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Abstract

In this dissertation, we focus on di↵erent aspects of modelling ion transport in
confined geometries. The transport of the ions through pores was first investigated
in the 19th century for cell membranes. In the last years, there has been a signifi-
cant increase in research of ion transport in nanoscale devices, such as nanopores,
nanowires and many more. Especially synthetic pores have the potential to be used
as nanoscale diodes, switches or in DNA sequencing.

In this thesis, we investigate di↵erent modelling approaches and discuss their
use and validity in various situations. The transport properties of nanoscale pores
are strongly determined by the confined geometry as well as surface charges. De-
pending on the experimental setup considered finite size, electrostatic as well as
electrochemical properties have to be resolved on various scales. This leads to a
variety of models ranging from microscopic approaches, such as Molecular Dynam-
ics, to macroscopic models like mean field theory. Since finite size e↵ects and fluid
dynamics e↵ects should not be neglected in confined geometries various extensions
of the Poisson-Nernst-Planck (PNP) system were introduced in the literature such
as density functional theory or the coupling to fluid dynamics. Another challenge in
ion transport modelling is the multiscale nature of the synthetic nanopores as their
length scale is sometimes 104 times larger than their radial dimension.

In the first part of the thesis, we develop a multiscale method that investigates
the asymptotic behaviour of the PNP equations for long and narrow nanopores. The
significant di↵erence in the radial and lateral length scale allows us to decouple the
system and to solve the behaviour in the boundary layers close to the charged
pore walls correctly. Two new asymptotic methods were developed to describe the
transport problem inside the pore. This asymptotic approximation serves as the
basis for the numerical solver. We investigate the quality of the approximations for
a variety of pores with di↵erent computational experiments. We present comparison
of the microscopic quantities such as concentrations and electric potential as well as
macroscopic quantities such as current voltage characteristic of exemplary pores. In
the second part of the thesis, we compare the simulations of the PNP system with
Monte-Carlo methods in the case of ion-channels. We discuss the di↵erent modelling
assumptions as well as the advantages of both methods. Yet again we present results
of the numerical simulations and discuss regimes in which both methods are valid.
In the last part, we investigate the optimal control problem for nanopores. Here
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we want to modify the surface charge of a nanopore to obtain a desired behaviour,
such as current-voltage characteristics or rectification behaviour. Two method are
derived and implemented as a solution of stated problem.
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Chapter 1

Modelling ion transport in

confined geometries

The investigation of ion transport through narrow channels started in the 19th cen-

tury with the early works of Walter Nernst [106]. At the beginning experimental

studies of the structure and the functions of the ion channels were of great interest.

With the ongoing technical development and experimental finding the mathematical

modelling of ion channels became more and more important, see [72; 73; 74; 63].

Roderick MacKinnon was awarded the Noble prize in chemistry for his work on the

structure and operation of ion channels in 2003 [94]. The specific conductance and

rectification behaviour of the biological channels initialised broad research about the

structure of biological channels in general and how they can be used in the devel-

opment of the microscopic electronic device, see [6]. Due to the sensibility of the

biological pores, synthetic equivalents which are more robust and stable, initialised

a lot of research in the last years. These synthetic nanopores are nowadays used as

sensors, microscopic electric devices and in the DNA decomposition.

The transport of ionic particles in confined geometries is influenced by mul-

tiple physical phenomena such as di↵erence in the chemical potential, drift caused

by the presence of the electric field, particle-particle and particles-structure interac-

tions as well as motion of the surrounding fluid to mention just the most significant

of them. The high complexity and di↵erent time as well as space scale of the phe-

nomena involved, lead to various modeling approaches, which provide a description

at di↵erent levels of accuracy. In this chapter, we discuss the most commonly used

models together with the assumptions they are based on as well as computational

limitations they su↵er from. We consider in particular: Molecular Dynamics (MD),

Brownian Dynamics (BD), Monte Carlo methods and various mean field models.
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1.1 Ion channels and nanopores

This thesis focuses on two di↵erent types of pores - ion channels and nanopores.

Both of them form a passageway for ions across an impermeable membrane - the cell

membrane in biological channels and a polymeric or silicon foil in case of nanopores.

The physical process driving the flow through both of them is similar and in the

both cases the narrowest part of the passage, that is the selectivity filter in ion

channels or the narrow tip in nanopores, are only one length scale bigger than the

size of the ion. This confined structure strongly influences the ionic flow. On the

other hand fixed surface charge on the nanopore walls e↵ects the movement of the

ions. Due to the similar structural properties and physical processes involved, both

types of pores can be described by similar mathematical models. However, there

are two main di↵erences: the inner structure and length scales. In the following we

discuss the specific properties of the ion channels and nanopores.

Ion channels are proteins located in the cell membrane specialised in trans-

porting certain type of particles inside and outside the cell. Being present in every

living cell of every living organism, ion channels control many crucial functions like

muscle contraction and the regulation of the blood pressure. There are two di↵erent

mechanisms of transport through the cell membranes - active and passive. The ac-

tive one is present in the Na+-K+pump, moving Na+ions out of the cell and K+ions

into the cell. This process requires energy provided from outside as the ion is moved

against the concentration gradient. The second one is the passive transport where

ions are transported due to the di↵erence in the electrochemical potential. This

mechanism does not require any energy from outside and it is controlled only by the

structure of the ion-channel. We focus on the second type of transport only. This

two types of transport are associated with two states of the ion channels- closed and

open as it is showed in the Figure 1.1. The process of changing from one state to

the other is called gating and it is a complex physiological phenomena driven by the

voltage among other. As this process is beyond the scope of this thesis we assume

that all considered pores are in the open state. The usual radius of the channel is

around few nanometers and it has a length of about 10nm. The inner structure of

the channel is made of long protein chains of complex structures that influence the

flow through. The transport properties are determined by the so called selectiv-

ity filters - the very narrow inner region where aminoacids create a highly charged

environment which allows only certain ions to pass.

Synthetic nanopores are a radially symmetric tunnels sculptured into poly-

meric and inorganic membranes such as Si3N4, Si, SiO2 or polymeric membranes
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Figure 1.1: Biological ion channel inside cell membrane showing two di↵erent states
of the channels - closed and open, see [10].

composed of polyethene terephthalate (PET) or polyimide Kapton. The geometry

as well as the surface charge of the pore can be changed by chemical reactions. Thus

pores of di↵erent shape and with desired surface charged patterns can be engineered.

What is more by introducing a specific binding on the pore walls a sensor for specific

species can be built. Various techniques have been developed to produce nanopores

in the mentioned materials. The oldest one, the track-etching technique was first

used to produce micrometer scale pore (see [81]). Here heavy ions (typically Xe, Pb

Au or U) are accelerated to the kinetic energy up to 109eV before penetrating the

foil. This creates a nanoscale size tunnel, which is subsequently modulated using

wet chemical etching. Due to this process the pore has a conical shape with nar-

row entrance and wider exit. A similar technique can be used to obtain symmetric

pores in silicon by using an etching technique from both sides of the foil. Applying

the etching procedure on both sides of the foil creates a pore of conical shape and

is considered to be di↵erent to the track etching. Another group of techniques is

based on beams of lower energy particles such as ions or electrons. Here, a hole in

a foil is drilled by the highly concentrated beam of particles of energy in the range

of keV to obtain pores with the diameter as small as 3nm. The fourth class of

the methods is based on breaking the end of the glass nanopipette with the laser.

Here pores with a radius in the range of few nanometers [89]. Figure 1.2 shows sev-

eral nanopores obtained using the etching in a PET foil. More information about

nanopore production as well as the respective experimental setup can be found in
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[79]. Despite the di↵erences in shape, length and chemical composition nanopores

share some common features. The can conduct constant current over time in case

of an externally applied voltage on the both sides. The solid structure of the pores

ensures that a single pore can be used in experiments for a long time and also allows

for simple and inexpensive transport between laboratories.

Figure 1.2: Nanopores sculptured in PET foil, see [152].

1.1.1 Experimental setup

Next we discuss a typical experimental setup which serves as the basis for the model

development. In experiments, as described for example in [79], the foil or a part of

the cell membrane is put into water or another solvent, such that the membrane sep-

arates two tanks. After that m salts of di↵erent valance are dissolved on both sides

creating a liquid containing m ionic species and water. Next an electric potential

is applied, using the electrodes located on both sides of the membrane. Due to the

chemical reactions on the electrodes and the electron transfer in the electric circuit,

a di↵erence in electrochemical potential arrises and ions start to move through the

membrane via the pore. This flux quickly equilibrates and the obtain current is

measured when the system achieves its steady state. The size of the tanks, ensures

that the concentrations of the species are constant even in the presence of contin-

uous ionic flow. Note that the high imbalance of electrons on the diodes, leads to

a double layer behaviour which reduces the value of the e↵ective voltage. As this

drop in the potential cannot be neglected, the potential di↵erence is measured once

again in the bath regions to establish the real potential acting on the pore. This

potential is sometimes denoted as the reference potential. Since we do not consider

the proximity of the diodes or the chemical reactions which take place in this region
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we call the actual potential di↵erence on the both sides of the pore the applied

potential. Variations in the applied potential lead to di↵erent currents - the graph

of the measured ionic current as a function of the applied voltage is known as the

current-voltage IV curve and is a characteristic feature of a pore.

Mathematical modelling of the experiments In the experimental setup the

tanks on the both sides of pores are in the lengthscale of centimetres, however all

physical phenomena take place in the scale of nanometer. Therefore many models

focus on the very narrow part which strongly influence the behaviour of the pore

only. Scientists are interested in describing the passage of ions through the pore -

either individually (in microscopic models) or by considering the respective density

concentrations (in macroscopic models). The movement of the particle is influenced

by the structure of the pore as well as the charged particles on the walls and other

ions crossing the membrane at the same time. In what follows we consider a single

open (conducing) pore, which is placed between two tanks. In that situation we

distinguish between following regions - left bath, right bath and the pore connecting

them.

1.2 Microscopic models

1.2.1 Molecular dynamics

Molecular dynamics simulations are based on the description of the particles on the

atomic level. In these models the ions as well as all atoms that compose the mem-

brane and the solvent are modelled as hard spheres. Their movement is described

by Newton's law of motion. MD simulations can be used to describe the movement

of the more complex particles, for example bi-polar water molecules or the long

protein chains at the ion channels walls. Here often a coupling to the elasticity

theory is considered. MD simulations describe the time evolution of the system in

a completely deterministic way. The atoms movement is driven by

dxi
dt

= ui,

mi
dui
dt

= Fi,

where xi denotes the position of the i-th particle, Fi is the associated force field, ui

stands for the velocity and mi for the mass. List of notation can be found in the

Appendix A. In the simulations all interactions between particles of the solvent and
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the pore are involved leading to the high dimensional and strongly coupled system

of second order ordinary di↵erential equations. However the intuitive mathematical

description as well as the possibility to use very detailed informations about the

structure of the pore and the molecules involved as well as ability to cover phenomena

such as chemical reactions, elastic behaviour of bigger particles and fluid-structure

interactions make MD simulations a very popular tool in engineering. On the other

hand, it is not clear whether the assumptions made on the microscopic interactions

are valid. What is more, all simulations are restricted to a small computational

domain due to the large number of the particles involved. On top of that, small time

steps are required to resolve the large amount of particle interactions correctly. This

makes the simulations very time consuming. The usual time scale in MD simulation

are nanoseconds while capturing flow behaviour in ion-channels requires micro to

milliseconds. Another disadvantage is the fact that the force fields are calibrated on

small subsystems that di↵er significantly from the actual experimental setting. In

[23] authors also point out that the non-periodic boundary conditions lead to limited

usefulness of this kind of simulations for the case of di↵erent bath concentrations

on both sides of the channel.

There are multiple commercial software packages available for MD simula-

tions such as CHARM [87] or AMBER [22] that employ a variety of di↵erent force

fields and the choice is left for the user. Due to the high accuracy this class of meth-

ods is often used for calibration and verification of later developed models [64; 66].

1.2.2 Brownian dynamics

A popular simplification of MD simulations are so-called Brownian Dynamics (BD)

[122; 84; 37; 27]. In this model water molecules are treated implicitly. It is based

on the assumption that the movement of the ions and water molecules are di↵erent

- the rapid motion of the solvent and far slower collisions of ions that happen at a

much lower rate. Hence the influence of water is replaced by averaged force fields

acting on the charged particles. The ions are assumed to be hard spheres with

the charge placed in the middle of the sphere. The naming is based on the fact

that positions are calculated in a stochastic way instead of using Newton's laws of

motion. In particular Langevin's equation

mi
dui
dt

= �mi � �iui +Ri + Fsi,

is used to describe the evolution of the single particle. This Langevin's equations

of motion are considered in the limit of overdamping, where the relaxation time is
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much smaller than the integration time step, see [105]. Here �i stands for the friction

coe�cient, while the components involving Ri and si are the random and systematic

forces respectively. Note that equation F stands for the Faraday's constant. The

friction is coupled with the di↵usion coe�cient by Einstein's relation, that is

�i =
kBT

miDi
,

where kB denotes the Boltzmann constant, T the temperature and Di stands for

the di↵usion coe�cient.

BD is well-suited for the so-called explicit solvent models. Within these

methods water (or another solvent) is approximated by a continuous force substance

within the simulation domain. There are several critical issues in BD simulations.

The most important is the risk of unphysical ion configurations due to the stochastic

nature of the motion equations. Another problem is the inaccurate time integration

of the Langevin equations which leads to di↵erences between the prescribed model

and obtained ion behaviour. In addition, the computation of the precise electrostatic

forces acting on the particles is not straightforward due to the modelling complexity

and could easily result in an incorrect evaluation of the motion of the ions.

All these simplifications mentioned before as well as the stochastic nature of

the model makes BD less demanding in terms of computational resources than the

MD simulations. This allows for simulations on time scales of microseconds which

lead to more accurate computations of the ionic current cross the membrane.

1.3 Macroscopic models

1.3.1 Mean field approach

On the macroscopic level ion transport can be described by continuous densities. In

our setting we are interested in the number of particles per unit volume. We denote

by ni(x, t) the number of ions of type i at time t in position x. The quantity nS

stands for the number of solvent particles - in our case water. Then the evolution

of the i-th ionic species can be described by the following transport equation

@ni

@t
= �r · Ji, (1.1)

where Ji denotes the flux of species i, that is rate of particle flow per unit area.

In ion channels and nanopores transport is not only driven by di↵usion, but

also the external electric field and the mixture of the barycentric velocities (see [43]).
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We neglected the last in the following. In this case we write

Ji = � Di

kbT
mi(~n)(rµe

i (, V )), (1.2)

where ~n is the vector of ionic concentrations and Di is the di↵usion coe�cient. Some

authors (see [43; 42; 45; 39; 40; 41]) include also the cross-di↵usion terms (Di,j) when

considering particle flow but in this thesis we narrow it and do not consider this

phenomenon.

The description of the di↵usion only driven transport was proposed for the

first time by Adolf Eugen Fick in [49] and stated in the well known relation

Ji = �Dirni.

Hence the flux of the i-th ionic species is proportional to the gradient of particle

number. The function m(n) corresponds the mobility function and µe denotes the

electrochemical potential which is a function of the concentrations and electrical po-

tential V . Sometimes these equations, are formulated in terms of the concentration

ci which is the given by the ratio

ci(x, t) =
niPm

i=1 ni + nS

.

Such defined concentration describes probability distribution of particles of

type i. By setting di↵erent forms of mobility and electrochemical potential in the

equation (1.2) we obtain di↵erent models for the ion transport that we present in

the following sections.

Equation (1.2) states that flow of the particles corresponds to the gradient

of the electrochemical potential µe. It consists of three main components - the

reference potential µ0, the chemical potential µchem and the electric component µel,

that is

µe = µ0 + µchem + µel.

The reference potential µ0 consists of all the forces that influence the flow but

are not included in the chemical or electrical potential. For example particle-particle

interactions or hard sphere interactions. The electrochemical potential µel describes

the influence of the electric potential on the movement of the particles. The chemical

part of the potential - µchem denotes the chemical forces driving the flow. It includes
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di↵usion as well. In the next sections we discuss the self consistent coupling of (1.2)

to the Poisson-Boltzman equation to model the ion transport through the nanopores

and ion-channels. We present di↵erent models which arise due to di↵erently chosen

electro-chemical potential µe, mobility function mi(n) as well as surrounding fluid

treatment. In the following we discuss a family of models starting with the most

general the Dreyer-Guhlke-Landstorfer-Müller (DGML). Then we present several

modifications, which are based on di↵erent simplifications, such as Bikerman model

and the well known Poisson-Nernst-Planck equations.

1.3.2 Mean field model and the solvation e↵ect

Solvation occurs when ionised particles are dissolved in a bipolar solvent. In our

case, the bipolar nature of that water molecules results in a solvent shell around

charged ions as it is shown in Figure 1.3.

Figure 1.3: Solvent shell formed around a sodium ion. Water particles are facing
the positively charged particles with the negative side.

The motion of the ions as well as the solvent particles causes constant ex-

change of water particles in the shell. However the e↵ective structure of the ion with

the solvent shell, forming a bigger particle remains the same. The influence of this

phenomenon was studied in [108] and in the context of ion channels in [114; 7].

This e↵ect can be included in the mean field models via solvent molecules

and size exclusion such as in DGML (1.12)–(1.13), Bikerman (1.14) and the nPNP

(1.19a)–(1.19b). The modelling of the solvation e↵ect results in the following changes.

First of all, it prevents overcrowding of the ions in the proximity of the charged walls.

The PNP model is known to overestimate the ionic concentration close to the highly

charged nanopore walls which leads to unphysical behaviour. Including the solvation

e↵ect might be a remedy for this e↵ect yet very little is known about the solvation

shells in terms of its size and behaviour in the presence of an applied potential.

In Chapter 4 we discuss the influence of the solvation e↵ect while developing new

asymptotic models for ionic flows. First insight about the influence of the solva-
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tion e↵ect are shown in Chapter 4, but a further and much deeper analysis of this

phenomenon is necessary for the full understanding of the problem.

1.3.3 Coupling with Poisson-Boltzman theory

The electric potential µel describes the interactions between the charged ionic species

and the surrounding electric field. The electric potential is described by the Poisson-

Boltzmann theory, gives µel = zie0V , where e0 is the elementary charge, zi the

valence of the ion i and V is the electric potential. To obtain a closed system of

equations we couple the transport equations (1.1)–(1.2) with the Poisson's equation,

that is

r · (E) = nF

✏r✏0
, with nF = e0

mX

i=1

zini. (1.3)

Here E is the electric field, nF denotes the free charge density, ✏r is the relative

dielectric constant of the solvent and ✏0 stands for the permeability of the free

space. We assume that the influence from the change in the magnetic field can be

neglected. Therefore Faraday's law gives

rV = �E . (1.4)

Then (1.3) reads as

✏r✏0r · (rV ) = �e0

mX

i=1

zini. (1.5)

Equation (1.5) describes the the e↵ect of the mobile and permanent charges

on the electric field consistently. Together with the transport equation, equations

(1.1)–(1.2) and explicit formula for the electrochemical potential µe we obtain a

closed system of m+1 equations for m+2 unknowns, in particular the species and

solvent particle numbers ni and the electric potential V . To obtain a closed system

of equations we need to derive a relation between the solvent and other species

particle numbers. The most general form of discussed model reads as

✏r✏0r · (rV ) = �e0

mX

i=1

zini, (1.6a)

Ji = � Di

kBT
mi(~n)(rµe

i (~n, V )) for i = 1, ...,m, (1.6b)

@ni

@t
= �r · Ji for i = 1, ...,m. (1.6c)

As the relative permeability ✏r of the membrane is far lower than the one of the
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solvent we assume that the electric field inside the membrane is negligible. This

geometrical assumptions ensures that

supp{ni(x, y, z, t)} = supp{V (x, y, z, t)}.

Figure 1.4 shows a simplified geometry of the problem considered. Note that it is

not in scale and that it omits the variation of the pores radius.

System (1.6a)-(1.6c) is considered on the domain ⌦ and has to be supple-

mented with boundary conditions. We assume that the pore is radially symmetric,

that is

⌦P = {(x, y, z) : 0 < x < L, 0 
p
y2 + z2  R(x)},

where L denotes the length of the pore and R(x) its shape function. On both sides

of the channel the so called bath regions are attached. Their size and shape varies

[30; 115] but we assume that

⌦B ={(x, y, z) : �LB  x  0, 0 
p

y2 + z2  RB(x)}[
{(x, y, z) : L  x  LB, 0 

p
y2 + z2  RB(x)}.

The baths correspond to the in and outside of the cell in biological channels and

to the tanks with solvent in case of nanopores. The full computational domain is

denoted by ⌦ = ⌦B [ ⌦P and shown in Figure 1.4 .

Figure 1.4: Sketch of the ⌦ as well as boundaries �L, �R and �M .
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Boundary conditions The fixed surface charge at the nanopore walls (see [134;

61; 150; 47]) corresponds to a Neumann boundary condition of the form

�

✏r
= �rV ·N |�N ,

where N denoted the outer unit normal vector. The Neumann boundary condition

is applied on �N = {(x, y, z) 2 ⌦p,
p
y2 + z2 = R(x)}. We assume no flux boundary

conditions of the ionic species, that is

Ji ·N |�N = 0 for i = 1, ...,m.

In the bath regions ⌦B have two types of boundaries. The one facing the membrane

defined as

�M = {(x, y, z) 2 ⌦B, x = 0} [ {(x, y, z) 2 ⌦B, x = L},

Here we assume that no particles cross the membrane and that there is no surface

charge. Therefore

Ji ·N |�M = 0 for i = 1, ...,m,

rV ·N |�M = 0.

In experiments the applied electric potential is generated by two electrodes placed

at least few micro-meters away from the membrane. Hence we set V |�L = VL = 0

on the boundary

�L = {(x, y, z) 2 ⌦B, x = �LB} [ {(x, y, z) 2 ⌦B,
p
y2 + z2 = RB(x)},

On the right side we set the applied potential V |�R = Vappl where �R is defined sim-

ilarly as �L. Since the ionic flow through the pore is of several orders of magnitude

smaller then a total number of ions in the baths we assume that the concentrations

on the boundary of our domain are constant. Therefore we choose the following

Dirichlet boundary conditions

ni|�L = nB,i for i = 1, ...,m,
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where nB,i is the bath particle number per unit volume of the species i. Furthermore,

we assume that charge neutrality holds in the bath regions, that is

mX

i

zini|�L =
mX

i

zini|�R = 0.

The mean field system in the steady state As the system calibrates after

milliseconds we consider its steady state only. That yields

✏r✏0r · (rV ) = �e0

mX

i=1

zini, (1.7a)

Ji = � Di

kBT
mi(~n)(rµe

i ) for i = 1, ...,m, (1.7b)

0 = r · Ji for i = 1, ...,m, (1.7c)

together with

Ji ·N |�B = 0 for i = 1, ...,m and rV ·N |�B = 0, (1.8a)

Ji ·N |�N = 0 for i = 1, ...,m and rV ·N |�N =
�

✏r
, (1.8b)

ni = nB,i|�L[�R for i = 1, ...,m and V |�L = 0, V |�R = Vappl, (1.8c)

Ji ·N |�M = 0 for i = 1, ...,m and rV ·N |�M = 0. (1.8d)

1.3.4 Mean field models for ion transport in nanoscale pores

In the previous section we described a general setup for modelling the ionic transport

through confined geometries. We discussed the geometry, boundary conditions and

the coupling of the mass balance equation with the Poisson-Boltzman equation

leading to a closed system of the partial di↵erential equations. In the following we

present the hierarchy of mean field which di↵er in the following way

1. Modelling of the electrochemical potential

2. Mobility: di↵erent mobility models have been discussed in the literature. In

the majority of the models the mobility is assumed to be linear, but also

nonlinear versions such as degenerate or porous medium type di↵usion have

been considered, see [91].

3. Solvent treatment: di↵erent assumptions on the surrounding fluid and its in-

teractions with the ions have been considered in the models. If electrochemical

e↵ects are dominating the dynamics of the system, then the velocity of the fluid
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can be set to ~u = 0. If this is not the case the solvent velocity can be included

via coupling to an additional equation, such as Navier-Stokes equation.

In the following section we describe di↵erent mean fields models by considering

di↵erent components of the potential and mobility functions. In the entire thesis we

consider isothermal case, that is T = const. We present the models as a complete

systems of equations but the summary in terms of mobility and potential functions

can be found in table 1.1.

1.3.5 Dreyer-Guhlke-Landstorfer-Müller model

The DGLM model was derived from general framework of electro-thermodynamics

in [43; 42; 45]. A more detailed analytical study, as well as an existence proof of

solutions can be found in [39; 40; 41]. It is based on the assumption that the masses

and the volumes of the particles and the solvent satisfy

mi

vi
=

ms

vs
for i = 1, 2, ...,m, (1.9)

where mi stands for the mass of the species i and vi for its specific volume. This

implies that the total mass density
Pm

i=1mini + mSnS , is constant. Then, the

general constitutive equations read

Ji = �Di
mini
kBT r

⇣
µchem
i � mi

mS
µchem
S + z�e0V

⌘
for i = 1, 2, ...,m. (1.10)

In the incompressible setting the number densities have to satisfy the constraint

1 =
mX

i=1

vini + nSvS ,

which defines an upper bound for the number densities. The chemical potentials µi

are defined as

µchem
i = µ0

i + kBT ln(ci), (1.11)

where µ0
i is the reference potential, which depends in general on the temperature

and we assume it to be constant. Thus using the relation (1.9), the (e↵ective)

electrochemical potentials are

µe
i = eµ0

i + kBT
�
ln(ci)� mi

mS
ln(cS)

�
+ zie0V, (1.12)

where eµ0
i denotes the reference chemical potentials of ion and solvent.
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Using of the chemical potential (1.11) into the mass fluxes (1.10) yields the

explicit expression for the fluxes, that is

Ji = �Dimi

✓
rni + ni

zie

kBT
rV (1.13)

+
ni

nS


� mi

mS
rnS � nS

n

⇣
1� mi

mS

⌘
rn

�◆
,

where the last term denotes the gradient of the total number of particles (n =
Pm

1 ni). This formula of the flux represents di↵erent physical phenomena. The first

term corresponds to the di↵usion due to the concentration gradients, the second

a drift because of the applied electrical field. The next terms describe solvent-ion

interaction, term provides a correction for the di↵erent size of the constituents, while

the last term represents the coupling of elastic e↵ects and di↵usion.

This model considers particles of di↵erent masses and volumes which is cru-

cial for the solvation e↵ect discussed in section 1.3.2. In the next sections we de-

scribed simplifications of the models leading to more basic but commonly used

models.

1.3.6 Bikerman model

The Bikerman model was introduced in [9] and can be considered as a simplification

of the above mentioned DGML model, where masses and volumes of all of the ionic

species are equal, i.e.

mS = mi and vi = vS for i = 1, ...m.

Then (1.12) simplifies to

µe
i = eµ0

i + kBT
�
ln(ci)� ln(cS)

�
+ zie0V. (1.14)

Due to the fact that all the particles in the Bikerman model have the same size

it can be seen as a size of a lattice on which the particles are moving. The total

number density is given by the lattice and is constant, which leads to

cS = 1�
mX

↵=1

ci = 1� ⇢.

Note that the maximal charge density has an upper bound.

15



1.3.7 The Poisson-Nernst-Planck and the nonlinear Poisson-Nernst-

Planck equations

A usual assumption of the particle transport is that the concentrations of the ions

ci are smaller then the concentrations of the solvent cS , namely cS � ci. Applying

this relation to the equation (1.13) leads to the oldest and well established model,

the so called Poisson-Nernst-Planck (PNP) equations [108]. That reads

Ji = � Di

kBT
cirµe

i , (1.15a)

µe
i = eµ0

i + kBT
�
ln(ci)

�
+ zie0V. (1.15b)

together with boundary conditions

Ji ·N |�B = 0 for i = 1, ...,m and rV ·N |�B = 0, (1.16a)

Ji ·N |�N = 0 for i = 1, ...,m and rV ·N |�N =
�

✏r
, (1.16b)

ci = cB,i|�L[�R for i = 1, ...,m and V |�L = 0, V |�R = Vappl, (1.16c)

Ji ·N |�M = 0 for i = 1, ...,m and rV ·N |�M = 0. (1.16d)

The PNP system has been used to describe the flux of carriers in semiconduc-

tor crystals [98; 99; 101]. Note that the PNP equations are known as drift-difussion

equations (DDE) in the semiconductor community. The respective current flow is

a few orders of magnitudes larger than nanopores, the same holds for the physical

size of the semiconductor devices. Semiconductors have simpler geometry, than the

long and thin pores and multiscale e↵ects as in nanopores are not so dominant. The

DDE have been used successfully to solve optimal design and parameter identifica-

tion problems for semiconductor devices [147; 116] and even led to an asymptotic

solutions of the problem [100].

