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Abstract. A cavity filled with a medium displaying electromagnetically induced

transparency is shown to exhibit coexistence of complex transverse structures often

leading to pattern competition. Because of multi-stability of the solutions, the

asymptotic state in such a cavity crucially depends on the values of the control

parameters and the initial conditions. The pattern competition can result in coexisting

regions of pattern structures of different geometry separated by stable or metastable

fronts. Here we propose a selection technique based on external periodic modulations

for directing the system to a single pattern state of choice and thus removing the

separation fronts. The control technique takes the system close to sub-sections

in the phase space providing the operator with the choice of the final state from

different multi-stable solutions. We extend the use of the technique to stationary

or drifting structures composed of regions made of a single pattern state with different

orientations. In this case the regularization to a pattern with a single orientation

is associated with the removal of defects. The harmonic signal technique has

not been used previously to control a spatio-temporal system where the

multi-stability is due to the coupling of nonlinearity and diffraction.

1. Introduction

Electromagnetically induced transparency (EIT) is an example of a coherent multi-

level process and has opened a promising window for realization of schemes needed for

quantum information systems, coherent control of atomic populations, and mediation of

interactions between optical fields [1]. The majority of EIT studies have been carried out
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in gaseous media where the dominant broadening mechanism is that of a homogenous

type leading to a variety of applications including slow light propagation [2, 3], optical

storage [4], precision measurements [5], amplification [6] and lasing without inversion [7].

More recently, EIT has also been reported in solid state media featuring inhomogeneous

line-shape broadening which helps in the implementation of scalable and integratable

quantum optical and photonic devices [8, 9, 10].

Complex spatial structures in the light intensity output of an optical cavity containing

a medium close to EIT have shapes and stability with strong dependence on parameter

values and initial conditions [11]. Sensitivity to initial conditions in the final evolution

of this system is due to a generalized multi-stability. The multi-stability and the nature

of the stable states is in turn affected by relatively small changes in the parameter values

since different branches of solutions experience different sequences of bifurcations. For

some initial conditions, a given set of expected spatially periodic solutions is attained.

For other initial conditions, however, the spatio-temporal evolution moves the system in

different directions in the phase space to either coexistent regions of different patterns

or to stable defects surrounded by regions of different orientation of a single transverse

pattern [11, 12]. In the first case, contiguous or nested patterns are separated from

each other by stable fronts [13]. This sort of complexity in nonlinear optics is due to

large coherence of the light-matter interaction and has recently been shown to trigger

extreme events in the transverse section of a cavity with triple quantum dot molecules

where tunneling induced transparency (TIT) replaces EIT [14].

Multi-stability of stationary or oscillating states is a nonlinear phenomenon that occurs

in many branches of science and technology. It has been extensively discussed in lasers

[15, 16], brain activity [17], chemical oscillations [18], and even climate change [19].

These examples focus on systems described by sets of nonlinear ordinary differential

equations but, of course, multi-stability becomes even more commonplace in time-

delayed [20], networked [21] and spatio-temporal [22] systems because of their intrinsic

high dimensionality. In nonlinear optics, spatio-temporal multi-stability has been

described in laser [23], liquid crystal [24] and photorefractive [25] devices.

The high sensitivity to initial conditions in determining the final state of multi-stable

systems bears some similarity to chaotic systems that evolve in a phase space that is

dense in unstable periodic orbits [26]. In our case, the dynamics in different regions of

the transverse plane meanders among several stable and unstable patterns of different

shape, size and orientation. In this respect the transient dynamics has similarities with

chaotic systems. The different spatial regions of the transverse plane are, however,

coupled to neighboring regions via diffraction so that either one stable pattern with

a single orientation dominates the final state or regions of different patterns or same

pattern with different orientations survive asymptotically via the stabilization of fronts

or defects. The presence of boundary conditions can slow or accelerate the dynamics of

the patten domains to reach the final state. The number of nested domains or domains

of different orientation increases the larger is the ratio between the system size and the

pattern wavelength.
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In several physical systems, behaviors originating from a chaotic dynamics can be

controlled by applying appropriately designed small perturbations to one of the control

parameters to stabilize a desired periodic behavior rather than a chaotic one. Generally

