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Abstract—This paper concerns the comparison of two inverse
methods for the quantification of uncertain model parameters,
based on experimentally obtained measurement data of the
model’s responses. Specifically, Bayesian inference is compared
to a novel method for the quantification of multivariate interval
uncertainty. The comparison is made by applying both methods
to the AIRMOD measurement data set, and comparing their
results critically in terms of obtained information and compu-
tational expense. Since computational cost of the application
of both methods to high-dimensional problems and realistic
numerical models can become intractable, an Artificial Neural
Network surrogate is used for both methods. The application
of this ANN proves to limit the computational cost to a large
extent, even taking the generation of the training dataset into
account. Concerning the comparison of both methods, it is found
that the results of the Bayesian identification provide less over-
conservative bounds on the uncertainty in the responses of the
AIRMOD model.

I. INTRODUCTION

For the incorporation of non-determinism in numerical de-
sign models, two complementary philosophies are commonly
applied: the probabilistic and the possibilistic method. Proba-
bilistic methods start from assigning a likelihood to the uncer-
tain parameters of the numerical model under consideration
over a defined range, and are aimed at inferring the likelihood
of possible realisations of the model responses. Possibilistic
approaches such as interval methods on the other hand assign
crisp boundaries between which the non-deterministic model
parameters are believed to lie, without assigning a likelihood
to each value within this range. Consequently, these methods
are aimed at inferring the possible worst-case boundaries of
the model responses. Elaborate literature exists to date where
these concepts are compared both theoretically and practically
(see e.g. [1], [2]), even in the context of random processes and
interval fields [3]. However, the comparison of probabilistic
and interval inverse techniques for the quantification of uncer-
tain model parameters that are not directly measurable, based
on a set of measured system responses, is to the knowledge

of the authors limited to a single publication by Govers et al.
[4]. Therefore, this paper presents the comparison of Bayesian
inference, the most commonly applied probabilistic method
for performing inverse uncertainty quantification (UQ), with
a conceptually new method for the inverse quantification
multivariate interval uncertainty that was recently presented by
some of the authors [5]. This comparison is specifically made
using the AIRMOD test structure [4], [6]. Artificial Neural
Networks are trained to limit the computational cost that is
associated to both UQ procedures. The obtained results are
compared in terms of obtained accuracy, interpretation and
computational expense. Section II provides a concise explana-
tion of the AIRMOD test structure and data-set. The results of
the Bayesian inference are presented in section III. Section IV
presents the interval FE method and the novel quantification
method. Section V introduces the neural networks employed
in both methods to reduce the overall computational time, and
section VI compares the results obtained by both methods.
Finally, section VII lists the most important conclusions of
the work.

II. THE AIRMOD TEST STRUCTURE

The AIRMOD test structure, described in detail in [6],
consists of six beam-like components with bolted joint con-
nections, and effectively represent the main vibrational char-
acteristics of an airframe. The structure has been disassembled
and reassembled 130 times with identical nominal assembly
and tightening characteristics, obtaining a data set comprising
260 vibrational experiments from single point excitation at
two locations with the structure supported on soft bungee
cords to closely represent free-free boundary conditions. This
vibration experiments have been used in the two model up-
dating procedures in order to identify the possibilistic range
and probabilistic distribution of the model parameters of a
finite element. Through the updating procedure, the finite
element model can accurately represent the scatter in the
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eigenfrequencies showed by the experiments. The modes used
in updating were the lower modes with the generally simpler
shapes shown in 1. The first four modes are the rigid body
modes in yaw, roll, pitch and heave. Modes 5-8 include
the first two out-of-plane wing bending modes and the first
antisymmetric and the first symmetric wing torsion modes.
Mode 10 is the third wing-bending mode. Modes 11 and 12
are the first two in-plane wing bending modes and modes 14,
19 and 20 are local tail-plane modes. This combination of
modes ensures that the measured data includes information
from all the joints in strained conditions. The modes not
included are all the higher-order wing bending modes with
more complicated shapes that include also bending and torsion
of the tail-plane.

The finite element model used in the parameter updating
procedure is realized in NASTRAN and described in [7]. It
consisted of 1440 CHEXA and 6 CPENTA elements repre-
senting the main aluminium structure, 561 CELAS1 elements
that form the elastic connections between the elastic beams at
the joints, 55 CMAS1 elements and 18 CONM2 elements that
account for additional non-structural masses (such as cables,
sensors and bungee connectors) and 3 CROD elements for the
bungee chords. Stiffness and mass parameters of the model
has been selected for the updating procedure; the stiffness
parameters include the stiffness of the supports and joints,
and mass parameters are included to represent variability in
the position of cable bundles, screws and glue after each
reassembly of the structure. The reader might refer to [7] for
an insight behind the choice of these parameters.