Entropy formulation and gradient flow structure In the steady state the

continuity relation (1.7b)–(1.7c) can be written as

0 = r · ( Di

kBT
cirµi), (1.17)

where µi denotes the electrochemical potential given by

µi = kBT log ci + zieV. (1.18)
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This formulation is commonly used in the physics community, see for example [12;

14; 64]. It is related to a gradient flow structure of the PDE system with respect to

the Wasserstein metric on the L2 space of the entropy

E(c1, .., cm) =
mX

i=1

Z
ci log ci + cizieV (c1, .., cm),

leads to a formulation of the continuity equation

rµi :=
�E

�ci
.

Nonlinear Poisson-Nernst-Planck model

A nonlinear version of the Poisson-Nernst-Planck model introduced in [26]. Here

a nonlinear mobility model, was formally derived from a microscopic lattice based

particle approach which included volume exclusion. That leads to a drift-di↵usion

system in which unphysical high concentrations of the particles are not possible

due size exclusion which leads to an upper bound on the total concentration. The

nonlinear mobility is given by m(~n) = (1�⇢)ci which results in a strong size exclusion

e↵ect. The system reads

Ji = � Di

kBT
(1� ⇢)cirµe

i , (1.19a)

µe
i = eµ0

i + kBT
�
ln(ci)� ln(cS)

�
+ zie0V. (1.19b)

Here the term (1 � ⇢) = 1 �
Pm

i=1 ci corresponds to the freely available space.

The lower concentrations and lower mobility than the ones observed in the classic

PNP model leads to lower flow. Note that the (1.19b) corresponds to the Bikerman

model, which used a linear mobility. The drift- di↵usion equation is combined with

the Poisson-Boltzmann equation (1.5). This system is also known as the nonlinear

PNP (nPNP from now on).

Summary of the models

All the models presented above can be written in terms of an electrochemical po-

tential and a mobility functions. The table 1.1 states the respective choices for the

models.
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Name of the model mi(~c) µi

DGLM (1.10)–(1.12) ci kBT
�
ln(ci)� mi

mS
ln(cS)

�
+ eziV

Bikerman (1.14) ci kbT log ci
(1�⇢) + eziV

nPNP (1.19b)–(1.19a) (1� ⇢)ci kbT log ci
(1�⇢) + eziV

PNP (1.17)- (1.18) ci kbT log ci + eziV

Table 1.1: Comparison of the di↵erent mean field models.

1.3.8 Related mean field approaches

Di↵erent modifications of the mean field models can be found in the literature.

Some of them include phenomena such as: particle particle interactions, nonlinear

di↵usion and solvent movement.

Poisson-Nernst-Planck coupled to the Navier-Stokes model.

The classical Nernst-Planck equation involves the motion of the fluid as one of the

components of the ionic flux. It is a very strong assumption that the flow of the

water that is surrounding the ions has no influence on the movement of the charged

particles. For that reasons the Navier-Stokes equation has been coupled with PNP

system to obtain Navier-Stokes-Poisson-Nernst-Plank system, see [124]. Here (1.6a)

– (1.6c) is coupled to

⇢F (@t~u+ (~u � r)~u)� µ�~u+rp = �nFrV, (1.20a)

div(u) = 0, (1.20b)

where p stands for the pressure and nF is the charge density and ⇢F fluid density. In

[124] existence of solutions as well as the numerical discretisation was showed. The

numerical scheme proposed in [119] provides an e�cient method for finite element

solutions of the system at hand. In [53; 44; 50] a coupling of the PNP model to

the Stokes equation have been proposed in the context of the semiconductor device

modeling.

Poisson-Nernst-Planck with nonlinear di↵usion term

In [91] the authors analysed generalisation of the PNP equation with the porous

medium type di↵usion. For a given number k � 1 and two ionic species with
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concentration denoted by n and p the system is given by

div(rV ) = n� p, (1.21a)

@tp = �pk + div(prV ), (1.21b)

@tn = �nk + div(nrV ), (1.21c)

for t � 0 and x 2 Rd where d � 3. This system can be interpreted as a gradient

flow with respect to the Wasserstein distance. The authors prove existence of the

solutions in the case of k = 1 and k > 1.

1.4 Multiscale models

Multiscale methods have been used to resolve transport process at di↵erent scales.

They allow to include small scale relations, such as particle-particle interactions,

which are neglected when in mean field models. At the same time other length scales

resolved using the mean field models, allowing for higher computational e�ciency.

In this thesis we will discuss two of these methods - a Local Equilibrium Monte

Carlo method and Density Function Theory. Further information on di↵erent scale

approaches can be found in for example in [56; 146; 2; 3].

1.4.1 Monte Carlo methods

Monte Carlo simulations have beed used very recently in ion channel simulations, see

[12; 60; 46]. The LEMC+NP approach, see [12; 14; 64; 21], combines the continuity

equations with stochastic computation of the potential equilibrium. It combines the

continuity equations of charged particles together with stochastic computations of

the potential in equilibrium. It assumes that the system is locally in a steady state

and that fluid can be neglected.

The LEMC+NP method is used mostly among chemical engineers and is

based on the NP equation, that reads

Ji = � Di

kbT
cirµi. (1.22)

Yet again the electrochemical µi potential is composed of the chemical and electrical

part

µi = µchem
i + zieV,

that as in the case of the PNP combines the chemical potential (µchem
i ) with the

electrical potential zieV . The reason for this formulation is that in experimental
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setups these two cannot be separated. Note that the equation (1.2) is obtained from

(1.22) by neglecting fluid velocity and setting

µchem
i = µ0 + kBT ln (ci).

where µ0 is constant. The coupling between V and µi is provided by the Monte Carlo

method. In early works the MC method was for a system in global equilibrium, that

means the µi was constant in the whole domain and no external applied potential

was applied. The novelty of the LEMC method is to divide the computational

domain into small subvolumes and then assume that the electrochemical potential

is constant in these subdomains. Due to the MC coupling, the LEMC+NP method

is able to track the movement of every single particle and include the size of single

charge ions. That gives better insight in the trajectories of other methods.

The LEMC+NP method combines two di↵erent modelling levels - the full

particle models and the mean field approach. For that reason, it is particularly

interesting in terms of comparison for both of the modelling types. Unfortunately

due to its stochastic nature it is computationally demanding. However it can be used

to describe the positions of the particles including the particle-particle interactions

and volume exclusion phenomena in small geometries such as ion channel.

The results prepared using this method and the comparison with other meth-

ods are presented in Chapter 5.

1.4.2 Density Functional Theory

The idea of modelling multi-particles systems with density functionals was inves-

tigated for fluid dynamics by Walter Kohn and Pierre Hohenberg (see [76]) in the

second half of the 20th century. They developed a computationally feasible approach

to deal with systems containing many particles. These results were used for the PNP

model by Dirk Gillespie to include size exclusion e↵ects and local electrostatic in-

teractions, see [59; 75].

The main idea is to introduce an additional potential to µi which includes

an additional potential arising from the hard-sphere interactions, that is

µi = µHS
i + µe

i .

Note that the computation of the µHS
i is costly and its extension into higher dimen-

sions is not clear as the model was introduced in 1D only. The additional potential

µHS
i introduces the e↵ect of particle - particle interactions as every charged particle

creates an electric field that influences other particle in the vicinity. The computa-
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tion of this additional term involves the computations of high dimensional nonlinear

integrals, which is based on nonlocal approximations and though expensive.

1.5 Comparison of the methods

In this chapter we presented modelling approaches which have been proposed in the

literature to describe ion transport through ion channels and nanopores. Because

of the di↵erent modelling assumptions they describe the transport at di↵erent or-

ders of accuracy and scales. This leads to di↵erent levels of numerical complexity

and therefore computational resources. Choosing the correct level of accuracy is a

challenging task which was discussed in more details in [109].

The most in depth description is Molecular Dynamics. It is a suitable choice

to model charged particles transport over short time scales and small computational

domains. It allows to simulate each particle's trajectory, which at the same time is

also the biggest disadvantage of the method. For every single particle Newton's laws

of motion need to be integrated using a time stepping method with strong restric-

tions on the time steps. This limitation reduces the time which can be simulated

significantly. Furthermore, with every time step the numerical error accumulates

which might lead to false results [92]. In case of low ion concentrations more wa-

ter molecules need to be considered, leading to further computational limitations.

Nevertheless, the high microscopic accuracy and ability to trace all of the particles

make MD simulations a proper tool to investigate some of the small biological ion

channels over short time scales. Although, the method is being constantly developed

[83; 111] its usefulness for the investigation of longer nanopores is still limited due

to the high computational costs and limited time range.

Using stochastic approaches to overcome the shortcomings observed in the

Molecular Dynamics models was the idea behind development of Brownian Dynam-

ics and Monte Carlo methods. Both methods, as statistical based methods, require

multiple runs and adequate averaging methods to obtain trustworthy results hence

both method are computationally expensive.

On the other hand, BD produces very accurate trajectories of charged par-

ticles over much larger time horizon than the MD simulations mainly because of

the treatment of water particles. Due to these assumptions larger times steps and

computational domains are allowed.

Mean field approaches are based on a significant simplifications of the phys-

ical problem. By considering the concentration instead of the trajectories of the

particles we lose certain amount of the information about the problem. Di↵erent
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mean field models count for specific aspects such as di↵erent particle masses and

volumes or the macroscopic description of the surrounding fluid flow. By concen-

trating on averaged e↵ects present in mean field only the methods are less accurate

than MD or BD. A common feature of all mean-field approaches introduced in this

chapter is their computational feasibility. Di↵erent methods have been developed

to simulate these systems of partial di↵erential equations e↵ectively. The compu-

tational complexity highly increases in case of additional DFT potentials, but it is

still significantly lower then for MD and BD simulations. Also the analytical results

available make mean field models amendable, especially in the context of inverse

problems, shape optimisation or optimal design.

Combining stochastic integration methods together with the mean field ap-

proach leads to a method that has an interesting balance between accuracy and

computational complexity. The LEMC+NP method posses some of the disadvan-

tages of the stochastic methods especially in larger computational domains. Hence,

it is limited to shorter pores such as the ones in silicon nitride membranes [71].
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Chapter 2

Analysis of the one-dimensional

Poisson-Nernst-Planck equation

In this chapter, we derive a one-dimensional area averaged limit of the stationary

Poisson-Nernst-Planck equation as it was described in [123]. We begin with recalling

an existence result for the stationary PNP equation (1.6a)-(1.6c) which in case of

the semiconductor devices was shown in [98]. The steady state is considered in mean

fields models for nanopores due to the fast equilibration of the system. In the case

of the ion channels that assumption might not always be fulfilled as the complex

gating mechanism may change the shape and the inner structure of the channel (see

[28; 68; 148]).

Theorem 1 (Existence of the solution of the PNP system [98]). Let � 2 H1/2(�N )\
L1(�N ), the applied potential Vapp 2 H1/2(�R[�L)\L1(�R[�L) and the boundary

concentrations ci|�R 2 H1/2(�R [ �L) \ L1(�R [ �L). Then there exists a solution

(c1, .., cm, V ) 2
⇣
H1(⌦)\L1(⌦)

⌘m+1
to (1.7a), (1.7c), (1.15a)-(1.15b) together with

the boundary conditions (1.16a)-(1.16d).

The derivation of the 1D Area Averaged model is valid for long radially

symmetric pores. It is obtained by writing the PNP system in radially symmetric

coordinates and passing to the limit R ! 0, where r stands for the radius of the

pore. In the second part of the chapter, we discuss the existence and uniqueness

of this 1D area averaged PNP system. The proof follows the lines of the existence

results presented in [98] for the stationary drift - di↵usion equations. Due to the

averaging we need to adapt the argument since the mobility, di↵usivity and source

term depend on the area function. In the last part of the chapter, we present the

existence proof for the respective 1D area averaged nPNP model.
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2.1 Derivation of the one dimensional limit of the PNP

model

Since nanopores and ion channels have a small aspect ratio a dimensional reduction

is often used in the literature. In these models the influence of the surface charge

is averaged over the pore area, see [30; 32; 143]. In this section, we present the

derivation based on the H1 convergence in case of the rotationally symmetric pores

with small aspect ratio and the surface charge located on the inner pore walls. The

argument is based on the statement of Theorem 1, in fact we use the regularity of

the solutions of the steady-state PNP equation. In the following, we assume that

length of the pore is much bigger than its radius and introduce the scaling x⇤ = L̄x

and r⇤ = R̄r. We denote unscaled values with the superscript ⇤ and scaling factors of

the quantities by ·̄. Then the PNP system in cylindrical coordinates in the domain

⌦ = {[0, L] ⇥ Q}, where Q = {r cos(✓), r sin(✓)|0 < r < R and ✓ 2 [0, 2⇡)} andp
(y)2 + (z)2  R. Here R := R⇤

R̄
corresponds to a scaled radius of the pore and

L = L⇤

L̄
to its scaled length.

Let V (x, r, ✓) = V (x, r, ✓). Then the Poisson-Boltzmann equation reads as

��D
⇣
L̄�2@xxV + R̄�2 1

r
@r(r@rV )

⌘
=

mX

i=1

zici, (2.1)

where the terms associated with @✓ were omitted due to radial symmetry. The

scaling parameter �D = V̄ ✏r✏0
c̄e is also known as the Debye length and relates the

typical voltage V̄ to to typical concentration c̄. The corresponding scaled boundary

condition reads

@rV =
�̄R̄

✏r✏0V̄
� = ̄(R̄)�.

Using the techniques described in [123, Chapter 4] we multiply the equation

(2.1) with a test function  2 H1
0 (⌦) to obtain a weak formulation given by

��D
Z L

0

Z

Q

⇣
L̄�2@xxV + R̄�2 1

r
@r(r@rV )

⌘
 rdxdrd✓ =

Z L

0

Z

Q

mX

i=1

zici rdxdrd✓.
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Integrating the left hand side of the equation by parts we obtain

LHS =�DL̄
�2
Z L

0

Z

Q
@xV @x rdxdrd✓ + �DR̄

�2
Z L

0

Z

Q
r@rV @r dxdrd✓

��D̄
Z L

0

Z 2⇡

0
r@rV  dxd✓

��r=R
r=0

=�DL̄
�2
Z L

0

Z

Q
@xV @x rdxdrd✓ + �DR̄

�2
Z L

0

Z

Q
r@rV @ dxdrd✓

��D̄
Z L

0

Z 2⇡

0
R� d✓dx.

Our goal is to pass with R̄ ! 0 we assume that �D >> R̄. What is more we assume

that ̄�D < C which assumption is further discussed in next chapter (using the

values mentioned in table A.1 leads to ̄�D :=  ⇡ O(1)). That provides a following

uniform estimate

�D
L2

Z L

0

Z

Q
(@xV @x +��2@rV @r )rdxdrd✓  C(⌦, A)

h mX

i=1

|zi|kcikL1 + k�kL1

i
,

where � = R̄
L̄
<< 1. Using the L1 bound on ci and � we obtain

Z L

0

Z

Q
(@xV @x )r  K1 and

Z L

0

Z

Q
(@rV @r )r  �2K2.

By taking  = V we conclude with the uniform estimate @rV  �2K2. In the limit

� ! 0 we obtain that V (x, r, ✓) * V 0(x) along a subsequence in H1(Q). Setting

 =  (x) we can conclude with the convergence of the left side

�

Z L

0

Z

Q
(@xV @x +��2@rV @r )rdxdrd✓ !

�

Z L

0
@xV

0@x 
⇣Z

Q
rdrd✓

⌘
dx = �

Z L

0
⇡R2@xV

0@x dx,
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where � = �D
L2 . The right hand side convergence reads

Z L

0

Z

Q
 

mX

i=1

zicirdxdrd✓ + 

Z L

0

Z 2⇡

0
� Rdxd✓ !

Z L

0
 

mX

i=1

zic
0
i

⇣Z

Q
rdrd✓

⌘
dx+ R2⇡

Z L

0
� dx =

Z L

0
⇡R2@x

mX

i=1

zic
0
i dx+ R2⇡

Z L

0
� dx.

Setting A(x) = ⇡R2 and @A(x) = 2⇡R(x) denote the area and circumference of the

radially symmetric pore respectively. Hence we obtain

��@x(A@xV ) = A
mX

i=1

zici + @A�.

A similar argument can be used for the continuity equation which leads to the

one-dimensional PNP system

��@x
⇣
A@xV

⌘
= A

mX

i=1

zici + @A�, (2.2a)

Di@x
⇣
A[@xci + zici�@xV ]

⌘
= 0 for i = 1, . . . ,m, (2.2b)

with the boundary conditions given by

V (0) = 0, V (L) = VD and ci(0) = ci,B = ci(L).

A similar procedure can be applied to obtain 1D Area Averaged version of the

Bikerman model and nPNP, see table 1.1. The only di↵erence between them is the

convergence of the continuity equations which is straightforward.

2.2 One dimensional PNP system

In this section we show the existence of the the system 1dpnp describing the relation

between the electric potential V and the concentrations (c1, c2, ..., cm) of the m ionic

species. The proof follows [98] and is based on the decoupling of the system in

Slotboom variables and a fixed point argument. We use the fixed point argument is
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based on the formulation in Slotboom variables, namely

ui = ci exp (�ziV ) for i = 1, ....,m.

Then the system reads as

��@x(A@xV ) = A
mX

i=1

ziui exp (��ziV ) + @A�, (2.3)

0 = @x(DiA exp (��ziV )@xui) for i = 1, ....,m, (2.4)

with boundary conditions

V (L) = VD and V (0) = 0

ui = ui,B = ci,B exp(�ziV ) on {0, L} for i = 1, ....,m.
(2.5)

We will also use the notation ~u = (u1, ....., um) in the following.

2.2.1 Existence of stationary solutions

The fixed point argument is based on the assumptions:

A1 Let ⌦ be an interval.

A2 The bath concentrations and the applied voltage are bounded, that is (~uD, VD)|@⌦ 2
L1(@⌦)m+1 and there exist U � 0 such that e�U  inf@⌦ ui and eU �
sup@⌦ ui for all i = 1, ....m.

A3 The functions A(x) = ⇡r2(x) and D = D(x) are measurable and 0 < D⇤ 
D(x)  D⇤. The radius function r(x) satisfies 0 < r⇤  r(x)  r⇤ and for all

x in ⌦.

A4 The surface charge �(x) 2 L1(⌦)

Assumptions A2 and A4 bounds on the applied potential and the bath con-

centration on both sides of the pore as well as the surface charge. Assumption A3

ensures that the radius of the considered pore is bounded from below from 0, such

that the pore is not blocked and the di↵usion coe�cients do not vanish.

Theorem 2. Let assumptions (A1)-(A4) hold. Then problem (2.3) - (2.5) has a

weak solution (V, ~u) 2 H1(⌦) \ L1(⌦)m+1 which satisfies:

e�U  ui(x)  eU 8i and a.e. in ⌦. (2.6)
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First we show existence of solutions of two following decoupled problems

1. Given ~u0 2 L1(⌦)m+1 there exists a solution V 1 2 H1(⌦) \ L1(⌦) to the

Poisson equation

� �@x(A(x)@xV ) = A(x)
mX

i=1

ziu
0
i exp (��ziV ) + @A(x)�, (2.7)

subject to the boundary conditions .

2. Given V 1 2 L1(⌦)m+1, there exists a solution ~u1 2 L1(⌦)m+1 of the conti-

nuity equations

0 = @x(DiA(x) exp (��ziV 1)@xu
1
i ) for i = 1, ....,m, (2.8)

subject to the boundary conditions u1i = ui,B on {0, L} for i = 1, ....,m.

Note that we refer to the weak solution of the problems (2.7) and (2.8). As a result

of the proof regarding the existence of the solutions of the equation (2.7) we conclude

that the mapping H(~u0) = (V 1) is compact and bounded in L1 on the set

N = {u 2 L2(⌦)m : e�U  ui  eU a.e. in (0,L) and for i = 1, 2, ...,m}.

Next step is to show that G(~V 1) = (~u1) is well defined and continuous on a pre-

compactH(N) to use a corollary from Schauder's Fixed Point Theorem and conclude

the solution of the entire system. We recall Schauder's Fixed Point Theorem as well

as Leray-Schauder's Fixed Point Theorem as we make use of the second one as well.

Theorem 3 (Schauder's Fixed Point Theorem). Let U be a compact and convex set

in the Banach space X and T be a continuous mapping of U into itself. Then T
has a fixed point, that is, T x = x for some x 2 U .

We also use a special case of this theorem known as

Theorem 4 (Leray-Schauder's Fixed Point Theorem). Let X be a Banach space

and T : X ⇥ [0, 1] ! X a compact mapping such that

• T (x, 0) = 0 for each x 2 X,

• there exists a constant such that for each pair (x,�) 2 X⇥ [0, 1] which satisfies

T (x,�) = x we have kxkX < M .
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Then operator T (·, 1) has a fixed point.

We also use a corollary of the Schauder's Fixed Point Theorem from [57][Chapter

11].

Corollary 2.2.1.1. Let U be a closed and convex set in a Banach space X and let

T be a continuous mapping of U into itself such that a set T (U) is pre-compact.

Then T has a fixed point.

The proofs of both theorems can be found in [57][Chapter 11]. We begin the

proof of the Theorem 2 with a lemma.

Lemma 1. Let ~u0 2 L1(⌦)m satisfy 0 < u⇤  u0i  u⇤ for every i a.e. in ⌦ and

(A1) – (A4) hold. Then (2.7) has a unique weak solution V 1 2 H1(⌦) \ L1(⌦) .

Proof of Lemma 1. Throughout the proof of this lemma we omit the superscript 0

in the u0i to enhance readability. We will look for the solutions in a form V =  +  ̄

where  ̄ solves

� �@x(A(x)@x ̄) = 0 and  ̄(0) = 0,  ̄(L) = VD, (2.9)

and  is a solution of the problem (2.7) satisfying  (0) =  (L) = 0. Then the V

solves the original problem due to the superposition principle.

As a boundary value ODE with homogenous right hand side equation (2.9)

can be explicitly solved with integration. First integral of the equation leads to

A@x ̄ = C1 and then integrating for the second time leads to  ̄(x) =
R x
0

C1
A(t)dt+C2.

The constants C1 and C2 are taken to satisfy the boundary equation for  ̄. The

integrability of the last equation is provided by the fact that A(x) > A⇤ � 0.

Now we show the existence of the solution  as a fixed point of an operator

T (y,�) : L2(⌦)⇥ [0, 1] ! L2(⌦) that is a solution of

��@x(A(x)@x ) = �

 
A(x)

mX

i=1

ziui exp (��ziy) + @A(x)�(x)

!

and  (0) = 0, (L) = 0.

(2.10)

For the RHS of the equation (2.10) and � = 1 a lower and upper bound (LB and
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UB respectively) are given by

LB(y) :=A⇤
mX

i=0
zi<0

ziu
⇤ exp (��ziy) +A⇤

mX

i=0
zi>0

ziu⇤ exp (��ziy) + @A⇤�⇤

A
mX

i=1

ziui exp (��ziy) + @A�

A⇤

mX

i=0
zi<0

ziu⇤ exp (��ziy) +A⇤
mX

i=0
zi>0

ziu
⇤ exp (��ziy)

+@A⇤�⇤ := UB(y).

Next we take V and V to be solutions of the algebraic equations

LB(V ) = 0 and UB(V ) = 0.

Existence of solutions of this algebraic equation is ensured by a Darboux theorem if

there exist i, j such that zizj < 1. Then V and V satisfy the following inequalities:

��@x(A@xV )�A
mX

i=1

ziui exp (��ziV )� @A�  0,

��@x(A@xV )�A
mX

i=1

ziui exp (��ziV )� @A�(x) � 0.

Now V and V are sub– and super-solution of the problem (2.10) since the function

✓(x, y) = A
mX

i=0

ziui exp (��ziy) + @A�,

is decreasing in y. Next we set K = max{|V |, |V |} and denote by fK the truncation

operator, namely

fK(x) =

8
>>><

>>>:

K if f(x) > K

f(x) if �K  f(x)  K

�K if f(x) < �K.

We define the fixed point operator TK(y,�) : L2(⌦) ⇥ [0, 1] ! L2(⌦), given by
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TK(y,�) =  where  is the solution of

��@x(A(x)@x ) = �

 
A(x)

mX

i=1

ziui exp (��ziyK) + @A(x)�(x)

!

and  (0) = 0, (L) = 0.

(2.11)

From the definition of K we immediately see that if the fixed point exists then it is

bounded by the sub and super-solution so | | < K.

Since the truncation operator from L2(⌦) ! L2(⌦) is continuous, the RHS

of (2.11) depends continuously in L2(⌦) on (y,�) 2 L2(⌦)⇥ (0, 1). As the solutions

of the elliptic equations in H1 depend continuously on the L2 right hand side and

H1 boundary data (see [57] chapter 8 corollary 8.7) we conclude that the operator

TK is continuous. To show that the range of TK is also bounded in H1 we take a

test function � =  a.e. to obtain

k k21,2  k k2L2
+ k@x k2L2

 k k2L2
+

Z

⌦
|(@x )2|dx

k k2L2
+ Č

Z

⌦
 

 
A(x)

mX

i=1

ziui exp (��ziyK) + @A(x)�(x)

!
dx

k k2L2
+ Č

�����

 
A(x)

mX

i=1

ziui exp (��ziyK) + @A(x)�(x)

!�����
L2

k kL2

C(⌦, A⇤,�⇤)

�����

 
mX

i=1

|zi|u⇤ exp (��ziK)

!�����
L2

k kL2  C̄k kL2 .

(2.12)

Than applying the the Poincaré inequality we obtain

k k21,2  C̃k k1,2,

which leads to

k k1,2  C̃. (2.13)

Therefore, we obtain that TK is compactly continuous and also TK(y, 0) = 0 8y 2
L2(⌦). What is more from (2.12) we conclude that for each pair ( ,�) 2 H1⇥ [0, 1]

which satisfies TK( ,�) =  we have k k1,2 < M . From the boundedness of TK
and the Theorem 4 [Leray-Schauder's] we obtain the existence of a fixed point of

TK(·, 1). Then the function V :=  +  ̄ is a solution of problem (2.7), which satisfies

V 1 2 H1(⌦)\L1(⌦). From the inequality (2.12) we also conclude that image H(N)

is totally bounded in the L1 norm hence H is a compact and continuous operator.

Compactness of the operator H ensures that the image H(N) is pre-compact and
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totally bounded as an image of a bounded set. We conclude by showing that the

solution V 1 is unique. Let us assume that there exist two solutions V1 and V2. Then

h = V1 � V2 satisfies

�@x(A@xh) = [A
mX

i=1

ziui exp (��zi⇠i)]h,

with boundary conditions h = 0|{0,L} where V1 � ⇠i � V2. The maximum principle

implies that h ⌘ 0 hence the solution is unique.

We showed that the mapping H(~u0) = (V 1) is continuous and compact on

the set

N = {u 2 L2(Q)m : e�U  ui  eU a.e. in (0,L) and for i = 1, 2, ...,m}.

We continue by showing existence of the solutions to (2.8) and analysing properties

of the G on a pre-compact set H(N).

Lemma 2. Assume that (A1) – (A4) hold and V 1 2 H(N). Then problem (2.8)

has a unique solution u1. The solution operator G : V 1 7! u1 maps H(N) to N and

is continuous.

Proof of the Lemma 2. For V  K we have that

0 < DiA(x) exp (��ziV )  Ĉ

for some constant Ĉ. From the result in [57] for elliptic equation in divergence form

we conclude that (2.8) has a unique solution ui. Moreover the maximum principle

ensures that e�U  ui  eU for all i = 1, 2, ...,m. Thus G is well defined and maps

into N .

To address continuity of the operator G we consider sequence V k ! V in

H(N) ⇢ L1 \ H1. Then DiA(x) exp (��ziVk) ! DiA(x) exp (��ziV ) in L1(⌦)

with the uniform bound. For uki , a solution of the problem

r(DiA(x) exp (��ziV k)rui) = 0,

we obtain that uki is uniformly bounded in H1(⌦) and hence there exists a weakly

convergent subsequence uki ! ūi. From the density of L1(⌦) and W 1,1(⌦) in

H1(⌦) and the uniqueness of the limit we conclude that uki ! ui weakly in H1(⌦)

and thus strongly in L2(⌦) which implies continuity of the operator G.
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What is more, the concatenated operator G(H(·)) maps a N into N which

is a closed convex set in a Banach space L2(⌦). In the Lemma 1 we have shown

that the operator H is continuous and compact. In the Lemma 2 we proved that

the operator G is continuous, hence the concatenated operator G(H(·)) is compact.

As a image of a bounded set N , G(H(N)) is a pre-compact subset of L2(⌦). From

the corollary 2.2.1.1 we obtain the fixed point of G(H(·)) in N which is a solution

of problems (2.3)-(2.4).

Global regularity

In section 2.2.1 we showed the existence of a solution of the problem (2.3)-(2.4) in

H1(⌦)m+1 \L1(⌦)m+1. Our next goal is to show higher regularity of the solution.

What in fact we obtain is that, under some additional assumptions on the functions

A(x) and D(x), every weak solution of considered problem belongs also to the space

H2(⌦)m+1.

Theorem 5. Let the assumptions (A1)-(A4) hold and assume that A,Di 2 W 1,1(⌦),

then every weak solution (V, ~u) 2 H1 \ L1(⌦)m+1 satisfies

(V, ~u) 2 H2(⌦)m+1.

