
COMPDYN 2013
4th ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, V. Papadopoulos, V. Plevris (eds.)

Kos Island, Greece, 12–14 June 2013

A BAYESIAN MODEL UPDATING PROCEDURE FOR DYNAMIC
HEALTH MONITORING

Edoardo Patelli1, Matteo Broggi2, and Pierre Beaurepaire2

1Institute of Risk and Uncertainty, University of Liverpool
Brodie Tower, L69 3GQ Liverpool, UK
e-mail: edoardo.patelli@liverpool.ac.uk

2 Virtual Engineering Centre, University of Liverpool
STFC Daresbury Laboratory, Daresbury Science and Innovation Campus, WA4 4AD Warrington, UK

e-mail: {matteo.broggi,pierre.beaurepaire}@liverpool.ac.uk

Keywords: Bayesian Model Updating, Transitional Markov Chain Monte Carlo, Fatigue, Crack
Detection, Dynamic Excitation, Health Monitoring.

Abstract. Structures under dynamic excitation can undergo phenomena of crack growth and
fracture. For safety reasons, it is of key importance to be able to detect and classify these cracks
before the unwarned structural failure. Additionally, the cracks will also change the dynamic
behaviour of the structures, impacting their performance.

Here, a Bayesian model updating procedure has been implemented for the crack detection
location and length estimation on a numerical model of a spring suspension arm. A high-
fidelity finite element model has been used to simulate experimental data, by inserting cracks
of different extent at different locations and obtaining reference frequency response functions.
In the following, a low fidelity parametric model has been used in the Bayesian framework to
infer the crack location and length by comparing the dynamic responses. It is shown that the
proposed methodology can be successfully adopted as a structural health monitoring tool.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/305119452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edoardo Patelli, Matteo Broggi, and Pierre Beaurepaire

1 INTRODUCTION

Fatigue is the most dangerous failure mode for mechanical components subject to alternating
loads: one or several cracks can be initiated and propagated through the cross section of the
structure. Once a critical crack length is exceeded, the structure can catastrophically fail even
for stress level much lower than the design stress [1]. In particular, interactions may occur
between the structural responses and cracks in components subject to high frequency dynamic
excitations, leading to vibration-induced fatigue. In this case, the stress field in the structure
is mainly determined by the high frequency resonance modes, leading to very fast cycles of
loading and accelerated fatigue crack growth. Hence the service life of the structure may be
considerably reduced.

Several strategies are possible to avoid fracture; for instance, non-destructive inspections
may be performed at predetermined time intervals in order to detect the cracks; however failure
can happen between inspections [2]. Alternatively, a continuous monitoring of the dynamic
response of the structure can allow for real-time crack detection and for a timely intervention
with maintenance procedures [3]. Repair actions are taken in case the monitoring procedure
successfully identifies a crack which jeopardizes the structure.

In both cases, the procedure may fail in identifying a crack, leading to fatigue failure. Thus,
efficient crack detection before fracture occurs is required in order to avoid the loss of the
structure, and more importantly to mitigate the consequences that such loss could cause, both
from an economical and safety point of view. Once the crack is successfully detected, corrective
maintenance or substitution of the damaged component can be performed.

Thanks to the advancements in the field of computational mechanics, new detection tech-
niques could be developed to assist in the monitoring of the health of the structures. These
numerical techniques allow for a synthetic analysis of experimental and sensor data. More
specifically, these techniques modify some specific parameters in a numerical model to ensure a
good agreement with the data, leading to a so-called inverse problem. A computational frame-
work well fitted for the solution of such inverse problems is the model updating [4].

In this paper, an efficient numerical framework, based on a Bayesian model updating pro-
cedure [5], is implemented for the identification of cracks within structures under dynamic
excitation. The influence of the cracks on the mechanical behaviour is quantified using the Fre-
quency Response Functions (FRF) at a specific locations. A suspension arm, as normally used
by automotive industry, has been analysed. Two finite elements models have been used: one
high-fidelity model to simulate experimental data of the arm under dynamic excitation (i.e., the
reference model). Cracks of random dimension and positions determined by stress intensity are
introduced in the simulated experimental suspension arm.

The second low-fidelity model is used in the Bayesian model updating procedure. The up-
dating procedure adjusts the length of cracks inserted at candidate crack locations in the low-
fidelity model in order to minimize the difference between the frequency response function of
this model and the reference frequency response function. This allows reconstructing efficiently
the crack pattern of the reference model.

Particular attention is given to the efficiency of the numerical simulation. As a matter of
fact, a high number of model evaluation is required, thus a strategy for the parallelization of the
simulations as provided by the general purpose software COSSAN-X [6] is employed.