speaking, unstable steady states (USSs) and unstable periodic orbits (UPOs) that are

embedded in the chaotic attractor characterizing the dynamics in phase space are at

the base of most schemes for the control of chaos [27]. After the pioneering work of Ott

et al. [28], it has been the common practice of the majority of chaos-control protocols

in optics to stabilize one such UPO by introducing small adjustments to the control

parameter of the system when the current state of the system is in the vicinity of the

targeted UPO [29]. In the case of spatially extended systems, similar goals have been

achieved by small spatial modulation to the input pump field derived from the Fourier

transform of the output electric field [30, 31] or by target patterns applied using an

interfaced computer through a feedback technique [32] .

The nonlinear optical configuration studied here deals with a generalized multi-stability

with two or many more stable solutions (with different orientation) simultaneously

present in the system. In such a situation, the system may (or may not) display a

final state with one single stable pattern with a single orientation depending on the

chosen initial condition. In the purely temporal case, including delayed systems, several

nonfeedback methods to control multi-stability have been introduced, namely, pulse

control, where short pulses are used to select particular attractors in a multi-stable

system and parametric forcing leading to annihilation of attractors and thereby turning

the multi-stable system to a mono-stable one [33, 34]. Here we apply similar techniques

to a model of a cavity filled with a medium displaying EIT, i.e. a spatio-temporal system

where the multi-stability is due to optical nonlinearity and light diffraction. Analogously

to chaotic systems, we achieve a transition to targeted solutions by the use of a wise

choice of a temporally modulated perturbation that can direct the trajectory towards

a specific attractor and produce a series of desired states. We chose one of the stable

solutions that the system can display as a target. The control signal is capable to move

the system from one stable state to another one with good advantages for the operator.

We show that by applying appropriately designed harmonic perturbations one can target

one of the multi-stable solutions in situations where growth from noise generates either

stable regions of different pattern geometries or of different orientation. To the best of

our knowledge, this is the first study where control of multi-stability through

a harmonic signal technique has been achieved in a spatio-temporal system

described by partial differential equations.

The paper is organized as follows: in Sec. II we recall the model of an EIT medium in a

cavity pumped by two input laser beams and its multi-stable features [11]. In particular

we highlight the role of the control parameters and initial conditions. In Sec. III, we

discuss the feasibility of the harmonic perturbation technique to decompose a spatial

structure formed by stable regions of coexisting patterns into its building elements.

Removal of defects from disordered patterns has been achieved by using a control signal

from an all-optical feedback loop with a spatial Fourier filtering [35]. Here instead we
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Figure 1. (Color online) Configuration of the employed model and the 3-level Λ type

atomic system with self-focusing nonlinearity.

show that a harmonic perturbation with appropriate amplitude, phase and duration

applied to the case of stable regions of a pattern with different orientations can also

produce a single pattern state by removing its defects in Sec. IV. In Sec. V we consider

a finite input pump to check the robustness of the proposed method in situations closer

to experimental realizations. Concluding remarks appear in the final Sec. VI.

2. The model

The system is composed by a Λ three level medium inside a cavity and pumped by two

input fields EI and E2 of frequency close to the two atomic resonances respectively (see

Fig. 1). The evolution of the intra-cavity field E is described by a single mean-field

equation [36, 11]:

∂tE = EI − (1 + iθ)E − 2iCρ13 + i∇2E (1)

where EI is the amplitude of the pump field and is detuned by ∆ (normalized to the

atomic linewidth) from resonance of the atomic transition |3〉 → |1〉 while the coupling

beam E2 is kept at resonance with the transition |3〉 → |2〉. All fields E, EI and E2 are

normalized to the square root of the saturation intensity of the first atomic transition.