Proof. Proof of the theorem can be found in [98] and is based on [57][Chapter 8]

and uses Sobolev embedding for k = 1.

Uniqueness

In order to show the uniqueness we need a higher regularity of the solution than the

one obtained in Theorem 2. To prove the uniqueness authors in [98] show that the

Frechet derivative of 1D PNP system is invertible and bounded. Then the implicit

function theorem gives the result.

Theorem 6. Let the assumptions of the Theorem 5 hold. If U , satisfies |U | < ✓, for

some su�ciently small ✓, then the problem (2.3)-(2.4) has a locally unique solution

(~u⇤, V ⇤) 2 H2(⌦)m+1. This solution depends continuously di↵erentiably on VD when

considered as a map from {U 2 R : |U | < ✓} into (H2(⌦))m+1.

Proof of the theorem can be found in [98, Theorem 3.4.1].
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2.3 Nonlinear PNP system

In this section we sketch an existence result of the 1D Area Averaged nonlinear

Poisson-Nernst-Planck system, which was introduced in section 1.3.7. In [26] the

authors discuss the existence of the solution for the nPNP system for general 2 and

3D setup , that is

Theorem 2.3.1 (Existence of solutions of the nPNP system [26]). Let � 2 H1(�N )\
L1(�N ), the applied potential Vapp 2 H1/2(�R\�L)\L1(�R\�L) and the boundary

concentrations ci|�R 2 H1/2(�R \ �L) \ L1(�R \ �L). Then there exists a solution

(c1, .., cm, V ) 2
⇣
H1(⌦) \ L1(⌦)

⌘m+1
to (1.5),(1.19a), (1.19b).

Note that the authors also provide higher regularity results for the small

initial data and uniqueness of the solutions for small applied potential and small

bath concentrations.

We present a sketch of the proof of the 1D Area Averaged version of the

model. The proof follows the reasoning from the previous section and is based on

the Schauder's Fixed Point Theorem. The 1D Area Averaged version of equation

(1.19a)– (1.19b) reads

��@x(A@xV ) = A
mX

i=1

zici + @A�, (2.14)

@x
⇣
DiA

h
(1� ⇢)@xci + ci@x⇢+ �zi(1� ⇢)ci@xV )

i⌘
= 0 for i = 1, ....,m, (2.15)

where ⇢ =
Pm

i ci, with Dirichlet boundary conditions

V (0) = 0, V (L) = VD and ci = ci,B|{0,L} for i = 1, ....,m. (2.16)

The existence of the solutions of the system is given by the following theorem

Theorem 7. Let assumptions (A1)-(A4) hold. Then system (2.14) - (2.15) has a

weak solution (V, ~u) 2 H1 \ L1(⌦)m+1 which satisfies

e�U  u⇤i  eU for all i = 1, 2, ...,m and a.e. in [0, L].

We prove the existence of the solution by decoupling the system and then

using a fixed point argument. We start by introducing the entropy variables, that

reads

ci =
exp (ui � �ziV )

1 +
Pm

j=1 exp (uj � �zjV )
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which leads to the system

��@x(A@xV ) = A
mX

i=1

zi
exp (ui � �ziV )

1 +
Pm

j exp (uj � �zjV )
+ @A�,

0 = @x(DiA
exp (ui � �ziV )

(1 +
Pm

j=1 exp (uj � �zjV ))2
@xui) for i = 1, ....,m.

We proceed with the following steps

1. For a given ~u0 � 0 2 L2(⌦) there exists a solution V 1 to the Poisson equation

� �@x(A@xV ) = A
mX

i=1

zi
exp (�u0i �ziV )

1 +
Pm

j u0j exp (��zjV )
+ @A�, (2.17)

with respect to the boundary condition

V 1(L) = VD and V 1(0) = 0. (2.18)

2. Operator G : (~u0) ! (~u0, V 1) where V is the solution of the equation (2.17) is

compact and continuous on N .

3. For given (V 1, u0) 2 L1(⌦)m+1 \ H1(⌦)m+1 there exist a solution ~v1 2
L1(⌦)m+1 \H1(⌦)m+1 of the continuity equations

0 = @x(DiA
exp (ui � �ziV )

(1 +
Pm

j=1 exp (uj � �zjV ))2
@xvi) for i = 1, ....,m.

vi = ui,B on {0, L} for i = 1, ....,m,

(2.19)

4. Operator H : (~u0, V 1) ! (~v1) where V 1 is the solution of the equation (2.19)

is continuous on G(N).

5. We conclude with the convergence of the iterative schema and use the Schauder

Fixed Point Theorem to ensure the solution of the system (2.14) - (2.15).

We proceed with formulation the Lemma

Lemma 3. For a given ~u0 � 0 2 L2(⌦)m there exists a solution V 1 2 L1(⌦) \
H1(⌦) of the equation (2.17) .
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Proof. As the RHS of the equation (2.17) is bounded by A⇤(
Pm

i=1 |zi|)+ @A⇤�⇤ end

therefore a super-solution (and respectively sub-solution) of the equation (2.17).

This ensures existence of solution of equation (2.17).

Lemma 4. Operator G : (~u) ! (~u, V ), where V is the solution of the equation

(2.17), is continuous on N .

Proof. As the solutions of the elliptic equations in H1 depend continuously on the

L2 right hand side and H1 boundary data (see [57] chapter 8 corollary 8.7) we

conclude that the operator G is Lipchitz continuous on N .

Lemma 5. For a given (V 1, ~u0) 2 L1(⌦)m+1 \ H1(⌦)m+1 there exists a solution

~v1 2 L1(⌦)m \H1(⌦)m of the equation (2.19) .

Proof. The existence of the solution is guaranteed by [57][Theorem 8.3]. Since

DiA
exp (ui��ziV )

(1+
Pm

j exp (uj��zjV ))2  D⇤A⇤ 2 L1 and v̄D  eU Theorem 8.3 in [57] en-

sures the existence of solutions. The function eU is a super-solution of (2.19), hence

v  eU .

Lemma 6. Operator H : L2(⌦)m ⇥H1(⌦) ! L2(⌦)m is continuous.

Proof. The lemma is a consequence of the compactness of the embedding L2 in H1

and the bound on the di↵usion coe�cient of the equation (2.19).

Therefore, we can use Schauder's fixed-point theorem, which ensures the

existence of a fixed point of H(G(N)). This fixed point is a solution of (2.14) –

(2.15).
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Chapter 3

Asymptotic analysis of the

Poisson-Nernst-Planck

equations in radially symmetric

pores with surface charge

In this chapter we introduce an asymptotic analysis of the PNP system applied to

model ion transport through long and narrow pore. The chapter is based on the

research presented in [102]. We present a simplified model for ion transport based on

matching the asymptotic orders. That allows us to calculate the approximation of

the PNP solution without solving the nonlinear 2D system. In the chapter we begin

with the PNP system in unscaled form and then perform a scaling that allows us

to distinguish di↵erent asymptotic regimes. In additions, we present an algorithm

that can be used to compute the asymptotic solution. In the end of the chapter we

show the results of the comparison of the obtained model with the results of the two

dimensional simulations.

3.1 The PNP equations

We start by presenting the mathematical model and its scaling which serves as

the basis of our asymptotic analysis. For ease of presentation, and because this

is a typical set-up in practice, we restrict our attention to an ideal 1:1 electrolyte

comprised of positive and negative ions of valency one and with concentrations p⇤

and n⇤ respectively (measured in moles per unit volume). Note that we use ⇤ to

indicate dimensional variables throughout the chapter.
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The PNP equations for the electric potential V ⇤ = V ⇤(x⇤, t⇤), negative and positive

molar concentrations n⇤ = n⇤(x⇤, t⇤), p⇤ = p⇤(x⇤, t⇤) read as

�r⇤ · (✏r✏0r⇤V ⇤) = nae(p
⇤ � n⇤), (3.1a)

@p⇤

@t⇤
+r⇤ · J ⇤

p = 0,
@n⇤

@t⇤
+r · J ⇤

n = 0, (3.1b)

J ⇤
n = �Dn

✓
r⇤n⇤ � e

kbT
n⇤r⇤V ⇤

◆
, (3.1c)

J ⇤
p = �Dp

✓
r⇤p⇤ +

e

kbT
p⇤r⇤V ⇤

◆
. (3.1d)

Here J ⇤
p and J ⇤

n are the flux of positive and negative ions, respectively, na is the

Avogadro number and the kbT
e is often donoted as thermal voltage. The param-

eters Dp and Dn are the di↵usion coe�cients of the positive and negative ions,

respectively, and the domain ⌦ is assumed axially symmetric being given by

⌦ = {(x⇤, y⇤, z⇤) : 0  x⇤  L⇤, 0 
p
y⇤2 + z⇤2  R⇤(x⇤)},

where R⇤(x⇤) is the radius of the pore as a function of x⇤. The boundary of ⌦ is

split into three subdomains, the left and the right entrance of the nanopore

⌦l = {(x⇤, y⇤, z⇤) 2 @⌦, x⇤ = 0} and ⌦r = {(x⇤, y⇤, z⇤) 2 @⌦, x⇤ = L},

as well as the nanopore walls ⌦N = {(x⇤, y⇤, z⇤) 2 @⌦,
p
y⇤2 + z⇤2 = R⇤(x⇤)}.

System (3.1) is supplemented with the following boundary conditions:

V ⇤|⌦l = 0, V ⇤|⌦r = Vappl, {n⇤, p⇤}|⌦l = {nl, pl}, {n⇤, p⇤}|⌦r = {nr, pr}, (3.2)

J ⇤
p ·N |⌦N = J ⇤

n ·N |⌦N = 0,
@V ⇤

@N⇤

����
⌦N

=
�⇤(x⇤)

"
. (3.3)

where @/@N⇤ denotes the normal derivative to the pore boundary with respect to

its unit outward normal N , defined by

N =

✓
er �

dR⇤

dx⇤
ex

◆ 
1 +

✓
dR⇤

dx⇤

◆2
!�1/2

,

�(x⇤) is the surface charge density on the pore wall and " the permittivity of the

electrolyte. The Dirichlet conditions (3.2) correspond to a prescribed applied voltage

and prescribed ion concentrations at each opening of the pore and in the bath

regions, respectively. Here, for computational convenience, these are imposed on a
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fixed external boundary whereas it could be argued that these ought to be imposed

as far-field conditions. However these two sets of boundary conditions have almost

identical solutions provided the pore is su�ciently wide when it is terminated by

the artificial boundaries ⌦l and ⌦r. Condition (3.3) ensures that there is no ion flux

through the pore walls and prescribes the fixed surface charge at these walls. We

note that surface charge condition is asymptotically correct only if the permittivity

" of the electrolyte is much greater than that of the pore walls (which is the case

for aqueous electrolytes); for more details see [33].

The current-voltage curve (IV curve in short) is commonly used to charac-

terise the behaviour of ion channels and nanopores. The respective current flow

I⇤(x⇤, t⇤) can be computed by calculating the current flow through a cross-section

on the pore, at x⇤ = X⇤ say, being given by

J ⇤(x⇤, t⇤) = nae

Z

{y⇤2+z⇤2R⇤2(X⇤)}\ {x⇤=X⇤}

ex · (J ⇤
p � J ⇤

n )|x⇤=X⇤dS⇤. (3.4)

3.1.1 Scaling

We nondimensionalise system (3.1) by introducing a typical lateral lengthscale L,

a typical pore radius R̄, a typical concentration c̄ , and a typical surface charge �̄.

The great disparity in size between the lateral lengthscale L and the pore radius

R̄ motivates us to rescale di↵erently in the these two dimensions. This results in

di↵erent scalings for the fluxes in the radial and lateral directions. We introduce

the radial variables r⇤ =
p

y⇤2 + z⇤2 and nondimensionalise as follows

x⇤ = L̄x, r⇤ = R̄r, p⇤ = c̄p, n⇤ = c̄n, �⇤ = �̄�, V ⇤ =
kBT

e
�

J ⇤
p · ex =

D̄c̄

L
up, J ⇤

p · er =
D̄c̄R̄

L̄2
wp, J ⇤

n · ex =
D̄c̄

L̄
un,J ⇤

n · er =
D̄c̄R̄

L̄2
wn,

where D̄ is a typical ionic di↵usivity which we assume to be constant everywhere

inside the domain. This leads to the following dimensionless formulation of system
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(3.1)

@p

@t
+
@up
@x

+
1

r

@

@r
(rwp) = 0, (3.5a)

@n

@t
+
@un
@x

+
1

r

@

@r
(rwn) = 0, (3.5b)

�2
@2�

@x2
+

1

r

@

@r

✓
r
@�

@r

◆
=

1

⇤2
(n� p), (3.5c)

up = �p
✓
@p

@x
+ p

@�

@x

◆
, wp = �p

�2

✓
@p

@r
+ p

@�

@r

◆
, (3.5d)

un = �n
✓
@n

@x
� n

@�

@x

◆
, wn = �n

�2

✓
@n

@r
� n

@�

@r

◆
, (3.5e)

wp �
dR

dx
up

����
r=R(x)

= 0, wn � dR

dx
un

����
r=R(x)

= 0, (3.5f)

@�

@r
� �2

dR

dx

@�

@x

����
r=R(x)

= ⌥

✓
1 + �2

✓
dR

dx

◆◆1/2

�(x), (3.5g)

and the scaled boundary conditions at the ends of the pore. (3.5h)

The dimensionless parameters in the problem are defined by

⌥ =
R̄�̄

" e
kBT

, � =
R̄

L̄
, ⇤ =

LD

R̄
, p =

Dp

D̄
, n =

Dn

D̄
, (3.6)

and where LD, the Debye length, is given by

LD =

✓
"nakBT

c̄e2

◆1/2

.

Note that � is the aspect ratio of the pore (typically small), while ⇤ measures the

ratio of the Debye length of the electrolyte to the typical pore width. Thus where

⇤ is large the pore radius is much smaller than the Debye length (which is the limit

used to derive 1D Area Averaged PNP equations). However given that LD for even

a 0.01 Molar solution is only around 4.5nm it is much more appropriate to consider

⇤ = O(1) (or possibly even ⇤ ⌧ 1). The other particularly interesting parameter

is ⌥; if ⌥ ⌧ 1 then the surface charge is insu�cient to induce significant ion

concentration changes across the pore whereas if ⌥ = O(1), or greater, it induces

concentration changes that are su�ciently large to alter the pore’s macroscopic

behaviour. Finally p and n are the dimensionless di↵usivities, which assuming a

sensible measure of typical di↵usivity D̄ is chosen will be of O(1), unless the two ion

di↵usivities di↵er significantly. The scaled current is given by I⇤ = ((FD̄c̄R̄2)/L)I
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and can be determined from

J (x, t) =

Z R(x)

0
r(up � un)dr. (3.7)

3.1.2 Parameter estimates and asymptotic limits

Nanopore devices vary in terms of length and opening radius as much as in terms of

chemical composition. In this paper we focus on long and narrow pores, which have

been studied in many experimental setups covered in the literature, see for example

[115; 134]. In these pores the length is typically magnitudes of order bigger than

the radius - for example Siwy et al. [134] work with pores of 12µm length and a

few nanometers radius. We assume that the typical length is around L̄ = 1µm. The

usual ionic concentration inside the pore varies from 0.01 Molar up to 1 Molar. The

variations in the concentration lead to parameter ranging from LD = 0.3 � 3nm.

The opening radius may vary in the range R̄ = 1� 100nm, hence the aspect ratio is

in the range � = 10�3 � 10�1. All other parameter values are listed in Table A.1.

kB 1.3806504⇥ 10�23 [J/K] �̄ 1 [e/nm2] = 0.16[C/m2]
T 300 [K] e

kBT 0.025 [V]

✏0 8.854187817⇥ 10�12[C /(Vm)] c̄ 1 [M]
✏r 78.4 D̄ 10�9 [m2/s]
✏ ✏0✏r Dp 1.33
e 1.602176⇥ 10�19 [C] Dn 0.79

Table 3.1: Physical constants and parameters.

The discussed parameter regimes motivate the following asymptotic limits.

Let the dimensionless di↵usivities p and n to be both O(1). We shall only consider

⌥ = O(1), noting that the limit ⌥⌧ 1 is uninteresting (because it corresponds to a

wall charge that is too small to significantly a↵ect the potential and concentrations

inside the pore) and that the behaviour for the limit ⌥� 1 can be extracted directly

from the distinguished limit ⌥ = O(1). The size of the one remaining parameter

⇤, measuring the ratio of the Debye length to the pore radius, determines the

asymptotic structure of the solution to the PNP equations. In particular there are

three di↵erent limits that one might wish to consider

i) ⇤ � 1, corresponding to a Debye length that it much greater than the pore

radius,

ii) ⇤ = O(1) corresponding to a Debye length that is comparable to the pore

radius, and
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iii) ⇤⌧ 1 corresponding to a Debye length much smaller than the pore radius.

The large ⇤ limit (I) has been considered in detail in a number of previous works

(e.g. [33; 26]) and is only applicable to extremely dilute aqueous solutions and nar-

row pores because the Debye length LD is very small even for fairly dilute solutions

(e.g. 1.3nm for a 0.1M solution). The small ⇤ limit (III) turns out to be physically

rather dull because it corresponds to a Debye length that is much smaller than the

pore radius meaning the the surface charge on the inside of the pore is e↵ectively

screened by the electrolyte and so does not significantly alter ion transport through

the pore. Note that a similar limit was considered by Markowich in [98] in case

of the semiconductor equations with no surface charge. The most interesting limit,

both from a mathematical and physical perspective is (II) for which ⇤ = O(1).

Furthermore we claim that this limit is a distinguished asymptotic limit so that the

results obtained by analysing this case also provides a good description of (III) the

small ⇤ limits.

3.2 Asymptotic analysis in the limit ⇤ = O(1), ⌥ = O(1),

� ⌧ 1 and derivation of the Quasi-1D PNP model

In this section we discuss large aspect ratio nanopores (� ⌧ 1) with radii compa-

rable to the Debye length, (i.e. LD = O(R̄) and hence ⇤ = O(1)). In this scenario

the influence of the surface charge cannot be averaged over the area of the domain,

resulting in a leading order problem that must be solved both in x and r. As dis-

cussed in Section 3.1.2, we shall also consider significant surface charge by formally

taking the distinguished limit ⌥ = O(1).

In order to find an asymptotic solution of system (3.5a)-(3.5h) in the limit

� ! 0, and with all other parameters of size O(1) we make the following ansatz:

n = n0(r, x, t) + �n1(r, x, t) + · · · , p = p0(r, x, t) + �p1(r, x, t) + · · · ,
� = �0(r, x, t) + ��1(r, x, t) + · · · ,
un = un,0(r, x, t) + �un,1(r, x, t) + · · · , wn = �wn,1(r, x, t) + · · · ,
up = up,0(r, x, t) + �up,1(r, x, t) + · · · , wp = �wp,1(r, x, t) + · · · .

(3.8)

At leading order in � in the flux equations (3.5d)-(3.5e) give the two equations

@n0

@r
� n0

@�0
@r

= 0 and
@p0
@r

+ p0
@�0
@r

= 0,
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which can be integrated to obtain

n0 = Q(x, t) exp(�0(r, x, t)) and p0 = S(x, t) exp(��0(r, x, t)), (3.9)

where the functions Q(x, t) and S(x, t) are yet to be determined. Inserting these

expressions into the Poisson-Boltzmann equation and its boundary condition, (3.5c)

and (3.5g) gives

1

r

@

@r

✓
r
@�0
@r

◆
=

1

⇤2
(Q(x, t) exp(�0(r, x, t))� S(x, t) exp(��0(r, x, t))) , (3.10a)

@�0
@r

����
r=R(x)

= ⌥�(x). (3.10b)

3.2.1 Leading order solution for the potential

We seek solutions to (3.10a)-(3.10b) by introducing the new variables (e.g. see [4,

Chapter 12])

�0(r, x, t) =
1

2
log

S(x, t)

Q(x, t)
+  (⇠, x, t) and r = R(x)⇠, (3.11)

which result in the following problem for  :

1

⇠

@

@⇠

✓
⇠
@ 

@⇠

◆
=

1

�2(x, t)
(e � e� ), (3.12a)

 bounded at ⇠ = 0, and
@ 

@⇠

���
⇠=1

= �(x). (3.12b)

where

�(x) = ⌥�(x)R(x), and �(x, t) =
⇤

R(x)(S(x, t)Q(x, t))1/4
. (3.13)

Here �(x, t) gives the ratio of the Debye length, evaluated from the evolving ion

concentrations, to the local pore radius. Thus the solution to (3.12a)-(3.12b),

 =  (⇠;�(x, t),�(x)) ,

depends parametrically on x and t through �(x, t) and �(x).

Approximate solution to (3.12a)-(3.12b) for �(x) � 1. We can make use of

the fact that �(x) is typically large (so that the gradient of  at the edge of the pore

⇠ = 1 is large) by noting that this suggests that  (⇠;�,�) is also large (an hypothesis
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we justify a posteriori for su�ciently large �). Making the large  ansatz means

that (3.12a) can be approximated by

1

⇠

@

@⇠

✓
⇠
@ 

@⇠

◆
⇠ 1

�2(x, t)
e (3.14)

which, when solved together with (3.12b), has a solution of the form

 (⇠, x, t) ⇠ 2 log

✓
cosech

✓
arcoth

✓
�(x) + 2

2

◆
� log ⇠

◆◆
� log

✓
⇠2

2�2(x, t)

◆
.(3.15)

Notably this expression for  has a minimum (as a function of ⇠) at the centre of

the pore given by

 |⇠=0 = 3 log 2 + 2 log �� 2arcoth

✓
� + 2

2

◆
, (3.16)

which for � � 1 is well-approximated by  |⇠=0 = 3 log 2+2 log �. The approximation

in going from (3.12a) to (3.14) can thus be justified if exp(�2 |⇠=0) ⌧ 1 which is

true only if

�(x, t) � 1

23/2
.

Figure 3.1: Comparison between numerical solution to (3.12) (stars) and its large-�
asymptotic approximation (3.15) (dashed line). Here in the left-hand panel � = 10
while in the right � = 50. In both panels the values of � taken are � = [0.1, 0.5, 1, 3]
and the arrows indicate the direction of increasing �.

Figure 3.1 illustrates the quality of the asymptotic solution for di↵erent values

of � and realistic values of � = 10, 50. Note that the approximation quality of the

asymptotic solution improves as � increases.
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Approximate solution to (3.12a)-(3.12b) for �(x, t) ⌧ 1. In this regime

narrow Debye layers of widthO(�) exist close to surface ⇠ = 1. In order to investigate

the solution further we rescale, in the standard manner (see [100; 101]), about this

surface by introducing the Debye layer coordinate ⇣ defined by

⇠ = 1� �⇣. (3.17)

Rewriting (3.12a)-(3.12b) in terms of this new coordinate leads to the following

equation and boundary condition for  

@2 

@⇣2
+ �

✓
⇣
@2 

@⇣2
� @ 

@⇣

◆
+O(�2) = (e � e� ), (3.18)

@ 

@⇣

����
⇣=0

= �B where B = ��, (3.19)

@ 

@⇣
! 0 as ⇣ ! +1. (3.20)

Here we consider the distinguished limit B = O(1), that is � = O(1/�) noting that

the solution we obtain is still valid for other sizes of this parameter. Formally we look

for a solution in the Debye layer by expanding  in the form  =  (d)
0 +� (d)

1 + · · · ,
substituting into (3.18)-(3.20) and taking the leading order terms. This results in

the following problem for  (d)
0

@2 (d)
0

@⇣2
= (e 

(d)
0 � e� 

(d)
0 ), (3.21)

@ (d)
0

@⇣

�����
⇣=0

= �B, and
@ (d)

0

@⇣
! 0 as ⇣ ! +1. (3.22)

This, as is well-known, has the solution

 (d)
0 =

8
>>>>><

>>>>>:

2 loge

 
coth

"
1p
2

 
⇣ +

1p
2
arcsinh

 
2
p
2

B

!!#!
for B > 0,

2 loge

 
tanh

"
1p
2

 
⇣ +

1p
2
arcsinh

 
�2

p
2

B

!!#!
for B < 0.

(3.23)

Notably this solution has the property that

 (d)
0 ! 0 as ⇣ ! +1,
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and so is uniformly valid for all values of ⇠ 2 [0, 1) or equivalently for ⇣ 2 [1/�, 0).

It follows that we do not need to look for a solution for  in an outer region.

Figure 3.2: Comparison between numerical solution to (3.12) (stars) and its small-
� asymptotic approximation (3.15) (dashed line). Here in the left-hand panel
� = 10 while in the right � = 50. In both panels the values of � taken are
� = [0.05, 0.1, 0.2, 0.5] and the arrows indicate the direction of increasing �.

Figure 3.2 illustrates the asymptotic solution as well as the numerical solution

of (3.12) for di↵erent values of � and realistic values of � = 10, 50. In this case the

approximation quality, as expected, increases as � decreases.

3.2.2 Leading order flux conservation and the simplified 1D model

The purpose of this section is to derive flux conservation conditions in the x-direction

that will give rise to evolution equations for Q(x, t) and S(x, t). Together with the

approximations of the previous section, we are then in a position to numerically

solve the approximated system. We start by considering the leading order terms in

the ion conservation equations (3.5a)-(3.5b), namely

@p0
@t

+
@up,0
@x

+
1

r

@

@r
(rwp,1) = 0, (3.24)

@n0

@t
+
@un,0
@x

+
1

r

@

@r
(rwn,1) = 0. (3.25)

where expressions for up,0 and un,0 are obtained from the leading order expansions

of (3.5d) and (3.5e) and are

up,0 = �p
✓
@p0
@x

+ p0
@�0
@x

◆
, and un,0 = �n

✓
@n0

@x
� n0

@�0
@x

◆
. (3.26)
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The boundary conditions on wp,1 and wn,1 come from the leading order expansion

of (3.5f) and are

wp,1|r=R(x) =
dR

dx
up,0

����
r=R(x)

, wn,1|r=R(x) =
dR

dx
un,0

����
r=R(x)

. (3.27)

Multiplying both (3.24) and (3.25) by r and integrating between r = 0 and r = R(x)

gives

Z R(x)

0

✓
@p0
@t

+
@up,0
@x

◆
rdr + [rwp,1]

R(x)
r=0 = 0,

Z R(x)

0

✓
@n0

@t
+
@un,0
@x

◆
rdr + [rwn,1]

R(x)
r=0 = 0.

On applying the boundary conditions (3.27) it can be seen that these equations can

be rewritten in conservation form

@

@t

 Z R(x)

0
rp0(r, x, t)dr

!
+

@

@x

 Z R(x)

0
rup,0dr

!
= 0, (3.29a)

@

@t

 Z R(x)

0
rn0(r, x, t)dr

!
+

@

@x

 Z R(x)

0
run,0dr

!
= 0. (3.29b)

Substituting for p0(r, x, t) and n0(r, x, t) from (3.9) and up,0 and un,0 from (3.26)

leads to an alternative reformulation

@

@t
(S(x, t)⇥1(x, t)) = p

@

@x

✓
@S

@x
⇥1(x, t)

◆
, (3.30a)

@

@t
(Q(x, t)⇥2(x, t)) = n

@

@x

✓
@Q

@x
⇥2(x, t)

◆
, (3.30b)

where

⇥1(x, t) = ⇡

Z R(x)

r=0
r exp(��0(r, x, t))dr and (3.31a)

⇥2(x, t) = ⇡

Z R(x)

r=0
r exp(�0(r, x, t))dr. (3.31b)
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On substituting for �0 and r, in terms of  and ⇠, from (3.11) we can rewrite these

expressions in the form

⇥1(x, t) = A(x)

✓
Q(x, t)

S(x, t)

◆1/2

G1(x, t) and (3.32a)

⇥2(x, t) = A(x)

✓
S(x, t)

Q(x, t)

◆1/2

G2(x, t), (3.32b)

where A(x) = ⇡R2(x) is the cross-sectional area of the pore and the functions G1

and G2 are defined by

G1(x, t) =

Z 1

⇠=0
⇠ exp (� (⇠;�(x, t),�(x))) d⇠, (3.33a)

G2(x, t) =

Z 1

⇠=0
⇠ exp ( (⇠;�(x, t),�(x))) d⇠. (3.33b)

Here �(x, t) and �(x) are defined in (3.13). Notably since  (x, t) satisfies the problem

(3.12a)-(3.12b) we can show (by multiplying (3.12a) by ⇠�2(x, t), integrating between

⇠ = 0 and 1 and imposing the boundary conditions (3.12b)) that

G2(x, t)�G1(x, t) = �2(x, t)�(x). (3.34)

The leading order current flowing through the pore can be calculated from

(3.7), (3.9), (3.26) and (3.31b) and is

J ⇠ �p
@S

@x
⇥1 + n

@Q

@x
⇥2. (3.35)

or equivalently, on referring to (3.32b),

J ⇠ A(x)(SQ)1/2
✓
nG2

@

@x
logeQ� pG1

@

@x
loge S

◆
. (3.36)

As mentioned in the introduction, the most commonly available data from nanopore

experiments are IV curves. Thus equation (3.35) (and (3.36)) allow us to compute

the IV curves very e�ciently, without solving a non-linear Poisson equation (as it

is the case in the classical Scharfetter–Gummel iteration for PNP, [62]). From the

computational point of view this is the main advantage of our approach.