The paper is structured as follows: Section 2 deals with the modelling of fracture in a Finite
Element framework. Section 3 outlines the main concept of Bayesian model updating and the
efficient simulation algorithm employed in the particular case of structure with cracks under dy-
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namic excitation. A numerical example will be introduced in Section 4, and the crack detection
routine will be tested in different configurations. Finally, some conclusions and final remarks
will be pointed out in Section 5.

2 MODELLING OF FRACTURE MECHANICS

The mechanical behaviour of structures may be modified by the presence of cracks. The
effective cross section of the component is reduced, which causes a reduction of the stiffness.
Moreover, the stress field is also modified in the vicinity of a crack.

Specific methods allow modelling efficiently the mechanical behaviour of structures con-
taining cracks. The extended finite elements method (XFEM) [7, 8] has received considerable
attention over the past few years. It consists of using a particular element formulation in the
vicinity of a crack. Additional degrees of freedom and shape functions are used to describe the
displacements within an element affected by a crack and such elements are said to be enriched.
The displacement field in these elements is then expressed using a combination of the standard
and of the shape functions devoted to enrichment.

In case an element is crossed by a crack, the additional shape function consists of a Heaviside
function centered on the crack. The discontinuity of this function accounts for discontinuity of
the displacements between the two lips of the crack.

In case an element includes the crack tip, the corresponding nodes of the finite element
model are enriched with specific shape functions. These functions correspond to the asymptotic
displacement field at the vicinity of a crack tip, which can be determined analytically (see [7]
for more details about the enrichment of the tip elements). This allows capturing efficiently the
displacement and strain fields near the crack tip, without excessive refinement of the mesh.

Details on the implementation of the extended finite element method may be found e.g. in
[7, 9, 8, 10].

However, mesh refinement in the vicinity of the crack tip may be necessary when the ex-
tended finite elements method is used, in spite of the enrichment of the nodes at the crack tip
[11]. Nevertheless, the mesh does not have to be compatible with the crack, which considerably
simplifies the re-meshing.

In case the behaviour of a cracked structure under dynamic excitation needs to be determined,
the stiffness matrix may be computed using the XFEM, as stated above. The mass matrix is not
modified by the presence of cracks, and no special action needs to be taken. The problem is
subsequently solved using the standard procedure for linear dynamics: the modes and frequency
of vibration are determined by solving the eigen-value problem associated with the mass and
stiffness matrices; and the FRFs associated with any pair of DOF of the node of the finite
element model are determined.

3 BAYESIAN MODEL UPDATING FOR CRACK DETECTION

3.1 Bayesian updating of structural models

A Bayesian model updating procedure is based on the well known Bayes theorem [12]. This
theorem was first introduced by Thomas Bayes in the 18th century, then was rediscovered and
largely redeveloped by Laplace in the 19th century, and finally has been widely accepted and
applied only in recent times. Its general formulation is

P (θ|D, I) = P (D|θ, I)P (θ|I)
P (D|I)

(1)
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where θ represents any hypothesis to be tested, e.g., the value of the model parameters, D is
the available data or observations, and I is the background information. Three main terms can
be identified in the Bayes theorem:

• P (θ|I) is the prior probability density function (PDF) of the parameters

• P (θ|D, I) is the posterior PDF

• P (D|θ, I) is the likelihood function of the data D.

Finally, the term P (D|I) at the denominator is a normalization factor ensuring that the posterior
PDF integrates to 1.The theorem introduces a way to update some a priori knowledge on the
parameters θ by using data/observations, conditional to the available information.

Bayes theorem has been successfully applied in the updating of structural models [13, 14];
in particular the Bayesian structural model updating has been successfully used to update large
finite element models using experimental modal data [5].

In a structural model updating framework, the initial knowledge about the unknown ad-
justable parameters is expressed through the prior PDF. A careful choice of this distribution has
to be taken, in order to accurately represent the knowledge available, e.g., from prior expertise.
As an example, a proper prior distribution can be a uniform distribution in the case when only
a lower and upper bound of the parameter is known, or a Gaussian distribution when the mean
and a relative error of the parameter is known.

The likelihood function gives a measure of the agreement between the available experimental
data and the corresponding numerical model output. Particular care has to be taken in the
definition of the likelihood, and the choice of likelihood depends on the type of data available,
e.g., whether the data is a scalar or a vector quantity.

Finally, the posterior distribution expresses the revised knowledge about the parameters, pro-
viding information on which parameter ranges are more probable based on the initial knowledge
and the experimental data.

