum values for the genes in the chromosome are detailed in

Table 5.7.

For both strategies, the GA was run for 50 independent runs and the results

which are described and analysed below are based on averages of these runs unless

otherwise specified.

5.4.3.2 Comparison of scheduling strategies

As well as being compared to each other, the strategies were also compared with

two ‘standard’ strategies, SSH1 & SSH2. These are based on the (s,B) strategy but
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Table 5.7: The minimum and maximum values for genes in the chromosome.

Parameter Type Min. value Max. value

s continuous 0 100
s1 continuous 0 100
s2 continuous 0 100
B integer 14 120

Table 5.8: Comparing the profit (in RMU) for the different strategies at various
annual demand targets. Demand is a random variable which follows a Normal
distribution as previously described where the values in this table correspond to
µ . Values reported are mean ± std. error, and in the case of the GA optimised
strategies are over 50 runs. Bold indicates best performance.

Demand (kg) (s1,s2,B) (s,B) SSH1 SSH2

220 95661 ± 2.0 95650 ± 2.0 93893 ± 8.0 94185 ± 7.8
250 109102 ± 1.9 109095 ± 1.8 107364 ± 9.0 107471 ± 8.9
280 122607 ± 1.9 122612 ± 2.5 120814 ± 9.9 120837 ± 10.2
310 136179 ± 2.7 136182 ± 2.0 134247 ± 11.1 134300 ± 11.1
340 149738 ± 2.2 149732 ± 3.0 147486 ± 12.2 147784 ± 12.3
370 163191 ± 2.6 163187 ± 3.4 161083 ± 13.6 161275 ± 13.4
400 176427 ± 4.1 176430 ± 2.2 174615 ± 15.4 174743 ± 14.9
440 192979 ± 3.1 192973 ± 3.5 185191 ± 27.0 192379 ± 18.5

in both of these cases, s is set so that there is not more than a 5% probability of

a stock-out during the lead time. Then for SSH1, B is chosen to be 60 days and

for SSH2, the optimal B is chosen via an enumerative search. To evaluate SSH1 &

SSH2 at the different demands, the strategies were simply simulated 20,000 times

with the same random number seeds used to evaluate the performance of the final

solutions evolved by the GA. The results of these experiments and comparisons are

summarised in Table 5.8.

From these results, one can see that the (s,B) and (s1,s2,B) strategies are more

or less similar in terms of overall performance. This would mean that the extra

parameter in the (s1,s2,B) strategy does not offer any advantages in achieving a

superior performance. Also, the ‘standard’ strategies are seen to perform worse

than the other strategies. SSH2 performs better than SSH1 across all demand scales

which adds more merit to the idea of selecting process durations based on the

demand faced, especially at high demands. In Table 5.9 the values of parameters

for the best (s,B) policy and ‘standard’ strategies are directly compared over the
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Table 5.9: Summary of GA evolved parameters for the (s,B) policy compared with
that of the ‘standard’ strategies. Units for parameter s and annual demand are in kg
and in days for parameter B. Values for (s,B) are the out of all GA runs. Note that
SSH1 and SSH2 share the same values for s.

(s,B) SSH1 SSH2

Demand s B s B B

220 11.6 52 28.2 60 46
250 14.6 53 32.1 60 53
280 16.7 56 36.0 60 59
310 19.2 62 39.8 60 61
340 20.7 70 43.7 60 71
370 23.7 84 47.5 60 85
400 26.4 103 51.4 60 105
440 35.4 106 56.5 60 110

different demand scales. The parameter s is always larger in the SSH1 & SSH2

case and with increasing demand load, the difference becomes larger. However,

there is a step jump at 440 kg where that difference narrows slightly. The run times

for SSH2 are generally similar to that of the (s,B) policy. On the other hand, at 310

kg and 280 kg, the value of B for the (s,B) policy almost equals that of the SSH1

strategy and exceeds it by a wide margin at larger demand loads. These higher

demands require greater productivity which are achieved by longer run times.

The implications of this are that a facility operating at 75% or higher of its

maximum capacity6 requires increasingly longer run times for its cell culture and

using a ‘standard’ run time would mean the facility is being run inefficiently. Be-

low that but above 50% of max. capacity, the variance in optimum run times over

different demands is much smaller and a more moderate run time should be im-

plemented. However, it remains important that this is paired with a good reorder

level, otherwise performance (profit) will suffer.

In order to determine the importance of each parameter to the performance of

the strategy, a ‘rough’ visualisation of the (s,B) search space was generated. This

is presented in Figure 5.10 for an expected annual demand of 440 kg. It shows

that for shorter process run times, B, the reorder level, s does not affect the perfor-

mance. This is because shorter processes are not as productive and so inventory

is perpetually below the reorder level meaning that new batches are always being

6Maximum capacity here is defined as the maximum throughput (or productivity) of 456 kg per
annum as shown in Figure 5.7 on page 81.
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Table 5.10: Summary of GA evolved (s,B) policy parameters for the various
USP:DSP process configurations. Units for parameter s in kg and in days for pa-
rameter B. The best policy out of all GA runs is reported for each configuration.

Number of reactors s B

1 35.3 113
2 34.9 107
3 40.7 109
4 42.3 116

ordered. Past process durations of 55 days or so, the reorder level becomes in-

creasingly more significant to the point that process duration has minimal effect

on profit. Here, the reorder level has to be large enough to keep inventory levels

sufficiently high.

5.4.3.3 Comparison of parallel-bioreactor process configurations

The (s,B) strategy was used to compare the different process configurations at a

mean yearly demand of 440 kg — processes with multiple parallel bioreactors are

compared with a configuration with just one larger reactor. The purpose of this is

twofold. The first is to determine the optimal economic performance of each pro-

cess configuration. The second is to observe if there is a difference in the optimised

strategy parameters. On one hand, because the configurations with fewer reactors

have a higher productivity at comparatively shorter process run times, configura-

tions with more reactors will need longer run times to compensate especially at a

high demand load. However, with more consequential failures in configurations

with fewer reactors, the safety stock needed to mitigate stock-outs would need to

be larger.

Fifty runs of the GA were therefore run for each of the process configurations

and the results over these optimisations are reported below. In the cases with mul-

tiple reactors, the ‘early/immediate seed restart’ response (as described previously

in Section 5.3.2 on page 83) is used if the cell culture fails before its scheduled

end. The GA parameters are identical to previously described except the minimum

value for B was increased to 60 days and the number of generations was set to 50.

This was done to focus the search on the space illustrated in Figure 5.10 on the

preceding page.

Table 5.11 on the next page summarises the performance of each configura-
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Table 5.11: Profit and other characteristics for the (s,B) strategy at the various
USP:DSP process configurations. Figures reported are in RMU (apart from CSL)
stated and are an average over 50 runs. White background indicates best per-
formance and darker shades denote worse performance for each metric; figures
highlighted in colour are the differences between the best and performance in that
scenario.

1:1 2:1 3:1 4:1

Profit 192977 -1713 -3188 -4564
Revenue 217793 -475 -1417 -2975
Total costs 24816 1238 1771 1589

Seed 85 11 16 23
USP 5310 602 1032 830
Replacement ATF filters 19 15 31 8
Cell culture setup 491 505 880 671

DSP 17086 622 607 457
Changeover 19 6 2 36
Storage 611 439 254 870
Backlog penalties 690 119 345 705
Wastage 109 69 145 205

CSL (%) 99 -0.22 -0.65 -1.35

tion. This shows the single-reactor configuration performing better than the other

process configurations and a trend of decreasing profit with more parallel reactors.

This difference in profits is mainly driven by high(er) USP costs, especially in the

3:1 configurations. This is most likely due to the fact that SUBs get comparatively

cheaper the larger they are (i.e., a 2000L SUB costs less than two 1000L SUB). At

the 4:1 process configuration, the difference is due to significantly lower revenue.

It is possible that this is because with four reactors, there are often failures, causing

lower production/productivity which leads to more lost sales (reflected by much

higher backlog penalties).

Meanwhile Table 5.10 reports the best optimised (s,B) parameters for each of

the process configurations. It is worth noticing that generally, the reorder level

— and consequently the amount of safety stock required — increases with more

reactors in the process configuration. This is contrary to what was initially pre-

dicted; it appears instead that more safety stock is needed because these processes

are less productive. The process duration also somewhat follows this trend; al-

though the two- and three-reactor configurations have slightly lower duration than

that of the 1:1 process, the run times increase when going from 2:1 to 4:1 config-
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urations. It may be that at 2:1 and 3:1 configurations, the need to mitigate process

failure dominates the lower productivity but at 4:1 configurations a longer run time

is required to compensate for lower productivity exacerbated by a large demand

load. Multi-reactor process configurations have more process failures and are less

productive which necessitates longer run times to compensate and meet demand.

However, with longer durations the risk of failures increases even more and may

require higher safety stock levels to mitigate stock-outs (or higher reorder levels to

increase the frequency of batches).

5.5 Summary

This chapter set out to investigate the scheduling considerations of operating perfu-

sion cell culture processes prone to failure especially through the prism of process

run times. This involved exploring the economics of the perfusion cell culture

process, identifying appropriate scenarios for using short or long batches, as well

as determining the impacts of process configuration and scheduling strategies and

policies.

To achieve this, a custom object-oriented simulation framework modelling con-

tinuous bioprocesses in a scheduling environment was first proposed and devel-

oped. In addition to a bioprocess and scheduling model, its components include a

custom discrete-event simulation engine, and modules for implementing schedul-

ing policies and optimisation algorithms to tune them.

Utilising this framework, the work in this chapter found that given the assump-

tions made, optimum run times are very sensitive to demand and process failure

rates. Despite this, really short batches (i.e., less than three weeks) are sub-optimal

even in high failure or low demand scenarios. Utilising parallel reactors, which

may offer flexibility, is less productive than one equivalent larger reactor. This

difference, however, heavily depends on the response to a reactor failing. The su-

perior option is to implement an immediate seed restart response — this limits the

dip in productivity in a 4:1 configuration, for example, to just above 95% of the 1:1

configuration as compared to normal seed restart which can go as low as around

76%.

There is no major difference between the (s,B) and (s1,s2,B) strategies for

scheduling continuous bioprocessing and anticipating stochastic events. So the

former strategy would be preferred as it is simpler and requires less effort to tune.
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Comparing the (s,B) policy with ‘standard parameters’ revealed that operating the

facility at more than 75% of maximum capacity would require run times signifi-

cantly longer than the ‘standard’ 60 days otherwise performance would suffer; it is

also necessary to pair the run time with a good value for the reorder level.

While this chapter focused entirely on a single product, the following chapter

will, using the framework presented here, tackle a scenario with a multi-product

scenario. There, scheduling decisions or policy parameters for each product cannot

be ‘greedy’ but have to be complementary to the others in the portfolio.
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Chapter 6

Dynamic Scheduling for
Continuous Bioprocesses in a
Multi-Product Facility

6.1 Introduction

Prior scheduling or planning frameworks for bioprocesses are static, determinis-

tic, and almost exclusively consider fed-batch processes. Those that model any

continuous processes either do not account for uncertainty — either in demand,

process/equipment failure, and/or process titres and yields — or do not intend on

optimising facility schedules. As previous models did not aim to optimise sched-

ules or capacity plans (Pollock et al., 2013b; Farid et al., 2014), there is a research

gap in investigating optimal scheduling and capacity planning strategies for these

continuous processes. Similarly, deterministic planning models (Siganporia et al.,

2014) did not focus on uncertain events — so require complete re-optimisation

after stochastic events.

Take, for example, a scheduling & capacity planning scenario for a multi-

product facility where two products are scheduled and are to be manufactured. In

the event a batch of the first scheduled product fails, restarting another batch would

lead to the schedule running late and demand (of that product and/or the subse-

quent product) being delivered late. This raises the question of what the optimal

rescheduling strategy is. One can simply carry on the campaign until the demand

target is met, thereby moving back everything else scheduled later. Conversely,
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one may decide to reschedule the manufacturing campaign(s). Deciding when to

reschedule and how to implement a strategy is another question. An alternative

approach to constant re-optimisation and rescheduling is to have a dynamic policy

that does not prescribe an entire schedule ahead of time. Instead it makes just-

in-time scheduling decisions, reacting to and anticipating changes such as failed

batches, fluctuating titres & yields, and uncertain demand.

For most perfusion processes, the duration of the cell culture operation (the

process run time) is fixed for each batch. However it may be optimal to allow the

duration to be flexible. That is to say, if a 60 day batch produces 20 kg, and the

yearly demand is 24 kg, instead of running two 60 day batches it may be better to

run either a single longer batch or run two or more smaller batches. So the relevant

question is to determine how beneficial is it for the batches to be of flexible duration

and how best that is implemented.

In addition, it is worth noting that the reviewed literature on the SLSP with

maintenance schedules (see Chapter 3) is not exactly transferable to the problem

considered in this chapter. This is because ‘maintenance scheduling’ is inextrica-

bly linked to lot-sizing decisions in this case while the previous literature considers

them as separate decisions. Equipment failure in this chapter is an increasing func-

tion of process run-time and therefore lot-size, so a decision on lot-size may be

seen as implicitly scheduling preventive maintenance. However it seems prudent

to consider process run-time as only a lot-sizing decision and treat its preventive

maintenance and process restorative properties as a side-effect.