Approximations of G1(x, t) and G2(x, t) for � � 1 and � = O(1). In this

instance we can find asymptotic expressions for G1 and G2 simply by substituting

(3.15), the large � asymptotic expression for  , directly into (3.33a)-(3.33b) to
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obtain

G1(x, t) ⇠
1

48�2(x, t)

�2(x) + 12�(x) + 48

�(x)(�(x) + 4)
, and G2(x, t) ⇠ �2(x, t)�(x). (3.37)

Note that these expressions still satisfy the identity (3.34) asymptotically in the

limit � ! 1 since G1 ⌧ G2. However the asymptotic expansion breaks down for

� ⌧ 1, as noted previously, and so we need to obtain alternative expressions for

G1 and G2 in this limit. Note that the case � ⌧ �1 can be solved by setting

u = � in equation (3.14) and following the calculations detailed above to obtain

approximations for G1 and G2.

Approximations of G1(x, t) and G2(x, t) for � ⌧ 1. In order to approximate

the integrals in (3.33a)-(3.33b) based on the Debye layer solution for  in the small

� limit (3.23) we split the integrals up as follows

G1(x, t) =

Z 1

⇠=0
⇠d⇠ �

Z 1

⇠=0
⇠ (1� exp (� (⇠;�,�))) d⇠,

G2(x, t) =

Z 1

⇠=0
⇠d⇠ �

Z 1

⇠=0
⇠ (exp ( (⇠;�,�))� 1) d⇠

before substituting ⇠ = 1 � �⇣ and formally taking the limit � ! 0 to obtain the

following asymptotic expressions

G1 ⇠
1

2
� �

Z 1

⇣=0

⇣
1� exp

⇣
� (d)

0

⌘⌘
d⇣ and G2 ⇠

1

2
+ �

Z 1

⇣=0

⇣
exp

⇣
 (d)
0

⌘
� 1
⌘
d⇣.

Evaluating these expressions, in the distinguished limit that B = �� = O(1), gives

the following relations for G1 and G2 in the small � limit

G1 ⇠
1

2
� �

2
p
2Bp

8 +B2 + 2
p
2 +B

and G2 ⇠
1

2
+ �

2
p
2Bp

8 +B2 + 2
p
2�B

. (3.38)

In this instance it turns out that these asymptotic expressions for G1 and G2, which

are formally of the same order, satisfy the condition (3.34) identically. Figure 3.3

shows that by choosing the right cut-o↵ value of � it is possible to obtain an adequate

approximations to G1 and G2 for all values of � provided that � is large. This

approximation can be much improved by smoothing between the two asymptotic

representations of the solutions, in the limits � � 1 and � ⌧ 1. The smoothed,

uniformly valid asymptotic, representation of G1 is discussed further in Appendix

B in [102] and the accuracy of the fit to the numerical solutions for G1 can be
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appreciated by inspecting Figure 3.3. Note that once a good representation of G1

has been obtained G2 can be directly evaluated from the relation (3.34).

3.2.3 Summary of the Quasi-1D model

Since the resulting 1D model (comprised of equations (3.9), (3.11)-(3.13), (3.30a)-

(3.30b), (3.32b)-(3.33a), (3.34) and (3.38), (3.37) is quite intricate we summarise it

in the following paragraph. The leading order ion concentrations and potential are

given in terms of the functions Q(x, t), S(x, t) and  (⇠, x, t) by the following:

n(r, x, t) = (Q(x, t)S(x, t))1/2 exp

✓
 

✓
r

R(x)
, x, t

◆◆
, (3.39a)

p(r, x, t) = (Q(x, t)S(x, t))1/2 exp

✓
� 

✓
r

R(x)
, x, t

◆◆
, (3.39b)

�(r, x, t) =
1

2
log(

S(x, t)

Q(x, t)
) +  

✓
r

R(x)
, x, t

◆
, (3.39c)

where  (⇠, x, t) satisfies the following series of ODE problems in ⇠

1

⇠

@

@⇠

✓
⇠
@ 

@⇠

◆
=

R2(x)(Q(x, t)S(x, t))1/2

⇤2
(e � e� ), (3.40a)

 bounded at ⇠ = 0, and
@ 

@⇠

���
⇠=1

= ⌥�(x)R(x). (3.40b)

In turn the functions Q(x, t) and S(x, t) satisfy the PDEs

@

@t

⇣
(Q(x, t)S(x, t))1/2G1(x, t)

⌘
=

p
A(x)

@

@x

 
A(x)

✓
Q(x, t)

S(x, t)

◆1/2

G1(x, t)
@S

@x

!
,

(3.41a)

@

@t

⇣
(Q(x, t)S(x, t))1/2G2(x, t)

⌘
=

n
A(x)

@

@x

 
A(x)

✓
S(x, t)

Q(x, t)

◆1/2

G2(x, t)
@Q

@x

!
,

(3.41b)

where G2(x, t) and G1(x, t) are given by the expressions

G2(x, t) = G1(x, t) +
⇤2⌥�(x)

R(x)(Q(x, t)S(x, t))1/2
, (3.42a)

G1(x, t) =

Z 1

0
⇠ exp(� (⇠, x, t))d⇠. (3.42b)
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Figure 3.3: Comparison of the numerical evaluation of the expressions G1 (right)
and G2 (left) as a function of � for � = 5 (top row) and � = 50 (bottom row).
Red stars correspond to the values of G1 and G2 calculated from the full equations
(3.33a)–(3.33b) The blue solid line corresponds to the approximation (3.37) (� � 1)
while the black dashed one stands for (3.38) (�⌧ 1).
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The main point of the method is that the integrals G1 and G2 are not calculated via

integrating the  but using the polynomial approximations obtained in the equations

(3.38) and (3.37) for di↵erent values of the �(x). Thus (3.41a)–(3.41b) are decoupled

from (3.40a)–(3.40b). As mentioned in Remark 3.2.2, this is a particular advantage

since it allows to calculate the ion current (via (3.36)) without having to solve

a nonlinear equation. To ensure a smooth transition between the two regimes a

smoothing procedure was implemented as described in detail in the Appendix B in

[102], that is by writing

G1(x, t) ⇡ G(smooth)
1

✓
⇤

R(x)(S(x, t)Q(x, t))1/4
,⌥�(x)R(x)

◆
(3.3)

where the function G(smooth)
1 (�,�) is defined in the Appendix A in [102]. This

approximation of G1(x, t) taken together with (3.41a)-(3.42a) allows us to solve

a one-dimensional spatial problem for S(x, t) and Q(x, t). If the purpose of the

calculation is solely to determine the current I flowing through the pore (for example

when calculating I-V curves) this calculation is su�cient since I may be calculated

solely from S(x, t), Q(x, t), G1(x, t) and G2(x, t) via the formula (3.36), that is by

J = A(x)(SQ)1/2
✓
nG2

@

@x
logeQ� pG1

@

@x
loge S

◆
. (3.4)

If in addition to determining the current flow through the pore we wish also to obtain

the spatial distributions of the carrier concentrations and the electric potential we

need also to solve for the function  (⇠, x, t) in order to use it in (3.39a)-(3.39c) in

order to calculate n(r, x, t), p(r, x, t) and �(r, x, t). Although it is possible to obtain

a reasonable approximation to the function  (⇠, x, t) in the large � limit by using

the appropriate asymptotic solution, (3.15) for � = O(1) or (3.23) for � ⌧ 1, we

instead choose to solve the full boundary value problem for  (⇠, x, t) numerically,

as specified in (3.12a)-(3.12b); that is we solve

1

⇠

@

@⇠

✓
⇠
@ 

@⇠

◆
=

R2(x)(S(x, t)Q(x, t))1/2

⇤2
(e � e� ), (3.5a)

 bounded at ⇠ = 0, and
@ 

@⇠

����
⇠=1

= ⌥�(x)R(x), (3.5b)
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for each position x and time t. We adopt this numerically costly procedure here

because it provides more accurate asymptotic representations of n(r, x, t), p(r, x, t)

and �(r, x, t) with which to compare to the full 2D numerical solutions (see figures

3.6, 3.7, 3.10 and 3.11). We do however believe that it should be possible to obtain

a uniformly valid asymptotic expansion for  (⇠, x, t) in the large � limit that is

capable of accurately capturing the solution for all values of �, much as we do for

G1 in Appendix B in [102].

3.2.4 An alternative formulation.

It is possible to reformulate the Quasi One-1D PNP Model derived in section 3.2.1-

3.2.2 and contained in (3.30a)-(3.33b) in more physically appealing forms. We give

one such reformulation below but note that there are others.

We start by noting that the (dimensionless) electrochemical potentials of

positive and negative ions, µp and µn respectively, are

µp = loge p+ �, and µn = loge n� �. (3.6)

The chemical potential of the electrolyte, defined by µe =
1
2(µp + µn) =

1
2 loge(np),

is obtained at leading order by substituting the approximations to n and p found in

(3.9) into this expression; this gives

µe(x, t) ⇡ logB

⇣
(Q(x, t)S(x, t))1/2

⌘
. (3.7)

In addition we define an e↵ective electric potential e� by

e�(x, t) = loge

 ✓
S(x, t)

Q(x, t)

◆1/2
!
. (3.8)

We now introduce two further quantities P̄ and N̄ , the cross-sectionally averaged

ion densities, as defined by

P̄ (x, t) =
⇡

A(x)

Z R(x)

0
rp0dr and N̄(x, t) =

⇡

A(x)

Z R(x)

0
rn0dr. (3.9)

Substituting for n0 and p0 from (3.9), and making use of the definitions (3.31b),

allows us to re-express these quantities in the form

P̄ (x, t) =
S(x, t)⇥1(x, t)

A(x)
, and N̄(x, t) =

Q(x, t)⇥2(x, t)

A(x)
. (3.10)
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In turn substituting for ⇥1 and ⇥2 from (3.32b), and using the formula (3.7) to

eliminate Q and S, allows us to rewrite P̄ and N̄ as follows:

P̄ (x, t) = exp(µe)G1(µe;x), N̄(x, t) = exp(µe)G2(µe;x). (3.11)

In the above we have written both G1 and G2 in a form that makes it explicit that

these quantities are independent of e� and depend only on Q and S through µe(x, t).

On using the definitions (3.7) and (3.8) to eliminate Q and S and (3.10) to eliminate

⇥1 and ⇥2 the governing evolution equations (3.30a)-(3.30b) can be rewritten in the

intuitively appealing form

@

@t

�
A(x)P̄

�
+

@

@x

�
A(x)J̄p

�
=0, where J̄p = �pP̄

@

@x

⇣
µe + e�

⌘
, (3.12a)

@

@t

�
A(x)N̄

�
+

@

@x

�
A(x)J̄n

�
=0, where J̄n = �nN̄

@

@x

⇣
µe � e�

⌘
. (3.12b)

Furthermore, � can be expressed in terms of µe as follows

� =
⇤

R
e�µe/4.

Thus the reformulation of the Quasi-1D PNP model consists of a straightforward

method for evaluating the two functional dependence of G1(µe;x) and G2(µe;x)

on µe and x (contained in (3.12a)-(3.13) and (3.33a)-(3.33b)) and the two coupled

parabolic PDEs for µe and e�, (3.11)-(3.12b). A further simplification can be ob-

tained from (3.34), the relation between G1 and G2, from which we can deduce the

local charge neutrality condition

A(x)(P̄ � N̄) + ⌃l(x) = 0, ⌃l(x) = ⇤
2⌥(2⇡R(x)�(x)). (3.13)

Here ⌃l(x) represents the fixed charge per unit length (in appropriate dimensionless

form) on the wall of the pore. In e↵ect this relation means that we only need to

calculate one of the expressions G1(µe;x) or G2(µe;x), use this to determine either

P̄ or N̄ from (3.11), and evaluate the other from the relation (3.13).

Calculating the steady state solution In practice we are usually only inter-

ested in the steady state solution to (3.11)-(3.12b). Neglecting the time derivatives

in (3.12a)-(3.12b), summing the two equations and taking their di↵erence yields to
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the following two equations

@

@x

 
A(x)

 
(N̄ + P̄ )

@µe

@x
� (N̄ � P̄ )

@e�
@x

!!
= 0,

@

@x

 
A(x)

 
(N̄ � P̄ )

@µe

@x
� (N̄ + P̄ )

@e�
@x

!!
= 0.

We now write

N̄ + P̄ = eµe ̂(µe;x), where  ̂(µe;x) = G1 +G2 =

Z 1

0
⇠
⇣
e � e� 

⌘
d⇠.(3.14)

and substitute for (N̄ � P̄ ) from (3.13) in order to obtain two coupled ODEs for µe

and e�

@

@x

 
A(x)eµe ̂(µe;x)

@µe

@x
� ⌃l(x)

@e�
@x

!
= 0, (3.15a)

@

@x

 
⌃l(x)

@µe

@x
�A(x)eµe ̂(µe;x)

@e�
@x

!
= 0. (3.15b)

Note that the function  ̂(µe;x) = G1+G2 can be obtained either by direct solution

for  (⇠;�,�) from (3.12a)-(3.12b) in which � = ⇤e�µe/4/R, or (in the large � limit)

from the uniformly valid asymptotic expression for G1 discussed in Appendix B in

[102].

3.3 Numerical methods and results

In this section we will present numerical methods for both the full 2D PNP system,

the 1D Area Averaged PNP system as well as for the asymptotic Quasi-1D PNP

model developed in §3.2. They will be used to compare the results for two examples:

(I) a trumpet shaped pore (see figures 3.5 & 3.6) and (II) a conical pore geometry

(see figures 3.9 & 3.10).

The Quasi-1D PNP solver. The numerical solver of the Quasi-1D PNP is based

on the uniformly-valid large � expression for G1 and on the identity (3.34), relating

G2 to G1. This thus obviates the need to solve the Poisson equation (3.12a)-(3.12b)

for  (⇠,�(x, ),�(x)) at every value of x. Instead it only requires the solution of the

1D (stationary) continuity equations (3.30a)-(3.32b) in x. This represents a very

considerable reduction in computational complexity and gives a very fast method,
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which is particularly suited for the calculation of IV curves. Finally, for an applied

voltage above a certain threshold, we introduce a relaxation in the iteration. Once

Q and S are known, we use (3.35) to calculate the total current I. The full iterative

procedure is detailed in Algorithm 1.

Set S(x) = p0(x)/ exp(��0(x)), for x 2 {0, l̄} ;
Set Q(x) = n0(x)/ exp(�0(x)), for x 2 {0, l̄} ;
Initialise Q0(x), S0(x);
while err > " and max iter > m do

Calculate �m(x) using (3.13);

Calculate Gm+1
1 (x) and Gm+1

2 (x) using interpolation between (3.37),
(3.38) and (3.42b). ;

Using Gm+1
1 (x) and Gm+1

2 (x) and equations (3.30a)-(3.30b)
calculate Qm+1, Sm+1 ;
err = kQm+1 �Qmk2 + kSm+1 � Smk2 ;
m = m+ 1 ;

end

Calculate J using (3.36)
Algorithm 1: Fixed point scheme to calculate Q and S in the steady state.

The 2D PNP solver. The full 2D steady state PNP system, i.e. equations (3.5a)–

(3.5h) is solved using a standard P1 finite element discretisation and a Scharfetter

Gummel iteration, [62]. For both geometries, we use a non-uniform mesh strongly

refined at the charged pore walls in order to properly resolve the Debye layers. The

meshes are created using Netgen [125], while we use MATLAB to assemble and solve

the corresponding discrete systems. We use a similar method to solve the 1D Area

Averaged PNP system as described in Section 2.1.

The considered geometry of the testcase pores are depicted in Figure 3.4. In

the same Figure, we also present a more realistic geometry, in which additional bath

regions are attached at each end of the pore.

56



Figure 3.4: Sketches of the geometries considered for the nanopores.

3.3.1 Trumpet shaped pores

We consider a trumpet shaped pore of length 1000nm and a radius varying form

1.5nm to 10nm. The corresponding radius is given by R(x) = 10�6(34x2�34x+10),

where both r and x are measured in units of nanometers, hence the values of � and

� change continuously with respect to x. We set the following parameters:

Vappl = 0.2V and nr = nl = pr = pl = 0.1moles/litre (3.16)

Surface charge profile � =

(
1e/nm2 for 100nm < x < 900nm

0e/nm2 for |x� 500| > 400nm
. (3.17)

To obtain accurate and precise results for the 2D solver a mesh of 360000 triangular

elements was used. The results of the Quasi-1D and Area Averaged PNP were ob-

tained using a discretization of 1000 intervals. Figure 3.5 and 3.6 show the solutions

to the 2D PNP model and the Quasi-1D PNP model, respectively.

(a) Potential. (b) Positive ions conc. (c) Negative ions conc.

Figure 3.5: Heat maps of the potential and two ionic concentrations obtained using
the 2D PNP solver.
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(a) Potential. (b) Positive ions conc. (c) Negative ions conc.

Figure 3.6: Heat maps of the potential and two ionic concentrations obtained using
the Quasi-1D PNP solver.

In order to compare the results from the two di↵erent methods we plot the

cross sectional profiles of the potential and concentrations at x = 200, 500 and

800nm in Figure 3.7. We observe that the solution to the Quasi-1D PNP model is

a very good match to that of the full 2D PNP equations. This is especially so for

the potential (left column) and the negative ions concentration (right column) for

which both solutions have almost identical behaviour within the Debye layers.
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Figure 3.7: Comparison of the potential (left column), positive ions concentrations
(centre column) and negative ions concentrations (right column) calculated over the
cross-section at x = 200nm (top row), x = 500nm (middle row) and x = 800nm
(bottom row), obtained using the 2D finite element solver (solid lines), the 1D Area
Averaged PNP (dotted lines) and the Quasi-1D PNP solver described in Algorithm
1 (dashed lines) for a trumpet shaped shape pore of length 1000nm and radius
varying from 1.5 to 10nm.

Next we compare the IV curves in the case of di↵erent surface charge densities

� = 1 e/nm2 and � = 0.2 e/nm2 within the central region of the pore |x � 500| <
400nm (we take � = 0 outside this region) see Figure 3.8. We observe very good

agreement between results from the full 2D PNP model and the Quasi-1D PNP

model for both values of the surface charge density. Notably the agreement of the

Area Averaged PNP to the full 2D PNP model is much worse than that of the

Quasi-1D PNP model.
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Figure 3.8: IV curves for surface charges � = 0.2 e/nm2 (right plot) and � = 1
e/nm2 (left plot) obtained using the Quasi-1D PNP solver (dashed lines), the 2D
PNP solver (straight lines) and 1D Area Averaged PNP method (dotted lines).

3.3.2 Conical Shaped pores

Here, motivated by experimental work on etched pores with conical shape [134], we

consider a conically shaped pore of length 10000nm with radius varying between

1.5nm and 10nm (see figures 3.9 & 3.10). This very narrow pore tip is a good model

for the tip of a polyethylene terephthalate (PET) nanopore, as used in et al. [134].

It is well known that such narrow tips strongly influences the ion transport through

the pore [115]. We include two bath regions of 5 µm length each. Here we consider

a pore with uniform surface charge density inside the pore which corresponds with

5000nm< x <15000nm and zero outside this section. Because of the di↵erent length

scales and the boundary layer scale we use a highly anisotropic mesh of 7⇥ 105 tri-

angular elements (calculated using Netgen [125]) refined at the boundary to capture

the boundary e↵ects. Figures 3.9 and 3.10 show the results of the full 2D model and

those of the Quasi-1D PNP model, respectively. The corresponding cross sectional

profiles are depicted in Figure 3.11.
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(a) Potential. (b) Negative ions conc. (c) Positive ions conc.

Figure 3.9: Heat maps of the potential and two ionic concentrations obtained using
the 2D PNP solver for the conical pore.

(a) Potential. (b) Negative ions conc. (c) Positive ions conc.

Figure 3.10: Heat maps of the potential and two ionic concentrations obtained using
Quasi-1D PNP solver for the conical pore.
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Figure 3.11: The conical pore. Comparison of the potential � (left column), negative
ion concentration n (centre column) and positive ion concentration p (right column)
calculated over the cross-section at x = 5800nm (top row), x = 7800nm (middle
row) and x = 12800nm (bottom row), obtained using the 2D finite element solver
(solid lines) the 1D Area Averaged PNP (dotted lines) and the Quasi-1D PNP
solver described in Algorithm 1 (dashed lines) for a linear pore of length 10000nm
and radius varying from 1.5 to 10nm.

Again we observe very good agreement between the Quasi-1D PNP model

solution and the full 2D results close to the charged pore walls. While the dis-

crepancies between the potentials and the negative ions calculated using these two

methods are negligible those for the positive ion concentrations are more marked.

Finally Figure 3.12 shows the IV curves obtained from the 2D FEM code, the

Quasi-1D PNP solver and the Area Averaged PNP equations. There is much better

agreement between the full 2D solver and the Quasi-1D PNP solver than between

either of these and the 1D Area Averaged PNP solver (this again overestimates the

influence of the geometrical asymmetry of the pore and surface charge influence

on the current). Note that the Quasi-1D PNP solver captures the nonlinear IV

curve, and the corresponding rectification behaviour, much better than the 1D Area

Averaged PNP solver.
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Figure 3.12: IV curves for the conical pore obtained using the surface charges � = 0.2
e/nm2 (right plot) and � = 1 e/nm2 (left plot), in the region 5000nm < x <
15000nm, obtained using the Quasi-1D PNP (dashed lines), 2D PNP solver (solid
lines) and 1D Area Averaged PNP method (dotted lines).

3.4 Conclusion

In this work we applied asymptotic methods to a two dimensional Poisson-Nernst-

Planck (PNP) model, for the transport processes occurring within a long thin elec-

trolyte filled nanopore with charged walls, in order to systematically derive a reduced

order model for ion transport within the nanopore. We term this the Quasi-1D PNP

model. In order to investigate the validity of this novel model we conducted numer-

ical experiments on two di↵erent nanopore geometries in which we compared results

from the Quasi-1D PNP model to solutions of the full two dimensional PNP model,

which we solved using a finite element method. In the geometries we considered the

comparison between the two approaches was very favourable and furthermore the

computational cost of solving the reduced order model was many times less than

that for solution of the full 2D model, which requires the use of a very large num-

ber of finite elements in order to obtain su�cient accuracy. In addition, we also

compared the solution of these two models to the solutions of the one-dimensional

Area Averaged PNP equations, which is a commonly used approximation of the

PNP model in nanopores, and showed that this model gives a poor representation

of the full PNP equations. In this context we also note that the Area Averaged PNP

equations are also widely applied to biological ion channels [127; 33] but that no

comparison has yet been made between numerical solutions to the PNP equations

in 3D and solutions to the 1D Area Averaged equations in an ion channel geometry.

Furthermore, given that the Debye length in intra- and extra-cellular fluid (⇡0.14
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Molar) is around 1.3nm, and that the narrow neck of an ion channel is around 0.4nm

(comparable to the Debye length), one might expect that the Quasi-1D PNP pro-

vides at least as good an approximation (if not better) to the full 3D PNP as the

Area Averaged PNP (which should only be valid if the dimensions of the channels

are much smaller than the Debye Length).

The numerical experiments presented here confirm the validity of the as-

sumptions made in the derivation of the Quasi-1D PNP equations. We observe that

the method resolves the behaviour of solutions inside the Debye layers correctly

and gives substantially better results then the commonly used 1D area averaged

approximations. Since surface charge influences the transportation and rectification

behaviour of the pore significantly, the correct resolution of the numerical simula-

tions is of great importance. The proposed asymptotics serves as a starting point

for further developments in this direction, in particular

• the e�cient implementation of a 1D solver to calculate IV curves for nanopores

• the extension of the asymptotic analysis for nonlinear PNP models

• and the comparison on the results with experimental data.
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Chapter 4

Asymptotic analysis of a

nonlinear

Poisson-Nernst-Planck system

in radially symmetric pores

with surface charge

In this chapter we present work published in [55] tohether with CLemens Ghulke,

Ruediger Mueller and Juergen Fuhrmann. We focus on the approximate asymptotic

models for the class of the mean field models with linear mobility function which can

be reduced to one-dimensional systems. We study three di↵erent models starting

form the PNP and then Bikerman and DGML as described in Chapter 1. We present

di↵erent method of the matched asymptotic expansions than the one used in the

Chapter 3 to obtain a one dimensional reductions of the model. The method used in

this chapter allows us to obtain a model for more general form of the electrochemical

potential function. On the other hand the method is presented only for simplified

nanopore geometry that does not include the radial symmetry.

In the end of the chapter we present a numerical study where we compare

simulation results obtained from solution of the asymptotic 1D-models with those

obtained by discretisation of the full resolution models. Moreover, we discuss the

influence of the solvation e↵ect on the obtained ionic flow.
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4.1 Model description

As it was described in the Chapter 1 the three mean field models can be written in

a general framework. We first go through the scaling procedure, as we did in the

previous chapter, once again for the convenience of the reader.

@t⇤n
⇤
i +r · (�D⇤

i c
⇤
i

kBT rµe
i ) = 0, for i = 1, . . . ,m (4.1a)

�r · ("rV ⇤) =
NX

i=1

zie0n
⇤
i , (4.1b)

v⇤Sn
⇤
S = 1�

mX

i=1

v⇤i n
⇤
i , (4.1c)

with the (e↵ective) electrochemical potentials

µe
i = µ0

i + zie0V
⇤ + kBT ⇥

8
>>><

>>>:

ln
n⇤
i
n Nernst–Planck,

ln
n⇤
i

n⇤
S

Bikerman,

ln
n⇤
i
n � v⇤i

v⇤S
ln

n⇤
S
n DGLM.

(4.2)

where nS denotes the concentration of the solvent. The next step is to introduce

scaling by

x⇤ = L̄x, r⇤ = R(x)R̄r, n⇤
i = n̄ni, �⇤ = �̄�, V ⇤ =

e

kBT
�,

µ⇤
i = kBTµi, D⇤

i =
L2

t̄
Di, � =

"kBT

eR
�,

which as in the previous section leads to

e� :=

s
"kBT

e20n̄L̄
2

and e� := R̄

L̄
. (4.3)

The first constant is related to the Debye-length e�L, that characterise the

width of the electrical double layer at charged pore walls. The second constant is

the aspect ratio of the pore. Both constants appear quadratic in the dimensionless

system.

A nanopore filled with aqueous electrolyte is characterised by these scaling
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quantities

t̄ = 1s, L̄ = 10�5m, R̄ = 10�9m, (4.4)

n̄ = 1mol/L, T = 300K. (4.5)

These values imply for the dimensionless constants

e� ⇡ 10�8 and e� ⇡ 10�8. (4.6)

For di↵usion coe�cients and the surface charges in the range of

Di = 10�9m
2

s
and � = 10�1 C

m2
, (4.7)

the corresponding dimensionless quantities are of order one. This motivates a second

rescaling of the variables where now we introduce a small parameter " ⇡ 10�8 and

the substitutions

e�2 = "�2 and e�2 = "�2, (4.8)

such that now �2 and �2 are of of order O(1). Writing down the entire model in

dimensionless quantities leads to

@tni �Di
�
@x � R0

R r@r
��
ni@xµ

e
i � ni

R0

R r@rµ
e
i

�
� 1

"
Di
�2R2@r(ci@rµ

e
i ) = 0, (4.9a)

��2"(@x � R0

R r@r)(@x�� R0

R r@r�) +
�2

�2R2@rr� =
mX

i=1

zini, (4.9b)

�SnS = 1�
mX

i=1

�ini.

(4.9c)

The dimensionless electrochemical potentials are define as

µe
↵ = eµref

↵ + z↵'+

8
>>><

>>>:

ln ni
n Nernst–Planck,

ln n↵
nS

Bikerman,

ln n↵
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�S
ln nS

n DGLM.

(4.10)

The dimensionless boundary conditions at the pore wall and the symmetry axis are
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�Din↵
�
@rµ

e
i �R0R"�2(@x � R0

R @r)µ
e
i

�
|r=1 = 0, @rni|r=0 = 0, (4.11a)

1p
"�2(R0)2+1

�
1
R@r'� �2"R0(@x � R0

R @r)'
�
|r=1 = �, @r'|r=0 = 0. (4.11b)

4.1.1 Derivation of an asymptotic model

In this section we discuss a leading order problem in terms of " that must be solved

both in x and r direction. In order to find an asymptotic solution of system (4.9a)-

(4.11) in the limit "! 0, and with all other parameters of size O(1), we assume the

existence of expansions of the form

� = �(0)(r, x, t) + " �(1)(r, x, t) + "2 �(2)(r, x, t) + · · · , (4.12a)

ni = c(0)i (r, x, t) + "n(1)
i (r, x, t) + "2 n(2)

i (r, x, t) + · · · , (4.12b)

µe
i = µe,(0)

i (r, x, t) + "µe,(1)
i (r, x, t) + "2 µe,(2)

i (r, x, t) + · · · . (4.12c)

These expansions are entered into the equations and boundary conditions. Then,

the terms are sorted with respect to their polynomial order in ". In the following we

focus on the first order approximations of the equations and match the respective

order in considered equations. For the simplicity of the presentation, we omit the

superscripts (0), that are referring to the order in the expansion.