3.2 Transitional Markov-Chain Monte-Carlo

The Bayesian updating expressed in equation 1 needs the computation of a normalizing fac-
tor, that can be very complex to compute and computationally expensive. An efficient stochastic
simulation algorithm, called Transitional Markov Chain Monte-Carlo [15], can be used to avoid
the computation of this factor. This algorithm allows the generation of samples from the com-
plex shaped unknown posterior distribution through an iterative approach. In this algorithm, m
intermediate distributions Pi are introduced,

Pi ∝ P (D|θ, I)βi P (θ|I) (2)

where the contribution of the likelihood is scaled down by an exponent βi, with 0 = β0 <
. . . < βi < . . . < βm = 1, thus the first distribution is the prior PDF, and the last is the posterior.
These intermediate distributions show a more gradual change in the shape from one step to the
next when compared with the shape variation from the prior to the posterior. The value of βi is
automatically set to allow a more slow variation for the first steps, and a faster variation towards
the end. The variation of β between two steps is controlled by the value of the coefficient of
variation of the intermediate posterior, that is compared to a target CoV value set as an input of
the algorithm.
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In a first step, samples are generated from the prior PDF using direct Monte-Carlo. Then,
sample from the Pi+1 distribution are generated using Markov chains with the Metropolis-
Hasting algorithm [16], starting from selected samples taken from the Pi distribution. This
step is repeated until the distribution characterized by βi is reached. By using the Metropolis-
Hasting algorithm, samples are generated from the posterior PDF without the necessity of ever
computing the normalization constant.

3.3 Model updating for crack detection

The approach introduced so far has been successfully applied to structural model updating,
thus reducing the uncertainties in the numerical model parameters and improving the agreement
between the numerical results and experimental data. Within the model updating framework,
the cracks’ extent and position present in the damaged structure are seen as uncertain model
properties.

Knowing that cracks will develop most likely in locations characterized by high concentra-
tion of stresses, these candidate positions are inserted in the undamaged model, analysed using
XFEM assuming the crack length and shape as random parameters.

In the updating procedure, the prior distribution will use a uniform distribution for the crack
parameters, allowing the possibility of crack in any stress concentration point and with any
possible physically acceptable length.

Experimental data from the reference structure are available in the form of Frequency Re-
sponse Functions (FRF). These reference data are compared with the numerical FRF of the
numerical model, by computing the root mean squared error (RMSE), in order to include the
experimental data information in the likelihood. It is assumed that the prediction error is dis-
tributed according to a Gaussian PDF, thus the likelihood can be expressed as

P (D|θ, I) ∝ exp

− 1

2δ

Nfreq∑
k=1

(hexp (ωk)− h (ωk; θ))2
 (3)

where hexp (ωk) is the experimental FRF, h (ωk; θ) represents the numerical FRF, and δ is the
variance of the RMSE. After the updating procedure, the posterior will provide a qualitative
indication on both crack length and position, i.e., the length of the crack will go towards zero if
the crack is not present in the candidate location, and otherwise, it will concentrate around the
unknown length.

4 Numerical Example

4.1 Model description

In this numerical example, the proposed framework is applied to detect cracks in a suspen-
sion arm similar to those used in the automotive industry [17]. The structure, shown in Figure 2
can freely rotate along the axis indicated by the dashed line, and the suspension spring and the
wheel structure is connected at the location indicated by S. The stress concentration points, and
candidate crack locations, are indicated in the figure by the numbers 1 to 6.

In this example, “simulated” experimental data are generated using a high-fidelity FE model,
characterized by a very refined mesh near the crack (Figure 2b). The software used to construct
the model and in the analysis is Code ASTER [18]. A crack with fixed length is inserted in one
of the candidate position, and the reference FRF is computed at the position indicated by “O”.
Both the FRF in direction X and Y are considered, while no FRF is obtained in the direction Z
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Figure 1: Finite Element model of a suspension arm.

since the structure is not constrained in that direction. Figure 3 shows the inertance FRF in the
two directions X and Y when a crack with the length of 5mm is inserted in the possible positions.
A clear difference is shown between the inertance FRF, especially at the high frequencies.

4.2 Bayesian model updating

The Bayesian model updating procedure is employed using the low-fidelity FE model, where
a more coarse mesh is used. The crack lengths are considered as uncertain parameters, and are
modelled using uniformly distributed random variables. Since the crack is physically con-
strained to not touch the flanges of the arm, a maximum crack length of 5mm is assigned to the
cracks in position 1 and 2, while the length is limited to 10mm for the cracks in positions 3 to
6. Thus the prior uncertain parameters and their prior distributions are:

θ =



l1
l2
l3
l4
l5
l6


, θ0 ∼



U(0, 5mm)
U(0, 5mm)
U(0, 10mm)
U(0, 10mm)
U(0, 10mm)
U(0, 10mm)


(4)

The sampled values of the random variables are inserted into the FE model by using the
ASCII file injection routine provided by COSSAN-X [6].