This chapter has multiple aims. The first is to evaluate the previously de-

scribed model (Chapter 5 on page 62) on a multi-product facility. The second is to

adapt and develop dynamic scheduling policies that make operational decisions in

a multi-product facility. These policies anticipate and react to changes in the simu-

lation environment (such as uncertain demand and process failure events). Finally,

the relative benefits of a scheduling policy capable of implementing batches with

flexible process run times is investigated.

To achieve this, a hyper-heuristic is utilised to tune the parameters of policies

tailored to the problem of scheduling multiple perfusion products on a facility. The

policy search comprises a simulation-optimisation approach which uses an EA as

an optimisation algorithm and a custom stochastic bioprocess scheduling model to

evaluate performance of candidate policies. The use of scheduling policies allows

natural reactions to demand changes and process failure even if no firm schedule is
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generated in advance.

As a result, existing policies from the SELSP or SCLSP literature are tailored

to the peculiarities of biopharmaceutical manufacturing, in particular the semi-

continuous operation of perfusion processes. In addition, it proposes a novel policy

with a custom look-ahead heuristic which enables better performance on the test

problem. Third, process run times are optimised for each product in the portfo-

lio. Finally, a neural network representation is proposed and implemented for a

scheduling policy that adapts process run times based on the current state of the

environment.

The remainder of this chapter consists of the problem statement and descrip-

tion in Section 6.2 followed by detailed descriptions of the scheduling policies

and representations in Section 6.3 on page 102, and the EAs used as optimisation

algorithms for parameter tuning in Section 6.4. The case study on which the hyper-

heuristic is evaluated is laid out in Section 6.5, which is followed by a report and

discussion of the empirical evaluation in Section 6.6 on page 117.

6.2 Problem Domain

6.2.1 Problem Description

The problem that this chapter considers is a variant of the SELSP applied to bio-

pharmaceutical manufacturing. It involves a facility and a set of drug products

PF , each associated with a bioprocess which, when operated, manufactures the

corresponding product. The state of the facility, m, refers to the product, p, whose

bioprocess is currently in operation on the facility or is 0 (zero) if idle. The biopro-

cesses are comprised of the same multiple stages (unit operations) and are operated

in a semi-continuous manner — the bioprocess has to be operated in multiples of a

pre-defined batch length (i.e., process duration or run-time) but processed material

is made available over the course of the batch and not just at the end. In general, no

more than one bioprocess may be in operation in the facility at any time to avoid

cross-contamination issues and ease the validation burden, though there is some

exception to this which allows the earlier stages of a subsequent process to be in

operation simultaneously with the latter stages of the previous process.

In addition to stationary stochastic demand, the manufacturing process is prone

to equipment failure of differing types, risks, and consequences without the ability

to explicitly carry out preventive maintenance (PM) per se. Equipment failure is a
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function of process duration so ending a batch may, in a sense, be construed as PM

but process duration is primarily a lot-sizing decision and treated as such. Finally

this implementation uses a finite time horizon and discrete-time periods of one day

each which is effectively continuous time given the time-scales of the bioprocesses

and the stochastic events.

The objective is to maximize the overall profit, calculated as total revenue mi-

nus the costs for production, storage, process changeover, wastage, and backlog

penalties given a facility with different manufacturing yields and manufacturing

costs for the different products.

6.2.2 Notation

The indices p and t denote individual products and discrete time points respec-

tively. The subset characterising the facility being considered is PF , the set of

products produced by the facility.

Parameters

αp lead time for production of first DSP batch of product p, days

δp unit cost charged as penalty for each kilogram of unfulfilled demand of

product p, RMU per kilogram per day

ζp shelf-life of product p, days

µD
p mean daily demand of product p, kilograms

ρp unit cost for each stored kilogram of product p, RMU per kilogram

σD
p standard deviation of daily demand of product p, kilograms

θ daily backlog decay rate

υp unit sales price for each kilogram of product p, RMU per kilogram

ψp changeover cost for starting a campaign of product p, RMU

Ap sum of all costs incurred up till the end of ramp-up for first batch in cam-

paign of product p, RMU

brp bioreactor yield per daily perfusion harvest, kilograms

ydp overall process yield, %
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State variables

∆pt amount of product p which is late at time t, kilograms

Dpt observed demand of product p at time t, kilograms

Ipt the amount of product p stored at time t, kilograms

mt the product being manufactured on the facility at time t, 0 if idle

st the state of the system at time t

Spt the amount of product p sold at time t, kilograms

Z(i)
t the set of products p, such that Ipt ≤ Y (i)

p

Decision variables (policy parameters)

B run time of perfusion cell culture batch, days

Q(i) product cycle sequence

w neural network connection weights

Y (1) reorder point, kg

Y (2) order-up-to level, kg

Y (3) can-order point, kg

Y (4) can-order-up-to level, kg

Y (5) reorder point, kg (BSP3)

6.3 Scheduling Policies

The scheduling policies laid out here are tailored for the problem described in

Section 6.2. These policies can be grouped into three main representations: a fixed

cyclic policy, a base-stock policy, or an Artificial Neural Network (ANN).

6.3.1 Fixed Cycle Policies

These policies function on the basis that the facility will manufacture batches ac-

cording to the sequence associated with the specific policy. The main parameter

for this type of policy representation is a product sequence and process run times.

Depending on the complexity, it may optionally include parameters for inventory

levels to determine how many batches to order. In each policy, one sequence is

defined while the process run times and inventory parameters are defined for each

product in the scenario the policy is designed for. Three of these fixed cycle poli-
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cies are laid out here.

6.3.1.1 Basic fixed cycle policy (FCP1)

This policy ensures that the manufacturing facility follows a fixed sequence of

batches. The decision variables for this policy are:

1. The sequence of product batches, Q(1)

2. The process run time of batches in the campaign, B

The sequence is made up of a number elements which can be one of any p in PF

which indicates that a single batch of product p is to be manufactured with a run

time of Bp. In addition, any element in the sequence may be zero (0) which indi-

cates that the facility should be made idle. This policy is implemented by cycling

through each element in the sequence, producing a batch of the product the item

corresponds to, and then moving to the next element in the sequence — when it

gets to the end of the sequence, it starts from the beginning again. Consecutive

identical but non-zero elements in the sequence mean that consecutive batches of

that product are produced. However, consecutive zeroes in the sequence are pruned

down to one instance1 which means that the length of sequences |Q| can be vari-

able. The time the facility spends being idle is determined by the inventory levels

of the products. Specifically, idle time is ended when any product’s run-out time

falls below 90 days. At that point, the facility will then move on to the next prod-

uct in the sequence. Also, if a batch ends prematurely due to process failure, the

facility will move to the next element in the sequence.

6.3.1.2 Fixed cycle with order-up-to level (FCP2)

In addition to a sequence and process run time, this policy also has a third set of

decision variables. The decision variables are defined below:

1. The sequence of product campaigns, Q(2)

2. The order-up-to level, Y (2)

3. The process run time of batches in the campaign, B

1A sequence with a leading and trailing zero will have the leading element preserved and the last
element deleted.
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Instead of a sequence of product batches in FCP1, this policy has a sequence of

product campaigns. The difference being that each element in the sequence of

campaigns commits the facility to produce at least one batch (with run time of Bp)

of the associated product. The facility will move on to the next product in the

sequence after the batch that brings the inventory of the currently manufactured

product past its order-up-to level. The facility does not go idle until all products

in the sequence are above their respective order-up-to levels. However, if product

Q(2)
(i+2) mod |Q| is below its order-up-to level but the product in the sequence preced-

ing it Q(2)
(i+1) mod |Q|, is not, the facility will still need to produce at least a batch of

Q(2)
(i+1) mod |Q| before proceeding to Q(2)

(i+2) mod |Q|. Again, when the facility reaches

the end of the sequence, it returns to the start and begins the sequence again in a

cyclical fashion. Each element in the sequence can be any p in PF but consecutive

identical elements in the sequence are pruned down to one instance (in the same

manner as consecutive zeroes in FCP1) so the sequences can be of variable length.

6.3.1.3 Fixed cycle with skip-ahead (FCP3)

This policy, adapted from Löhndorf and Minner (2013), is an improvement to

FCP2. The decision variables are:

1. The sequence of product campaigns, Q(2)

2. The order-up-to level, Y (2)

3. The process run time of batches in the campaign, B

FCP3 is identical to FCP2 apart from the fact that it can skip ahead in the sequence.

What this means is that if a facility is to move on to Q(2)
(i+2) mod |Q| but the product is

already above its order-up-to level, it does not need to manufacture that product so

it skips ahead to the next element in the sequence that has its inventory below its

order-up-to level.

6.3.2 Base-Stock Policies

Three base-stock policies (BSPs) are presented here, two of which are adapted from

Löhndorf and Minner (2013), and the third is a novel development. The adapta-

tions from the versions presented in that previous work are necessary because the

problem in this chapter introduces processes that can fail and which consist of a
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fixed sequence of multiple batch (and semi-continuous) unit processes. In addi-

tion, there is a need to identify an optimum run time for one of the constituent unit

processes — the perfusion cell culture in this case. Therefore this problem setting

differs from that in Löhndorf and Minner (2013) because here, there are batches

that require their run times optimised. Also, since the processes here are composed

of multiple stages, the decision to make the next batch has to be made before the

current batch is over. This means that the amount of product made and delivered

in that time lag needs to be estimated and taken into account.

In this case, because the seed train for a subsequent batch can be started be-

fore the completion of the current batch, the decision epoch begins at the seed-

restart threshold or the changeover threshold. These thresholds are determined by

the bioreactor turnaround time, and the changeover time between products respec-

tively. Decisions are also made once the cell culture is contaminated and fails or

if the facility is idle. As a result of the lag between the point when a decision

is required and the end of the current batch, the policies presented here will take

into account the expected extra material that would be produced by the end of the

current batch (if the facility is not idle). So, γ is set to be the estimated net produc-

tion (i.e., material produced minus expected demand) in the interval between the

decision-making time point and the end of the batch. Decision epochs end when a

decision to start a batch (of any product) has been made or selected.

6.3.2.1 Simple base-stock policy (BSP1)

This is the first of the policies adapted from Löhndorf and Minner (2013). In this

case, there are three decision variables defined for each product:

1. The reorder point, Y (1)

2. The order-up-to level, Y (2)

3. The process run time of batches in the campaign, B

The logic for determining when to start a new seed train is detailed in Algo-

rithm 4. This states that if the facility is idle and there is a product p with inventory

below its Y (1), a new batch — with a cell culture run time of Bp days — for this

product is initiated. If there is more than one product to which this applies, the

product selected to be manufactured next is the one with the smallest run-out time

— i.e., time till product runs out of stock, Ip/µp, where Ip is inventory of product
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Algorithm 4 Pseudocode of BSP1.
1: procedure BSP1(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t and end of its batch
6: µp = the expected demand of product p
7: Zt = {p : Ipt ≤ Y (1)

p } ∀p ∈ PF
8: if mt > 0 AND Imt + γmt < Y (2)

m then
9: Start new seed train of product mt

10: else if Z(1)
t 6= {} then

11: Start new seed train of product argmini∈Zt{Iit/µi}
12: else if ∀p : Ipt > Y (1)

p then
13: Keep facility idle
14: end if
15: end procedure

p and µp is its expected demand. Once the facility is manufacturing a product,

it does not go idle or switch products (changeover) until it has reached Y (2). The

drawback of this is that if the inventory of another product is falling critically low,

the facility cannot be switched to the critical product to prevent a stock-out.

6.3.2.2 Can-order base-stock policy (BSP2)

This policy was designed to be an improvement on BSP1 by including two more

parameters. This allows the control policy to interrupt a campaign (a set of consec-

utive batches of the same product) if the inventory of another product falls critically

low. The decision variables for each product are identified below:

1. The reorder point, Y (1)

2. The order-up-to level, Y (2)

3. The can-order point, Y (3)

4. The can-order-up-to level, Y (4)

5. The process run time of batches in the campaign, B

The logic for determining when to start a new seed train is detailed in Algo-

rithm 5. If the facility is idle and there is a product p with inventory below Y (3), a
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Algorithm 5 Pseudocode of BSP2.
1: procedure BSP2(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t and end of its batch
6: µp = the expected demand of product p
7: Z(1)

t = {p : Ipt ≤ Y (1)
p } ∀p ∈ PF

8: Z(3)
t = {p : Ipt ≤ Y (3)

p } ∀p ∈ PF
9: if mt > 0 AND Imt + γmt < Y (4)

m then
10: Start new seed train of product mt

11: else if Z(1)
t 6= {} then

12: Start new seed train of product argmin
i∈Z(1)

t
{Iit/µi}

13: else if mt > 0 AND Imt + γmt < Y (2)
m then

14: Start new seed train of product mt

15: else if Z(3)
t 6= {} then

16: Start new seed train of product argmin
i∈Z(3)

t
{Iit/µi}

17: else if ∀p : Ipt > Y (3)
p then

18: Keep facility idle
19: end if
20: end procedure

new batch for this product is started. The campaign cannot be interrupted until the

inventory of that product exceeds Y (4). When this occurs, changeover to another

product is allowed if its inventory level is less than Y (1) — again any ties are set-

tled by picking the product with the smallest run-out time. However, if there are

no products with inventory below their reorder points, the campaign may continue

until it exceeds Y (2).