Leading order equations for the cross-sections. Introducing the expansions

(4.12) into (4.9a)-(4.11) provides us with the first order approximations (and drop-

ping the 0 superscripts) of the the system which read

@rµ
e
i = 0, for i = 1, . . . , N (4.13a)

� �2

�2R2@rr� =
NX

i=1

zici, (4.13b)

�SnS = 1�
NX

i=1

�ici. (4.13c)

The boundary conditions simplify to

@rµ
e
i |r=1 = 0, @rci|r=0 = 0, (4.14a)

@r�|r=1 = R�, @r�|r=0 = 0. (4.14b)
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Leading order equations for the averaged ion concentrations. In the fol-

lowing, we indicate quantities that are averaged over the r-coordinate by a super-

script bar, i.e. for a generic function u the corresponding averaged quantity is

ū =
R 1
0 u dr. The integration of the system (4.13) in r-direction leads to the leading

order system for the averaged number densities,

@tn̄i � Di
R @x(R n̄i @xµ̄

e
i ) = 0, i = 1, . . . , N, (4.15a)

� �2

�2R� =
NX

i=1

zic̄i, (4.15b)

�Sn̄S = 1�
NX

i=1

�ic̄i. (4.15c)

For the derivation we used the boundary conditions (4.11) and the leading order

equations for the cross-section (4.13).

4.1.2 Reduction to averaged 1D problem

The asymptotic analysis above decouples the fluxes in x and in r direction and

thereby splits the full 2D system into two coupled 1D systems. The equation system

(4.15a)–(4.15c) determines the evolution of the averaged number densities along

the nanopore and the equation system (4.13a)–(4.13c) determines the specific ion

concentration profiles in each cross-section of the nanopore. A similar coupled 1+1D

system for the rotational symmetric case is the basis for the quasi-1D PNP model

developed in [102]. In the following we derive a reduction from the asymptotic 1+1D

system to a single 1D system, that is also applicable for the Bikerman and in the

DGLM model.

Exact solution in the cross-section. At first we integrate the inner equations

(4.13a) for i = 1, . . . , N , as well as for i = S, to get implicit representations of the

mole fractions, that reads

ci = c0i exp(�zi(�� �0))⇥

8
>>><

>>>:

1 Nernst–Planck,

cS
c0S

Bikerman,
⇣
cS
c0S

⌘�i/�S
DGLM.

(4.16)
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Here the c0i and �0 denotes mole fractions and potentials at r = 0 respectively. The

mole fraction of the solvent is given by,

cS = 1�
X

i=1,...,N

ci, (4.17)

and the total number density n can be then determined using the equation (4.13c).

Form the equations (4.16) and (4.13c) we conclude that the number densities ni can

be expressed as functions of the electric potential � and the number densities n0
i

and electric potential �0.

Multiplication of the Poisson equation (4.15b) by @r� yields

� �2

2�2R2@r(@r�)
2 =

⇣ NX

i=1

zini

⌘
@r�. (4.18)

In the Nernst–Planck case, the right hand side of (4.18) can be expressed as the r

derivative of a function that depends on �� �0 and n0
i . For Bikerman and DGLM,

we di↵erentiate (4.17) with respect to r and by use of (4.16) and (4.13c) we get the

identity

1
�S
@r ln(cS) =

⇣ NX

i=1

zini

⌘
@r�.

We use the identity to replace the free charge density in equation (4.18) by the r-

derivative of ln(cS). This allows us to integrate the Poisson equation to obtain a

relation between the r- derivative of the electric potential and the mole fraction of

the solvent.

@r� = sgn(�)R
p
2�
�

q
P (�� �0, n0

1, . . . , n
0
N ), (4.19)

where P is defined as

P (�� �0, n0
1, . . . , n

0
N ) =

8
>>><

>>>:

PN
i=1 n

0
i

�
exp(�zi(�� �0))� 1

�
Nernst–Planck,

1
�S

ln
�n0

S
nS

�
Bikerman,

1
�S

ln
� c0S
cS

�
DGLM.

(4.20)

Let �R denote the electric potential at the pore wall. The relation (4.19) and the

boundary conditions (4.14b) relate the potential di↵erence �R � �0 to the surface
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charge and number densities at r = 0,

� = sgn(�)
p
2�
�

q
P (�R � �0, n0

1, . . . , n
0
N ). (4.21)

The number densities for i = 1, . . . , N , as well as for i = S can now be expressed in

terms of P as

ni = n0
i exp(�zi(�� �0))⇥

8
>>><

>>>:

1 Nernst–Planck,

exp(��iP ) Bikerman,
n

n0
exp(��iP ) DGLM.

(4.22)

When evaluating the mean values of the number densities, we use this relation to

substitute the integration with respect to r by an integration with respect to � for

the averaging. To compensate a singularity in the integral, we average the deviation

from the values at the axis, i.e. n̄i = n0 + ni � n0, and get

n̄i = n0
i +

1
R

�p
2�

Z �R��0

0

ni � n0
iq

P (e�, n0
1, . . . , n

0
N )

de� i = 1, . . . , N. (4.23)

As the first order electrochemical potentials are r independent (see equation (4.13a)),

the mean chemical potentials for i = 1, . . . , N are given by their respective values

at r = 0,

µ̄e
i = eµ

ref
i + zi�

0 +

8
>>><

>>>:

ln
n0
i

nS
Nernst–Planck,

ln
n0
i

n0
S

Bikerman,

ln
n0
i

n0 � �i
�S

ln
n0
S

n0 DGLM.

(4.24)

Resulting 1D system and 2D reconstruction. The variables '0 and n0
↵ for

↵ = 1, . . . , N , as well as 'R and n̄↵ for ↵ = 1, . . . , N are determined by a system

consisting of one dimensional PDEs in x-direction (4.15a) and (4.15b), and in ad-

dition for each point in x the non-linear algebraic equations (4.21) and (4.23). The
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system reads

@tn̄↵ = D↵↵
R @x(R n̄↵ @xµ̄

e
↵) ↵ = 1, . . . , N, (4.25a)

� �2

�2R� =
NX

↵=1

z↵n̄↵, (4.25b)

� = sgn(�)
p
2�
�

q
P ('R � '0, n0

1, . . . , n
0
N ) .

n̄↵ = n0
↵ + 1

R
�p
2�

Z 'R�'0

0

n↵ � n0
↵q

P (e', n0
1, . . . , n

0
N )

de' ↵ = 1, . . . , N,

For the averaged potentials µ̄e
↵ (4.24) is applied. To get n0

S , (4.13c) is used,

�Sn
0
S = 1�

NX

↵=1

�↵n
0
↵. (4.26)

In the Nernst–Planck case the function P is explicitly determined by (4.20) as

a function of n0
↵ and '0. In contrast for the Bikerman and DGML model P is

implicitly determined by equation

nS +
NX

↵=1

n↵ = n,

together with the representation (4.22) of the number densities.

Finally, a 2D solution can be recovered in a post processing step. Given the

solution '0, 'R and n0
↵, we use (4.13b) to determine ' in all of ⌦, i.e.

� �2

�2R2@rr' =
NX

↵=1

z↵n↵(', P ), (4.27a)

'|r=0 = '0, '|r=R = 'R, (4.27b)

n(', P ) =
NX

↵=1

n↵(', P ) + nS(', P ), (4.27c)

1 =
NX

↵=1

�↵n↵(', P ) + �SnS(', P ), (4.27d)

where we again use the representation (4.22) for n↵.
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4.2 Numerical results

In this section we present numerical study focused on two questions:

• How accurate is the 1D-method derived in the Section 4.1.2 in comparison

with the solution of the 2D model?

• What is the influence of the di↵erent solvation models as discussed in previous

sections?

To answer these questions we study two, experimentally driven, pore exam-

ples: (i) a trumpet shaped pore and (ii) a conical pore geometry which are shown

in Fig. 3.4. We consider a binary electrolyte consisting only of the solvent and – for

simplicity – monovalent anions and cations and use the indices ↵ 2 {A,C} instead

of ↵ 2 {1, 2} for referencing the ionic species. Further we assume that the number of

solvent molecules in the solvation shell of the ions is equal. We refer to the solvation

shell number as . The atomic masses and the specific volume of the ions are given

by the simple relation

m↵ = (1 + )mS and �↵ = (1 + )�S for ↵ = A,C.

By this assumption the mass-volume-ratio of all constituents is equal and the con-

straint (4.26) is satisfied.

4.2.1 Comparison 1D and 2D model

In this section we compare the 1D and 2D solutions for discussed models. We focus

on the results for the DGLM model with  = 0 and with  = 10. The case  = 0

coincides with the Bikerman model where the solvation e↵ect is not present. We

also compared the 1D and 2D results from the Nernst–Planck model and found only

minor di↵erences compared to the Bikerman ( = 0) case. Therefore we omit these

results here. For comparison reasons we use similar, in terms of geometry, boundary

concentrations, applies voltage and surface charge distributions; test cases as we did

in the Chapter 3, that is parabolic and conical shape with attached bath regions.

The computations are performed with the parameters given in Table 4.1. On

the left and the right domain boundary the surface charge vanishes and the electric

potential and the number densities are thus constant in r direction. The prescribed

potential di↵erence between the left and the right boundary is denoted by Vappl and

the number densities on the left and right boundary are set to the values nbath
AC that

correspond to the bulk concentrations in the baths on both sides of the pore.
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Table 4.1: Parameters used in the numerical computations.

kB ⇡ 1.3806488⇥ 10�23 J/K T = 300K
e ⇡ 1.602176565⇥ 10�19C "0 ⇡ 8.85418781762�12C/(Vm) �0 = 1 e/nm2

� = 77.5 zA = �1 zC = +1
(�S)�1 = 55mol/L Vappl = 0.2V nbath

A/C = 0.1mol/L

Numerical methods For the 1D problem, we use a P1 finite element method for

the stationary version of (4.25a), i.e. we discretise

Z L

0
@x⇠ ·R n̄↵ @xµ̄↵ dx = 0 for all testfunctions ⇠,

where we apply element wise constant approximation of R n̄↵ by its value in the

element mid point. The solution of the approximate model is obtained in two steps.

First equation (4.25a) – (4.25b) and (4.24) are solved to obtain the x dependent

quantities such as n0, 'R and '0. For that we use a uniform mesh in x-direction and

the integral in (4.23) is approximated by trapezoidal rule with a uniform partition

and 500 evaluation points. The resulting non-linear system is solved by Newton’s

method and implemented for use with GNU Octave and MATLAB. The second step

is to recover r dependent quantities n↵ and '. For that the equation (4.27) is solved

in a mesh containing 1000 elements using Newton’s method.

To solve the full 2D steady state system, we used two di↵erent implementa-

tions.

On the one hand, a variant of the method described in in [102] applying a

standard P1 finite element discretisation and a Gummel iteration, [62] is used to

solve the problems for the Bikerman model ( = 0). We use non-uniform meshes

that are strongly refined at the charged pore walls in order to properly resolve the

Debye layers. The meshes are created using Netgen [125], while we use MATLAB

to assemble and solve the corresponding discrete systems. Because of the di↵erent

length scales and the boundary layer scale we use a highly anisotropic mesh of 7⇥105

triangular elements.

On the other hand the method described in [51; 52] is used to solve the

problems for the DGLM model ( = 10). It is based on a re-formulation of the

system in terms of (e↵ective) species activities a↵ = exp

✓
µ↵�m↵

mS
µS

kBT

◆
and a two point

flux finite volume method based on a thermodynamically consistent modification

of the Scharfetter–Gummel flux [121]. Here, the resulting non-linear systems are

solved via Newton iteration and parameter embedding. The discretization meshes

are created from an anisotropic rectangular mesh with graded refinement in the
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vicinity of the pore wall and subsequent transformation to the pore geometries. The

method is implemented within the C++/python based framework pdelib [85].

Solutions from both codes where tested for coincidence for the classical

Nernst–Planck and the Bikerman model. As in the previous chapter we consider

two types of pore - parabolic and conical shape as it is shown in in Fig. 3.4.

Parabolic shape geometry. The first on is of length L = 1000nm and a radius

is varying form 1.5nm to 10nm . This pore shape is usually obtained by the dou-

ble etching technique and due to its symmetry in the x direction shows di↵erent

behaviour then the more popular conical shaped pore. The pore boundary is given

by
R(x)

R̄
=
�
34
�
x
L̄

�2 � 34 x
L̄
+ 10

�
,

where we chose R = 1nm and it is the same pore as considered in the previous

chapter. We assume a smooth charge distribution of the form

�(x) = �0 exp
⇣
1 +

(L̄)2

(2x� L̄)2 � (L̄)2

⌘
.

The solution of the 1D problem is shown in Fig. 4.1. We observe that on the center

line r = 0 in x direction the electric potential is not linear but instead but shows a

stronger growth on the left side of the pore center at x = 500nm and a slower growth

to the right of the center. The anions show some accumulation in the middle of the

pore where the positive surface charge is the highest. The di↵usion of cations from

the right to the left side is hindered by the pore resulting in accumulation ”before”

and depletion ”behind” the pore. Fig. 4.2 shows a 2D reconstruction for  = 10. We

observe a very sharp layer near the charged pore wall where the anions accumulate

to compensate the surface charge.

Comparing the solution obtained with the 1D model with the results of the

full 2D computations show very good agreement along the center line r = 0 and

for the potential di↵erence between the pore wall and the center line, cf. Fig. 4.1.

A more detailed comparison of the 1D and 2D results and of the impact of the

model parameter , can be obtained from cross-sections of the (reconstructed 2D)

solutions for fixed values of the variable x. In Fig. 4.3, cross-sections are displayed

in the pore middle at x = 500nm and at some distance to the left and right. Again,

we observe perfect agreement between the 1D and 2D solutions over the complete

distance of the cross-sections. The potential shows in all cases similar profiles from

r = 0 to r = R(x)R̄ with an increase in the order of 0.08V. At x = 500nm we see

that, due to the higher concentration at r = 0, the anions accumulate very strongly
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Figure 4.1: Comparison of the 1D and 2D solution for the trumpet shape pore.
We observe good agreement between the 1D and 2D solution along the line r = 0
(functions '0(x), n0

A(x) and n0
C(x)). In addition, '0(x)� 'R(x) is displayed in the

upper right figure to show the agreement between the 1D and the 2D computations
on the pore walls.

Figure 4.2: Reconstructed 2D solution based on the 1D solution with  = 10 from
Fig. 4.1. Only the upper half of the symmetric solution is displayed.
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Figure 4.3: Cross sections of the potential for the trumpet shape case together with
the number densities at x = 200nm (top row), x = 500nm (middle row) x = 800nm
(bottom).
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Figure 4.4: Comparison of the 1D and 2D solution for the conical shape pore. The
computed 1D solution '0(x), n0

A(x) and n0
C(x) agree with the corresponding 2D

solution. In addition, '0(x)� 'R(x) is displayed in the upper right figure and also
shows agreement between the 1D and the 2D computations.

in front of the charged pore wall, reaching a concentration of 7mol/L for  = 0. For

 = 10 the anion concentration is significant lower at nA ⇡ 3.5mol/L what is still

considerably lower than the saturation limit of 5mol/L for this case. The cations

are repelled from the positively charged wall, leading to similar profiles with respect

to r, only starting from a significantly higher level for x = 800nm.

Conical shape geometry. Motivated by experimental work on pores with con-

ical shape obtained using the etching technique, we consider a conically shaped

pore of length L̄ = 10000nm with radius varying between 1.5nm and 10nm which

corresponds with the polyethylene terephthalate (PET) nanopore, as used by Siwy

[134]. It is well known that such narrow tips strongly influences the ion transport

through the pore [115]. We include two bath regions of 5000nm length each. The

computational domain is thus described by

R(x)

R̄
=

8
>>><

>>>:

�28
�
2x�L̄
L̄

�
+ 2 for 0  x

L̄
 1

2 ,

8
�
2x�L̄
2L̄

�
+ 2 for 1

2  x
L̄
 3

2 ,

20
�
2x�3L̄

L̄

�
+ 10 for 3

2  x
L̄
 2.

(4.28)
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Figure 4.5: Reconstructed 2D solution based on the 1D solution with  = 10 from
Fig. 4.4. Only the upper half of the symmetric solution is displayed.

We consider a pore with surface charge density inside the pore which corresponds

with 5000nm < x < 15000nm and zero outside this section.

�(x) = �0
⇣
1
2 + 1

2 tanh
�
3002x�L̄

2L̄

�⌘⇣
1
2 + 1

2 tanh
�
� 3002x�3L̄

2L̄

�⌘
. (4.29)

The solution of the 1D problem is shown in Fig. 4.4. We observe a very sharp,

step-like transition layer of the electric potential at the narrow opening of the pore

at x = 5000nm. The potential di↵erence between the pore wall and the center line

approaches a plateau inside the pore. The ion concentrations also show the sharp

layers at x = 5000nm with accumulation on the right side of the narrow opening and

depletion to the left. The anions show a sharp peak of the concentration directly

right to the narrow opening. Fig. 4.5 shows a 2D reconstruction of the 1D solution

for  = 10. As in the parabolic case, we observe a very sharp layer near the charged

pore wall.

The solutions from the 1D model show to a large extend good agreement

with the results from the full 2D computations along the center line r = 0, cf.

Fig. 4.4. While the potential di↵erence between the pore wall and the center line

agrees very well between the 1D and the 2D results, there is some deviation between

the values on the center line near the narrow opening of the pore. In particular when

looking at  = 10, we observe that the peak in n0
A is more pronounced in the 1D
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Figure 4.6: Cross sections of the potential for the conical shape case together with
the number densities at x = 6000nm (top row), x = 14000nm (bottom) for the
conical pore.

simulations compared to the corresponding full 2D case. This indicates limitations

of the asymptotic model in situations where sharp peaks in x direction occur. Cross-

sections of the (reconstructed 2D) solutions for fixed x are shown in Fig. 4.6. At

x = 600nm we again observe the very strong accumulation of anions in front of the

charged pore wall, reaching a concentration of 7mol/L for  = 0 and nA ⇡ 3.5mol/L

for  = 10.

Both examples – trumpet shape and conical pore – have also been solved

numerically for the Poisson–Nernst–Planck model. As good agreement between the

results from the 1D model and the 2D model was observed and the PNP model has

the simplest structure among the models discussed here we do not present obtained

results.

4.2.2 Solvation e↵ect study for PNP, Bikerman and DGLM model

The Nernst–Planck model is build on the dilute solution assumption, and therefore

is lacking any mechanism for volume exclusion. In the Bikerman model the size

exclusion mechanism is introduced but as in the considered test cases the anion

accumulation reaches only 7mol/L, whereas the saturation limit in this case is the

mole density of the pure solvent (55mol/L), the volume exclusion still has no signifi-

cant impact on the ion concentration. To reach higher anion concentration and and

observe the exclusion e↵ects in the Bikerman model ( = 0), it would be necessary

to increase the surface charge significantly (although the chosen value of 1e0/nm2 is
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Figure 4.7: Comparison of di↵erent electrolyte models for the parabolic shape pore.
Solvation e↵ect leads to higher potential di↵erences 'R�'0 between the center line
and the wall and stronger anion accumulation on the center line at the narrowest
part of the pore.

already high) or consider higher concentrations in the bath regions.

In the profiles of nA in Fig. 4.3 and Fig. 4.6, we observe that the larger specific

volume �refA/C for  = 10 e↵ectively reduces the ion concentration already before

getting close to the saturation limit of 5mol/L in this case. Thus it is reasonable

to choose the lattice size in the Bikerman model according to the volume of the

solvated ions as (1+ )�refS and then to compare the results with the DGLM model

with the same solvation number.

In the following, we compare only the results of the 1D computations, which

already have shown to be in good agreement with the 2D solutions. The computa-

tions in this section were again performed using the parameters listed in Table 4.1.

Trumpet shape geometry. For all of the four considered models, the potential

'0 along the center line at r = 0 is very similar, see Fig. 4.7. The largest di↵er-

ences can be observed in the region where the pore is the narrowest. Much more

pronounced are the di↵erences between the models for 'R � '0. Here, the models

containing solvation e↵ects show a considerably higher potential di↵erence than the

Nernst–Planck and the Bikerman model without solvation. Moreover, the di↵er-

ent treatment of the solvent causes a larger voltage 'R � '0 in the DGLM model

compared to the Bikerman model with solvated ions. The anion concentration n0
a
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Figure 4.8: Comparison of di↵erent electrolyte models for the conical shape pore.
Solvation e↵ect leads to higher potential di↵erences 'R�'0 between the center line
and the wall and stronger anion accumulation on the center line at the narrowest
part of the pore.

along the center line shows a peak at the narrowest part of the pore where the

charged pore wall with its adjacent di↵use charge layer gets closest to the center

line. The peak height is almost the same for Nernst–Planck and Bikerman with

 = 0, but is larger for Bikerman with  = 10 and is highest for the DGLM model.

This higher anion concentration n0
A for  = 10 is a consequence of the limitation of

the space charge due to incompressibility and the large specific volume of the sol-

vated ions which requires a larger boundary layer width to compensate the surface

charge of the wall. The Bikerman model without solvated ions gives similar results

to the Nernst–Planck as the summarised ion concentration is much smaller then the

saturation level at 55mol/L.

Conical shape geometry. For the conical pore, a comparison of the di↵erent

electrolyte model, see Fig. 4.8, leads to the same conclusions as for the trumped

shaped pore above.

The value �R � �0 is essentially the zeta potential [82]. As observed above,

the introduction of the solvation e↵ect increases the zeta potential. In the absence

of the mechanical equilibrium assumption taken for this contribution, according to

the Helmholtz-Smoluchowski theory for pores with non-overlapping Debye layers

this would lead to a proportionally increased electroosmotic velocity, see also [54]
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Figure 4.9: Current-voltage curves for the trumpet shape nanopore with bulk salt
concentration of 0.1mol/L (left) and 1mol/L (right).

for discussion.

4.2.3 Current-voltage curves

While it is hard to precisely measure the internal structure like geometry and sur-

face charge of nanopores, they can be well characterised by their current-voltage

behaviour. Therefore, the stationary electric current flow through a nanopore is

recorded for several applied voltages within a large potential range. The resulting

current-voltage relation in general depends on the geometry of the pore, the spacial

distribution of the surface charge, the ion concentration in the electrolyte bulk. For

the accurate numerical simulation of these curves there is in addition the depen-

dency on the applied electrolyte model, in particular, on the solvation model. Of

particular interest is the current rectification property of nanopores, i.e. the ratio

between the current at applied voltages of the same magnitude but opposite sign

[77; 134; 35; 142; 115]. In steady state and for vanishing velocity, for the parti-

cles of di↵erent masses the current is given by the ion fluxes through an arbitrary

cross-section A perpendicular to the pore axis,

J =

Z

A

X

↵=A,C

z↵e0
m↵

J↵ · ⌫ da, (4.30)

where ⌫ is the normal vector of A pointing into negative x-direction.

Trumpet shape geometry. In Fig. 4.9 the calculated current-voltage curves

(IV curve) for low and high ion concentrations are shown for the trumpet shaped

nanopore. We first observe that the corresponding 1D and 2D computations show

perfect agreement. The IV curves are almost linear, but have a lower slope near
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Vappl = 0V. The symmetry of the IV curves can be attributed to the symmetry of the

pore geometry and the surface charge with respect to the midpoint at x = 500nm.

In particular, we do not observe current rectification. This is consistent with [102],

where a pronounced rectification behaviour of a radially symmetric trumpet shaped

pore was only obtained by the least accurate area averaged PNP scheme.

Comparison of the Nernst–Planck model and the DGLM model with  = 10,

shows that the volume exclusion of solvated ions lowers the current and, therefore,

increases the electric resistance of the nanopore. In addition to the curves shown

in Fig. 4.9, we also calculated IV curves for the Bikerman model without solvation

( = 0) which produces results that are visually indistinguishable from the ones

of the Nernst-Planck model, and for the Bikerman model with solvation ( = 10)

which produces IV curves in between those of the Nernst-Planck and the DGML

model.

Finally, we observe that increasing the bulk salt concentration from 0.1mol/L

to 1mol/L increases the current, but does not change the qualitative behaviour of

the IV curves significantly.

Conical shape geometry. When computing IV curves for the conical shape pore

and bulk salt concentration of 0.1mol/L, we observe a saturation of the current for

absolute values of the applied voltage |Vappl| > 0.2V, see Fig. 4.10. This behaviour is

unexpected and we are not aware of any description of such current saturation in the

literature. Nevertheless, it seems very plausible, that this behaviour is related to the

depletion of cations in the vicinity of the narrow pore opening, see Fig. 4.4, lower

right plot. The IV curves are non-symmetric showing some current rectification

behaviour such that the current at Vappl = �0.5V is about 1.5 times the current at

Vappl = 0.5V.

We observe that the 1D results show good qualitative agreement with the 2D

computations but for larger positive or negative applied voltage, some deviations be-

tween 1D and 2D solutions become visible. This corresponds to the above mentioned

limitations of the 1D method at the narrow opening, where very steep gradients of

the ion concentration occur, see Fig. 4.4. As for the trumpet shaped pore, the

DGLM model with solvation number  = 10, slightly increases the pore resistance,

and thus lowers the electric current, compared to the Nernst-Planck model.

The unexpected saturation of the current and the possible explanation by

the cation depletion inside the pore at the narrow opening motivated to study the

IV curve for the conical pore at higher bulk salt concentration. An increased salt

concentration reduces the width of the double layers and thus reduces the overlap of
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Figure 4.10: Current-voltage curves for the conical shape pore with bulk salt con-
centration of 0.1mol/L (left) and 1mol/L (right).

layers at the narrow opening. Moreover, the more e↵ective screening of the positive

surface charge does not require a depletion of the cations in this region.

We performed the simulation of the IV curves with a bulk salt concentration

of 1mol/L, i.e. ten times larger than in the before simulation, and observe that the

current saturation has been removed from the IV curves. This supports the above

conjecture that the saturation can be attributed to the ion depletion. Similar as for

the trumpet shaped nanopore, the shape of the IV curves is almost linear at bulk

salt concentration of 1mol/L. We observe only minimal current rectification, such

that |I(+0.5V)/I(+0.5V) ⇡ 1.25 for the Nernst-Planck model and the rectification

is about 1.15 for the DGLM model with  = 10.

4.3 Conclusions and discussion

The asymptotic analysis used in this paper leads to quasi-equilibrium conditions

governing the system in the cross-sections perpendicular to the pore axes. This

allows the e↵ective dimension reduction of the model to a one dimensional situation

by the use of implicit representations that are known for equilibrium solutions.

This procedure can be applied for a variety of material models for the electrolyte:

to the classical PNP model, but also – for the first time – to models containing

volume exclusion e↵ects like the Bikerman model and to models that in addition

take solvation e↵ects into account.

The numerical study demonstrates that the asymptotic 1D models can ap-

proximate the results of the full 2D models very closely, but at a considerably lower

computational cost. In steady state, the profile of the electric potential and the

ion distribution can be accurately reproduced by the dimension reduced asymptotic

models. We observe di↵erences between the di↵erent electrolyte models. In general,
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volume exclusion e↵ects limit the charge accumulation in front of the charged wall.

Nevertheless, going from the PNP model to the Bikerman model where the particle

volume is given by the number density of the pure solvent, i.e. 55mol/L, we observe

almost no di↵erence in the counter ion accumulation in front of the charged wall.

This result might seem surprising at the first sight, and it seems to suggests that the

simpler PNP model without volume exclusion e↵ects might be preferable over more

complex models like Bikerman or DGLM. But, one has to notice that the maximal

archived number density is only about 7mol/L and thus too low for the volume

exclusion mechanism to get relevant. Given realistic values of the surface charge, in

the range of 1e0/nm2 that we used here, therefore su�ciently large complexes like

solvated ions are needed in order for the volume exclusion to have a visible e↵ect.

Then, the resulting ion distribution shows considerably less steep concentration gra-

dients but also results in higher potential di↵erences between the pore wall and the

center line of the pore. In further extended models, which take electro-osmotic flow

into account, cf. [54], this wider spreading of charge in the boundary layers can be

expected to cause an increase of the flow velocity and thereby might contribute to

the total current flow through the pore.

In the example of the conical pore, we can guess the limits of the asymptotic

method. The narrow width of the pore, together with the abrupt change of geometry

and surface charge, leads to very strong gradients in the electric potential and the

ion concentrations. These quantities can become of order "�1 and start contributing

to the leading order equations of (4.9a). Then, the decoupling of the fluxes into the

di↵erent coordinate directions is no longer possible, requiring a full 2D model.

We used a 2D approximation of the geometry for the asymptotic analysis,

where the third coordinate is ignored. In case of rotational symmetric nanopores

cylinder coordinates could be used. But this leads to asymptotic models which de-

pendent explicitly on the radial coordinate. This inhibits the calculation of an exact

solution of the 1D system for the cross-section problem, and no further reduction

to truly one-dimensional system is possible, instead a coupled system for the axial

and radial coordinate have to be solved.