θ is the detuning between the cavity resonance and the frequency of the injected pump

beam normalized to the inverse of the photon lifetime, and ρ13 is the off-diagonal density

matrix element proportional to the field amplitude E and the complex susceptibility χ

via the relation [36, 37]:

ρ13 = χE =
∆|E2|2 (|E2|2 + |E|2 − i∆)

(|E2|2 + |E|2)3
E , (2)

C is the co-operative parameter directly proportional to the atomic density na through:

2C =
naµ

2kL

2h̄γε0T
, (3)
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where µ is the atomic transition dipole moment, k the wave number of the field, L the

length of the cavity, γ the atomic linewidth, ε0 the permittivity of free space, and T is

the cavity mirror transmittivity. The diffraction term is given by the Laplacian operator

in two transverse dimensions perpendicular to the direction of propagation. Time t is

normalized to the photon life time in the cavity. For convenience we fix the values of ∆

to 0.2, θ to −1 and |E2|2 to 1 while 2C is taken as the control parameter of the system

along with EI . We note that variations in the 2C parameter are possible by controlling

the atomic density na inside the atomic vapor cell. Eq. 1 represents the generalization

of the Lugiato-Lefever two-level model [38, 39] to a three-level atomic configuration.

A typical experimental arrangement consistent with the theory above can be found in

[40] where the experiment was carried out in a three-level Λ-type system of 87Rb atoms

using the D1 lines of 52S1/2 → 52P1/2 transitions. The injected beam was tuned to

the atomic transition F = 1, 52S1/2 to F ′ = 2, 52P1/2 while E2 was set to the atomic

transition F = 2, 52S1/2 to F ′ = 2, 52P1/2. In such experiments where atomic ground

states and optical fields have small frequency differences (few GHz), polarizing beam

splitters are used to introduce orthogonal polarizations so that the coupling beam E2

is not oscillated in the cavity. We are considering here only electronic effects which

are much faster than atomic diffusion and the onset of light forces due to intensity

gradients.

We carried out a linear stability analysis of the stationary states of Eq. 1 by using

an ansatz of the form E = Es + δEse
λt−i(kxx+kyy), where Es, δEs, λ, and k⊥ denote,

respectively, the homogeneous stationary field, its deviation from the steady-state value,

the eigenvalue corresponding to the growth rates of the ansatz and transverse wave

vectors. Once the ansatz is introduced into the homogeneous stationary equation, it

can be solved along with its complex conjugate to obtain a characteristic equation

for the unstable spatial wave vectors. These wave vectors rule the periodicity of the

incoming pattern in a mechanism typical of Turing pattern formation [41, 42]. In

conservative systems like nonlinear Schrödinger equation in the presence of dispersion,

similar instabilities have been called modulational instabilities. Our complex Eq. 1 is,

however, dissipative and the presence of diffraction makes it mathematically equivalent

to typical Turing diffusive systems as demonstrated in [42]. As the details of the global

behavior of the model can be found in [11], we just recall here some specific cases

of the solutions for future reference. All numerical simulations of Eq. 1 have been

performed with a Fourier split-step integrator method in two spatial dimensions [11].

Initial conditions where either final configurations obtained from previous integrations

or zero fields with small (less than 10−3Es) random fluctuations (noise).

We consider parameter values above a Turing instability leading to the formation of

spatially modulated structures. These structures including hexagons, rolls, honeycombs,

wavy rolls, labyrinthine etc. (the latter is characterized for having a well-defined

wavelength but a small correlation length thus lacking any recognizable direction

which finally leads to an elaborated spatial pattern) appear in the transverse plane

perpendicular to the direction of propagation. For the value of 2C = 19.60 (|EI |2 =
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Figure 2. (Color online) A typical DOS pattern evolving from noise at 2C = 19.02

(|EI |2 = 1.201) at the beginning (a), 100 time units later (b) and the final state (c).

We note that due to the circular pump shape, which removes the periodic boundary,

the scrolling motion ceases but the reshaping of pattern within the finite boundary

continually persists.

1.2060) branches of solutions above a Turing instability feature bistable Honeycomb-

Roll patterns. This bistability remains present in the interval 2C = 19.55 − 19.75

(|EI |2 = 1.2055 − 1.2074). There is a small interval between stable roll and bistable

Honeycomb-Roll solutions in which wavy rolls are stable. Wavy rolls loose their stability

to rolls as one moves further away from the bistable solutions at higher values of 2C.