So the facility does not go idle until all products are above their can-order

points. In this manner, this policy works similarly to BSP1 but with the can-order

point and the can-order-up-to level it enables interruptions. In general, Y (1) ≤
Y (3) ≤ Y (4) ≤ Y (2) and BSP1 can be considered a special case of BSP2 where

Y (1) = Y (3) and Y (4) = Y (2). The disadvantage of this policy is that with more

parameters (compared to BSP1 for example), it requires a greater computation

effort in searching for good parameters. In addition, due to the ability to interrupt

campaigns, this policy may introduce more product changeovers which require

substantial operational and validation effort in practice.
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6.3.2.3 Forecasting base-stock policy (BSP3)

This policy is a novel contribution proposed here and utilises a ‘look-ahead’ heuris-

tic. The following decision variables are identified:

1. The reorder point, Y (5)

2. The process run time of batches in the campaign, B

Algorithm 6 Pseudocode of BSP3.
1: procedure BSP3(current time t)
2: PF = the set of products manufactured
3: mt = the product manufactured at time t, 0 if idle
4: Ipt = the inventory level of product p at time t
5: γpt = the estimated net output of p between t and end of its batch
6: µp = the expected demand of product p
7: Z(5)

t = {p : Ipt ≤ Y (5)
p } ∀p ∈ PF

8: CE(π) = the estimated cost of manufacturing a permutation, π

9: if Z(5)
t 6= {} then

10: S(Z(5)
t ) = all permutations of products in Z(5)

t
11: Select cheapest permutation, π∗ = argmin

π∈S(Z(5)
t )
{CE(π)}

12: Start new seed train of product π∗1
13: else if ∀p : Ipt + γpt > Y (5)

p then
14: Keep facility idle
15: end if
16: end procedure

When the inventory of a product p falls below the reorder point during a deci-

sion epoch (i.e., during idle time, or after a batch ends or is contaminated), a new

batch of that product is started with cell culture run time of Bp. However, if there

is more than one product with inventory below Y (5), the heuristic first generates

all possible permutations of manufacturing a single batch of each of the products

with inventory less than Y (5). Next the heuristic estimates the costs of each per-

mutation. This estimated cost is the projected sum of inventory costs, lost sales

penalties, and any changeover costs assuming that the processes will be ‘perfect’

and the demand realised is equal to the mean or mode of its probability distribution

— other manufacturing costs will be the same regardless of manufacturing permu-

tation. Cost estimation is done by generating a function describing the piecewise

linear estimation of each product’s inventory before, during, and after production

of its corresponding batch within the permutation time frame. The inventory cost
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for each product is the product of the inventory rate and the absolute value of the

sum of positive integrals of the function; and the lost sales penalty is the product

of the backlog penalty cost and the absolute value of the sum of negative integrals

of the function. The permutation of batches that has the lowest estimated cost is

selected and a batch of the first product in the permutation is started.

It should be noted that this policy does not automatically schedule the entirety

of the sequence of cheapest permutation but at the next decision time, the heuristic

generates a new set of permutations, evaluates them, and then makes a decision

based on the new evaluations. The logic of this policy is laid out in Algorithm 6.

The drawbacks of this policy include the need to enumerate all permutations of

elements in Z(5) which, in the worst case, gives the policy a complexity of O(n!)

where n is the number of products. In addition, the cost estimation is not exact and

does not anticipate or account for the possibility of process failure.

6.3.3 Artificial Neural Network Policy

This policy type is made up of an Artificial Neural Network (ANN) representation

of a priority rule. For each decision available to the neural network to make, a

priority value is computed using state variables. The decision that has the highest

computed priority is then chosen and implemented. The decision-making that is

available to this policy is flexible because decisions are made at very regular deci-

sion epochs. These decision epochs are generally each day — the exception being

during the early stages of a new batch.

Every day, this calculates priority values for these set of decisions:

1. Keep/make the facility idle

2. Continue the current batch (if there is one) for another day

3. Start a new batch of product pi ∀i

The network is structured as a fully connected feed-forward neural network

with a single hidden layer. This ANN representation has been shown to give

good results when computing priority indices in a stochastic dynamic environment

(Branke et al., 2015). The network’s input layer comprises information on the state

of the system and a bias node that is always set with the value of 1. Apart from

the bias node, there are 2n+ 2 input nodes, where n is the number of products.

Of those nodes, n+ 1 reflect the state of the facility m: one for each p, plus one
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Figure 6.1: Illustration of ANN representation of priority rule for a scenario with
two products and three available decisions. Both input and output layers have three
nodes and the hidden layer has two nodes (the bias node and its connections are
not shown in this figure).

for when the facility is idle. The node corresponding to the observed state of the

facility is set to an input value of +1 while the others are set to −1. Another n

nodes correspond to the inventory or run-out times of the different products. The

last input node represents how long the current batch has been in operation. Every

node in the hidden layer is connected with every node in the input layer. The out-

put layer comprises n+2 nodes and every node in that layer is connected with all

the nodes in the hidden layer. Each of the output nodes corresponds to one of the

decisions mentioned previously.

Each neuron computes the function described below in Equation (6.1) as its

output value.

out(z,w) = tanh

(
N

∑
i=1

wizi

)
. (6.1)

Here, N is the number of incoming edges, the vector z contains the activation levels

(i.e, output values) with an incoming connection to the neuron, and w is the weight

vector specifying a weight for each incoming connection. This means that in the

case of the neurons in the input layer, w and z will each have one element and the

element in w will be equal to 1.

As a result, the number of weights in this network can be calculated as in
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Equation (6.2). Where Noutput is the number of neurons in the output layer, Ninput is

the number of neurons in the input layer (excluding the bias node), and Nhidden is

the number of nodes in the hidden layer.

Noutput +Nhidden(Ninput +Noutput +1). (6.2)

Therefore the priority value for any given decision corresponding to its output node

u is calculated as:

priority(u,s) = tanh

(
wBO

u +
Nhidden

∑
h=1

wO
u,h tanh

(
wBH

h +
Ninput

∑
i=1

tanh
(
wH

u,h,isi
)))

. (6.3)

In Equation (6.3): s is the vector containing the attributes that describe the state

of the system; wO is the weight matrix for the connection weights from the hidden

layer to the ouput layer; wH is the weight array for the connection weights from

the input layer to the hidden layer; wBO is the vector of connection weights from

the bias node to the output layer; and wBH is the vector of connection weights

from the bias node to the hidden layer. Therefore, it is these weights (i.e., wO, wH ,

wBO, wBH) that determine the policy (and its quality) and what the optimisation

algorithm will search for during its procedure.

This neural network approach implicitly optimises process run times but also

means that they can be flexible — i.e., each batch of the same product does not

have a fixed run time. This means a batch can be cut short in order to change over

to a more critical product in reaction to a change in the state of the environment.

Figure 6.1 shows an example of a neural network structure.

6.4 Optimisation Algorithms

Evolutionary algorithms were used to tune the parameters of the scheduling poli-

cies. Specifically, the performance of a GA and a CMA-ES was compared for

the optimisation of the FCP and BSP parameters; for the ANN, only a CMA-ES

is used. These were implemented in JavaTM using the ECJ Library (Version 24)

(Luke, 1998).

The genomes used to represent BSPs were designed to deal with the constraints

on policy parameters. For example, a BSP1 policy needs to have its parameters

such that Y (1) ≤ Y (2) and a BSP2 policy needs its parameters so Y (1) ≤ Y (3) ≤
Y (4)≤Y (2). This is illustrated in Figure 6.2, where instead of the genome represent-
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Figure 6.2: (a) Structure of a BSP2 policy chromosome for a facility manufacturing
three drug products where the process run times are simultaneously optimised.
(b) Structure of an FCP2 or FCP3 policy chromosome with max. sequence length
of 12, and three products where run times are optimised.

ing the inventory thresholds directly, the difference between adjacent parameters is

encoded. The ranges for the gene encodings are detailed in Table 6.1.

All results reported are an average of 50 runs unless otherwise stated. The

parameters of the two EAs deployed are detailed below.

6.4.1 Genetic Algorithm

A GA was designed to optimise the parameters in each BSP and FCP strategy. The

GA parameters chosen are as follows: the number of generations was set to be
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200, the population size was 30 with elitism2. The genomes were determined by

the sub-type of policy and the number of products.

So, for the BSPs, if the policy did not simultaneously optimise process run

time, the length of the chromosome would be the number of parameters in the

policy multiplied by the number of products. In the case where the policy was to

also optimise the process duration, then additional genes for each product would

be added to the chromosome. The first segment of the chromosome representing

the policy parameters for each product were real-valued whilst the last few genes

representing the process duration were integer (see Figure 6.2).

If process run times were not optimised, the length of the chromosome repre-

senting an FCP1 policy was the maximum sequence length. For FCP2 and FCP3,

genes for each product for the order-up-to levels are added. And in the case that

run times are also optimised, additional genes for each product would be added

to the chromosome. The first segment of the chromosome coding for the prod-

uct sequence and the third segment representing the process run times are integer.

The middle segment coding for the policy parameters for each product, meanwhile,

were real-valued (see Figure 6.2).

The selection process for individuals to be crossed over was a tournament3

(with replacement) with a size of two. The probability of crossover being applied

was 0.9, and the crossover operator was uniform crossover for the BSPs or two-

point crossover in the case of the FCPs. Probability of a gene being mutated was

the inverse of the chromosome length (i.e., 1/chromosome length). Gaussian muta-

tion was used (with a standard deviation of 6) for the real-valued genes. The integer

genes representing process run times used random walk (±1) as its mutation oper-

ator with the probability 0.9 that the walk continues. For the segment encoding the

sequence, shift mutation was used which entails removing the element in the se-

quence and re-inserting it in a new random position. The minimum and maximum

values for the genes in the chromosome are detailed in Table 6.1.

6.4.2 Covariance Matrix Adaptation Evolution Strategy

As previously described in Chapter 3, the CMA-ES algorithm is a state-of-the-art

EA for difficult black-box optimisation problems in continuous domain. Here, a

2The elitism implemented was such that the fittest six individuals in the population each genera-
tion (the elites) are carried over to the next generation automatically.

3This was used instead of stochastic universal sampling (SUS) because SUS does not work with
the negative fitness values that some solutions produced.
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Table 6.1: The minimum and maximum values for the genes in the chromosome.

Gene Type Min value Max value

Y (i), Y (i)−Y ( j) continuous 0 60
Q(1)

i integer 0 n
Q(2)

i integer 1 n
B integer 14 120

population of λ new candidate solutions is sampled at every generation from a

multi-variate normal distribution. The mean of the distribution is updated by tak-

ing a weighted average of selected points from the current sample. The covariance

matrix is also incrementally updated using a self-adaptation strategy to improve

the likelihood of successive search steps. As part of the covariance matrix adapta-

tion, the algorithm implements step-size control. This is to ensure longer steps are

taken instead of more but smaller steps in the same direction, or that shorter steps

are taken instead of longer steps that cancel out each other. The aim of this is to

prevent premature convergence but allow fast convergence to an optimum by mak-

ing the expected consecutive movements/steps of the distribution approximately

orthogonal.

The CMA-ES does not have many user-specified parameters, as a lot of them

are calculated based on the chromosome specified. As a result the default settings

were used (Hansen and Ostermeier, 2001). The population size λ is by default

4+ b3ln |x|c where |x| is the size of the genome x; a weighted average of bλ/2c
individuals is used to update the distribution mean; and the initial covariance matrix

is set to the identity matrix.

The chromosome for each FCP or BSP policy has the same structure as previ-

ously discussed but with the values of the encoded genes normalised to fall between

[−1,+1]. These values are then transformed to the actual policy parameters at the

point of fitness evaluation. To enable comparison with the GA, the CMA-ES was

set the same budget of 6,000 fitness evaluations and the starting point for the search

was set randomly in the decision space.

To tune the ANN policy, the chromosome used consisted of a vector of all the

weights for the neural network. These weights are encoded directly onto the chro-

mosome with values in the interval [−1,+1]. The search for the neural network

weights was allocated a budget of 12,000 fitness evaluations.
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Table 6.2: Process economics parameters for products in relative monetary units
(RMU) unless otherwise stated.

p1 p2 p3

Seed cost 4.6 5.2 5.1
Daily cell culture cost 3.4 3.2 3.6
Cell culture batch setup cost 26 26.9 33.7
ATF replacement cost 17.8 14.6 15.7
DSP batch cost 10.7 11 14.2
Sales price (RMU/kg) 150 95 100
Backlog penalty cost (RMU/kg/day) 0.25 0.1 0.1
Annual demand (kg) 60 120 115
Reactor yield (kg) 2.03 2.25 1.38

6.5 Case Study Description

To evaluate the scheduling policies, a biopharmaceutical industrial case study was

designed. The data comprises anticipated market demand and manufacturing fa-

cility characteristics. This problem features multiple products to be produced in a

single facility with different efficiencies, yields and costs, perishable inventory, and

backlogging and lost sales allowed. The processes to manufacture these products

are all based on a platform mAb process as described in Chapter 5.2.1.

The demand forecast is made up of three different products (p1− p3) to be

manufactured over a period of seven years. The demand forecast shows the ex-

pected annual demand which is stationary (i.e., does not change from year to year)

but is stochastic and is sampled either daily, monthly, quarterly, or annually (Ta-

ble 6.2). The different constituents of the manufacturing costs are also listed in that

table as well as the reactor yields, the sales price per kilogram of each product, and

the periodic penalty cost for each unit of unfulfilled demand. The reactor yield in-

dicates how much product is in each daily harvest from the bioreactor. The product

of this and the overall process yield is how much material is deposited in inventory

after each DSP batch. For all products, the overall process yield is 69%.