The di↵erences between the IV curves resulting from di↵erent electrolyte

models are minor under the conditions of the numerical experiment considered here.

However, this can change considerably, when electro-osmotic velocities convective

transport are no longer ignored or charge macro-molecules like strands of DNA

passing the pore, which interact with the charged boundary layers.

This work might be a starting point for further investigation, especially issues

such as
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• the extension of the asymptotic analysis and dimension reduction to nonlinear

electrolyte models for radially symmetrical geometries,

• inclusion of convective transport and electro-osmotic flow inside the pore,

• study the influence of macro molecules crossing the nanopore on the IV char-

acteristic of the pore.
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Chapter 5

Application of the

Poisson-Nernst-Planck system

to model di↵erent types of

electronic devices

In this chapter, we present application of the mean field theory in modelling nano-

electronic devices. We study results of the PNP and the nPNP in comparison to the

NP+ LEMC for two di↵erent in the current-voltage characteristic devices - diode

and transistor. The scope of the chapter is to present application of the mean

field theory in modeling of the nano-electronic devices as well as compare it with

a mezzo-scale modeling approach such as NP+LEMC. We compare macroscopic

quantities such as current-voltage characteristics as well as the microscopic ones i.e.

concentration profiles. That provides insight in the phenomena inside the nanopore

and can be used to investigate the significance of the omitted in the mean field

theory phenomenas such as size exclusion and particle-particle interactions.

5.1 Introduction

As it was described in the Chapter 1 Local equilibrium Monte Carlo method is

a multiscale method which combines the continuum equation with Monte Carlo

method. Both methods use the Nernst-Planck (NP) transport equation to describe

the ionic flux of i = {1, 2} species:

Ji = �Dicirµe
i . (5.1)
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The main di↵erence between the two techniques is that PNP makes use of the

Poisson-Boltzmann (PB) theory to relate the concentration profile, ci, to the elec-

trochemical potential profile, µe
i , while the particle simulation method uses the Local

Equilibrium Monte Carlo (LEMC) technique [15; 65; 18; 13] to establish this rela-

tion. The particle simulation method includes all the ionic correlations that are

beyond the mean field approximation applied in PNP. The di↵erence between the

two approaches can be quantified by considering the electrochemical potential

µe
i = ln ci + µEX

i , (5.2)

The µEX
i term is the excess chemical potential that describes all the interactions

acting between the particles forming the system and all the interactions with external

forces (including an applied electrical potential). PNP defines the excess term as

the interaction with the mean electric field produced by all the free charges and

induced charges. Thus the electrochemical potential in the case of PNP is

µPNP
i = ln ci + zieV, (5.3)

The missing term can be identified with what is beyond mean field (BMF) and

quantifies the di↵erence between PNP and a solution that is accurate from the

point of view of statistical mechanics:

µe
i = µPNP

i + µBMF
i . (5.4)

In the implicit solvent framework used here the BMF term includes the volume ex-

clusion e↵ects (hard sphere e↵ects) due to the finite size of the ions and electrostatic

correlations that are beyond the mean-field level. This partitioning has been used

to study selective adsorption of ions at electrodes [137] and in ion channels [58; 17].

It is also usual to break the electrochemical potential into a chemical and

an electrical component that are loosely identified with the chemical and electrical

works needed to bring an ion from one medium to the other:

µe
i = µchem

i + µel
i , (5.5)

where the EL term can be identified with zi
e

kbT
V , while the CH term can be iden-

tified with µ0
i + ln ci + µBMF

i . Although these two terms cannot be separated in

experiments [8; 11; 48], the separation is possible in computational studies because

V can be determined.

In PNP, where µBMF
i = 0, the CH term is just µ0

i +ln ci, the ideal expression
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(ID).

In this work, we also use a non-linear variant of PNP as described in Section

1.3.8 that can be derived (formally) from a discrete hopping model [24]. In all these

models Eqs. (5.1) and (5.3) are replaced by

J nPNP
i = �Dici(cmax � c1 � c2)rµnPNP

i ,

and

µnPNP
i = µPNP

i � ln(cmax � c1 � c2).

In this work, we use a two dimensional (2D) PNP (respectively nPNP) model

which is a suitable approximation to the three-dimensional (3D), but rotationally

symmetric, system studied here. Our simulations, furthermore, include the bulk

regions and the access regions at the entrances of the nanopore, as opposed to other

studies [144; 140]. Introducing the bath regions into the computational domain is

necessary when studying the behaviour of nanoelectronic device.

Summarised, we can couple the NP equation either to LEMC simulations

or to the PB theory. The former is referred to as the NP+LEMC technique, while

the latter could be termed as NP+PB, but we stay with the usual name, PNP.

Poisson’s equation is satisfied in both approaches. In PNP, it is solved in every

iteration, while it is automatically fulfilled in LEMC because Coulomb’s law is used

to handle electrostatics in the simulations (including the applied field in the frame-

work of the Induced Charge Computation method [16]). Both approaches provide

approximate indirect solutions for the dynamical problem through the NP equa-

tion. The main di↵erence between NP+LEMC and PNP is the way they handle the

statistical mechanical problem of establishing the closure between ci and µe
i . The

NP+LEMC technique provides a solution on the basis of particle simulations that

contain all the correlations ignored by PNP. The main goal of our study is to dis-

cuss the e↵ects of the approximations applied in PNP for di↵erent sets of physical

parameters. Comparing to NP+LEMC results makes it possible to focus on the

approximations applied in the statistical mechanical part of the PNP theory (the

PB theory), because NP is what both models have in common.

Particle simulations are necessary for narrow pores, where ions are crowded

and their size and the correlations between them (the BMF term) matter. This is

the case in ion channels, where the ions correlate strongly with each other and with

the charged amino acids along the ionic pathway. Although nanopores are larger in

reality, the electrical double layers formed by the ions at the pore walls overlap if the

the Debye length is larger than the pore radius. This occurs if the pore is narrow
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enough (such as conical nanopores at their tips) or if the electrolyte is dilute.

The advantage of NP+LEMC over MD is that it is faster and can handle

larger systems that are closer to realistic length scales of nano-devices. From this

point of view, PNP is even more advantageous, because it does not involve particle

simulations, therefore, it can handle even larger systems.

5.2 Nernst-Plank equation coupled to Local Equilib-

rium Monte Carlo

To solve the NP+LEMC system, an iterative procedure is needed, where µi is up-

dated until the continuity equation (Eq. 5.1) is satisfied up to some error. Every

iteration contains two di↵erent types of steps- LEMC for the electrochemical po-

tential profile, µe
i [n],and NP for the concentration profile, ci[n], corresponding to

is obtained from LEMC simulations. We divide the computational domain (inside

the green lines in Fig. 5.1A) into volume elements and assume local equilibrium in

these volume elements. We assume that these local equilibria can be characterised

by local electrochemical potential values. We also assume that the gradient of the

µe
i profile defined this way is the driving force of ion transport as described by the

NP equation (Eq. 5.1).

The initial step of the procedure is to solve Laplace equation with the Dirich-

let boundary condition of Eq. 5.6 for the applied potential field V appl. Then the

initial guess for µe
i [n] is set.

The heart of the LEMC simulation is a MC step, where we insert/remove an

ion into/from a volume element Bk. The acceptance probability of an insertion is

pki,INS = min

(
1,

vk

Nk
i + 1

exp

 
��Uk + µe,k

i

kT

!)
,

where vk is the volume of subsystem Bk, Nk
i is the number of particles of component

i in Bk before insertion, �Uk is the energy change associated with the insertion

(including the e↵ect of the external field), and µe,k
i is the configurational (total

minus µe,0
i ) electrochemical potential of component i in Bk. In the particle deletion

step we randomly choose a particle of component i in sub-volume Bk and delete it.

The deletion is accepted with probability

pki,DEL = min

(
1,

Nk
i

vk
exp

 
��Uk � µe,k

i

kT

!)
.
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Here, Nk
i is the number of particles of component i in sub-volume Bk before deletion.

The energy change �Uk consists of the influence of the potential generated by the

surrounding ions, that is

V ION =
1

4⇡"0"

X

k

zk
|r � rk|

,

as well as the e↵ect of the applied potential V appl calculated in the initial guess.

The resulting formula reads

�Uk = ziV
ION + ziV

APP .

The result of the simulation is the concentration cki in every volume element.

The next step is to solve the NP equation for the sub-volumes which is done

using the finite volume method. The values cki and µe,k
i are assigned to the centres

of the volume elements and so the corresponding profiles are constructed. Both cki
and µk

i fluctuate during the iteration process, so the final results are obtained as

running averages. The resulting procedure can be summarised as

µe
i [n]

LEMC����! ci[n]
NP��! µe

i [n+ 1].

The NP+LEMC technique has been applied to study transport through

membranes [15; 65] and calcium channels [18; 13].

The electrochemical potential for the next iteration, µi[n + 1], is computed

from the results of the previous iteration, ci[n], in a way that they together produce

a flux (through the NP equation) that satisfies the continuity equation. Details on

the algorithm can be found in the original paper [15].

5.3 Example 1 - Diode

5.3.1 Problem description

We apply our methods to a bipolar nanopore that is a suitable case study for our

purpose. Bipolar nanopores have an asymmetrical surface charge distribution on

the pore wall changing sign along the central axis of the pore. Pore regions with

opposite surface charges can be achieved by chemical modifications. For example, in

the case of PET nanopores, carboxyl groups can be transformed into amino groups

by a coupling agent [141]. The surface potential can also be regulated similarly to

field-e↵ect transistors if the pore walls are made of conducting materials.
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The reason of choosing the bipolar nanopore for this comparative work is

that the source of rectification in this case is purely electrostatic in nature and thus

a robust e↵ect. Therefore, we can a↵ord a short nanopore (only 6 nm in length)

that can be handled with LEMC. In the case of conical nanopores, where only a

geometrical asymmetry is present, long pores are needed to produce a considerable

e↵ect which makes it computationally unfeasible.

Although bipolar nanopores have been studied extensively using PNP [38;

36; 141; 90; 144; 88; 149; 107; 135; 130; 129; 133; 139; 136], we are not aware of any

paper, where a direct comparison to particle simulations is discussed.

Water is a continuum background, whose energetic e↵ect is taken into ac-

count by a dielectric screening (✏ = 78.5), while its dynamic e↵ect is included in the

di↵usion coe�cient in the NP equation (Di in Eq. 5.1). The ions, however are point

charges in PNP, while they are hard spheres (of radius 0.3 nm for both ions) with

point charges at their centres in LEMC.

The nanopore is a cylinder of 6 nm in length with a varying (between the

simulations) radius (R = 0.5� 3 nm). It penetrates a membrane that separates two

bulk electrolytes. The walls of the pore and the membrane are hard impenetrable

surfaces in the LEMC simulations (Fig. 5.1A), while they are part of the boundaries

of the solution domain in the PNP calculations (Fig. 5.1B).

The di↵usion coe�cient of the ions are set to be smaller inside the pore

than outside in the bulk regions. This finding was confirmed by our other study

that compares MD and NP+LEMC results [67]. Here, for simplicity, we assigned

Dbulk
i = 1.333 ⇥ 10�9 m2s�1 and Dpore

i = 1.333 ⇥ 10�10 m2s�1 values in the bulk

and in the pore, respectively, for both ions.

The charges on the cylinder’s surface are partial point charges in the case

of LEMC that are placed on grid points whose average distance is about 0.25 nm.

The values of the partial charges depend on the prescribed surface charge density,

�. The surface charge densities are included in PNP through Neumann boundary

conditions for the potential.

In LEMC, the electrical potential is also calculated in the interior of the

membrane, which cannot be occupied by ions (Fig. 5.1A). The dielectric constant is

the same there as in the electrolyte (✏ = 78.5), therefore, the surface of the membrane

is not a dielectric boundary and polarisation charges are not induced there. For the

2D (n)PNP simulations, the computational domain is shown in Fig. 5.1B. In the case

of PNP, the interior of the membrane is not part of the computational domain. An

appropriate Neumann boundary condition is applied on the surface of the membrane

in order to mimic the system used in LEMC. Boundary conditions as handled in the
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Figure 5.1: Geometry of computation domain (A) in the NP+LEMC system and (B)
in the PNP system. (A) Boundary conditions for the NP+LEMC system are prescribed
for the two half-cylinders (dark and light green lines, �L and �R domains) on the two
sides of the membrane. Dirichlet boundary conditions are applied by using the appropriate
applied potential obtained by solving the Laplace equation (a linear interpolation way used
inside the membrane, see the dotted lines). Boundary conditions for the concentrations are
ensured by using appropriate electrochemical potentials at the boundaries that correspond
to the chemical potentials producing the prescribed concentrations. The domains outside the
green lines are in thermodynamic equilibrium, where the chemical potential is constant, so
equilibrium GCMC simulations are performed there. Pore charges are free charges present
explicitly in the simulation cell. They are placed on the pore wall on a grid as partial
point charges. The dielectric constant is the same everywhere, including the interior of the
membrane. (B) The PNP computational cell excludes the interior of the membrane from the
solution domain. The pore charges are polarisation charges that are induced as a result of
the prescribed Neumann boundary conditions on the pore wall (red and blue lines, �W). On
the surface of the membrane (brown lines, �M), a Neumann boundary conditions is applied
in order to mimic the NP+LEMC solution. On the two half cylinders, the same boundary
conditions are used as in NP+LEMC (�L and �R).

two methods are detailed in the following subsections.

When investigating our results we first discuss the macroscopic quantities

such as ionic current and then discuss the micro-scopic phenomenas such as concen-

trations and potential fields. This way is driven by the fact that the macroscopic

quantities are ones that are physically observable while the microscopic ones are

impossible to observe inside the pore.

5.3.2 Poisson-Nernst-Planck simulation setup

The (n)PNP systems are solved inside the computational domain, whose boundary is

separated into four parts as shown in Fig. 5.1B. The first two parts correspond to the

left and right half-cylinders (dark and light green lines in Fig. 5.1B) and are denoted

by �L and �R. These regions are the same in NP+LEMC. Both the concentration

and the applied potential are set using the following boundary conditions
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ci = cLi and V = 0 on �L

ci = cRi and V = V apl on �R. (5.6)

The third part are the regions of the membrane which are attached to the baths and

are denoted by �M (brown lines in Fig. 5.1B). As the membrane is impenetrable for

the particle flux, we set the flux to be equal to 0 there. In LEMC simulations the

membrane is penetrable for the electric field, which is not the case in PNP. Therefore

we impose the boundary conditions

Ji ·N = 0 and
@V

@N
= g(r) on �M, (5.7)

where N is the outer normal on �M and the function g(r) is supposed to mimic the

LEMC case (where there is an electric field across the membrane). More precisely, it

is obtained by solving a Laplace equation with zero left hand side without permanent

charges and with boundary condition Eq. 5.6 in the domain of Fig. 5.1A. Then,

evaluating the normal derivative of this solution at the boundary �M yields the

function g. This additional Neumann boundary condition matches the value of

applied potential crossing the membrane in the LEMC.

The last part of the boundary is on the inside wall of the pore, called �W.

As it is a part of the membrane, which is impenetrable for the particles, no-flux

conditions are also imposed for the current. The permanent charges induce an

additional electric field and are included by another Neumann boundary condition:

Ji ·N = 0 and
@V

@N
= �0(z) on �W, (5.8)

where �0 = � and �0 = �� for z < 0 and z > 0, respectively, and nW is the outer

normal on �W.

To actually solve the 2D (n)PNP system we use the well-known Scharfetter–

Gummel scheme which is based on a transformed formulation of the system in

exponential variables, see [62] for detail. We use a 2D finite element method for the

actual implementation and a triangular mesh containing 20�60 thousand elements,

depending on the radius of the pore. The mesh is also non-uniform in order to

obtain high accuracy, especially close to the pore entrances.
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Figure 5.2: Current-voltage curves for concentrations c = 0.1 M (top panel) and c = 1
M (bottom panel) as obtained from NP+LEMC, PNP, and nPNP (symbols, solid curves,
dashed curves, respectively). The insets show rectification as computed from the ratio of
the ON and OFF state currents (the absolute values). The model parameters are R = 1 nm
and � = 1 e/nm2.

5.3.3 Results and Discussion

The reference point of all simulations corresponds to the following parameter set:

voltages ±200 mV (200 mV is the ON, while -200 mV is the OFF state of the

nanopore), concentrations c = 0.1 and 1 M, surface charge � = 1 e/nm2, and

nanopore radius R = 1 nm. Then, we vary the parameters systematically by chang-

ing only one and keeping the others fixed. Rectification is defined by |I(U)/I(�U)|,
i.e. the ratio between the currents in the ON and OFF state, respectively. In

our case, this implies that it is always larger than 1. In all figures we plot the

NP+LEMC, PNP, and nPNP results with symbols, solid lines, and dashed lines,

respectively.

5.3.4 Comparison of I-U curves and rectification behaviour

First, we look at the nanopore as a device that gives an output signal (current) as

an answer to the input signal (voltage). The relation of these is the transfer function

of the device. Then, we study various profiles (concentration, potential, chemical

potential) and try to understand the di↵erences between PNP and NP+LEMC.

Figure 5.2 shows current-voltage (I-U) curves for the two studied concentra-

tions. Rectification is observed using all the three methods: the current is larger at

positive voltages than at negative voltages (note that currents are multiplied with -1
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Figure 5.3: The absolute value of the current as a function of � (characterising the strength
of the polarity of the pore) in the ON and OFF states (200 vs. -200 mV, respectively) as
obtained from NP+LEMC, PNP, and nPNP (symbols, solid curves, dashed curves, respec-
tively). The inset shows rectification. The model parameters are c = 1 M and R = 1
nm.

in order to get positive currents for positive voltages). Rectification increases with

increasing |U | as shown in the insets. Agreement between NP+LEMC and (n)PNP

data is better at low concentration (0.1 M) and smaller voltages as expected. The

data from nPNP are slightly better than those from PNP, especially for c = 1 M.

The value of the � parameter can be considered as a measure of the nanopore’s

polarity. At � = 0 e/nm2, the pore is uncharged and symmetric, so currents at the

two voltages of opposite signs are the same and rectification is 1. Figure 5.3 shows

current values in the ON and OFF states as functions of �. As � is increased, the

current increases in the ON state, while decreases in the OFF state. Rectification,

therefore, improves as the strength of the polarity of the pore increases. The �-

dependence is described qualitatively by (n)PNP. The errors manifest in the fact

that rectification is underestimated by (n)PNP.

One source of the errors is that the e↵ective cross section of the pore through

which the centres of ions can move is smaller in the case of the charged hard sphere

ions used in LEMC (R � 0.15 nm, where 0.15 nm is the ionic radius) than in the

case of point ions used in (n)PNP (the whole pore radius, R, is used in (n)PNP).

(n)PNP, therefore, systematically overestimates current in both the ON and OFF

states as seen in Fig. 5.3. The overestimation of the denominator (OFF current)

dominates the ratio. Rectification, therefore, is underestimated.

One way to partially overcome this di↵erence between the two models would

be using the e↵ective cross section of the finite ions (R � 0.15 nm) in the PNP

calculations. In this case, Fig. 5.3 would show better agreement, but cause other

problems, such as the presence of ions with di↵erent diameters. Therefore, we
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Figure 5.4: The absolute value of the current as a function of the electrolyte concentration
in the ON and OFF states (200 vs. �200 mV, respectively) as obtained from NP+LEMC,
PNP, and nPNP (symbols, solid curves, dashed curves, respectively). The inset shows
rectification. The model parameters are c = 1 M and R = 1 nm.

decided to keep the pore cross section in PNP in this study as it is (R), but point

out the problems with this approach.

Figure 5.4 shows the currents as functions of the electrolyte concentration,

c. Currents decrease with decreasing c as expected, but the current decreases faster

in the OFF state, so rectification increases with decreasing concentration, a well-

known result. The explanation is that depletion zones dominate the currents in

bipolar nanopores, but depletion zones are more depleted at low concentrations.

Changing the sign of the voltage from positive (ON) to negative (OFF), therefore,

can deplete the the depletion zone further more e�ciently at low concentrations.

Agreement between NP+LEMC and (n)PNP is better in the ON state. The

nonlinear version of PNP works better in this case, because it handles crowding

better. In the OFF state, (n)PNP systematically overestimates the current partly

from the reason discussed above. Rectification, interestingly, is underestimated by

(n)PNP at large, while overestimated at small concentrations.

Finally, we show the dependence of currents on the pore radius in Fig. 5.5.

Currents increase with widening pores as expected. The relative di↵erence between

the ON and OFF states decreases as R increases. Rectification is the result of

the interplay between the e↵ect of pore charges and the applied potential. The

average distance of pore charges from the ions increases as R increases, therefore,

the pore charges get less and less able to produce the depletion zones inside the

pore. (n)PNP qualitatively reproduces the behaviour obtained from NP+LEMC.

Also, the systematic underestimation of rectification is present for all pore radii

studied.

98



1 2 3

R / nm

0

500

1000

1500

| 
I 

/ 
p

A
 |

NP+LEMC
PNP
nPNP

c = 1 M, U = ±200 mV, σ = 1 e/nm
2

1 2 3

10

20

30

40

R
e
ct

ifi
ca

io
n

OFF

ON
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and OFF states (200 vs. -200 mV, respectively) as obtained from NP+LEMC, PNP, and
nPNP (symbols, solid curves, dashed curves, respectively). The inset shows rectification.
The model parameters are R = 1 nm and � = 1 e/nm2.

5.3.5 Analysis of profiles for concentration, electrical potential, and

electrochemical potential

To get additional insights into the physical mechanisms beyond the device-level

behaviour, we also analyze profiles for the concentration, electrical potential, and

electrochemical potential.

In Fig. 5.6, we plot the concentration profiles for c = 1 (panel A) and 0.1 M

(panel B) in order to study the di↵erences between high and low concentrations. This

figure shows the results for � = 1 e/nm2. Figure 5.7 shows the same concentration

profiles but for � = 0.25 e/nm2.

The curves show that the ions have depletion zones in the middle of the pore

and in the zone, where they are the co-ions (having ionic charge with the same sign

as the pore charge, �). We distinguish basically four regions:

1. left bath, near the membrane (z < �3 nm)

2. the left part of the pore with positive surface charge (�3 < z < 0 nm, N

region) – anions the counter-ions, cations the co-ions

3. the right part of the pore with negative surface charge (0 < z < 3 nm, P

region) – cations the counter-ions, anions the co-ions

4. right bath, near the membrane (z > 3 nm)

In the access regions, close to the pore entrances (regions 1 and 4) ionic double layers

are formed. Double layer is common name for the separation of cations and anions

(polarisation of the ionic distributions) as a response to the presence of a charged
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Figure 5.6: Concentration profiles of cations and anions as obtained from NP+LEMC,
PNP, and nPNP for (A) c = 1 M and (B) c = 0.1 M for parameters R = 1 and � = 1
e/nm2. These concentration profiles have been computed by taking the average number of
ions in a slab and dividing by the available volume. For �3 < z < 3 nm, the cross section
of the pore was used to obtain this volume in both methods.

or polarised object. In this case, double layers appear partly as a response to the

applied field, partly as a response to the charge imbalance inside the pore. Realise

that the sign of the double layer (which ions are the co-ions and counter-ions in the

double layer) depends on the sign of the applied voltage.

The basic reason of rectification is that the ions are more depleted in their

depletion zones in the OFF state than in the ON state; cation concentration in the

N zone is lower in the OFF state than in the ON state, for example. Basically, the

depletion zones are caused by the pore charges. The applied field modulates the

e↵ect of pore charges, therefore, it increases or decreases concentrations compared

to the zero-voltage case. Depletion zones are the main determinants of the current,

because they are the high-resistance elements of the system modelled as resistors

connected in series along the ionic pathway. So, if depletion zones are more depleted,

current is reduced.

It is important, however, that not only the co-ion concentrations decrease by

switching from ON to OFF, but also the counter-ion concentrations. As a matter of

fact, this is crucial, because co-ions are brought into their depletion zones with the

help of their strong correlations to counter-ions. So there are less co-ions because

there are less counter-ions. The quantity of counter-ions, on the other hand, seems

to be related to the double layers at the entrances of the pore on the two sides of
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Figure 5.7: Concentration profiles of cations and anions as obtained from NP+LEMC,
PNP, and nPNP for (A) c = 1 M and (B) c = 0.1 M for parameters R = 1 and � = 0.25
e/nm2.

the membrane. At least, this seems to be suggested by the results of NP+LEMC.

The double layers have opposite signs in the ON and the OFF states that can

be explained through the mean electrical potential profiles that have two components

produced by all the free charges, V ION, and induced charges, V APP, in the system. In

this study, induced charges appear at the boundaries where the boundary conditions

are applied, therefore, they produce the applied potential, V APP. The total mean

potential, therefore, is obtained as

V = V FREE + V APP. (5.9)

In the case of NP+LEMC, the double layers are necessary to produce the V FREE(z)

component that counteracts the applied field, V APP(z). Figure 5.8A shows that the

slope of V FREE(z) is the opposite to the slope of V APP(z) in the bulks, so their

sum (TOTAL) has the slope close to zero. This is necessary because the bulks are

low-resistance elements, where the potential drop is small.

In the case of (n)PNP, this phenomenon depends on the imposed boundary

conditions, Eq. 5.7, on the membrane surface. Using, for example, g = 0 yields

totally di↵erent results which are in poor agreement with NP+LEMC as far as the

structure of these double layers is concerned (the behaviour inside the pore is less

influenced).

Comparing the counter-ion profiles in the double layers and in the neighbour-
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ing half nanopore (Figs. 5.6 and 5.7), we can see that if there are less counter-ions

in the double layer, there are less counter-ions in the half nanopore too (see anions

on the left hand side in the OFF state compared to the ON state, for example).

Although the decrease of counter-ion concentration in the pore is related to the

decrease of the concentration of the same ion in the neighbouring double layer, it

would be an overstatement to say that one is a consequence of the other.

Rectification works without this coupling between ion quantities in the dou-

ble layer and in the nanopore. For example, rectification is reproduced in the

case of PNP with boundary condition g = 0 although with worse agreement with

NP+LEMC. Furthermore, the formation of the double layers is absent in MD sim-

ulations using explicit water, still, rectification is present. MD results using explicit

water are in good agreement with NP+LEMC results using implicit water [67].

These contradictions require more study, but it seems that the formation of the

double layers is rather related to boundary conditions and larger-scale e↵ects, while

the structure of the ionic profiles inside the pore is rather related to local e↵ects

such as interaction with pore charges, applied field, and other ions.
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Figure 5.8: (A) Electrical potential profiles and components (see Eq. 5.9) as obtained from
NP+LEMC and PNP. Component V FREE(z) is the product of ions and pore charges in
the system, while V APP(z) is the applied potential computed from the Laplace equation
with Dirichlet boundary conditions. (B) Electrochemical potential profiles and components
(see Eqs. 5.2, 5.3-5.5) as obtained from NP+LEMC and PNP. The ideal (µe,ID

i (z) = µe,0
i +

kT ln ci(z)), the electrochemical (µe,i(z)), and the chemical (µCH
i (z)) terms are shifted to

zero by deducting µCH
i (L), which is the value of the chemical term in the left bath. In the

case of PNP the ID and CH terms are the same, so µBMF
i = 0. Results are shown for the

anion; data for the cation do not reveal new insights (subscript i is dropped in the legend).
Parameters are c = 1 M, � = 1 e/nm2, and R = 1 nm.

As far as the agreement between the NP+LEMC and the theoretical profiles
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is concerned, it is generally better in the ON state than in the OFF state. In the

OFF state, (n)PNP usually overestimates concentrations causing the overestimation

of current as we have seen before. This is counterintuitive, because it was said that

(n)PNP is better at low concentrations, but pore concentrations are higher in the ON

state. We can resolve this contradiction if we consider that the system’s behaviour

is a result of the balance of basically three e↵ects: (1) interaction with the fixed pore

charges, (2) interaction with the fixed applied field, and (3) mutual and complicated

interactions between ions. The mutual weight of these terms is di↵erent in the ON

and OFF states.

In the ON state, pore charges and applied field act in the same direction,

so they dominate the energy and errors in the ion-ion term have less e↵ect. In the

OFF state, however, pore charges and applied field act in the opposite directions,

so their sum is smaller and the ion-ion term has a larger weight and the BMF term

with it.

Our next goal is to better understand the di↵erent contribution to the total

electrochemical potential µi as defined in Eqs. 5.2–5.5. The electrical component

µEL
i is defined as the interaction with the (total) mean electrical potential that is

shown in Fig. 5.8A. Note that the BMF term is fully included in the CH term and

therefore, in the case of (n)PNP, µCH
i is just ln ci, while it also contains the BMF

term in the case of NP+LEMC.

Figure 5.8B shows the full electrochemical potentials, the CH terms, and the

EL terms. In the case of NP+LEMC, we also plot the ln ci(z) term (denoted as

ID) and the BMF term. The ID and CH terms, as well as the total electrochemical

potential, are all shifted by the value of the CH term in the left bath (µCH
i (L)). In

this way, the µe
i (z), µ

CH
i (z), and µEL

i (z) contributions take the value zero at the left

edge of the plot.