Moreover, when the starting point of the simulations was 2C = 18.90 (|EI |2 = 1.200)

a branch which includes Distorted-Oscillating-Scrolling (DOS) honeycomb solutions is

observed. In Fig. 2 a typical DOS evolution forming at 2C = 19.02 (|EI |2 = 1.201)

with circular pump shape is illustrated. These spatial structures feature patterns with

orientation disorder, i. e. without any well-defined axis of symmetry in the far-field to

characterize its geometrical shape, as well as a scrolling motion with no pre-assigned

direction [43]. Although spatially irregular in nature, their velocity is constant in

magnitude but changes with changes of the control parameter 2C. Local oscillation in

the intensity of the DOS patterns have frequencies that are proportional to the scrolling

velocity. This sort of behavior for DOS patterns has been shown to be universal and is

present in disordered patterns in several types of nonlinear optical systems [43].

In our system, pattern multi-stability is found in the interval 2C = 18.75 (|EI |2 =

1.2002) to 19.04 (|EI |2 = 1.2017). Patterns are stationary at the beginning of the

interval, but later they unlock to form scrolling structures with velocity increasing with

2C. This scrolling behavior induces local oscillations in the intensity of the pattern in

a quasi-periodic way. Finally, locking takes place again and stable regular honeycomb

pattern appears. Considering the fact that the preceding branch of the DOS patterns is

also a stable honeycomb solution with a different wave number, one can conclude that

these solutions are located at the crossing point of two basins of attraction related to

the two stable honeycomb patterns with different wave-vector structures.

By considering an open-loop scheme [32] a perturbation with an amplitude appropriate

for the targeted state is applied by adjusting one of the control parameters of the system,
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Figure 3. Schematic representation of the two competing basins of attraction in the

bistable region. For higher 2C values the basin associated with the roll solution is

more stable while for lower 2C values the honeycombs are more stable.

here EI , and by changing a weak periodic signal in the form of a continuous sinusoidal

modulation for a given time tpert (also normalized to the photon lifetime in the cavity).

This is done in the simulations by using a function of the form:

EI(t) = EI [1 + Asin(ωt)] . (4)

Both the amplitude A (defined as a small fraction of the injected field) and frequency

ω (oscillations per time unit t.u.−1) of the control signal in the sinusoidal modulation

have important effects in the transition and modification of the solutions. We will show

that for the bistable and DOS patterns at given values of 2C, the value of A required

to reach a given target is different depending on how far one is from the desired basin

of attraction.

3. Transition of a multi-component pattern to its constituents

In the case of patterns where both honeycomb and roll structures co-exist, bistability

between these spatially periodic solutions is observed. Bifurcation points where one

or the other of the patterns lose their stability are found when changing the control

parameter, in our case 2C. In the bistable regime, the presence of two competing basins

of attraction makes it possible to reach structures where boundaries between patterns

are stable and even where one pattern is nested inside the other. In such cases, the

spatial configuration of the field is divided into separate regions each displaying one

or the other of the two stable solutions. In normal cases of no competing sets outside

the bistable regime, the asymptotic spatial configuration of the field is a single regular

pattern, a honeycomb structure for lower values of 2C and a roll structure for larger

values of 2C. An example of such mechanism is schematically shown in Fig. 3.

Since in the bistable region both patterns have basins of attraction, we are able to

decompose the solution of coexisting patterns into its elements by a proper selection
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Figure 4. (Color online) Honeycomb-Roll co-existing pattern forming at 2C = 19.65

(|EI |2 = 1.2064) (a) and its far-field image (b). The wavy roll pattern obtained

by applying a low amplitude harmonic perturbation (c) and the corresponding far-

field image (d). Honeycomb solution from applying a higher amplitude sinusoidal

perturbation (e) and the far-field image (f). The simulations are done in a 128 × 128

box with the size of 20λc where λc is the pattern wavelength.

of the amplitude of the perturbation A, its frequency ω and duration tpert. For the

case of coexisting patterns observed at 2C = 19.65 (|EI |2 = 1.2064), see Fig. 4(a) and

Fig. 4(b) for the near and far-field images, respectively, we have used an amplitude of

A = 0.03, a frequency of ω = 55×10−3 and a duration of tpert = 5000 to induce a stable

roll and correspondingly remove the honeycomb component. Note that the forcing

frequency has been chosen to be very close to that of the relaxations to the

honeycomb solution. The evolution from the structure with coexisting patterns leads

to a wavy roll solution (see Fig. 4(c) and (d) for the near and far-field images) during

and after the application of the directing signal. The time evolution of the transition is

depicted in Fig. 5(a) where the maximum of the intensity of the solution is shown along

with the variations in the injected beam intensity.