Changeover cost is accrued when switching between two different products or

after the setup expiry period lapses between batches of the same product. Changeover

and turnaround times are defined as the minimum time between two USP opera-

tions for different and same product respectively. Therefore the seed-restart thresh-

old for a product’s process is the sum of its cell culture run-time and turnaround

time minus its seed run time. Likewise, the changeover threshold is cell culture
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Table 6.3: Case study parameters

Parameter Value Unit

Shelf life 720 Days
Backlog decay 0.5 Per 180 days
Inventory rate 0.01 RMU/kg/day
Bioreactor turnaround 4 Days
Changeover time 10 Days
Wastage rate 5 RMU/kg
Setup expiry 30 Days
Number of reactors 1
Changeover cost 35 RMU
Overall process yield 69 %

run-time plus changeover time minus seed train run time of the subsequent prod-

uct. There is also a daily backlog decay on unfulfilled demand so that it becomes

less important over time. This is detailed in Equation (6.4) where for product p,

∆pt is the amount of product p that is late at time t, θ is the daily backlog decay

rate, Dpt is the observed demand of product p at time t, and Spt is the amount of

product p that is sold at time t.

∆pt = θ∆p,t−1 +Dpt −Spt , ∀ p, t. (6.4)

This means that if 1kg of product is undelivered at time t, the amount due at time

t + 1 is (1× 180
√

0.5) kg plus whatever new demand arrives at t + 1 less any sales

at t +1. Each product has a maximum period of time (its shelf-life) that it can be

stored for before it perishes. Any product that has to be thrown away because it

has exceeded its shelf-life or as a consequence of process failure will also accrue

a wastage penalty per kilogram. These parameters are specified in Table 6.3. It is

assumed that processes utilise a single reactor so that the process configuration is

a 1:1 USP:DSP ratio.

The case study is designed so that each of the three products has a particular

characteristic. The first product, p1, is high-value and low-demand; p2 is high-

demand and high-yield; and p3 is high-demand and low-yield. So the trade-off

between p1 and p2 is that the former commands a higher sales price per kilogram

manufactured but also a larger penalty per kg of unfulfilled demand. On the other

hand, comparing p3 to p2, we see that p3 has a similar demand profile as p2 but

its yield is a third lower.
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This case study will be the basis of simulation optimisation experiments per-

formed and reported in the following section.

6.6 Results and Discussion

To evaluate the performance of the policies, optimisation runs were carried out

in the manner described in Section 6.4 on page 111. This section presents and

discusses the scenarios investigated and their results.

6.6.1 Description of the Standard Policy

In addition to the proposed policies, the performance of a standard policy is also

reported. This policy serves as a baseline to compare the optimised policies. It

takes the form of the simple base-stock policy where the parameters are heuristi-

cally chosen by the Doll & Whybark heuristic (Doll and Whybark, 1973) adapted

by Gascon et al. (1994) and used as an initial guess in the direct policy search by

Löhndorf and Minner (2013). This policy is denoted as BSP0. This heuristic at-

tempts to construct a schedule by producing products in repetitive cycles. So each

product is manufactured once every certain period of time (that may be unique to

each product) where each of these periods is a multiple of a fundamental cycle pe-

riod or a common cycle time. The values of the parameters of the standard policy

are based on common cycle time and the method to calculate these values is as

follows: Let T̂ be the common cycle time and k be the safety factor.

T̂ = max

{√√√√√ 2 ∑
∀p∈PF

Ap

∑
∀p∈PF

ρpµD
p (1−µD

p /(brpydp))
,

∑
∀p∈PF

αp

1− ∑
∀p∈PF

µD
p /(brpydp)

}
, (6.5)

k = Φ
−1
(

δp(1+θ T̂ )/2
δp(1+θ T̂ )/2+ρp

)
. (6.6)

Where µD
p is the expected daily demand; σD

p is the standard deviation of the daily

demand; αp is the process lead time which in this case is the sum of the seed train

time, the ramp-up time, and the DSP time; brp is the amount harvested from the

daily perfusate of the bioreactor; ydp is the process yield; δp is the lost demand

penalty cost; θ is the daily backlog decay rate; ρp is the inventory holding cost;

and Ap represents all setup costs associated with the first batch of a campaign prior
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to its first perfusion harvest, i.e., the sum of the changeover cost, seed cost, cell

culture setup cost, and the perfusion costs in the ramp-up period.

Then, the reorder level and order-up-to point are, for each product p, set to:

Y (1)
p = max

{
µ

D
p αp + kpσ

D
p

√
T̂ , 0

}
, (6.7)

Y (2)
p = Y (1)

p +max
{

µ
D
p (1−µ

D
p /(brpydp))T̂ , 1

}
. (6.8)

In this standard policy, the process run time for each product is set to 60 days.

6.6.2 Evaluation of Optimised Policies

The policies were optimised twice: once with the process durations fixed to 60

days, and a second time where the optimisation algorithm is free to optimise the

process duration. These are differentiated by the suffixes appended to the policy

name. Where the process duration is fixed, the suffix is ‘A’ and if the process

duration is optimised, the suffix is ‘B’.

For the base-stock policies (BSP1-3), the results reported are averaged over 50

independent runs of the GA — the results were similar to that of the CMA-ES

so those were reported. For FCP1, the reported results are from GA runs as

these results outperformed the CMA-ES. The opposite is true of FCP2 and FCP3;

CMA-ES results are reported for those policies. The ANN results (using the

CMA-ES) are also an average of 50 independent runs like the other tuned poli-

cies.

The optimisations were run on the case study data previously described for

a time horizon of seven years (with a year comprising 360 days). Initially, the

first two years of the horizon served as a warm-up period but this was changed

because it caused unrealistic artefacts in the inventory profiles of simulations of

ANN policy solutions. During the EA optimisation, the fitness evaluation uses the

average performance of 500 simulations as this was found to give a good estimate

without making computation time(s) too long. The stochastic demand for each

product follows a Normal distribution, N(µ,(σ)2), where µ is the yearly forecast

demand (Table 6.2) and σ is 0.025µ . The demand frequency is set to be daily

which means that during each simulation, demand is sampled, is due, and can be

delivered everyday; sampled demand is truncated and not allowed to be negative.

This means the distribution describing the daily demand is N(µD,(σD)2) where
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µD = µ

360 and σD = σ√
360

. Failure rates were set such that the probability of cell

culture contamination was 10% in 60 days and the probability of ATF filter failure

was 2% in 60 days too. Finally, each simulation was started with each product

having an initial inventory equal to a quarter of the expected yearly demand.

6.6.2.1 Policies with standard run-times

Here, the ‘A’ sub-types of the base-stock and fixed cycle policies are compared

with the standard policy.

Base-stock policies Table 6.4 compares the performance characteristics of the

standard policy (BSP0) to those tuned base-stock policies (BSP1-3) where the pro-

cess run times are fixed to 60 days. The performance characteristics for BSP0 were

evaluated from 20,000 simulations of the policy and the same was done (on the

same random number seeds) for each optimised solution from all runs of BSP1A,

BSP2A, and BSP3A. The table shows that the tuned base-stock policies outper-

form the standard policy in terms of the expected profit generated. This is driven

primarily by differences in the revenue (and consequently, backlog penalties and

CSL) and storage costs. By scrutinizing the seed costs and the cell culture setup

costs, it appears that both the standard and the optimised base-stock policies start

a similar number of batches so the advantage of the optimised base-stock policies

is due to the sequence or timing of the batches ordered. It is worth pointing out

that BSP0 does outperform the optimised policies in one metric, changeover costs.

This means that although the overall timing and sequencing of batches in BSP0 is

sub-optimal in terms of the overall objective, it is able to schedule batches of the

same product together in longer campaigns thereby reducing changeover costs and

potentially making the operation of the facility more straightforward with fewer

manufacturing switches between products.

Differences in performance between the optimised policies are much smaller

when compared to the standard policy; between the optimised policies, BSP1A is

the worst, with BSP2A performing a bit better, and BSP3A best. That ranking is

the same when looking at revenue but is reversed with regards to the total costs.

The only other major differences between them is that BSP2A appears to have

on average at least two fewer product changeovers than the other policies. This

is however offset by it having larger storage costs than BSP1A and BSP3A. Any

differences between two policies in total seed, USP or DSP costs are due to a policy
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having marginally fewer or more batches started than the other, since they all have

the same process run times.

Fixed cycle policies As with the base-stock policies, the performance of the stan-

dard policy is compared with the fixed cycle policies with process run times fixed to

60 days. This is shown in Table 6.5. Comparing BSP0 with the tuned fixed cycle

policies, similar trends to the base-stock policies are observed. The tuned poli-

cies are again substantially superior to the standard policy in terms of maximising

profit and revenue, and minimising total costs. The standard policy appears to start

slightly fewer batches than the other policies and although the FCPs have lower

changeover costs than the BSPs, they are still a lot higher than the standard pol-

icy. It is also worth noting that the best FCP performs worse than the worst BSP

(FCP3A vs. BSP1A).

Comparing the individual FCPs, the differences between them are again less

substantial than when compared to the standard policy. However these differences

are larger than observed between the tuned BSPs. FCP3A performs best and of the

other two, FCP1A is worse. This ranking is mostly driven by the number of batches

that FCP1A and FCP2A have to start and run as well as the higher inventory levels

they maintain. Also, though FCP1A has higher seed and cell culture setup costs

than FCP3A, its changeover costs are lower which indicates that FCP1A schedules

in multi-batch campaigns more often than FCP3A. Similarly, since FCP2A has to

make at least a batch of each product in the sequence between its current position

and the product that has just fallen below its order-up-to level, it will start and run

a large number of batches compared with FCP3A. Changeover costs for FCP2A

are also lower than for FCP3A (and also lower than for FCP1A too). This may

seem counter-intuitive because FCP2A may have to start campaigns and accrue

changeover costs that are not necessary in order to get to a critical product in the

sequence. But this means that if the critical product is far away enough on the

sequence, by the time the facility gets to that product, multiple batches would be

required to bring it above its order-up-to level.

6.6.2.2 Policies with optimised run-times

In Table 6.6 and Table 6.7 the performance characteristics of the best performing

FCP and BSP policies that had a fixed process run time — FCP3A and BSP3A

in this case — are compared with the fixed cycle policies and the base-stock poli-
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Table 6.4: Profit, costs, customer service level (CSL), and other performance char-
acteristics for the three BSPs with process duration fixed to 60 days as well as the
standard heuristic (BSP0) solution. Mean ± std. err. are listed of 50 runs each and
values reported are in RMU apart from CSL values. Statistically best values are
highlighted in bold.

BSP0 BSP1A BSP2A BSP3A

Profit 179015 ± 20.9 189589 ± 1.6 189651 ± 4.5 189711 ± 1.7
Revenue 214690 ± 17.9 222908 ± 6.8 222996 ± 6.0 223075 ± 7.5
Total costs 35676 ± 5.7 33319 ± 7.1 33345 ± 6.1 33363 ± 8.0

Seed 179.0 ± 0.04 181.3 ± 0.03 181.7 ± 0.02 181.9 ± 0.03
USP 8059 ± 0.9 8155 ± 1.1 8173 ± 1.1 8181 ± 1.5

Replacement ATF filters 10.3 ± 0.09 10.5 ± 0.01 10.6 ± 0.01 10.6 ± 0.01
Cell culture setup 1064.6 ± 0.22 1076.9 ± 0.15 1079.6 ± 0.15 1080.7 ± 0.21

DSP 21022 ± 2.5 21265 ± 2.8 21313 ± 3.1 21342 ± 4.2
Changeover 478.0 ± 0.24 1132.5 ± 0.44 1053.1 ± 4.00 1150.1 ± 1.11
Storage 3065 ± 1.0 2253 ± 5.0 2315 ± 4.7 2210 ± 4.7
Backlog penalties 2827.3 ± 5.24 285.3 ± 1.70 263.8 ± 1.55 251.8 ± 1.74
Wastage 44.9 ± 0.16 45.8 ± 0.02 45.9 ± 0.02 45.9 ± 0.02

CSL 95.88% ± 0.007 99.50% ± 0.003 99.54% ± 0.004 99.58% ± 0.004

Table 6.5: Profit, costs, customer service level (CSL), and other performance char-
acteristics for the three FCPs with process duration fixed to 60 days as well as the
standard heuristic (BSP0) solution. Mean ± std. err. are listed of 50 runs each and
values reported are in RMU apart from CSL values. Statistically best values are
highlighted in bold.