The errors in µi have three components: the error in reproducing (1) the ln ci

term, (2) the EL term, and (3) the BMF term that can be identified with errors

in reproducing the particle correlations which are missing in PNP, due to the mean

field approximation. The first two errors have di↵erent signs and tend to balance

each other. They are coupled through the Poisson equation, so in the limiting case

of agreeing ci profiles, the V profiles agree if the boundary conditions are also the

same.

In this case, the NP equation would give the same flux if the BMF term were

constant, because rµe
i would be the same in the two methods. Therefore, the real

source of errors is not the magnitude of the BMF term, but the r-dependence of the

BMF term, that is, the fact that ionic correlations are di↵erent inside the pore than
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outside. The nonzero value of the BMF term, on the other hand, indicates that

there is an error in “chemistry”, so there is a possibility for further errors in both

the ci and V profiles inside the pore. Those potential errors can eventuate inside the

pore and become visible in all profiles. Local fluctuations in the BMF term inside

the pore indicate how seriously do the errors of the mean-field treatment of PNP

contribute to inaccuracies of all the profiles inside the pore.

5.3.6 Discussion of the example 1

One of the motivations of this section was to produce results for the model nanopore

transistor using both a mean-field continuum theory (PNP) and a hybrid method

including particle simulations (NP+LEMC) that can compute ion size e↵ects and

electrostatic correlations beyond the mean-field treatment. In the light of the results

we can conclude that PNP is able to capture the qualitative behaviour of the device

as shown by Figs. 5.2–5.8.

This indicates that the behaviour of ionic profiles (as the first-order deter-

minant of current) mainly depends on the interaction of ions with pore charges and

applied field, while interaction of ions beyond interaction with the mean electric

field is secondary. Interaction with pore charges tunes the depth of depletion zones

and directly modulates the electric current. The applied potential makes the pro-

files asymmetric along the axial dimension and produces the driving force of the

steady-state current.

The approximate nature of the PNP theory appears in quantitative disagree-

ment between PNP and NP+LEMC results. This can be seen both in the current

data (Figs. 5.2A, 5.3, 5.4A, 5.5A, 5.6A, 5.7A, and 5.8) and in the concentration pro-

files (Figs. 5.2B, 5.5B, 5.6B, and 5.7B). Sources of this quantitative disagreement

are the following. (1) The e↵ective cross section through which the ionic centres are

transported is R2
pore⇡ in the case of PNP where the ions are point charges, while

it is (Rpore � Ri)2⇡ in the case of NP+LEMC, where ions are finite spheres with

radii Ri. Because of this, PNP tends to overestimate concentration profiles at the

peaks (Figs. 5.2B and 5.5B). (2) Lack of hard sphere exclusion in PNP also tends

to cause overestimation compared to NP+LEMC. (3) Lack of electrostatic corre-

lations in PNP, on the other hand, tends to decrease concentration profiles in the

depletion zones compared to NP+LEMC, where ions that have peaks (counter-ions)

tend to draw the ions of opposite charges (co-ions) into the depletion zones through

pair-correlations.

Quantitative agreement, however, indicates that PNP is a proper tool to

study the behaviour of this system and those even larger in dimensions as demon-
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strated by several computational studies [38; 88; 1; 132; 86; 131; 112; 145; 151; 128].

Basically, PNP works well for these systems (also in the case of bipolar diodes),

because the behaviour of these devices is primarily driven by the depletion zones

caused by mean-field e↵ects (interaction with pore charges and applied field).

Qualitative disagreement is expected in cases where ionic correlations cause

asymmetric behaviour such as electrolytes containing multivalent ions (e.g., 2:1 and

3:1 electrolytes). Furthermore, PNP cannot compute cases where the size of ions

and specific interactions with binding sites are important such as in the case of

our nanopore sensor model [96], where the function of the sensor was based on

the selective interaction of the analyte ions with square-well binding potentials and

their competition with the main charge carrier cation (potassium) for space inside

the nanopore. In general, particle simulations are better suited for modeling sensors

based on specific interactions and geometries.

5.4 Example 2 - transistor

5.4.1 Simulation setup

The device studied here is composed of two baths separated by a membrane. The

two sides of the membrane is connected by a single cylindrical pore that penetrates

the membrane. The system has a rotational symmetry around the axis of the pore,

therefore, the solution is done in terms of cylindrical coordinates z and r (the sim-

ulation cell in the LEMC simulation is three-dimensional, however). The solution

domain is a cylinder of 30 nm width and 9 nm radius for a pore with Hpore = 10

nm length and Rpore = 1 nm radius. For longer and wider pores, these dimensions

are proportionately larger. Fixed values of the concentrations and potential are

prescribed on the half-cylinders on the left and right hand side.

The simulation setup for this example is similar to the previous one with one

main di↵erence - a symmetric charge pattern is created on the wall of the nanopore

as shown in Fig. 5.9. There are regions of widths Hn on the two sides of the pore

carrying �n surface charges, while there is a central region of width Hx and charge

�x.

Here, the �n regions set the main charge carrier. In this study, we typically

use negatively charged regions (hence the notation n), so the main charge carriers

are the cations because the �n surface charges produce depletion zones of cations in

these regions.

The task of the central region with the adjustable surface charge �x is to

regulate the flow of cations (this is the independent variable of the device, hence

105



-5 0 5

z / nm

-4

-2

0

2

4

r 
/ 
n
m

-   -   -   -   - + + + + + -   -   -   -   -

-   -   -   -   - + + + + + -   -   -   -   -

σ
n

H
n

σ
x

σ
n

H
n

H
x

ε=78.5

Figure 5.9: Schematics of the cylindrical nanopore that has three regions of lengths
Hn, Hx, and Hn. These regions carry �n, �x, and �n surface charges, respectively.
The radius of the nanopore is Rpore = 1 nm in this study. The simulation cell is
larger than this domain of this figure, but also rotationally symmetric; the three-
dimensional model is obtained by rotating the figure about the z-axis. The elec-
trolyte inside the pore and on the two sides of the membrane is represented as
charged hard sphere ions immersed in a dielectric continuum of dielectric constant
✏ = 78.5. The dielectric constant is the same everywhere including the interior of
the membrane. The PNP model closely mimics this model as described in the main
text.

the notation x). If �x is positive, it produces a depletion zone for cations, so the

pore contains depletion zones for both ionic species. The total current, therefore,

is small. This corresponds to the closed state of the device. We distinguish special

cases for combinations of �n and �x when these surface charges are -1, 0, or 1 e/nm2.

We denote these charges by symbols “�”, “0”, and “+”, respectively. So if �n = �1

e/nm2 and �x = 1 e/nm2, the nanopore is characterised by the string “�+�” (as

in Fig. 5.9).

In the three-dimensional LEMC model, the pore charges are placed on the

pore wall as point charges on a grid. The size of a grid surface element is about

0.2 ⇥ 0.2 nm2. The magnitude of point charges was calculated so that the surface

charge density agrees with the preset values �n or �x. This solution was chosen to

mimic the continuous charge distribution used in the PNP calculations.

5.4.2 Results

This paper studies the quantitative e↵ect of changing the charge pattern (the values

of �n, �x, Hn, and Hx) on the nanopore’s wall. We introduce special cases that we

denote by strings “�+�”, “� 0�”, “� � �” and so on as introduced earlier. Some

of these patterns are defined as open states of the transistor (“� 0�” and “� � �”),
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while “�+�” is defined as the closed state. This way, we can define a switch whose

device function is the ratio of currents in the open and closed states, Iopen/Iclosed.

The larger this number is, the better the device works as a switch.

In this work, we use a 1:1 electrolyte with the same ionic diameters for the

cation and the anion (0.3 nm). This choice makes a more straightforward comparison

with PNP that cannot distinguish between ions of di↵erent sizes. The dielectric

constant is ✏ = 78.5, the temperature is T = 298.15 K. The bulk di↵usion constant

of both ion species is 1.334 · 10�9 m2/s, while the value inside the pore is ten times

smaller [103; 96], a choice that has no consequence on qualitative conclusions.

In the case of 0.1 M concentration, this corresponds to about 800 ions in the

LEMC simulations. An NP+LEMC calculation contained 80 iterations with LEMC

simulations sampling 30 million configurations in an iteration. Running such a

simulation lasted about 3 days. This resulted in small statistical uncertainties for

the currents; the error bars ar smaller than the symbols with which the current data

are plotted in the figures. The PNP calculations, on the other hand, took only a

few minutes.

E↵ect of charge pattern: changing surface charges

As a first step, we vary the charge densities �x and �n and examine the resulting

e↵ect on the ionic current through the nanopore for a fixed geometry (Hn = 3.4 nm

and Hx = 3.2 nm). This current is driven by voltage 200 mV; the concentration of

the electrolyte is c = 0.1 M on both sides of the membrane. These parameters are

valid for all figures unless otherwise stated.
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Figure 5.10: Current as a function of ��x while �n = �1 e/nm2 is kept fixed. Se-
lected charge patterns are indicated with “���”, “� 0�”, and “�+�”. Increasing
�x makes the x region more negative, so the I(��x) function is monotonically in-
creasing.Symbols and lines denote NP+LEMC and PNP results, respectively.
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Figure 5.11: Concentration profiles for these selected charge patterns. Widths of
the regions are Hx = 3.2 and Hn = 3.4 nm, electrolyte concentration is c = 0.1
M, voltage is 200 mV. Symbols and lines denote NP+LEMC and PNP results,
respectively, here and in all the remaining figures unless otherwise stated.

Figure 5.10 shows results for a fixed �n = �1 e/nm2 and varying �x. The

negative value of �n makes the nanopore cation-selective due to the large surface

charge and small pore radius. Therefore, the main charge carrier is the cation. The

current of the anion remains below 0.5 pA. The anions have depletion zones in the

two n regions as seen in Fig. 5.11. Whether the anions have depletion zones in the

central x region depends on the value of �x, but this is irrelevant.

In this model, the value of �x tunes the depletion zones of the cations, and,

thus, the cation current. In the case of �x = 1 e/nm2 (“� + �”), cations have a

depletion zone in the middle, so their current is cut. This is a closed state of the

device (Fig. 5.11). Decreasing �x towards negative values, the depletion zone of

cations gradually vanishes (see Fig. 5.11) and the cation current gradually increases

(see Fig. 5.10).

E↵ect of charge pattern: changing region widths

Next, we fix the charge densities and change the geometry, namely, the widths Hx

and Hn for a fixed pore radius. Particularly, we examined the e↵ect of changing

the relative widths of the x and n regions while keeping the total width Hpore =

2Hn+Hx = 10 nm fixed. In the open state (“���”), there is no di↵erence between

these regions, so we need to examine the closed state (“�+�”) only. We plot the

currents in the closed state as functions of Hx in Fig. 5.12.

The top panel showing the total current exhibits a minimum that is better
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Figure 5.12: Currents in the closed state (“�+�”) through nanopores with varying
region lengths. The total length, Hpore = 2Hn + Hx = 10 nm, is kept fixed. The
results are shown as functions of Hx. Top panel shows the total current, while the
bottom panel shows the cation and anion currents. The inset of the top panel shows
the Iopen/Iclosed ratio, where the charge pattern of the open state is “� � �” (its
current is independent of Hx).

observed in the inset that shows Iopen/Iclosed. Because Iopen does not depend on

Hx, the ratio is proportional to the reciprocal of Iclosed. The minimum in Iclosed,

therefore, corresponds to a maximum in the ratio characterising the quality of the

device as a switch.

The explanation of this extremum can be depicted from the bottom panel

of Fig. 5.12. For small Hx values, the pore is largely negatively charged, so the

main charge carrier is the cation. For large Hx values, the situation is reversed: the

main charge carrier is the anion. The minimum of the current occurs at a Hx value,

where both regions have su�cient size to produce su�ciently deep depletion zones

for both ionic species: for cations in the n regions, while for anions in the x region.

This value is somewhere around Hx = 5 nm.
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Figure 5.13: (A) Total currents as functions of pore length, Hpore, for various charge
patterns with Hn/Hx = 1.0625 kept fixed. The currents are normalized with the
values at Hpore = 10 nm. The inset shows the Iopen/Iclosed ratio for the two cases
where the open states are defined either with “� 0�” or “���”. (B) Concentration
profiles of the anions (the charge carriers) for Hpore = 10 nm (black) and Hpore = 25
nm (red) for charge patterns “�+�” (solid) and “� 0�” (dashed) as obtained from
NP+LEMC simulations.

E↵ect of pore length

Figure 5.13 shows the result for the case, where the Hn/Hx ratio is kept fixed at

the value of 1.0625 and the total pore length, Hpore = 2Hn +Hx is changed. Figure

5.13A shows the relative currents for the “� � �”, “� 0�” (open), and “� + �”

(closed) states. We plot relative currents (normalised by the values at Hpore = 10

nm) because we are rather interested in how fast the currents decrease as functions

of Hpore in the di↵erent cases (open and closed).

Figure 5.13A shows that the currents decrease faster in the closed state than

in the open states. This results in an increasing Iopen/Iclosed ratio as shown in the

inset of Fig. 5.13A. The explanation is the deepening depletion zones with increasing

Hpore (Fig. 5.13B).

The inset of Fig.5.13A also shows that the open/closed ratio exhibits a satu-

ration behaviour so we can extrapolate to large Hpore values that are more common

in experiments, but harder to attain with particle simulations such as LEMC. Sum-

marised, increasing pore length promotes the formation of depletion zones due to

weakening electrostatic correlations between neighbouring zones.

111



E↵ect of pore radius and concentration

We discuss the e↵ect of nanopore radius and concentration together, because concen-

tration determines �D , so Rpore and c influence the Rpore/�D ratio that distinguishes

nanopores from micropores as discussed in the Introduction. In this work, we study

the e↵ect of changing Rpore/�D in three ways. First, we keep �D constant by fixing

the concentration at c = 0.1 M and vary Rpore, then we do the reverse. Finally, we

change both Rpore and c while keeping Rpore/�D fixed.

Figure 5.14: (A) Total currents as functions of pore radius, Rpore, for various charge
patterns for Hn/Hx = 1.0625 and Hpore = 10 nm. The currents are normalized
with the values at Rpore = 1 nm. The inset shows the Iopen/Iclosed ratio for the two
cases where the open states are defined either with “� 0�” or “� � �”. (B) Axial
concentration profiles of the cations (the charge carriers) for various Rpore values
for charge pattern “�+�” (closed state). The insets show the radial concentration
profiles for z ⇡ �3.5 nm (at a peak) and z ⇡ 1 nm (at the depletion zone).

Figure 5.14A shows the normalised currents as functions of Rpore for the

closed (“�+�”) and the two open (“� 0�” and “���”) cases. Here, we normalise

with the currents at Rpore = 1 nm. The relative current in the closed state decreases

faster with decreasing Rpore than in the closed state, which, in turn, results in

increasing Iopen/Iclosed ratios with decreasing Rpore as shown by the inset.

Figure 5.14B shows the cross-section-averaged axial concentration profiles of

the cations, c+(z), in the closed state for di↵erent pore radii. As Rpore decreases,

the depletion zones in the middle get deeper, so the current decreases as Fig. 5.14A

shows. The two insets show the radial concentration profiles, c+(r), at z-coordinates

z ⇡ �3.5 nm (at a peak) and z ⇡ 1 nm (at the depletion zone). The profiles

at z ⇡ �3.5 nm show that the cations are attracted to the pore wall and their
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concentrations decline approaching the pore centreline (r ⇠ 0). The absence of a

bulk electrolyte along the centreline is more apparent from the c+(r) profiles for

z ⇡ 1 nm showing that concentrations never reach the bulk value (0.1 M).

Next, we study the e↵ect of changing Rpore/�D by keeping Rpore fixed at 1

nm and changing �D through varying concentration from c = 0.05 M to c = 1 M

(it corresponds to changing the Debye length from �D = 1.36 nm to �D = 0.304

nm). Figure 5.15A shows the currents for the “� � �” (open) and “�+�” (closed)

states. Both currents decrease with decreasing concentration, but the closed-state

current decreases faster than the open-state current. This results in a increasing

Iopen/Iclosed ratio with decreasing c (see inset). The explanation again follows from

the behaviour of depletion zones.

Figure 5.15: (A) Concentration dependence of the current in the open (“���”) and
closed (“�+�”) states. The inset shows the Iopen/Iclosed ratio. (B) Ratio of cation
concentration profiles in the closed and open states for di↵erent bulk concentrations.

Figure 5.15B shows the cation concentration profiles in the closed state di-

vided by the profiles in the open state. The behaviour of these curves for di↵erent

bulk concentration reveals that the cations have deeper depletion zones compared

to the open state for smaller bulk concentrations. Because the copen(z)/cclosed(z)

ratio is a first-order determinant of the Iopen/Iclosed ratio, this ratio increases with

decreasing c due to deepening depletion zones in the closed state relative to the open

state at same c.
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Figure 5.16: (A) The Iopen/Iclosed ratio as a function of the Rpore/�D variable for
the cases, when we change Rpore at fixed �D (c = 0.1 M, red), and when we change
�D by changing concentration for a fixed Rpore = 1 nm (black). The numbers
near symbols indicate pore radii (red) or concentration (black). (B) Ratio of cation
concentration profiles in the closed and open states for combinations of Rpore and �D
for fixed Rpore/�D = 1.56 (solid lines and open symbols) and 2.6 (dashed lines and
closed symbols) ratios. From bottom to top, the curves correspond to the following
(Rpore/nm; c/M) pairs: (1.924; 0.0563) (blue), (1.5; 0.1) (red), (1; 0.225) (black)
for Rpore/�D = 1.56 and (3.5; 0.0511) (blue), (2.5; 0.1) (red), (1; 0.626) (black) for
Rpore/�D = 2.6. The Iopen/Iclosed values for these points are indicated by blue
triangles in Fig. 5.16A.

Finally, we performed simulations for two fixed values of Rpore/�D (1.56 and

2.6) by using various combinations of Rpore and c (see caption of Fig. 5.16). These

ways of studying Rpore/�D dependence are summarised in Fig. 5.16A by plotting

the Iopen/Iclosed ratio against the Rpore/�D ratio. The fact that the data are located

along a single curve shows a scaling behaviour: we can either use a wide pore with

small concentration (if fabrication of a narrow pore is the limiting factor), or a

narrow pore with large concentration (if using small concentrations is the limiting

factor due, for example, to detecting small currents).

Figure 5.16B shows the cclosed(z)/copen(z) cation profiles for those combina-

tions of Rpore and �D (changed via changing c) that provide the 1.56 and 2.6 values

for the ratio. The coincidence of the curves shows that scaling is valid not only for

current ratios, but also for concentration ratios. Such scaling behaviour is always

advantageous in designing devices for a given response function.
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5.4.3 Discussion of the example 2

Manipulating charge pattern on the nanopore surface is a non-trivial chemical treat-

ment for which, generally, the nanopore needs to be removed from the measuring

cell. There is, however, a way of altering charge pattern during the measurement by

changing the pH of the bath electrolytes in the measuring cell. If there are di↵erent

chemical groups on the pore surface in the x and n regions that respond di↵erently

to pH (protonation vs. deprotonation), their charge can be changed with varying

pH.
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Figure 5.17: Demonstration of the e↵ect of pH by plotting the current against the
“total pore charge” characterising the asymmetry of the pore’s charge distribution.
Assuming that the n and x regions have about equal lengths, this dimensionless
number is obtained by

P3
k=1 �k/�0, where �k is the surface charge of region k and

�0 = 1 e/nm2. Closed states of the transistor are present in cases when this number
is close to zero, namely, when depletion zones for both ionic species are present
(“� + �”). For the example given in the main text (carboxyl and amino groups),
this charge pattern is present at neutral pH. Open states are present when depletion
zones for one of the ionic species are absent. The charge patterns “0 + 0” or “� 0�”
can be produced by tuning the pH towards basic or acidic, respectively. Parameters
are those stated at Fig.5.10.

For example, if the surfaces of the n and x regions are functionalised by

carboxyl and amino groups, respectively, they become negative and positive, re-

spectively, at neutral pH (“� + �”, closed state). Changing the pH to acidic, the

carboxly groups in the n regions get protonated and become neutral. The amino

groups of the x region, in the meantime, remain positive, so this results in a “0 + 0”

(open) state. Changing the pH to basic, the amino groups in the x region get depro-

tonated and become neutral. The carboxyl groups of the n regions, in the meantime,

remain negative, so this results in a “� 0�” (also open) state. The results are shown

in Fig. 5.8. Currents are shown as functions of a quantity depicted as “total pore

charge”. This is practically the sum of the magnitudes (with sign) of surface charges

in the three regions. This figure is closely related to Fig. 5.3, where this “total pore
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charge” was controlled with Hx. There, the minimum of the curve was at Hx ⇡ 5

nm, that corresponds to zero “total pore charge”. In that case, there are both posi-

tive and negative regions in a balanced ratio so that depletion zones of both cations

and anions form in an optimal way so that current is minimised. Here, the closed

state (“+ � +”) appear at neutral pH, while the pore can be switched open with

changing pH in any direction [88].
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Figure 5.18: (A) The value of the mean electrical potential on the surface of the pore
wall (r = Rpore) for three selected charge patterns as obtained from NP+LEMC
calculations. (B) The value of this potential in the center of the pore (z = 0,
r = Rpore shown with larger symbols in panel A) as a function of �x. The figure
demonstrates the monotonic relation between surface charge density, �x, and surface
potential, V (z = 0, r = Rpore).

Controlling surface charge is quite di↵erent from controlling the electrical

potential from a practical point of view, but from a modeling point of view, they

are similar because charge is always related to electrical potential through Poisson’s

equation. To show this, we plot the electrical potential profile on the surface of the

nanopore, r = Rpore, for di↵erent values of �x in Fig. 5.18A. The potential profile

changes in zone x, because it is not an imposed quantity. The magnitude of the

potential characterised by its value in the center, z = 0, depends unambiguously

on �x. As Fig. 5.18B shows, there is a monotonic relation between charge, �x, and

potential, V (0, Rpore). Therefore, to a first approximation, controlling the surface

charge can mimic controlling the electrical potential, so the results of this study can

be informative regarding the case of field e↵ect nanofluidic transistors too.

Using an electrode to control the electrical potential near the nanopore leads

to the presence of dielectric interfaces between materials of di↵erent polarisation

properties (electrolyte vs. metal, for example). Polarisation charges are induced at
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these dielectric boundaries that are di↵erent in every configuration of the ions, there-

fore, their presence influences the outcome of the calculations through influencing

the probabilities of the individual configurations. Calculation of induced charges or

the electrical potential produced by them is a time consuming process compared to

the homogeneous dielectric model and pre-calculated applied potential used here,

because the ion-ion interactions are not additive any more [16; 19; 20]. We refer

studying this important case to future studies.

It is common to include electrodes (through imposing Dirichlet boundary

conditions) and dielectric boundaries in mean field calculations (such as PNP). These

calculations, however, include the e↵ect of polarisation charges only on the average

electrical potential. Electrostatic correlations resulting from the e↵ect of induced

charges on individual ionic configurations is ignored. If the electrodes are far from

the nanopore, this approximation can be su�cient, however.

5.5 Summary

The general conclusion is that the BMF term is small and the agreement between

PNP and NP+LEMC is very good. Yet, since the mean field theory does not

capture the OFF state behaviour as good as the ON state, derived quantifies as the

rectification cannot be predicted that well. Still the results are very promising given

that these calculations have been performed for a narrow (R = 1 nm) and short (6

nm) pore with experimentally typical, but quite large surface charges (� ⇠ 1 e/nm2).

This indicates that the 2D PNP used in this study is an appropriate tool to study

more realistic geometries (wider and longer pores), at least, as far as the agreement

with simulations in the framework of an implicit solvent model is concerned.

This work is a link in a series of works, where a given system (a bipolar

nanopore) is studied using di↵erent levels of modeling. Our results only prove that

PNP calculations are useful in the framework of an implicit water model. Whether

the implicit water model is a useful one is the topic of another publication [138],

where we compare implicit-water NP+LEMC simulations with explicit-water MD

simulations.

A real nanopore is obviously too big to use MD simulations and all-atom

models as a general tool. Although computers are getting faster and faster, the

quality of force fields seems to be a serious limiting factor. Still, all-atom (in this

case, this means explicit water) MD simulations can be done for the nanopore of

the size studied in this work. Therefore, MD simulations can have a serious role in

a chain of calculations, where we increase the complexity of modeling step by step.
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In general, simulation studies are more useful where local e↵ects are impor-

tant. The typical example is the narrow bottleneck of a nanopore, where double

layers overlap. Nanopores can also be used as sensors [126; 78; 140; 117; 1; 80],

where the detectable analyte molecule is selectively bound by a binding site of an-

other molecule that is attached to the tip of the nanopore. The binding of the

analyte molecule influences the e↵ective cross section, and, thus, the current. An

associated and thoroughly studied phenomenon is the crossing the a DNA molecule

through the nanopore during which the sequencing might be possible in an e�cient

and fast manner [113; 110]. These are obviously local e↵ects, where simulations are

useful.

The device itself that is around the tip of the nanopore, however, is too big

to compute with simulations using its real dimensions. In general, it is our purpose

to model phenomena with their appropriate boundary conditions using close to

real time and length scales at least on the meso-scopic level. This purpose can be

achieved using the multiscale modeling framework in which the advantages of all

the modeling levels and associated computation methods can be used.

This series of calculations proves that reducing the models by neglecting

certain e↵ects is an appropriate procedure for the case of ionic solutions and the

bipolar nanopore studied here. This is also due to the fact that the transport

of ions is mainly determined by electrostatic e↵ects. The interactions with the

applied field, permanent surface charges, and other ions treated on a mean field

level are su�cient to reproduce the system’s basic behaviour. For di↵erent systems,

procedures similar to this should be repeated in order to evaluate the validity of the

mean field approximation.
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Chapter 6

Optimal control problems for

nanoscale pores

In this chapter, we focus on optimal control problems for nanopores, in particular

how one can optimise the surface charge to obtain a desired ionic flux. Similar

problems were considered for the semiconductor devices in [69; 70]. Here the au-

thors optimised the doping profiles to obtain a desired current. The doping profile

of a semiconductor corresponds to the distribution of implanted impurities and has

a strong influence on the IV curve. In nanopores the shape as well as the surface

charge influence the current-voltage characteristics, see [31; 5; 29]. In the chapter,

we consider a pore with fixed geometry and aim at optimising the surface charge

distribution to obtain a desired current. As a next step, one could think of optimis-

ing the shape as well or considering di↵erent target functionals, such as maximising

its rectification behaviour.

We consider radially symmetric pores, which allow us to use the 1D area averaged

PNP model derived in Chapter 2. This reduces the computational complexity signif-

icantly, which is particularly important since we have to solve the forward problem

as well as the corresponding adjoint system, in every iteration step of the optimal

control solver. We discuss two di↵erent optimal control approaches for two ionic

species of opposite charge - 1 and �1 for simplicity. Note that the proposed ap-

proaches can be generalised for multiple ionic species and di↵erent valencies, at the

cost of readability.
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The scaled 1D PNP system for two species is given by

��@x
⇣
A@xV

⌘
= A(p� n) + @A(x)�, (6.1a)

@x
⇣
DnA[@xn� n�@xV ]

⌘
= @xJn = 0, (6.1b)

@x
⇣
DpA[@xp+ p�@xV ]

⌘
= @xJp = 0, (6.1c)

where A(x) = r(x)2⇡ is the area function. We consider a pore of length L, which

is connected to bath regions of length 2L. Hence we consider (6.1) on the interval

(�2L, 3L), with a typical pore length of L = 12000nm. System (6.1) is considered

with Dirichlet boundary conditions given by V = 0|x=�2L , V = Vapl|x=3L and the

bath concentrations given by p(�2L) = p(3L) = n(�2L) = n(3L) = cB.

6.1 Minimisation problem

The existence and regularity results presented in Chapter 2 ensure the well-posedness

of the forward problem, that is the 1D PNP model. To formulate the optimal control

problem we define the state space

Y := yD + [H1
0 (⌦) \ L1(⌦)]3,

where yD = (VD, cB, cB) denotes the boundary data.

The space H1
0 (⌦) corresponds to H1(⌦) functions with zero trace at the

boundary. This space is a Banach space with the norm

||y||Y = ||y||(H1(⌦))3 + ||y||(L1(⌦))3 .

By Z we denote the co-state space given by Z := [H1(⌦)]3 and ⌃ stands for the

admissible control space given by

⌃ := {� 2 H1(⌦) \ L1(⌦) : supp(�) = [0, L]}.

We define the state vector y = (V, p, n) and write (6.1) in operator form

0 = e(y,�) :=

0

BBB@

��@x
⇣
A@xV

⌘
�A(p� n)� @A�

@x
⇣
DnA[@xn� n�@xV ]

⌘

@x
⇣
DpA[@xp+ p�@xV ]

⌘

1

CCCA
.

The existence of a solution to (6.1) for a given � 2 ⌃ has been shown in Theorem 2.
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Next we show that the operator e(y,�) is Frechet di↵erentiable.