The Bayesian updating procedure has been executed with one crack. A reference FRF has
been obtained with the high fidelity model with a 5mm crack located in position 3. Then, 1000
samples from the prior distribution have been generated. The low-fidelity FE model is run in
parallel on a computer cluster allowing a reduction of the overall computational time. Figure 4
shows the variation of the inertance FRFs of the low-fidelity model with 1600 random values of
crack length sampled from the prior distributions.

The FRFs are compared with the reference FRFs from the high-fidelity model, computing the
RMSE. In order to speed up the analyses needed for the bayesian updating, a Multi Layer Per-
ceptron Artificial Neural Network has been constructed. The network is constituted byNinp = 6
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(a) Low fidelity model (b) High fidelity model

Figure 2: Low fidelity (a) and high fidelity (b) model of the suspension arm. High mesh refine-
ments near the crack tips are included in the high fidelity model.

inputs, that are the length of the cracks at positions 1 to 6, and Nout = 2 outputs, the RMSE
computed between the reference FRF and that of the low-fidelity model in bot the x and y
direction. An automated training procedure has been implemented such that various network
topologies are tested and the best network, characterized by the highest R2 value is kept. R2 is
defined as

R2 = 1−

∑Ndata
i=1

(
h2i − ĥi

2
)

∑Ndata
i=1

(
h2i − hi

2
) , (5)

where hi is the RMSE computed using the real model outputs, hi is the average of hi, and ĥi
is the RMSE predicted by the neural network. The best network is structured with 2 hidden
layers, with 13 nodes in the first hidden layer and 11 nodes in the second. The R2 is 0.972 for
the RMSE of the FRFs in the x direction, and 0.969 for that of the FRFs in the y direction.

4.3 Discussion of the results

The results of the updating procedure are shown in Figure 5, where the prior and posterior
distributions of the six random crack lengths is shown, while Figure 6 shows the value of the
RMSE of the two FRFs using the prior and posterior distributions of the parameters. The
procedure successfully updated the model parameters and identified the position of the crack as
being position 3 and length 5mm. The posterior distribution of the crack length clearly remove
any possibility of having cracks at positions 1, 5 and 6, since their final PDF is very peaked in
the vicinity of zero (see Figures 5a, 5e and 5f).

However, a perfect model updating would have resulted in posterior distributions very peaked
around zero for the position 2 and 4 as well, and peaked around 5 for the posterior of the crack
length at position 3 as the synthetic numerical simulated data is noise free. This is not the case:
instead, some uncertainty is still shown in the posterior distribution for the crack in positions 2,
3 and 4. Nevertheless, it can be reasonably assured that the crack is indeed located in position
3, since the posterior of the crack length at position 3 is the only one having a significant
mean value (see Figure 5c). Additionally, the posterior PDF in position 3 is the only PDF not
including zero as a possible value of the distribution, as opposed for the distributions relevant to
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Figure 3: Frequency response functions of the high fidelity FE model. A single crack of 5mm
length is inserted in each of the stress concentration points.

the cracks in position 2 and 4 (see Figures 5b and 5d). The reason for the non perfectly peaked
posterior is two-fold: first, limited amount of reference data is available, and second, the RMSEs
are already very close to zero (thus, within the target of the model updating procedure) for the
model responses computed using crack length distributed according to the posterior PDF, as
shown in Figure 6.

As a matter of fact, only two reference inertance FRFs are obtained from the high-fidelity
FE model at a single location. Additional data, e.g., retrieved from a different point or with
different loading condition, can improve the computation of the posterior at the expense of
a more complex likelihood. It should be noted anyway that the approach carried out in this
numerical example is a “worst case scenario” with regards to the availability of data, although
the methodology was capable of giving a very good answer anyways.

5 CONCLUSIONS

A Bayesian updating procedure has been successfully employed as a computational frame-
work to detect crack location and length. Reference dynamic data from vibration analysis has
been used as target for the updating procedure.

The proposed framework allowed for successful updating and identification of crack position
and length using simulated FE data. These preliminary results clearly show the possibility to
apply this methodology to detect crack given data retrieved from sensors. To further validate
this procedure, the updating procedure needs to be executed with additional numerical tests,
e.g. with varying position and length of the crack. The results will show the performance of the
framework, in particular with different crack length and location.

Future development and additional research will be taken by using real experimental data to
further validate and expand the proposed approach, and using advanced more efficient Monte-
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Figure 4: Variation of the FRFs with the crack length sampled from the prior distributions
using the low-fidelity model. Random cracks of random length are inserted in all the possible
positions.

Carlo procedures, i.e., sequential Monte-Carlo or Particle Filtering methods.
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