BSP0 FCP1A FCP2A FCP3A

Profit 179015 ± 20.9 186544 ± 14.9 188044 ± 41.6 189445 ± 3.5
Revenue 214690 ± 17.9 221708 ± 21.5 222529 ± 24.3 222816 ± 6.1
Total costs 35676 ± 5.7 35164 ± 33.4 34485 ± 46.5 33371 ± 6.7

Seed 179.0 ± 0.04 185.3 ± 0.12 184.8 ± 0.15 181.4 ± 0.03
USP 8059 ± 0.9 8346 ± 5.4 8309 ± 8.3 8161 ± 1.5

Replacement ATF filters 10.3 ± 0.09 10.9 ± 0.02 10.7 ± 0.02 10.6 ± 0.01
Cell culture setup 1064.6 ± 0.22 1100.0 ± 0.68 1096.5 ± 0.96 1077.7 ± 0.20

DSP 21022 ± 2.5 21736 ± 13.7 21644 ± 19.9 21281 ± 4.6
Changeover 478.0 ± 0.24 1091.9 ± 12.17 1064.4 ± 7.94 1100.0 ± 2.26
Storage 3065 ± 1.0 3114 ± 25.6 2815 ± 29.6 2291 ± 7.0
Backlog penalties 2827.3 ± 5.24 642.8 ± 7.82 419.4 ± 10.03 310.8 ± 1.78
Wastage 44.9 ± 0.16 47.8 ± 0.09 47.2 ± 0.13 45.9 ± 0.02

CSL 95.88% ± 0.007 98.96% ± 0.009 99.36% ± 0.009 99.46% ± 0.004
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Table 6.6: Profit, costs, customer service level (CSL), and other performance char-
acteristics for the three BSPs with process durations optimised by the GA com-
pared to the best performing BSP and FCP with fixed process duration. Policy
names with a suffix of ‘A’ are for optimisations with process duration fixed to 60
days while those with suffix ‘B’ have process duration optimised by the EA. Mean
± std. err. are listed of 50 runs each and values reported are in RMU apart from
CSL values. Statistically best values are highlighted in bold.

FCP3A BSP3A BSP1B BSP2B BSP3B

Profit 189445 ± 3.5 189711 ± 1.7 189972 ± 6.3 190016 ± 13.9 190125 ± 1.9
Revenue 222816 ± 6.1 223075 ± 7.5 223101 ± 9.2 223123 ± 9.4 223240 ± 7.3
Total costs 33371 ± 6.7 33363 ± 8.0 33129 ± 6.8 33107 ± 10.2 33116 ± 7.2

Seed 181.4 ± 0.03 181.9 ± 0.03 182.2 ± 0.72 178.8 ± 0.86 185.8 ± 0.36
USP 8161 ± 1.5 8181 ± 1.5 8148 ± 8.3 8110 ± 9.5 8178 ± 5.0

Replacement ATF filters 10.6 ± 0.01 10.6 ± 0.01 11.1 ± 0.11 11.5 ± 0.09 11.3 ± 0.07
Cell culture setup 1077.7 ± 0.20 1080.7 ± 0.21 1065.7 ± 4.34 1043.1 ± 4.87 1077.0 ± 2.68

DSP 21281 ± 4.6 21342 ± 4.2 21248 ± 3.6 21282 ± 5.7 21256 ± 4.0
Changeover 1100.0 ± 2.26 1150.1 ± 1.11 1211.1 ± 4.13 1150.5 ± 6.02 1249.5 ± 1.63
Storage 2291 ± 7.0 2210 ± 4.7 2050 ± 8.2 2102 ± 12.6 2002 ± 6.1
Backlog penalties 310.8 ± 1.78 251.8 ± 1.74 243.5 ± 2.26 235.3 ± 3.04 197.8 ± 2.06
Wastage 45.9 ± 0.02 45.9 ± 0.02 46.9 ± 0.39 48.4 ± 0.36 46.4 ± 0.19

CSL 99.46% ± 0.004 99.58% ± 0.004 99.60% ± 0.004 99.61% ± 0.004 99.66% ± 0.004

Table 6.7: Profit, costs, customer service level (CSL), and other performance char-
acteristics for the three FCPs with process durations optimised by their EA com-
pared to the best performing BSP and FCP with fixed process duration. Policy
names with a suffix of ‘A’ are for optimisations with process duration fixed to 60
days while those with suffix ‘B’ have process duration optimised by the EA. Mean
± std. err. are listed of 50 runs each and values reported are in RMU apart from
CSL values. Statistically best values are highlighted in bold.

FCP3A BSP3A FCP1B FCP2B FCP3B

Profit 189445 ± 3.5 189711 ± 1.7 186585 ± 127.1 189234 ± 39.5 189910 ± 3.3
Revenue 222816 ± 6.1 223075 ± 7.5 221389 ± 73.8 222733 ± 25.8 223047 ± 6.1
Total costs 33371 ± 6.7 33363 ± 8.0 34804 ± 99.5 33499 ± 17.2 33137 ± 7.2

Seed 181.4 ± 0.03 181.9 ± 0.03 172.2 ± 3.72 188.7 ± 0.84 179.0 ± 0.72
USP 8161 ± 1.5 8181 ± 1.5 8128 ± 36.3 8231 ± 10.2 8102 ± 8.4

Replacement ATF filters 10.6 ± 0.01 10.6 ± 0.01 13.5 ± 0.36 11.1 ± 0.12 11.5 ± 0.07
Cell culture setup 1077.7 ± 0.20 1080.7 ± 0.21 1004.9 ± 21.24 1096.9 ± 5.16 1041.7 ± 4.33

DSP 21281 ± 4.6 21342 ± 4.2 21602 ± 44.8 21293 ± 6.7 21265 ± 4.3
Changeover 1100.0 ± 2.26 1150.1 ± 1.11 1119.2 ± 21.22 1230.2 ± 6.92 1180.9 ± 4.55
Storage 2291 ± 7.0 2210 ± 4.7 2998 ± 96.7 2152 ± 13.8 2107 ± 10.6
Backlog penalties 310.8 ± 1.78 251.8 ± 1.74 721.5 ± 21.33 357.8 ± 8.64 254.8 ± 1.78
Wastage 45.9 ± 0.02 45.9 ± 0.02 62.6 ± 3.41 46.2 ± 0.45 47.7 ± 0.25

CSL 99.46% ± 0.004 99.58% ± 0.004 98.83% ± 0.035 99.44% ± 0.012 99.57% ± 0.003
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cies that also optimised the process run time. First, one can observe that the FCP

policies — apart from FCP3B — are always worse than the base stock policies re-

gardless of process run time optimisation. This suggests that utilising a rigid fixed

schedule in an uncertain environment is sub-optimal compared to policies reactive

to changes. In general, the ‘B’ policy variants are better than their corresponding

‘A’ counterparts across the board. The only exception to this is FCP1 which does

not seem to show improvement when optimising the run-times as well. This is

likely due to the FCP1B expending its computation budget before fully converg-

ing. On the other hand, the greatest improvement observed from optimising the

run-times is seen going from FCP2A to FCP2B.

The ranking of the ‘B’ policies carries over from the ‘A’ policies. For the BSPs,

BSP3B is best followed by BSP2B then BSP1B. The pattern is similar for the FCP

policies: FCP1B is worst, FCP2B performs better than that, and FCP3B is best.

Because the run-times are different between the policies and among the individual

solutions within each policies, it is harder to draw insights or conclusions based on

the performance characteristics than with policies with standard run-times.

6.6.3 Policy with Flexible Process Duration

To ascertain the benefit of a policy that allows for flexible process run-times, the

ANN policy was compared with the previously evaluated polices.

The implementation of this policy, as previously described, means that on every

day, a batch can be cut short even if it was just started the previous day. To exclude

very bad solutions, a constraint on a minimum process run-time was enforced. This

meant that upon making a decision to start a batch, no new decisions could be made

until the cell culture reached a specified duration milestone. If this lower bound is

small, it means that there is a larger search space which increases the scope for

flexibility but also makes the search for a good solution harder. A large lower

bound improves computation time but means some batches may be unnecessarily

long. As a result, some duration lower bounds were tested: lower bounds of 14, 20,

30, 40, and 45 days for all of the products, and ‘optimised’ lower bounds where the

EA searched for individual lower bounds for each product in addition to the neural

network weights. Table 6.8 reports the results of that experiment and shows that

setting the lower bound to 30 days for all products is best, so that strategy was used

for the rest of the following analysis.

Although the ANN policy is substantially better than the standard policy, it
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Table 6.8: Profit performance (in RMU) for tuned ANN policies utilising different
minimum process run-times.

Process run-time lower bound

14 days 20 days 30 days 40 days 45 days ‘Optimised’

Profit 188983 ± 365.6 189315 ± 39.6 189421 ± 42.3 188842 ± 100.9 188709 ± 48.1 189147 ± 31.5

Table 6.9: Profit, costs, customer service level (CSL), and other performance char-
acteristics for the ANN, the best of each of FCP-B and BSP-B, and the overall
worst ‘B’ policy variant. Mean ± std. err. are listed for 50 runs each and values re-
ported are in RMU apart from CSL values. Statistically best values are highlighted
in bold.

FCP1B FCP3B BSP3B ANN

Profit 186585 ± 127.1 189910 ± 3.3 190125 ± 1.9 189421 ± 42.3
Revenue 221389 ± 73.8 223047 ± 6.1 223240 ± 7.3 222833 ± 28.2
Total costs 34804 ± 99.5 33137 ± 7.2 33116 ± 7.2 33412 ± 20.5

Seed 172.2 ± 3.72 179.0 ± 0.72 185.8 ± 0.36 200.6 ± 0.38
USP 8128 ± 36.3 8102 ± 8.4 8178 ± 5.0 8367 ± 4.0

Replacement ATF filters 13.5 ± 0.36 11.5 ± 0.07 11.3 ± 0.07 11.3 ± 0.14
Cell culture setup 1004.9 ± 21.24 1041.7 ± 4.33 1077.0 ± 2.68 1160.7 ± 2.62

DSP 21602 ± 44.8 21265 ± 4.3 21256 ± 4.0 21223 ± 7.8
Changeover 1119.2 ± 21.22 1180.9 ± 4.55 1249.5 ± 1.63 1385.2 ± 4.96
Storage 2998 ± 96.7 2107 ± 10.6 2002 ± 6.1 1843 ± 13.4
Backlog penalties 721.5 ± 21.33 254.8 ± 1.78 197.8 ± 2.06 346.2 ± 9.28
Wastage 62.6 ± 3.41 47.7 ± 0.25 46.4 ± 0.19 46.8 ± 0.49

CSL 98.83% ± 0.035 99.57% ± 0.003 99.66% ± 0.004 99.52% ± 0.012

fails to compete with the other optimised BSPs — even the BSP policies where the

process run-time is not optimised. Table 6.9 compares the performance of the ANN

policy and other policies with optimised process run-times. It is slightly worse than

FCP3A but it outperforms the FCP1 and FCP2 policies. By inspecting the expected

profit values, the simulated performance appears to vary much more than the other

policies (apart from the two FCP1 policies). This policy starts on average more

batches than the others compared in Table 6.9 and also accrues more changeover

costs; if the ratio between DSP costs and seed costs (or cell culture setup) for each

policy is compared it suggests that in addition to having more batches, the ANN

has shorter batches.

6.6.4 Tuned Policy Parameters

Table 6.10 lists the parameters in the optimised base-stock policies as well as the

calculated parameters for the standard base stock policy and Table 6.11 reports the

parameters for the FCP policies. This data represents the overall best solution for
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each policy from all the EA runs.

The striking difference between the standard policy and the optimised BSPs is

that the standard policy has much higher order-up-to levels. Coupled with slightly

lower reorder points, this means that batches are more likely to be ordered in cam-

paigns of the same product instead of the facility switching more frequently be-

tween products. Conversely, the optimised policies have their inventory parameters

in much narrower ranges which means that campaigns are more likely to have just

one batch — the amount produced per batch is much larger than the difference be-

tween the inventory parameters — and subsequently more product changeover(s).

In fact, with BSP1, the best policies have Y (1) and Y (2) parameter values almost

equal which suggests that the second parameter is not particularly useful. This

would mean that the policy could be replaced by one with just Y (1) (much like how

BSP3 only has Y (5)) which would require less effort tuning it — i.e., if it were to

be run again but with one parameter it should give faster convergence but similar

results. This assumption has been confirmed experimentally.

The reason that the optimised Y (1) values are higher than that of the standard

policy is most likely due to the fact that the optimised policies implicitly account

for the fact that the product changeovers can only happen after the end of a batch of

a predetermined run time. This means it can maintain higher levels of safety stock

and reduce the likelihood of stock-outs. And with the narrower ranges of the inven-

tory parameters, more frequent product changeovers help avoid product inventories

from falling critically low. The standard base-stock policy is based on heuristics

that do not model batch or semi-continuous production; this highlights how pre-

vious approaches to lot-sizing approaches don’t easily apply to biopharmaceutical

manufacturing contexts.

The best FCP1 solutions also highlight that campaigns of multiple batches are

seemingly sub-optimal at this problem load. Though these policies can schedule

consecutive batches of the same product, the best solutions do not implement that

strategy. The best FCP1 sequences are longer than the other fixed cycle policies

partly because the set of possible elements in the sequence is larger and the se-

quences attempt to encode idle times and length of manufacturing campaigns. The

fixed cycle policies with standard process run times tend to have p1 less frequently

in their sequences compared to the other products. This is due to its low demand —

all of a year’s demand can be produced in a 60 day batch. Apart from FCP1B, the

best FCPB policies have sequences that are shorter than their ‘A’ counterparts —
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Table 6.10: Policy parameters for p1-p3 in each of the base-stock policies and the
ANN policy. The best solutions (i.e., the best solution out of all EA runs for each
tuned policy) are reported. For the ANN, the mean ± std. err. of batch run-times
over several simulations is reported; the run-times for batches that were terminated
due to process failures or those that had not been completed by the end of the
simulation horizon were not included in these calculations.

p1

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 6.2 52.5 – – – 60
BSP1A 16.4 16.7 – – – 60
BSP1B 18.7 19.9 – – – 47
BSP2A 10.5 27.5 15.2 16.2 – 60
BSP2B 12.8 20.3 15.0 17.1 – 43
BSP3A – – – – 16.3 60
BSP3B – – – – 16.3 43
ANN – – – – – 33.7 ± 0.00

p2

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 11.1 93.6 – – – 60
BSP1A 28.8 28.9 – – – 60
BSP1B 25.1 25.5 – – – 58
BSP2A 23.5 38.4 25.3 26.1 – 60
BSP2B 22.4 31.5 23.4 25.3 – 59
BSP3A – – – – 23.8 60
BSP3B – – – – 29.2 51
ANN – – – – – 49.4 ± 0.01

p3

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 10.7 77.5 – – – 60
BSP1A 23.8 23.9 – – – 60
BSP1B 21.0 21.6 – – – 65
BSP2A 19.1 39.9 21.3 21.5 – 60
BSP2B 6.6 36.4 18.8 19.9 – 74
BSP3A – – – – 28.8 60
BSP3B – – – – 19.2 79
ANN – – – – – 71.9 ± 0.02

126



Table 6.11: The optimal sequence and process run times for the fixed cycle policies
overall from all EA runs.