Theorem 8. The operator e(y,�) is twice Frechet di↵erentiable with a first deriva-

tive at (x,�) in the direction ȳ = (V̄ , n̄, p̄) 2 [H1
0 (⌦) \ L1

0 (⌦)]3,

< ey(y,�)ȳ, h > =< ��@x
⇣
A@xV̄

⌘
, hV >

� < Dn@x[An�@xV̄ ], h1 > + < Dp@x[Ap�@xV̄ ], h2 >

+ < An̄, hV > � < @x
⇣
DnA[@xn̄� n̄�@xV ]

⌘
, h1 >,

+ < �Ap̄, hV > + < @x
⇣
DpA[@xp̄+ p̄�@xV ]

⌘
, h2 >

for all h = (hV , h1, h2) 2 Z and

< e�(x,�)�̄, h >= �@A < �̄, hV >,

for �̄ 2 ⌃ and h 2 Z.

Proof. The proof follows the lines of Theorem 2.3 in [69].

Next we formulate the constrained optimisation problem. We want to minimise

(maximise) a cost functional Q(y,�) under the constraint that (6.1) is satisfied. The

cost functional Q corresponds misfit between the actual and the desired current, but

could be chosen di↵erently as well (to obtain a desired rectification behaviour for

example). We consider

Q(y,�) ! max
�

s.t. 0 = e(y,�). (6.2)

To prove that this optimisation problem has a solution we need to make the following

assumptions on Q(y,�):

(A5) Let Q(y,�) : X ⇥ ⌃ ! R be twice Frechet di↵erentiable with Lipschitz con-

tinuous second derivative.

(A6) Let Q(y,�) be separable, that is Q(y,�) = Q1(y) + Q2(�), bounded from

below and weakly lower semi-continuous.

Theorem 9. Let A1-A4 from Chapter 2 be satisfied and let Q(y,�) satisfy A5-A6

then the constrained optimisation problem (6.2) admits a solution (V ⇤, n⇤, p⇤,�⇤) 2
Y ⇥ ⌃.

Proof. The proof is based on Stampaccias method and can be found in [69].
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We recall that we can not expect unique minimisers, since the forward problem does

not have a unique solution. We will illustrate the non-uniqueness of the surface

charge distribution with di↵erent numerical experiments at the end of this chapter.

6.1.1 First order optimality conditions

Optimal current

In the following we want to determine the optimal surface charge � to obtain a

desired current. In this case the cost functional is given by

Qy(y,�) =
1

2

����
Z

�
J d⌫ � J ⇤

����
2

dx, (6.3)

where J ⇤ denotes the desired current. Note that this functional satisfies (A5) as a

Lipschitz operator in y. Note that the current J is constant along the pore and we

evaluate it only on the boundary {�2L, 3L}.

First order optimality conditions

The first order optimality conditions can be computed from the corresponding La-

grange functional. The Lagrangian L(y,�,�) : Y ⇥ ⌃⇥ Z ! R is given by

L(y,�,�) = Q(y,�)+ < e(y,�),� >,

where � = (�V ,�1,�2). Theorem 8 and assumption (A5) ensure that the Lagrangian

L is continuously Frechet di↵erentiable. The first order optimality condition is

ry,�,�L(y,�,�) = 0.

Note that we obtain the state equation e(y,�) = 0 from condition r�L(y,�,�) = 0.

The variation with respect to � gives

�Q�(y,�) = e⇤�(y,�)� in ⌃⇤, (6.4)

where e⇤(y,�) 2 L(Z,⌃⇤) denotes the adjoint operator of e(y,�). The last variation

leads to

�Qy(y,�) = e⇤y(y,�)� in Y ⇤. (6.5)

The next step is to derive the adjoint system to the 1D PNP equations and show its

solvability for � = (�V ,�1,�2). To calculate the optimality condition (6.5) we need

to derive the adjoint equation to the < ey(y,�)ȳ,� >. After calculating the Frechet
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derivative and integration by part we obtain the following adjoint system

��@x
⇣
A@x�V

⌘
� �Dn@x

⇣
nA@x�2

⌘
+ �Dp@x

⇣
pA@x�1

⌘
= 0 (6.6a)

�A�V + @x
⇣
ADn@x�1

⌘
� �ADn@xV @x�1 = 0, (6.6b)

A�V + @x
⇣
ADp@x�2

⌘
+ �ADp@xV @x�2 = 0, , (6.6c)

with boundary conditions

�V (�2L) = �V (3L) = 0,

�1(�2L) = 0 �1(3L) =
@Q(x,�)

@n
(3L),

�2(�2L) = 0 �2(3L) =
@Q(x,�)

@p
(3L).

The existence and uniqueness of the solutions in space Z is discussed in [69] [Theorem

4.2].

6.2 Optimisation in Slotboom variables

The so-called Scharfetter Gummel scheme, which solves the PNP system in Slot-

boom variables iteratively, is a robust and popular computational method in engi-

neering. Since we use this discretisation to solve the forward problem (6.1), we need

to calculate the respective adjoint equations in these variables. We recall that the

Slotboom variables are given by

u1 = exp(��V )n and u2 = exp(�V )p,

and the current reads as

J1 = A exp(�V )ru1 and J2 = �A exp(��V )ru2.

For simplicity we set here and latter on the di↵usion coe�cients Dn and Dp to 1.

Hence system (6.1) in Slotboom variables is

��r · (ArV ) = A(�e�V u1 + e��V u2) + @A�, (6.7a)

r · (Ae�V ru1) = 0, (6.7b)

r · (Ae��V ru2) = 0. (6.7c)

System (6.7) is solved in Netgen using a hybrid discontinuous Galerkin method on
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a 1D the non-uniform mesh, see [93; 34; 104]. The discretisation allows for a stable

and accurate discretisation of the system even in the case of non-smooth parameters.

Donnan equilibrium We will consider another simplification of the problem by

omitting the bath regions in the following. This has the advantage that we do not

have to restrict the control variable to the pore region, where we want to modify the

surface charge. To do so, we assume that the system is in thermal equilibrium at

the pore entrances. This corresponds to a so-called Donnan-equilibrium boundary

conditions, see for example [31]. We set

VD = V � Vapl, nD = cB exp(��VD) and pD = cB exp(�VD),

and use the charge neutrality condition on the pore entrees (0 and L), that reads

A�(p� n) + @A� = 0

to obtain

nD(x) =
@A(x)�(x) +

p
(@A(x)�(x))2 + 4(A(x)cB)2

2A(x)

pD(x) =
�@A(x)�(x) +

p
(@A(x)�(x))2 + 4(A(x)cB)2

2A(x)
,

and

VD(x) = �
ln(nD(x)

cB
)

�
for x 2 {0, L}.

In the following we impose Donnan boundary conditions and omit the bath regions

in the optimisation, therefore ⌦ = (0, L).

Lagrange multiplier with Donnan boundary condition Optimal control as

well as inverse problems are usually ill-posed. Therefore the solution either does not

exist, is not unique or does not depend continuously on the data, see [120; 118]. Due

to the ill-possedness of the problem we introduce an additional regularisation term

in the cost functional Q. To ensure that the minimum of the regularised problems

is close to the initial guess we choose ✏
2

R L
0 (� � �⇤)2 where �⇤ is the initial surface

charge distribution. Next we consider the Lagrange functional of the optimal control
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problem in adjoint variables to calculate the respective equations. It is given by

L✏(V, u1, u2,�,�V ,�1,�2) = Q+
✏

2

Z L

0
(� � �⇤)2

+

Z L

0

�
� �r · (ArV )�A(�e�V u1 + e��V u2)� 2@A�

�
�V

�
Z L

0
Ae�V ru1r�1 �

Z L

0
Ae��V ru2r�2

The first variations of the functional reads

@L✏
@V

V̄ =
@Q

@V
V̄ +

Z L

0
�V̄ A[�e�V ru1r�1 + e��V ru2r�2] (6.8a)

+

Z L

0

�
� �r · (Ar�V ) +A�(e�V u1 + e��V u2)�V )V̄ , (6.8b)

@L✏
@u1

ū1 =
@Q

@u1
ū1 �

Z L

0
Ae�V rū1r�1 +

Z L

0
ū1Ae

�V �V , (6.8c)

@L✏
@u2

ū2 =
@Q

@u2
ū2 �

Z L

0
Ae��V rū2r�2 �

Z L

0
ū2Ae

��V �V , (6.8d)

@L✏
@�

�̄ = ✏

Z L

0
�̄(� � �⇤) +

Z L

0
@A�̄�V . (6.8e)

The first order optimality condition gives the adjoint system of equations for �i,

that is

��r · (A(x)r�V ) + �V A(x)�(e
�V u1 + e��V u2) (6.9a)

�A(x)�e�V ru1r�1 +A(x)�e��V ru2r�2 = 0, (6.9b)

r · (A(x)e�V r�1) +A(x)e�V = 0, (6.9c)

r · (A(x)e��V r�2)�A(x)e��V = 0, (6.9d)

with boundary condition given by

�V (0) = 0 and �V (L) = 0,

�1(0) = 0 and �1(L) = J � J ⇤,

�2(0) = 0 and �2(L) = J � J ⇤.
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6.2.1 Results

In this section we present numerical results based on the formulation in Slotboom

variables. Having an initial �0 the solver is based on the following iteration:

Set �̄(x) = �0 an initial guess;
Calculate V 0, u01, u

0
2,J 0 solving the PNP equation;

while err > 10�2
and max iter > k do

Solve the adjoint system (6.9c) - (6.9b) to obtain �V ;

Update �k+1 = �k + @L✏
@� �̄ using equation (6.8e) ;

Calculate V k+1, uk+1
1 , uk+1

2 ,J k+1, solving the PNP equation;

Calculate value of the functional Qk+1 (6.3) ;

Calculate the stoping criterion err = |Qk�Qk+1|
Qk

end

Algorithm 2: Adjoint optimisation method.

The algorithm is implemented using the software package Netgen-Ngsolve.

We consider a pore of length 12000nm with a radius changing from 10 to 20nm. The

applied potential is set to 200mV and the bath concentration for both ionic species

are 0.1M.

In the first test case we set the goal current to be 1.5 times the value of the

initial current. The initial value of the surface charge is given by � = sin( 2⇡x
12000). To

obtain the solution we use a mesh consisting of 4000 elements. 20% of these elements

are uniformly distributes in the first 50nm of the pore and the other 80% is also

uniformly distributed on the remaining part. This mesh refinement was necessary

to obtain stable and accurate numerical results.
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Figure 6.1: Evolution of the V (left upper plot), concentrations (n and p), surface
charge profile, current with the target value and the evolution of the functional Q .

Figure 6.1 shows the initial and obtained profiles. We observe that the func-

tional Q as well as the data misfit term |J � J ⇤| decreases during the iterations.

At the same time the regularisation term ✏
2

R L
0 (� � �⇤), denoted by the expression

e*energy in the figures, increases. The main disadvantage of this method is the fact

that the obtained surface charge profile is not smooth around x = 0. This problem is

clearly visible close to the pore entrance. For that reason the method is not suitable

for very small pores or for pores with complex geometry at the entrance.
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Figure 6.2: Evolution of the V (left upper plot), concentrations (n and p), surface
charge profile, current with the target value and the evolution of the functional Q .

Figure 6.2 shows the result for the same problem, but a di↵erent target value.

Here the desired current is 0.75 times the initial value. We observe significant

changes in the surface charge close to the pore entrance. This suggests that the

narrow part of the pore has the strongest influence on the obtained current.

6.3 Fast optimisation method

We will compare the previously discussed approach, see subsection 6.2, with a fast

optimisation technique presented by Burger and Pinnau in [25]. The proposed

method is based on di↵erent control, which results in a decoupled system that can

be solved very e�ciently. In this section, we adapt this method for the 1D area

averaged a PNP system derived in 2.1. This method introduces a much stronger

regularisation, which leads to smoother profiles. This also implies lower computa-

tional costs, since one can use a coarser discretisation. We recall that the adjoint

method introduced in 6.2 required a finer resolution at the narrow pore interface,

due to the strong variation of the surface charge.
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We introduce the control function W given by

W = �(V � V ⇤), (6.10)

where V ⇤ is the initial potential profile inside the pore. Then W satisfies

��A(x)W � �rA(x)r(V � V ⇤) =

A(x)[u2e
��V � u⇤2e

��V ⇤
)� (u1e

�V � u⇤1e
�V ⇤

)] + @A(x)2(� � �⇤),

where p⇤ and n⇤ denote the initial concentrations. The surface charge is then given

by

@A(x)2⇡� =� �A(x)W � �rA(x)r(V � V ⇤)

�A(x)[u2e
��V � u⇤2e

��V ⇤
)� (u1e

�V � u⇤1e
�V ⇤

)] + @A(x)�⇤.

From the above relations we conclude

W (0) = �rA(0)r(V � V ⇤)(0)

A(0)
and W (L) = �rA(L)r(V � V ⇤)(L)

A(L)
.

The new control variable gives a new regularisation term, in particular ✏
2

R L
0 W 2.

Let Q✏ denote the new objective functional given by

Q✏ = Q+
✏

2

Z

⌦
W 2dx. (6.11)

Then the minimisation problem in terms of the new control function reads as

minQ✏ such that (u1, u2, V,W ) 2 Dadm, (6.12)

where the admissible domain is given by

Dadm := {(u1, u2, V,W ) 2 (H1(⌦))2 ⇥H1(⌦) \ L1(⌦)⇥ L2(⌦)

and (u1, u2, V ) satisfy the PNP system (6.7) and W satisfies (6.10)}.

6.3.1 Existence of the minimisers

To ensure that (6.12) has a solution we need the following two properties: lower

semi-continuity of the functional Q and the weak closedness of the domain. The

first poperty is satisfied in H1(⌦) \ L1(⌦). The second part requires that W is in

Dadm i.e. �(V � V ⇤) 2 L2(⌦).
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Theorem 10. Let ✏ > 0 and A 2 H1(⌦) then there exist a minimiser (ū1, ū2, V̄ , W̄ ) 2
(H1(⌦))2 ⇥H1(⌦) \ L1(⌦)⇥ L2(⌦) of (6.12).

Proof. Let take (uk1, u
k
2, V

k,W k)k2N the minimising sequence then W k 2 L2(⌦) and

we obtain that (V k � V ⇤) 2 H2(⌦) ,! C̄(⌦̄). We set the initial guess V ⇤ 2 L1(⌦)

to provide that V k 2 L1(⌦). The uk1,2 satisfy the elliptic equations (6.14c) – (6.14d)

so (See Gilbarg Trudinger [Theorem 8.3]) ensures that uk1,2 2 H1(⌦) \ L1(⌦).

Thus we extract a weakly convergent subsequent (uk
l

1 , uk
l

2 , V kl ,W kl) in (H1(⌦))2⇥
H1(⌦)⇥L2(⌦). From the weak closedness of the admissible domain and weak lower

semi-continuity we conclude the existence of the minimisers.

Since

@A� = @A�⇤��AW�rAr(V �V ⇤)�A[u2e
��V �u⇤2e

��V ⇤
)�(u1e

�V �u⇤1e
�V ⇤

)],

and together with the regularity of W , initial guess �⇤ and the area function we

conclude that the charge profile � 2 L2(⌦) and satisfies the PNP equations (6.1).

Corollary 6.3.1.1. There exists a doping profile � 2 L2(⌦) that minimise the the

functional Q such that (u1, u2, V,W ) 2 Dadm.

6.3.2 Fast optimisation method

Next we derive the optimality conditions, which gives us a decoupled system that

can be solved very e�ciently. The Lagrangian of (6.12) is given by

L✏(V, u1, u2,W,�V ,�1,�2) = Q+
✏

2

Z L

0
W 2 +

Z L

0
A exp(�V )ru1r�1

�
Z L

0
A exp(��V )ru2r�2 +

Z L

0
r(V � V ⇤)r�V +W�V .
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Note that the Lagrangian L✏ is continuously Frechet di↵erentiable onDadm⇥H1(⌦)3.

Di↵erentiation with respect to the primal variables (V, u1, u2,W ) gives

@L✏
@V

V̄ =
@Q

@V
V̄ +

Z L

0
�V̄ A[exp(�V )ru1r�1 + exp(��V )ru2r�2] +rV̄r�V ,

(6.13a)

@L✏
@u1

ū1 =
@Q

@u1
ū1 +

Z L

0
A exp(�V )rū1r�1, (6.13b)

@L✏
@u2

ū2 =
@Q

@u2
ū2 �

Z L

0
A exp(��V )rū2r�2, (6.13c)

@L✏
@W

W̄ =

Z L

0
W̄ (✏W + �V ). (6.13d)

Note that the adjoint system (6.13b) – (6.13a) has a triangular structure

and can be analysed and solved separately. That provides existence and uniqueness

of the solutions of the adjoint equations. Setting the equation (6.13d) to 0 the

multiplier �V can be replaced by setting ✏W = ��V . Then the system (6.13b) –

(6.13a) can be written as

@L✏
@V

V̄ =
@Q

@V
V̄ +

Z L

0
V̄ �A[exp(�V )ru1r�1 + exp(��V )ru2r�2] + V̄�✏W.

Which leads to

�✏�W = A�[exp(�V )ru1r�1 + exp(��V )ru2r�2].

That leads to the system of equations for solving the optimization problem given

by the system of equations

�V = �V ⇤ +W, (6.14a)

r · (Ae�V ru1) = 0, (6.14b)

r · (Ae��V ru2) = 0, (6.14c)

r · (Ae�V r�1) = 0, (6.14d)

r · (Ae��V r�2) = 0, (6.14e)

�✏�W = A�[exp(�V )ru1r�1 + exp(��V )ru2r�2]. (6.14f)

131



together with the boundary condition for respective equations

u1(0) = nD, u1(L) = nD exp(��Vappl),

u2(0) = pD, u2(L) = pD exp(�Vappl),

�1(0) = 0, �1(L) = J ⇤ � J ,

�2(0) = 0, �2(L) = J ⇤ � J ,

W (0) = �rA(0)r(V � V ⇤)(0)

A(0)
, W (L) = �rA(L)r(V � V ⇤)(L)

A(L)
.

The numerical procedure together with dumping algorithm is summarised in algo-

rithm 3.

Set �̄(x) = �0 an initial guess;
Calculate V 0, u01, u

0
2,J 0 solving the PNP equation;

while err > 10�2
and max iter > k do

Solve r · (Ae�V kr�k+1
1 ) = 0 ;

Solve r · (Ae��V kr�k+1
2 ) = 0;

Solve �✏�W k+1 + ⌧W k+1 =
⌧W k + �A[exp(�V k)ruk1r�k+1

1 + exp(��V k)ruk2r�k+1
2 ];

Solve �V k+1 = �V ⇤ +W k;

Solve r · (Ae�V k+1ruk+1
1 );

Solve r · (Ae��V k+1ruk+1
2 ) = 0;

Calculate current J and the value of the functional Q;

Calculate the stoping criterion err = |Qk�Qk+1|
Qk

end

Algorithm 3: Fast optimisation method.

6.3.3 Results

Next, we present some optimised surface charge profiles for a pore of length 12000mm,

with a radius function varying from 1 to 100nm. First, we illustrate the influence

of several parameters, namely ⌧ , ✏ and the initial guess. We compare the results to

the ones obtained in the previous section. The radius is linear varying from 10 to

20nm, the initial surface charge is set to � = sin( 2⇡x
1200). We use the following set

of parameters (if not stated otherwise): mesh size = 1000, ⌧ = 0.1. The stopping

criterion was set as described in the algorithm 3. Figures 6.3 and 6.4 shows the

initial and obtained profiles of the voltage and concentrations as well as the current

value and functional Q evolution for two di↵erent values of the target current. The

two plots show the obtained profiles for the target current set to be 1.5J start (figure
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6.3) and 0.75J start (figure 6.4).

Figure 6.3: Evolution of the V (left upper plot), concentrations (n and p), surface
charge profile, current with the target value and the evolution of the functional Q.
The target current was set to J ⇤ = 1.5J start, the stabilisation parameters ⌧ and ✏
set to 0.1 and 10�2 respectively.
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Figure 6.4: Evolution of the V (left upper plot), concentrations (n and p), surface
charge profile, current with the target value and the evolution of the functional Q .
The target current was set to J ⇤ = 0.75J start, the stabilisation parameters ⌧ and ✏
set to 0.1 and 10�2 respectively.

What is more, due to the strong stabilisation e↵ect of the method it can be

applied for the pores with more demanding geometry in which the previous method

does not converge. Figure 6.5 presents results obtained using a pore with linear

radius varying from 1 to 100nm.
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Figure 6.5: Evolution of the V (left upper plot), concentrations (n and p), surface
charge profile, current with the target value and the evolution of the functional Q.
The target current was set to J ⇤ = 1.5J start, the stabilisation parameters ⌧ and ✏
set to 10�2 and 10�3 respectively.

We observe that the obtained surface charge profiles are much smoother than

in the first approach.

6.4 Di↵erences of the obtained profiles

We conclude by discussing di↵erences in the obtained surface charge profiles. Figures

6.1 and 6.3 shows the results obtained by using two methods for the same test case.

As we can observe the obtained profile di↵er highly.

What is more, choosing di↵erent initial guess lead to di↵erent solutions as

well. By initialising the iterative schema with di↵erent �0 and setting the same

target current, we obtain significant di↵erences in the obtained profiles using the

adjoint approach, see Figure 6.6 where we chose the following starting profiles:

�1 = 2 sin(
2⇡x

12000
) and �2 = 6(

x

12000
)(

x

12000
� 1).
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Figure 6.6: Comparison of the obtained profile using di↵erent initial guess.

We see that we obtain di↵erent profiles for all cases considered so far, even

though the target current was the same. This shows that we can not expect unique-

ness of the minimisers using only one measurement. We need to underline here

that because of the construction of the methods we do not optimise exactly the

same functionals in all of the cases. As it was mentioned before our stabilisation

term (
R
(�� �⇤)) depends on the initial guess �⇤ and though influence the obtained

profiles.
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6.5 Conclusions

In this chapter, we presented a theoretical and computational framework to optimise

the current-voltage profile of nanopores. The optimisation is based on the surface

charge profile. We investigate the e↵ect of changes using two di↵erent optimal con-

trol approaches in the case of radially symmetric nanopores. Both approaches are

based on the 1D area averaged PNP equations together with Donnan boundary

conditions to reduce the computational complexity.

The first method is based on the adjoint equations and the steepest descent

scheme. The optimised surface charge profile show strong variations in the narrow

pore region. The solver requires a fine spatial discretisation and is computationally

costly. On the other hand, the obtained profiles do not di↵er significantly from the

initial guesses.

The second method - the so-called fast optimization method replaces the

nonlinear part of the PNP equation by introducing a new control function. This

modification leads to a decoupling of the forward and adjoint equations, which

can be solved quickly and e�ciently. The new control introduces a much stronger

regularisation than the first method - hence the surface charge profiles are much

smoother. However, it results in a much high carrier concentration at the pore wall

and does not ’use’ the geometry as much.

We conclude by stating possible future research directions:

• Since nanopores of a particular shape can be produced, an extension of the

proposed framework which is based on optimising the surface charge and the

pore geometry would be a natural next step. The dependence between shape

and obtained current is more complex as the area function is involved in all the

equations in the PNP system and would require the development of suitable

splitting techniques.

• One of the most important characteristics of a nanopore is rectification. The

optimization problem can be developed to maximise or minimise the rectifica-

tion for a given pore geometry. Since the rectification is defined by the current

ratio for two di↵erent applied voltages, the computational complexity of this

problem is much larger.

• One current measurement leads to a non-unique solution to the optimisation

problem. To address that issue the number of observation can be increased.

Finding the surface charge profile that provides a given IV characteristic can
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be another problem solved using similar tools.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis focused on several challenges relate to modelling and computational as-

pects of the ion transport in confined geometries such as synthetic or biological

pores. We compare and develop di↵erent approaches used in the literature. The re-

spective chapters focused on specific aspects, such as modeling, analysis, asymptotic

behaviour and optimal control problems related to ion transport.

A general introduction to the mathematical modeling of ion transport was

given in Chapter 1. We discussed the most important driving forces of charged

transport in confined geometries and how they can be included on the microscopic

as well as macroscopic level. In Chapter 2 we derive a 1D area averaged Poisson-

Nernst-Planck model, which can be used for radially symmetric pores. We use a

fixed point argument to prove the existence of solutions and discuss the regularity

depending on pore geometry. Moreover, we comment on existence for a nonlinear

version of the PNP equations which accounts for finite size e↵ects via additional

nonlinearities in the mobility and entropy.

Chapter 3 develops an asymptotic analysis of the PNP equations which

can be used for radially symmetric nanopores to resolve the behaviour around the

charged surface walls correctly. The proposed methodologies were based on a suit-

able rescaling, which is valid in the case of large-aspect-ratio pores. It led to a

decoupling of the radial and lateral direction, which allowed us to compute high-

quality approximations very e�ciently.

The methodologies developed in Chapter 3 can not be applied to respective

nonlinear PNP systems, which includes finite volume e↵ects. In Chapter 4 we use

a di↵erent averaging strategy and compare the approximate solutions for several
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mean-field models for ion transport in confined geometries. Detailed numerical

investigations illustrate the impact of finite volume and solvation e↵ects as well as

solvent dynamics.

Chapter 5 compares di↵erent modeling approaches to describe ion transport

in nanoscale pores (such as ion channels). Detailed numerical experiments illus-

trate the behaviour of solutions of the classic PNP equations and the so-called local

equilibrium Monte Carlo method and give implications abound their validity in dif-

ferent regimes. In addition, we adapted the methodologies to analyse the behaviour

of nanoscale devices.

In the last Chapter 6, optimal control problems related to nanopores were

discussed. These problems are related to optimal control problems considered in the

context of semiconductors - here one wants to optimise the doping profile to obtain

specific current-voltage characteristics. We generalise optimal control approaches to

optimise the surface charge of synthetic nanopores using the reduced PNP models

developed in the previous chapters. Furthermore, we investigate the non-uniqueness

of solutions and the e↵ect of the pore geometry.

7.2 Future work

A common assumption of most models for ion transport considered in this thesis

is the fact that fluid flow across the membrane can be omitted. We have seen in

Chapter 4 that the flow has an impact on the transport properties, especially in the

narrow tip region. Hence the development of models that include this phenomenon

would enhance the understanding of the entire physical setup.

The proposed asymptotic analysis in Chapter 3 and 4 led to the development

of the very fast solvers for ion transport through long and thin nanopores. A sim-

ilar strategy could be used to approximate the passage of large particles in pores.

Understanding these dynamics is important since similar situations occur in DNA

sequencing. Understanding how long DNA chains and the respective electrostatic

forces influence the measured current is still an open problem.

Multiscale models, which resolve the dynamics on the di↵erent scales cor-

rectly are a next step to develop more accurate and e�cient numerical solvers.

Coupling micro-, meso and macroscopic models by identifying the right scales, will

be of great importance in future research.

Developing stable and e�cient optimal control solvers to obtain desired char-

acteristics - such as IV curves or rectification behaviour, by modifying the surface

charge or geometry, is another promising research direction. The modification of
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nanoscale pores and the development of nanoscale devices has experienced a tremen-

dous boost in the last decades providing mathematical methodologies to support

experimental design is of great importance for future technology development. Here

several aspects, such as the development of fast optimization techniques, but also

the right choice of models needs to be investigated more thoroughly.

This thesis includes the first steps of the research perspectives detailed above,

by contributing to various aspect in model development, analysis, and numerical

simulations.
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Appendix A
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Table of notation

Notation Definition Units

ci Concentration of the ionic species i None

Di Di↵usion coe�cient ms�2

E Electric field V m�1

e Elementary charge C

✏r Relative permittivity None

✏0 Vacuum permittivity Fm�1

Fi Force field associated with specie i N

F Faraday constant Cmol�1

kB Boltzmann constant JK�1

�D Debye length. m

Ji Flux of the ionic species i None

m Number of ionic species None

m(~n) Mobility function None

mi Mass of the ionic species i g

µe
i Electrochemical potential of the ionic species i V

µchem
i Chemical potential of the ionic species i V

µ0
i Reference potential of the ionic species i V

ni Number of ions of of the ionic species per unit of volume m�3

na Avogadro number M�1

nS Number of ions of of solvent per unit of volume m�3

nF Free charge density nF = e0
Pm

i=1 zini C

n Total number of ionic and solvent particles m�3

⇢ Total concentration of the ionic species ⇢ =
Pm

i=1 ci None

� Surface charge density Cm�2

T Temperature K

~u Solvent velocity ms�1

V Electric potential V

vi Volume of the ionic species i m3

zi Valence of the ionic species i None

Table A.1: Physical constants and parameters.
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[20] D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, and D. Gille-

spie. Combined e↵ect of pore radius and protein dielectric coe�cient on the

selectivity of a calcium channel. Phys. Rev. Lett., 98(16):168102, 2007.

145



[21] R. Boda, D.and Kovács, D. Gillespie, and T. Kristóf. Selective transport
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[64] Z. Ható, D. Boda, and T. Kristóf. Simulation of steady-state di↵usion: Driving

force ensured by dual control volumes or local equilibrium monte carlo. The

Journal of chemical physics, 137(5):054109, 2012.
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