

Bayesian Hierarchical Approaches for Multiple Outcomes in Routinely Collected Healthcare Data

The existence of large scale data sources containing the health records of thousands of patients providing the possibility of moving towards a more precise approach to medicine and a requirement to move beyond a single variable analysis to develop methods capable of analysis to develop methods capable of analysing multiple outcomes, providing the possibility of moving towards a more precise approach to medicine and a requirement to move beyond a single variable analysis to develop methods capable of analysing multiple outcomes, providing the possibility of moving towards a more precise approach to medicine and a single variable analysis to develop methods capable of analysing multiple outcomes, providing the possibility of moving towards a more precise approach to medicine delivery. Hierarchical Bayesian methods are a suitable approach for assessing outcome occurrence. Bayesian methods are also well suited to handling the analysis of constantly accumulating data, such as healthcare records.

Raymond Carragher^{1,2,4}, Tanja Mueller¹, Marion Bennie^{1,3}, Chris Robertson² ¹Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; ³Public Health and Intelligence Strategic Business Unit, NHS National Services Scotland, Edinburgh, UK; ⁴Health Data Research (UK)

Use routinely collected healthcare data to assess outcomes and risks for patients

• Stratify patients into similar groups Group similar outcomes (ICD.10) comparisons

Choice of Method: Bayesian analysis

- Outcome occurrence rates
- Multiple outcomes
- Hierarchical models
- Sharing and shrinkage
- Scanning large numbers of
- outcomes
- Suitable for accumulating data
- Decision support

Case study: Direct oral anticoagulant (DOAC) Scotland study (2011 – 2015)¹

Patient stratification				
Name	Sex	Age	Concomitant Medicines	
M/0-64/0-4	М	0-64	0-4	
M/0-64/5+	Μ	0-64	5+	
M/65+/0-4	Μ	65+	0-4	
M/65+/5+	Μ	65+	5+	
F/0-64/0-4	F	0-64	0-4	
F/0-64/5+	F	0-64	5+	
F/65+/0-4	F	65+	0-4	
F/65+/5+	F	65+	5+	

Outcome groupings (ICD.10)

Outcome	Grouping	Group description
Ischemic stroke	100-199	Circulatory system
Haemorrhagic stroke	100-199	Circulatory system
Systemic embolism	100-199	Circulatory system
Pulmonary embolism	100-199	Circulatory system
Myocardial infarction	100-199	Circulatory system
Transient ischaemic attack	G00-G99	Nervous system
Gastrointestinal bleed	BLEED	Bleeds
Other bleed	BLEED	Bleeds
Other ADR	OTHERADR	Adverse Drug Reaction

¹Mueller T, Alvarez-Madrazo S, Robertson C, Wu O, Bennie M. Comparative safety and effectiveness of direct oral anticoagulants in patients with atrial fibrillation in clinical practice in Scotland. British Journal of Clinical Pharmacology 2019; 85(2): 422–431. doi:10.1111/bcp.13814

Summary

Outcomes with increased/decreased rate compared to Rivaroxaban

Outcome	Grouping	Treatment	Increase/Decrease
Myocardial Infarction	Circulatory system	Apixaban	Increase
Other bleed	Bleeds	Apixaban	Decrease
Other bleed	Bleeds	Dabigatran	Decrease
Pulmonary embolism	Circulatory system	Dabigatran	Decrease

Myocardial infarction (Apixaban)

Cluster	$P(\theta < 0)$	$P(\theta = 0)$	$P(\theta > 0)$		
M/0-64/5+	0.000	0.000	1.000		⊢ ∎
F/65+/5+	0.000	0.000	1.000		⊦≖⊣
M/65+/5+	0.000	0.001	0.999		⊦ ∎-I
F/0-64/5+	0.002	0.012	0.987		├── ∎──┤
F/65+/0-4	0.005	0.018	0.977		├─── ■───┤
F/0-64/0-4	0.408	0.226	0.366	•	1
M/0-64/0-4	0.502	0.218	0.280	⊦•	 1
M/65+/0-4	0.726	0.168	0.106	•	
			-2.5	5 -2 -1.5 -1 -0.5 (0: Median) 0.5 1 1.5 2 2.5 3 and 90% HPI

Treatment	Grouping	Outcome	$P(\theta < 0)$	$P(\theta = 0)$	$P(\theta > 0)$
Apixiban	100-199	Myocardial infarction	0.000	0.000	1.000
Apixiban	100-199	Ischemic stroke	0.004	0.132	0.865
Apixiban	100-199	Haemorrhagic stroke	0.026	0.266	0.708
Apixiban	100-199	Systemic embolism	0.073	0.335	0.592
Apixiban	G00-G99	Transient ischaemic attack	0.086	0.801	0.113
Dabigatran	G00-G99	Transient ischaemic attack	0.056	0.840	0.104
Dabigatran	100-199	Ischemic stroke	0.046	0.899	0.056
Apixiban	100-199	Pulmonary embolism	0.582	0.367	0.050
Dabigatran	100-199	Myocardial infarction	0.088	0.872	0.041
Apixiban	BLEED	Gastrointestinal bleed	0.333	0.632	0.036
Dabigatran	OTHER_ADR	Other ADR	0.297	0.671	0.032
Dabigatran	100-199	Systemic embolism	0.420	0.550	0.030
Dabigatran	BLEED	Gastrointestinal bleed	0.296	0.680	0.023
Dabigatran	100-199	Haemorrhagic stroke	0.559	0.431	0.010
Apixiban	OTHER_ADR	Other ADR	0.821	0.173	0.006
Dabigatran	100-199	Pulmonary embolism	0.957	0.042	0.001
Apixiban	BLEED	Other bleed	0.954	0.045	0.000
Dabigatran	BLEED	Other bleed	1.000	0.000	0.000

Results

- Posterior probabilities are used to assess the association of outcomes
- with treatments. e.g. $P(\vartheta_{b\,i,h}^{c} > 0)$ Obtain estimates of rates for
- different patient stratifications
- Identify interesting outcomes
- Adjusting for multiple comparison issues.
- Provided the initial assumptions are correct.

All outcomes