Sequence Y (2)
p1 Y (2)

p2 Y (2)
p3 Bp1 Bp2 Bp2

FCP1A 1-3-2-3-0-3-0-2 – – – 60 60 60
FCP1B 2-0-1-3-0-2-3-0-1-0-2-3 – – – 42 48 73
FCP2A 1-3-2-3-2-3 45.3 25.0 12.5 60 60 60
FCP2B 2-1-3 15.3 40.6 22.5 37 55 87
FCP3A 1-2-3-1-2-3-2-3-2 17.7 24.3 26.1 60 60 60
FCP3B 2-3-2-1-2-3 21.4 22.3 22.9 47 58 74

an extreme being FCP2B which is just a simple permutation of the three products.

Observed solutions for process run times are based on striking a balance be-

tween the process yields and demand forecasts of each product as well as the in-

creasing risk of process failure with longer process duration. It is intuitive, based

on the specifics of the case study, that p1 would have a shorter process run time

than the other products because it has much lower demand. By the same token, it

makes sense that p3 has a longer process run time than p2 because it has similar

demand but the yield of its manufacturing process is a third lower.

There are no major differences in the optimised process run times between

the different base-stock policies apart from p2 in BSP3B and p3 in BSP1B where

the run times are significantly lower than that of the other tuned BSPs. The same

cannot be said for the FCPs where the optimised run times vary substantially be-

tween the best policy solutions. The ANN policy, as predicted by inspecting the

cost breakdowns, has significantly lower expected run times compared to all the

other policies. This indicates that this policy suffers from reduced efficiency —

more time is spend setting up batches or changing over between different products

which reduces the facility’s productivity.

All the optimised durations deviate from the ‘standard’ process run time of 60

days especially with p1 and p3. It is interesting to note that the optimised policies

tend to have process run times that cannot produce all of the expected demand for

a year in a single batch even if it is possible — process durations of 53 and 88 days

would suffice for p1 and p2 respectively. As previously mentioned, the factors

determining these decisions are the need to mitigate process failure and the ability

to changeover to other critical products. It is not clear which role each of those

factors play in each case but it is fair to say that mitigating process failure is more

influential for p2 than it is for p1.
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Figure 6.3: Exemplar schedules from a single simulation run with the same ran-
dom number generator seed for the standard, FCP1B, ANN, FCP3B, BSP3A, and
BSP3B scheduling policies.

6.6.5 Production Schedule(s) for the Facility

Although the Gantt charts in Figure 6.3 are just for one scenario and simulation

run, many of the points previously discussed are illustrated here. The Gantt charts

shown are for BSP0 and the best performing solutions for FCP1B, FCP3B, BSP3A,

BSP3B, and the ANN.

BSP0 schedules batches of the same product together so that campaigns have

multiple batches and minimises changeover costs as a result. As a result of these

sustained campaigns, the inventory will be built up and incur higher storage costs.

128



Moving from BSP0 to BSP3A and then to BSP3B, the number of multi-batch cam-

paigns decreases with BSP3B not scheduling any two batches of the same product

together in this particular scenario — this also applies to FCP1B and the ANN. For

FCP1B the sequence does not include any consecutive batches of the same prod-

uct. With increasing number of product changeover, there is more production time

lost due to the fact that changeover between batches of different products requires

more setup time than the turnaround between two batches of the same product.

This is why the BSP0 chart appears to be less utilised. Scheduling of idle time on

the facility are decisions directly available to the ANN and FCP1B policies, but it

is these policies that actually have the least amount of idle time. In the case of the

ANN, there is none scheduled at all.

What these charts also illustrate is a disadvantage of FCP1B: although it is

able to dictate a schedule ahead-of-time, it is not able to find a ‘good’ decision to

make when the environment changes. This is true especially in the event of pro-

cess failure where it will move on to the next batch in the sequence regardless of

any critically low inventory levels. On the other hand, while the BSPs cannot fix a

schedule in advance or determine an absolute decision to make when process fail-

ure occurs, they can implicitly react to changes by deciding at each point whether

to continue with that product, go idle or switch to another product. Similarly, al-

though FCP3B is based on a ‘fixed’ sequence which should help mitigate planning

nervousness, it is often the case that production skips ahead by one or more ele-

ments in the sequence. In this respect, this policy is more alike to the BSP policies

than a rigid schedule or manufacturing sequence.

6.6.6 EA Performance and Statistical Analysis

Statistical testing on the performance of the policies was carried out, the results of

which are presented in Table 6.12 on the next page. It contains a matrix of p-values

from Mann-Whitney U tests comparing the profits of the final solutions from each

policy. It indicates that in terms of performance, the assertion that ANN < BSP1A

< BSP2A < BSP3A < BSP1B < BSP2B < BSP3B is statistically significant (at

the level of 0.05) when looking at pairwise comparisons between each policy and

the rest. Similarly, FCP1 < FCP2A < FCP2B < ANN < FCP3A < FCP3B. It also

shows that the difference between both FCP1 policies is not significant.

Figure 6.4 on page 131 shows the convergence of the optimisations of the ANN

with different minimum process run times and Figure 6.5 on page 132 shows that
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Figure 6.4: Convergences of the ANN optimisations runs with different lower
bounds on process run time. LB14 = minimum run time of 14 days for all prod-
ucts; LB30 = minimum run time of 30 days for all products; LBOPT = minimum
run time optimised for each product.

for the BSPs. Across all the BSP policies both optimisation algorithms tested (i.e.,

the GA and the CMA-ES) deliver essentially the same quality of final solutions.

However, the more state-of-the-art CMA-ES converges faster than the GA. This

gets more pronounced the more decision variables the problem has — e.g., BSP2

which has four inventory parameters per product — and with the policies that have

to optimise process durations in addition to the inventory parameters. In addition,

these EAs were compared with random search and it is shown that the EAs perform

significantly better on most of the policies. The exceptions to this are the BSP3

policies where there is no statistical difference between the performance of random

search and the EAs. This suggests that BSP3, by virtue of its in-built forecasting

heuristic, is able to make good scheduling decisions during simulation. It also

helps that the policy has very few decision variables to optimise (six at most and

as few as three when process run times are fixed) so the search space is smaller.

To test the benefit of the forecasting heuristic, the BSP3 policies were com-

pared with BSP1 policies where Y (1) = Y (2). This constraint is to ensure that both

policies work in the same way except that the BSP3 policies break ties with the

forecasting heuristic and the BSP1 policies break ties by comparing run-out times.
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So for both the BSP3 and the constrained BSP1, 2,000 policies were randomly

generated and evaluated. The mean performance (± standard error) of the BSP3

policies was 167933± 850 RMU and the performance of the constrained BSP1

policies was 166709± 855 RMU. A two-tailed Mann-Whitney U test was per-

formed on the policies and indicated that the increase in performance of the BSP3

policies was statistically significant (observed significance level of <0.001).

The ANN convergence plot demonstrates how much more of a computation

effort is required to find a good policy — at least when compared with the BSPs.

Lower bounds on the process run time significantly affect the speed of convergence;

while a lower bound of 14 days on average converges to values close to the others, it

takes substantially more fitness evaluations to get there. While more parameters to

tune usually means slower convergence, the optimised lower bounds converge with

the least fitness evaluations with lower bound of 30 days slightly worse. This is due

to the ability to exclude bad policies which schedule inefficiently short batches.

In Table 6.13 on the following page, the computation times for the differ-

ent EA optimisations are reported. These values are from one run each of the

hyper-heuristic for each policy type. This experiment was carried out on an Intel R©

CoreTM i5-7500 Quad-core 3.40GHz processor, with 8GB RAM running Microsoft

Windows 10 64-bit. In cases where both the GA and CMA-ES are used, generally,

the latter is slower. This is due to the updates of the covariance matrix carried out

within the CMA-ES algorithm. The considerably longer CPU times needed by the

ANN can be explained by two reasons. First, the ANN tuning was given a bud-

get of fitness evaluations that is twice that of the BSPs and FCPs. Secondly, the

implementation of this policy dictates that decisions are made almost every day in

the simulation which requires querying the neural network any time a decision is

required. This is a significantly larger computation load. For example, if all pro-

cess run times are 60 days, a base-stock policy would make decisions on around

40 days of the seven-year simulation. In contrast, an ANN policy with run time

lower bound of 14 days would need to make over 1,000 days of decisions in order

to have its process durations also be 60 days in a simulation horizon of the same

length. This explains why increasing the run time lower bounds (or allowing them

to be optimised) gives a considerable increase in speed. In fact, the CPU time of

the ANN with optimised lower bounds, if interpolated to 6,000 fitness evaluations,

is comparable to the FCPs (and to a lesser extent the BSPs) which use the CMA-ES.
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Table 6.13: CPU times (in seconds) for a single run of each EA for the scheduling
policies. ANNLB-14 and ANNLB-30 are ANN policies with minimum process run
time fixed to 14 days and 30 days respectively. ANNLB-OPT is ANN policy with
optimised process run time lower bounds for each product.

GA CMA-ES

BSP1A 817 906
BSP1B 812 830
BSP2A 839 793
BSP2B 839 952
BSP3A 836 784
BSP3B 830 937
ANNLB-14 – 6474
ANNLB-30 – 4590
ANNLB-OPT – 1923
FCP1A 822 769
FCP1B 818 924
FCP2A 808 931
FCP2B 804 929
FCP3A 801 943
FCP3B 797 940

Overall, these analyses have shown that it is beneficial to tune parameters

for the scheduling policies instead of relying on estimated parameters or a fixed

schedule or sequence of batches. Furthermore, optimising process run times offers

additional advantages as it allows the policy to schedule batches so that product

changeover can occur when inventory falls to critical levels and also select run

times with efficient productivities and an acceptable risk of process failure. Thirdly,

there does not appear to be any benefit of utilising flexible process run times com-

pared to the BSPs or the more complex of the fixed cycle policies — at least in

this scenario and specific neural network implementation. In addition, intelligent

choice of process run time lower bounds may help improve speed of convergence

and minimise computation time. Finally, the choice of optimisation algorithm, for

the BSPs at least, does not play a significant effect in the quality of final solution.

However, as the number of decision variables increases, a more efficient algorithm

such as CMA-ES, can contribute to a faster convergence (with regards to fitness

evaluations).
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6.6.7 Evaluating the Sensitivity of Optimised Policy Solutions

The case study that the policies have been optimised for and evaluated on has a

demand forecast which is stochastic but is a known and defined distribution. In

reality, it is not easy to accurately predict or forecast demand in advance — which

is why the demand is defined as a probability distribution with a mean based on

targets and market research (and variance based on estimated margin of error in

predictions). However, as actual demand is being realised it can be difficult to

determine whether the observed demand actually is sampled from the same distri-

bution as the one predicted. So the observed demand could potentially be from a

distribution with a different mean and/or variance. This section aims to determine

the behaviour of the previously obtained solutions on slightly different problem

instances to the one they were trained on.

With those considerations, some of the policies were tested at different de-

mand scales. Specifically, the best solution from each of FCP3B, BSP1B, BSP2B,

BSP3B, and the ANN as well as the previously estimated BSP0 solution were eval-

uated over 20,000 simulations on demand load cases in the range of ±15% of the

standard case. As before, the demand due in each year is stochastic and described

by a Normal distribution, N(µ,(0.025µ)2). Apart from the change in demand load,

all the other model and problem parameters were unchanged from those in the case

study description or those used in Section 6.6.2.

Results of the sensitivity tests are shown in Figure 6.6 on the next page where

the performances are compared relative to BSP0. From the figure one can observe

that the best solution of BSP3B is better than the rest at the standard demand case

with BSP2B, BSP1B, FCP3B, and the ANN following in that order. However, the

BSP3B solution does not maintain its ranking when looking at demand cases be-

low and above the standard case, dropping into second place in cases 85% to 95%

of the standard demand while BSP2B replaces it at the top. At the 95% demand

case, though the mean of BSP2B is greater than that of BSP3B, the difference is

not statistically significant to say that either policy is better than the other. The per-

formance of the ANN falls away rather quickly either side of the standard demand

case to the point that at 85% it is actually worse than the standard policy. BSP2B

remains the best performing policy solution above the standard demand case —

closely followed by FCP3B — apart from in the most loaded problem instance

where it falls into third place. In that case, BSP3B and BSP1B perform similarly

and the difference between them is not statistically significant. At this demand
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case, FCP3B is only better than the ANN.