On the other hand, by increasing the amplitude of the sinusoidal perturbation to

A = 0.05 but by maintaining the same frequency and duration of the control signal,

we attain the stable honeycomb solution. The actual pattern and the far-field image at

the end of this transition are shown in Fig. 4(e) and (f) and the related time evolutions

of the solution intensity in Fig. 5(b). As implied from Fig. 3, increasing (decreasing)

2C gives more stability to roll (honeycomb) solution. The situation is very similar

to a double-well configuration as discussed in [44]. The application of a harmonic

modulation pushes the double-well potential up and down in an asymmetrical manner
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Figure 5. (Color online) Time evolution of the maximum intensity of the solution

(right axis). (a) From the bistable state to the final wavy roll solution. The modulation

applied on the injected beam as the control signal is on the left axis. (b) From bistable

state to the final honeycomb pattern. The modulation applied on the injected beam

as the control signal is on the left axis. The control was applied for 5000 time units

between the two vertical dashed lines. Fluctuations in the intensities of the multi-

structure pattern and of the wavy roll are due to the reshaping of the structure to

reach its final geometry.

and thus induces an increase and decrease of the potential barrier height in a periodic

manner. If the amplitude and frequency of the applied periodic force are appropriate,

the trajectory will be able to jump from one well to another. In the purely temporal case,

a similar situation has been described in optical bistability in [45, 44, 46]. Therefore, to

achieve the transition to either of the two solutions with different control parameter

values one should consider different modulation amplitudes. Fig. 6 presents the

ranges of modulation amplitudes leading to different pattern structures in the bistable

regime. Two facts from Fig. 6 should be pointed out: 1) the maximum amplitude

of the perturbation to reach the roll solution is almost the same as the minimum

for reaching the honeycomb pattern with the exception of the case corresponding to

2C = 19.60 for which there exists a wide gap between these values. In the gap,

delimited between A = 0.018 − 0.05, all the perturbations relax back to a state with

coexisting patterns. ii) Transition to roll solution is not possible for the coexistent

patterns for 2C < 19.60 while one can observe a wide band of available amplitudes for

a transition to honeycomb structures. Analogously, a transition to honeycomb patterns

is not possible starting from coexisting patterns for 2C > 19.70 while a wide band

of available amplitudes exists for the transition to roll from a coexisting pattern at

2C = 19.75 extends up to A = 0.05. The physical mechanism underlying the

control via the harmonic modulation signal is the annihilation of one of

the existing attractors and its basin of attraction as originally described in

[45, 47] for nonlinear oscillations in purely temporal systems described by

discrete maps or ordinary differential equations. It is remarkable that the

harmonic modulation method works also in our case of a spatio-temporal



Complex structures in cavities with media displaying EIT... 10

Figure 6. (Color online) Ranges of modulation amplitudes of the control signal for

bistable patterns forming in different 2C values. H.C. stands for honeycomb.

system described by partial differential equations. The resonant interaction

of the control frequency with the frequency of damped oscillations of the

associated attractor results in the annihilation of one or the other attractors.

Resonance peaks during modulation are observed in Fig. 5. The annihilation

mechanism is evident at the beginning and at the end of Fig. 6 where the

weaker attractor (rolls for lower values of 2C and honeycombs for higher

values of 2C) is never recovered for any amplitude of the control signal.