Relative to the standard policy, which has its parameters heuristically chosen,

the performances of the tuned policies generally decline as one moves away from

the standard demand case. For the tuned BSPs and FCP3B this effect is more pro-

nounced at the demand loads less than the standard case. For the BSPs, a partial

explanation for this trend is that at less loaded problems, sub-optimal decisions in-

cur less harsh penalties. For example, the main driver for the difference between

BSP0 and the tuned policies at the standard demand case is backlog penalties. So

with lower observed demand, clearly this becomes less important and the differ-

ence decreases. A more general explanation applicable to all policies is that tuning

it exploits the specific structure and characteristics of the problem instance it is

trained on which means it loses its applicability to moderately different or more

general problems — this is referred to as overfitting.

Overall what can be observed from this testing is that BSP2B is the best per-

former across all slightly different demand scale instances apart from the most

loaded problem. This is despite BSP3B being best at the problem it was trained

on. The implication is that one will need to check the sensitivity of best solutions

to demand case changes instead of automatically taking the best policy solution

trained on the current problem.

137



6.7 Summary

This chapter considered the stochastic economic lot scheduling problem (SELSP)

in the context of a biopharmaceutical manufacturing scenario consisting of multi-

ple products on a single facility utilising semi-continuous perfusion processes that

are prone to various types of process failure which have significant operational

consequences. To deal with the challenges that this problem poses, a simulation-

optimisation approach was developed and implemented.

First, to complement the previously developed custom discrete-event simula-

tion framework, a few dynamic scheduling policies were adapted from the litera-

ture to fit the problem being investigated. In addition to this, a novel policy with

a forecasting heuristic was proposed. These policies were then tuned on a syn-

thetic case study using evolutionary algorithms (EAs) in what amounts to a hyper-

heuristic search.

Evaluation of these policies and further comparison with a heuristically deter-

mined standard policy as well as policies based on a fixed sequence demonstrated

the benefit of tuning parameters and utilising policies that use the current state of

the scheduling environment to make decisions. Further tuning of process run times

led to improved performance as this enables better lot-sizing decisions which may

allow hedging against process failure by utilising a shorter run time.

In addition to these policies, a flexible policy based on an Artificial Neural

Network (ANN) representation was proposed and compared with tuned policies.

This comparison showed that, in the scenario examined in this chapter, the imple-

mentation of a policy capable of flexible process run times did not improve on the

performance of the best tuned fixed cycle policies and base stock policies.

Finally, it is recommended that a potential decision-maker evaluate the policies

at different demand loads in order to determine their behaviour and sensitivity. This

is because relative performance may differ when presented with slightly different

problems than it was trained on.
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Chapter 7

Conclusion and Future Work

7.1 Summary and Contribution of Thesis

Over the course of this thesis, deterministic and stochastic variants of lot sizing

and scheduling problems have been considered within the context of the biophar-

maceutical industry. The main contributions lie with the decision tools that were

introduced here.

First, a meta-heuristic approach for a capacity planning problem for fed-batch

processes was proposed. Compared to mixed-integer linear programming (MILP),

it avoided simplifying assumptions on the discrete time periods and as a result is

able to model reality more accurately. In addition, it demonstrated better scaling

properties (computation time grows slower than the MILP with increasing problem

size) and could easily be adapted to multi-objective problems with the implementa-

tion of a multi-objective evolutionary algorithm such as the non-dominated sorting

genetic algorithm II (NSGA-II).

After that there was a change in focus to processes incorporating perfusion

unit operations. Though there is existing literature on capacity planning models

that include perfusion processes and there are tools evaluating the economics of

utilising perfusion processes while taking into account their increased failure rates,

there was no evidence of tools or models that focused on scheduling whilst also

considering these processes’ greater propensity for failure. In other words, no pre-

existing literature attempted to determine optimal schedules for these perfusion

processes whilst anticipating or expecting they would fail and asking the question

of what the best decision(s) to make after process failure events.

The result of this was the development of a custom model to simulate semi-
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continuous bioprocesses in a scheduling system which was sensitive to the conse-

quences of failure events attributed to the perfusion cell culture and its cell retention

system. This was used to evaluate process design decisions such as the cell culture

run time and process configuration(s).

Eventually, this became part of a larger novel hyper-heuristic framework which

was utilised to determine optimal process run times and scheduling decisions for

single-product and multi-product facility scenarios. For the former, simple inven-

tory replenishment-type strategies were examined and for the latter, rule represen-

tations included base-stock policies, fixed-cycle policies, and an Artificial Neural

Network (ANN).

7.2 Future Work

There are several avenues for extending the work presented in this thesis. This

shall be discussed in relation to the chapters in this thesis that cover the work to be

extended. However, in general, the work in this thesis would benefit from further

validation on more case studies and different problem instances.

7.2.1 Chapter 4

First, in reality, demand is estimated and uncertain, so the approach can be adapted

to deal with stochastic problems. Since subsequent chapters have dealt with stochas-

ticity in a dynamic fashion, the more suitable approach with this meta-heuristic is

to conduct scenario analysis on the products or facilities in the scenario which are

deemed to be critical or seemingly more susceptible to uncertainty.

This would also be a good juncture to investigate different instances of the

problem solved in this work. This may involve smaller or larger problems or prob-

lems with different cost structures. For example, sequence-dependent setup costs

and times could be incorporated into a different problem, as well as explicit costs

associated with facility overheads, transportation, and using CMOs. In addition

facility-build or retrofit decisions may be added to the set of decision variables.

With regards to multiple objectives, it is possible to extend the optimisation to

consider alternative or additional objectives (e.g., utilsation of in-house or CMO

facilities). Suffice to say, there are numerous permutations of different problems to

which the tool may be applied to within biopharmaceutical manufacturing.

Third, it may be useful to extend the splitting mechanism to increase the search
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space so that it is more likely that the optimal schedule is indeed contained in

the search space of the search algorithm. Finally, one might explore also other

optimisation methodologies to solve this problem such as constraint programming

(Laborie, 2009) or hybrid approaches (Blum and Raidl, 2016). In addition, it may

be worth comparing this method to recent work by Jankauskas et al. (2019) which

uses a GA approach on a similar biopharmaceutical problem by utilising a dynamic

chromosome structure to directly encode the solution.

7.2.2 Chapter 5

The work in this chapter focuses on processes that utilise single-use technology in

the upstream part of the process. As a result, there is scope to extend the model so

that it considers the use of conventional stainless-steel equipment for its upstream

processing (USP). This obviously would require a slightly different cost model

since the current cost structure of the model is solely based on single use bioreac-

tors (SUBs). This would mean including the costs of fixed capital investment (FCI),

labour costs, and all direct and indirect costs in general.

Second, in order to assess the optimum process run times, the bioreactor vol-

umes, chromatography column sizes and resin volumes, and the process design in

general are fixed. This means that shorter process run times have an upper bound

on productivity and longer process run times have a lower bound on productiv-

ity. In reality, the USP and DSP design can be optimised around a selected run

time (by changing bioreactor volumes, column sizes, pooling strategy, etc.) to

meet a productivity target. Process design is not trivial and it would be exhaustive

to optimise process design for every possible run time and demand combination.

However, it may be worthwhile exploring a few process run times with the process

redesigned to examine what aspects of the process need to be re-optimised and also

what the knock-on effect on scheduling performance is. Alternatively, commercial

software that is designed for process design and simulation could be coupled with

expensive-optimisation algorithms as another approach.

Finally, combining the previous points, existing literature on assessing the ben-

efits (in fed-batch processes) of multiple reactors compared to a larger single reac-

tor has rested on the trade-off between equipment costs of the reactors and consum-

able costs related to chromatography resins and viral filters in DSP. The investiga-

tion into process configuration in this chapter does not capture this as the costs of

individual SUBs dominate and the DSP remains the same. However, since SUBs
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are currently limited to 2000L, there is scope to compare a large stainless-steel

perfusion process with multiple parallel 2000L SUBs (even if both DSPs are iden-

tical) as this not only captures the trade-off between frequent but smaller failures

vs. fewer but more significant failures, but also the trade-off between conventional

equipment and disposable equipment. Also, multiple reactor configurations can be

compared where reactors share one common seed train vs. where each has its own.

7.2.3 Chapter 6

There are a few possible ways to extend the work presented in this chapter. The

obvious one is to apply this method to different case studies. For example, a clinical

manufacturing scenario will likely have less established processes and therefore

probably higher error, failure rates, or a larger variance in probability distributions

describing the stochastic processes in general. In addition and complementary to

this, instances may have process yields and cell culture titres also uncertain and

stochastic. In addition, problems that also mix different bioprocessing modes (i.e.,

fed-batch and perfusion cell cultures) together would represent a good extension to

this work as it would introduce sequence-dependent changeover times.

Second, one can extend the problem tackled so that it is able to deal with mul-

tiple facilities. The scope of that problem is much larger and requires heuristics

and/or policies that not only need to coordinate facilities in terms of what they

manufacture at any time instant, but also potentially anticipate the future work-

load of critical facilities within the network. This will require careful considera-

tion of strategies to deal with expensive evaluations and noise as the problem size

increases such as meta- and surrogate-modelling (Jin and Branke, 2005; Branke,

2018). In fact, such methods could be used to manage the computation time of the

optimisation procedure as it is now and are worth exploring even without the added

computational burden and load of additional facilities.

Finally, there is potential to consider product attrition or project selection in

an R&D perspective. The decision variables may be adapted to select an initial

portfolio out of an initial set of alternatives with different attrition rates and market

potential and the objective function would be to maximise expected net present

value (NPV) or risk-adjusted NPV.
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Hyper-Heuristics: A Survey of the State of the Art. Journal of the Operational
Research Society, 64(12):1695–1724, 2013.

144

http://dx.doi.org/10.1021/bp00031a001
http://dx.doi.org/10.1021/bp00031a001
http://dx.doi.org/10.1007/3-540-61723-X_995
http://dx.doi.org/10.1007/3-540-61723-X_995
http://dx.doi.org/10.1002/0471250570.spi041
http://dx.doi.org/10.1287/mnsc.28.10.1174
http://dx.doi.org/10.1287/mnsc.28.10.1174
http://dx.doi.org/10.1007/978-3-319-30883-8
http://dx.doi.org/10.1145/3205651.3207887
http://dx.doi.org/10.1080/00207540500077140
http://dx.doi.org/10.1162/EVCO_a_00131
http://dx.doi.org/10.1162/EVCO_a_00131
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://dx.doi.org/10.1016/J.EJOR.2016.01.016
http://dx.doi.org/10.1016/J.EJOR.2016.01.016
http://dx.doi.org/10.1145/1276958.1277273
http://dx.doi.org/10.1145/1276958.1277273


J. A. Caballero. Logic hybrid simulation-optimization algorithm for distillation
design. Computers & Chemical Engineering, 72:284–299, 2015.

A. S. Caplin. The variability of aggregate demand with (S, s) inventory policies.
Econometrica, 53(6):1395–1409, 1985.

K. L. Carson. Flexibility - the guiding principle for antibody manufacturing. Na-
ture Biotechnology, 23(9):1054–8, 2005.

R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop schedul-
ing problems using genetic algorithms, part II: hybrid genetic search strategies.
Computers & Industrial Engineering, 36(2):343–364, 1999.

L. Chu and D. K. Robinson. Industrial choices for protein production by large-scale
cell culture. Current Opinion in Biotechnology, 12(2):180–187, 2001.

Y. Chu, F. You, J. M. Wassick, and A. Agarwal. Simulation-based optimization
framework for multi-echelon inventory systems under uncertainty. Computers
and Chemical Engineering, 73:1–16, 2015.

W. Dangelmaier and E. Kaganova. Robust Solution Approach to CLSP Problem
with an Uncertain Demand. In Robust Manufacturing Control, pages 455–467.
Springer, 2013.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P.
Schwefel, editors, Parallel Problem Solving from Nature PPSN VI, pages 849–
858, 2000.

J. A. DiMasi and H. G. Grabowski. The cost of biopharmaceutical R&D: is biotech
different? Managerial and Decision Economics, 28(4-5):469–479, 2007.

J. A. DiMasi, L. Feldman, A. Seckler, and A. Wilson. Trends in risks associated
with new drug development: success rates for investigational drugs. Clinical
Pharmacology and Therapeutics, 87(3):272–7, 2010.

C. L. Doll and D. C. Whybark. An Iterative Procedure for the Single-Machine
Multi-Product Lot Scheduling Problem. Management Science, 20(1):50–55,
1973.
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A.1 Figures
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Figure A.1: Exemplary Gantt chart of a schedule generated by the GA for the 2 ×
demand case. The profit and customer service level (CSL) is also indicated..
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Figure A.2: Exemplary Gantt chart of a schedule generated by the MILP, for the 2
× demand case. The profit and customer service level (CSL) is also indicated.
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Figure A.3: Exemplary Gantt chart of a schedule generated by the GA, for the 3 ×
demand case. The profit and customer service level (CSL) is also indicated.
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Figure A.4: Exemplary Gantt chart of a schedule generated by the MILP, for the 3
× demand case. The profit and customer service level (CSL) is also indicated.
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Appendix B

Chapter 5 Appendix

B.1 Bioprocess Model Parameters

Calculation of Bioprocess Economics Parameters

The basis and rationale for determining the cost parameters for different aspects

of the process is laid out in this section. Figures, estimates and assumptions are

based on guideline values used by or suggested by Felo et al. (2013), Farid et al.

(2014), Pollock et al. (2013b), or Pollock (2013). The dollar amounts have been

transformed such that 1,000 USD ≈ 1 RMU.

There are six different types of costs attributed to the bioprocess as defined in

Section 5.2.1. These costs are attributable to direct costs including materials and

consumables and do not take into account labour, indirect or other fixed investment

costs unless otherwise stated or indicated. It is assumed that the process utilises

disposable/single-use equipment and is capable of meeting an annual demand of

ca. 450 kg with a 1:1 USP:DSP train ratio and whole process yield of 69%.

Seed Train Costs This is representative of the direct material costs accrued from

operating the seed train (Seed #1 and Seed #2 in Figure 5.3). To estimate this, the

costs for a 100L Wave bag, a 200L SUB (Single Use Bioreactor), and media costs

are summed up — it is assumed that there are no additions during the batch and
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the volumetric efficiency is 80% for both reactors. Media costs $ 3.15/L.

100L Wave+200L SUB+80% of 300L×Media Cost

= 420+4200+240×3.15

= $ 5376

So, about 5.4 RMU.

Cell Culture Setup Costs This takes into account the ATF filter, the SUB and

the initial media within it. The bioreactor used is a 2000L SUB with a volume

efficiency of 50% utilising an ATF 10 system.

1000L × Media Cost + ATF filter + 2000L SUB

= 1000×3.15+16300+9800

= $ 29250

This comes to roughly 29.3 RMU.

Cell Culture Daily Costs Media costs for daily perfusion are the only compo-

nent represented here; the perfusion rate is 1 vessel volumes per day (vv/day) in

terms of the liquid working volume.

Perfusion rate × working volume × Media Cost

= 1×1000×3.15

= $ 3150

Cell culture daily costs are therefore estimated to be 3.2 RMU.

ATF Filter Replacement Cost Simply the cost for a new filter for the ATF 10

system. This is stated to be $ 16300 per unit and therefore a cost of 16.3 RMU is

used.
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DSP Batch Costs Includes the process steps from the Protein A step to the final

UF/DF. The costs of the chromatography resins are amortised over the number

of batches it takes to meet five years’ worth of demand which take into account

repurchases when the resin has exceeded its lifetime (re)uses. The parameters of

which can be found in Table B.1.

Amort. ProA +2×Amort. IEX +VRF +Amort. UF +Bags & Liners

= 1742+2×302+6500+100+2×453+7×360

= $ 12372

As such, the Cost of each DSP batch is estimated to be 12.4 RMU.

Campaign/Changeover Costs Estimated from QCQA batch release costs being

$ 35000 (Pollock, 2013) to therefore be 35 RMU.

B.2 Tables

Table B.1: Parameters, inputs and outputs for estimating costs of the Protein A and
the two ion-exchange (IEX) resins.

Parameters ProA IEX Unit

Inputs
Columns 1 1
Resin DBC 50 30 g/L
Bed height 20 20 cm
No.of cycles 1 1
Linear velocity 450 600 cm/h
Lifetime reuses 120 180
Resin cost 8000 2000 $/L
Outputs
Column diameter 40 40 cm
Cycle time 173 130 minutes
Amortised resin cost 1742 302 $/batch
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Table B.2: Summary of GA evolved (s,B) policy parameters for the various
USP:DSP process configurations. Units for parameter s and annual demand are
in kg and in days for parameter B.

1 reactor 2 reactors 3 reactors 4 reactors

s B s B s B s B

mean 34.8 110.9 38.3 105.0 41.7 109.4 47.4 110.0
s.d. 1.86 4.55 1.93 3.16 2.89 3.04 5.2 2.56
median 111 105 109 110
mode 111 107 106 110

B.3 Figures

 186000

 187000

 188000

 189000

 190000

 191000

 192000

 193000

 194000

 0  5  10  15  20  25  30  35  40  45  50

P
ro

fi
t (

R
M

U
)

Generations

Reactors
1:1
2:1
3:1
4:1

Figure B.1: Mean convergence over 50 GA runs for the (s,B) scheduling strategies
at the four process configurations investigated.
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Appendix C

Chapter 6 Appendix

C.1 Tables

Table C.1: Sensitivity of the optimised policies to different demand scales at
monthly demand frequency. Figures reported are expected profit values (in RMU)
± std. err. Best performance for each demand case is in bold.
Demand case BSP1B BSP2B BSP3B ANN

50% 90985 ± 4.5 91833 ± 4.7 91489 ± 4.6 67738 ± 5.7
75% 140314 ± 5.9 140592 ± 5.9 140552 ± 6.0 128846 ± 8.1
80% 150060 ± 6.3 150409 ± 6.4 150217 ± 6.3 141164 ± 8.4
85% 159970 ± 6.8 160058 ± 6.8 160016 ± 6.7 153263 ± 8.6
90% 169796 ± 7.0 169911 ± 7.2 169869 ± 7.1 165227 ± 9.1
95% 179480 ± 7.6 179574 ± 7.5 179576 ± 7.5 177260 ± 9.3
100% 189225 ± 8.1 189261 ± 8.2 189343 ± 8.0 188540 ± 11.7
105% 197807 ± 10.8 197899 ± 10.8 197589 ± 11.1 189258 ± 32.6
110% 202071 ± 17.9 202073 ± 17.8 201003 ± 18.2 182174 ± 33.9
115% 203112 ± 20.8 203071 ± 20.6 202013 ± 20.4 174785 ± 34.0

163



Ta
bl

e
C

.2
:

Pr
ofi

t,
co

st
s,

cu
st

om
er

se
rv

ic
e

le
ve

l(
C

SL
),

an
d

ot
he

r
pe

rf
or

m
an

ce
ch

ar
ac

te
ri

st
ic

s
fo

r
th

e
A

N
N

an
d

B
SP

3B
,t

un
ed

at
m

on
th

ly
de

m
an

d
fr

eq
ue

nc
y

an
d
±

10
%

de
m

an
d

sc
al

es
.M

ea
n
±

st
d.

er
r.

ar
e

lis
te

d
fo

r5
0

ru
ns

ea
ch

an
d

va
lu

es
re

po
rt

ed
ar

e
in

R
M

U
ap

ar
tf

ro
m

C
SL

va
lu

es
.

−
10

%
de

m
an

d
B

as
e

de
m

an
d

+
10

%
de

m
an

d

A
N

N
B

SP
3B

A
N

N
B

SP
3B

A
N

N
B

SP
3B

Pr
ofi

t
16

84
65
±

99
.5

17
02

23
±

9.
6

18
83

73
±

45
.1

18
92

88
±

7.
3

20
62

40
±

94
.5

20
76

21
±

10
.3

R
ev

en
ue

20
00

32
±

85
.1

20
04

75
±

7.
1

22
21

03
±

30
.3

22
25

47
±

9.
2

24
27

60
±

82
.8

24
37

17
±

12
.8

To
ta

lc
os

ts
31

56
6
±

38
.9

30
25

2
±

11
.3

33
73

0
±

25
.0

33
25

9
±

9.
4

36
52

0
±

24
.5

36
09

6
±

10
.6

Se
ed

24
8.

2
±

2.
08

17
8.

1
±

0.
48

20
1.

4
±

0.
82

18
2.

9
±

0.
67

15
5.

3
±

0.
47

15
4.

9
±

0.
28

U
SP

83
60
±

30
.0

74
79
±

6.
8

83
68
±

8.
9

81
30
±

6.
5

83
94
±

4.
7

83
79
±

3.
0

R
ep

la
ce

m
en

tA
T

F
fil

te
rs

7.
8
±

0.
17

9.
6
±

0.
05

11
.2
±

0.
09

11
.2
±

0.
06

17
.8
±

0.
16

16
.1
±

0.
06

C
el

lc
ul

tu
re

se
tu

p
14

36
.7
±

15
.8

6
10

30
.5
±

3.
53

11
63

.9
±

4.
16

10
63

.4
±

3.
20

90
3.

3
±

2.
66

90
5.

6
±

1.
90

D
SP

19
09

2
±

19
.6

19
07

5
±

4.
6

21
19

7
±

10
.6

21
19

1
±

5.
3

23
29

8
±

15
.1

23
30

3
±

6.
4

C
ha

ng
eo

ve
r

15
59

.9
±

17
.1

4
12

11
.8
±

3.
46

13
64

.1
±

10
.2

9
12

21
.3
±

3.
91

10
55

.6
±

3.
32

10
00

.5
±

1.
78

St
or

ag
e

19
92
±

18
.3

21
34
±

7.
2

21
92
±

14
.3

22
83
±

9.
9

26
86
±

16
.6

26
77
±

8.
9

B
ac

kl
og

pe
na

lti
es

28
2.

7
±

21
.6

3
13

4.
6
±

1.
89

36
1.

9
±

9.
66

20
3.

8
±

2.
47

85
4.

8
±

22
.8

1
51

2.
1
±

3.
59

W
as

ta
ge

31
.4
±

0.
59

39
.5
±

0.
13

46
.2
±

0.
31

46
.7
±

0.
28

76
.2
±

0.
88

69
.0
±

0.
23

C
SL

99
.5

5%
±

0.
04

4
99

.7
4%
±

0.
00

4
99

.4
9%
±

0.
01

3
99

.6
4%
±

0.
00

4
98

.8
7%
±

0.
03

5
99

.1
7%
±

0.
00

6

164



Table C.3: Optimised parameters for p1-p3 in each of the scheduling policies. The
mean ± std. deviation of the 50 best solutions (i.e., the best solution in each EA
run) are reported.

p1

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 6.2 52.5 - - - 60
BSP1A 16.4±1.0 18.7±2.2 - - - 60
BSP1B 19.4±1.6 21.3±1.9 - - - 43.4±3.1
BSP2A 10.8±2.4 24.3±5.1 15.6±1.1 17.7±2.0 - 60
BSP2B 12.4±3.9 24.8±3.2 18.1±1.8 20.1±1.9 - 44.1±8.6
BSP3A - - - - 16.0±0.9 60
BSP3B - - - - 17.4±1.2 43.2±0.9
ANN – – – – – 34.1±1.88

p2

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 11.1 93.6 - - - 60
BSP1A 27.6±1.8 29.5±2.2 - - - 60
BSP1B 26.6±2.9 28.6±3.2 - - - 58.4±4.5
BSP2A 22.0±4.8 33.6±4.0 26.5±2.1 27.8±5.0 - 60
BSP2B 20.5±6.3 34.0±5.0 26.7±3.3 28.2±2.9 - 58.4±6.4
BSP3A - - - - 25.2±1.6 60
BSP3B - - - - 30.1±2.0 51.7±1.9
ANN – – – – – 51.3±2.75

p3

Y (1) Y (2) Y (3) Y (4) Y (5) B

BSP0 10.7 77.5 - - - 60
BSP1A 23.8±0.7 23.9±0.7 - - - 60
BSP1B 20.3±2.6 20.9±2.5 - - - 72.4±7.2
BSP2A 14.6±4.9 38.3±5.1 21.4±1.3 21.5±1.3 - 60
BSP2B 10.7±4.7 31.0±6.0 19.2±1.6 19.9±1.5 - 75.5±6.6
BSP3A - - - - 28.1±1.6 60
BSP3B - - - - 20.6±2.0 77.0±4.7
ANN – – – – – 73.2±6.14
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Table C.4: Matrices of observed significance level of Mann-Whitney tests compar-
ing the mean profit of the best solution of each policy at different demand scales.
The p-values are for the test that 〈row〉 > 〈column〉.

Demand case ×0.85

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 1.00E+00
BSP2B 4.71E-33 - 1.01E-10
BSP3B 8.78E-09 1.00E+00 -

Demand case ×0.90

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 1.00E+00
BSP2B 2.25E-76 - 7.17E-02
BSP3B 1.23E-65 9.28E-01 -

Demand case ×0.95

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 1.00E+00
BSP2B 9.63E-21 - 3.06E-01
BSP3B 5.87E-19 6.94E-01 -

Demand case ×1.00

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 1.00E+00
BSP2B 4.63E-17 - 9.95E-01
BSP3B 1.76E-28 5.10E-03 -

Demand case ×1.05

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 9.90E-01
BSP2B 3.40E-110 - 4.29E-90
BSP3B 9.59E-03 1.00E+00 -

Demand case ×1.10

BSP1B BSP2B BSP3B

BSP1B - 1.00E+00 5.58E-35
BSP2B 1.94E-24 - 1.36E-111
BSP3B 1.00E+00 1.00E+00 -

Demand case ×1.15

BSP1B BSP2B BSP3B

BSP1B - 1.79E-30 6.15E-01
BSP2B 1.00E+00 - 1.00E+00
BSP3B 3.85E-01 9.56E-40 -
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C.2 Figures
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Figure C.1: Exemplar inventory profiles over scheduling horizon from the simula-
tion run in Figure 6.3 on page 128 for the standard and FCP1B scheduling policies.
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Figure C.2: Exemplar inventory profiles over scheduling horizon from the simula-
tion run in Figure 6.3 on page 128 for the ANN and FCP3B scheduling policies.
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Figure C.3: Exemplar inventory profiles over scheduling horizon from the simula-
tion run in Figure 6.3 on page 128 for the BSP3A and BSP3B scheduling policies.
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