In agreement with [30], above a pattern formation threshold there exists a

large number of unstable solutions corresponding to different geometries and

wave-vectors of spatially periodic structures. During modulation, one of the

originally stable patterns may lose stability via a boundary crisis induced

by one of the many unstable solutions. With boundary crises we mean that

the related stable attractor can suddenly be destroyed when colliding with

one of the many unstable solutions of the system. The situation is more

complicated in the central part of Fig. 6 where different amplitudes of the

control signal can lead to the annihilation of either the roll (blue lines) or

honeycomb (red lines) patterns. Since the modulation frequency is close to

resonance to the honeycomb annihilation, the red curves corresponding to

a final roll pattern are below the blue ones for a honeycomb in the central

part of Fig. 6. In this region of parameter space, the roll and honeycomb

patterns have very similar stability in terms of linear eigenvalues. Then,

small changes in the amplitude of the control modulation can induce either

the annihilation of the honeycomb or that of the roll pattern as shown for

example for the value of 2C = 19.65 in Fig. 6. For smaller values of 2C, the

two solutions acquire rather different eigenvalues and stabilities such that
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the amplitudes A required for pattern transitions drift apart and leave a

gap where transition to neither of the solutions is possible, see for example

2C = 19.60 in Fig. 6.

4. Decomposition of distorted patterns and removal of defects

A consequence of sensitivity of the spatio-temproal solutions to initial conditions is the

presence of stable defects when the initial value of the control parameter is around

2C = 18.90. The behavior of irregular structures and DOS patterns, are detailed in [11]

in terms of the local defects, periodicity of the oscillations and their scrolling motion.

Removal of defects from disordered patterns in nonlinear optics has been achieved in [35]

by adding an all-optical feedback loop with a spatial Fourier filter blocking the discrete

number of modes which constitute the target pattern. In that scheme, the remaining

control signal was then negatively fed back into the system driving it towards the target

state. Although special in providing active manipulation, this approach acts on the

defected regions gradually and individually avoiding any sudden change in the entire

structure. Here we use a technique based on a harmonic perturbation of finite duration

that selects one of the coexistent solutions and drives the system to the selected stable

pattern at once with advantages in the simplicity of operation.

A spatial structure with defects can be controlled by transferring the dynamics to the

stable attractors nearby, which are stable honeycombs with different wave-numbers.

Similar to the case of Honeycomb-Roll bistable pattern involving two competing basins

of attraction with different characteristics, a proper choice of amplitude A, frequency ω

and duration tpert of the control signal for the specific case of DOS pattern is capable

to induce a transition to one of the stable honeycomb solutions that existed before or

after the DOS interval. In this way, one has the possibility of choosing between two

honeycomb solutions with slightly different wave numbers. This can be seen by noting

that the DOS structures are delimited between two stable honeycomb branches with

different wave-vector structures. For a typical transition away from the DOS structure

of Fig. 7(a) and (b) to stable honeycomb solution shown in Fig. 7(c) and (d), we have

chosen the amplitude of A = 0.04, frequency of ω = 42 × 10−3t.u.−1 and duration

tpert = 10000.

Higher amplitudes of the modulation, for example A = 0.05, but the same frequency

of modulation, move the system to a second attractor possible as shown in Figs. 7(e)

and (f). It is interesting to note from Figs. 7(d) and (f) that the final stable honey-

comb patterns differ from each other in orientation and wave-number (respectively 0.858

and 0.844). These two wave-vectors coexist in the original DOS structure displayed in

Figs. 7(a) and (b). This is consistent with the general definition of defects formed

by the simultaneous presence of two attracting sets for a specific pattern differing by

wave-numbers [13]. Therefore, removal of defects from the original structure is, in fact,

nothing but a decomposition into the involved spatial modes. The corresponding inten-

sities in the transition from DOS to stable honeycomb solutions along with the holding
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Figure 7. (Color online) Defected honeycomb solution forming at 2C=19.02 (a) and

its far-field image (b). Stable honeycomb solutions obtained from applying a harmonic

perturbation of amplitude A = 0.04 (c) and A = 0.05 (e) along with their far-field

images in (d) and (f). The simulations are performed in a 128× 128 grid with 20λc of

size.

beam variations are shown in Fig. 8 for the two different perturbation amplitudes. To

further demonstrate that the two final stable honeycombs are indeed different solutions,

we have provided their phase evolutions in Fig. 9.

5. The control mechanism in the case of a finite pump

In order to guarantee that the control method introduced above is not affected by the

periodic boundary conditions used in the simulations, we have replaced the flat pump

with one of finite size and circular boundary closer to real experimental conditions. A

flat-top injection with rapidly vanishing tails is introduced to the simulations through:

PI(r) =
EI
2
{1− tanh [σ(r − r0)]} (5)

where σ and r0 regulates the size of the tail and flat part of the pump, respectively.

PI(r) replaces EI in Eq. 1. In Fig. 10(a) a structure formed by the two bistable patterns

separated by a front is displayed. By applying the control technique introduced in Sec.

III with A = 0.04, ω = 42×10−3t.u.−1 and tperp = 10000, a transition to a roll solution is

observed as shown in Fig. 10(b). By changing A to A = 0.085, ω to ω = 98×10−3t.u.−1,

and tperp to tperp = 5000 a transition to a honeycomb solution is obtained as shown in

Fig. 10(c). Note that the circular pump deforms the geometry of the honeycomb cells
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Figure 8. (Color online) Intensities associated to the solutions; from the defected

honeycomb state to the stable honeycomb solution (right axis) and the modulation

applied on the holding beam as the control (left axis). The amplitudes of control were

A = 0.04 and A = 0.05 respectively for (a) and (b) while the frequency was the same

for both (ω = 42×10−3t.u.−1). The control was on for tpert = 10×103 time units and

depicted by two vertical dashed lines. Fluctuations seen in the intensity of the initial

state is due to the slight scrolling of the defected pattern.

Figure 9. (Color online) Phase evolution of the output for the two modulation

amplitudes (A = 0.04 and A = 0.05 respectively for solid and dashed lines). It is

clearly seen that the initial solution is transferred to two honeycombs differing by their

phase (0.154 and 0.161) in addition to orientation and wave-numbers. Note that the

phase status of the initial DOS pattern is irregular in time and not shown here. The

dashed vertical line marks the end of modulation and the values are the same as Fig.

8.
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Figure 10. Honeycomb-Roll bistable pattern in presence of finite pump (a), the

final structure from transition to rolls with A = 0.04, ω = 42 × 10−3t.u.−1, and

tperp = 10000 (b) and the one of honeycomb at the end of modulation with A = 0.085,

ω = 98 × 10−3t.u.−1, and tperp = 5000 (c). For (a) and (b) we have used the values

2C = 19.55, σ = 10/λc and r0 = 9λc, while for (c) we had to use a lower value of

2C = 19.45 to ensure the stability of honeycomb solution since presence of circular

injection gives more stability for the roll solution by moving the system towards the

basin related to roll structures.

as they tend to be perpendicular to the boundary. The harmonic perturbation method

appears to be robust with respect to finite size spatial structures. If one removes the

circular boundary after the generation of the structure displayed in Fig. 10(c), a regular

honeycomb pattern is fully recovered. The harmonic perturbation method has also been

successfully applied to the case of removal of defects with finite size input beams.

6. Conclusions

Pattern multi-stability and sensitivity to initial conditions are generic features of diffrac-

tion in a cavity with a medium close to EIT. A mechanism to select single one of the

simultaneously present stable solutions and based on the harmonic perturbation of the

input pump has been proposed and tested in numerical simulations. In particular, we

have shown that by selecting appropriate amplitudes, frequencies and duration of the

control signal, one can induce transitions of structures formed by coexisting patterns

into either of their fundamental components. Simulations show that amplitude of the

perturbation is the key to select the desired solution while frequency can be kept fixed

to values close to the characteristic decay rates to the stationary patterns in the optical

cavity. The control method based on harmonic signals works by changing the

stability of one or more of the originally multi-stable states. Critical values

of the amplitude of the control signal then drive the dynamical trajectory of

the system towards one of the remaining attractors. We have extended this

technique to a spatio-temporal system with an infinitely large phase space

to attain a roll or a honeycomb pattern starting from configurations that

contained domains of both. We believe that the same technique can be general-

ized to the case of competition among three or more patterns rather than two pattern
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structures discussed in this paper. We have also discussed the extension of the proposed

control mechanism to remove defects from distorted patterns when two solutions of the

same kind but with different wave-vector structures are simultaneously present. This

gives the possibility of removing the defects by transferring the irregular state to one of

the stable solutions with a particular wave-number. Physical relevance of the proposed

control mechanism has been verified by using a pump with flat-top shape, finite size

and vanishing tails to avoid any consequences of periodic boundary conditions used in

the simulations.
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