III. BAYESIAN INFERENCE

Bayesian model updating, making use of the well-known
Bayes rule, came to the attention of the engineering research
community mainly through the pioneering work of Beck and
Katafygiotis [8], [9] in the late 1990s - a detailed up-to-date
exposition is given by Yuen [10]. The most serious obstacle
to practical engineering application is the excessive levels
of computer resource needed, but considerable progress has
been made in addressing it. The Bayesian updating starts by
assigning a prior probability distribution p(Θ|M), conditioned
upon a chosen mathematical model M, to a set of uncertain
updating parameters Θ. The prior incorporates known infor-
mation such as expert opinion or practical experience assumed
to be true. The posterior distribution is updated with some
experimental data D by means of the Bayes’ rule:

p (Θ|D,M) =
p (D|Θ,M) p(Θ|M)

p (D|M)
(1)

where p (D|Θ,M) is the likelihood to obtain the data D
when the value of the updating parameters Θ is fixed, and a
specific model M is chosen, and the denominator, known as
marginal likelihood or evidence, is a normalizing factor that
ensures that the posterior distribution integrates to one.

For the updating of finite element in a modal analy-
sis, the data D is usually the set of eingenvalue residuals
εi = zei − zmi (Θ), i = 1 · · ·n , where zei = ω2

i is the square

of the i-th measured natural frequency and zmi (Θ) = λi(Θ) is
the i-th eigenvalue of a finite element model. In the parameter
updating of the modal analysis, the likelihood function is often
chosen to be a multivariate normal distribution,

p (D|Θ,M) =

N∏
i=1

1

(2π)n/2|Σ|1/2
exp

(
−1

2
εTi (Θ)Σ−1εi(Θ)

)
(2)

where N denotes the number of data points, and the
data ε is assumed to be zero-mean and covariance Σ. The
normal likelihood assumption is justified on the basis that
the information entropy for a given mean and covariance is
maximized by a multivariate normal distribution. In addition,
it is customarily assumed in Bayesian model updating that the
data are independent and the likelihood is thus

p (D|Θ,M) =

N∏
i=1

1√
2πσi

exp

(
− ε2i

2σ2
i

)
(3)

It should be noted that is extremely impractical to solve
1 because it requires a solution of a complex and often
defined integral, and it is even more involved when multi-
degree of freedom structural dynamics problems are anal-
ysed. Thus, sampling techniques using modern variants of
the Markov chain Monte Carlo (MCMC) method are the
accepted procedure. In a first step, Metropolis-Hastings (MH)
sampling algorithms might be employed to generating samples
from a modified posterior without the necessity to solve the
highly complex normalization integral, but only by evaluating
the product of prior distribution function and likelihood in
the MH acceptance/rejection criterion. It can be shown that
convergence is asymptotic upon an equilibrium distribution of
the updating parameters with increasing numbers of samples,
and if the data is large and sufficiently informative, then con-
vergence is found to be independent of the prior distribution.
However, it is generally necessary to discard a considerable
number of initial samples in the initial burn-in period to ensure
convergence towards the target distribution.

The classical MH is not suitable for high dimensional
problems where the posterior is concentrated in a small region
of the sample space so that too many samples are rejected and
huge computing resource is required. This restriction has now
been overcome to a considerable extent by the development of
modern sampling routines efficient variants of the MH algo-
rithm. Beck and Au [11] introduced the adaptive Metropolis-
Hastings (AMH) method capable of simulating peaked, flat
and multi-modal posterior PDFs. A similar approach using
intermediate (or transitional) PDFs was followed by Ching
and Chen [12] with the transitional Markov chain Monte-
Carlo (TMCMC) method overcoming inefficiencies inherent
to the use kernel density estimation in AMH by a resampling
approach. The method introduces a series of intermediate
PDFs,
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Fig. 1. Mode shapes used in model updating

pk(Θ) = p (D|Θ,M)
βk p(Θ|M)

k = 0, · · · ,M; 0 = β0 < β1 < · · · < βk < · · · < βM = 1
(4)

where k denotes the step number of the intermediate pos-
teriors. The series of intermediate distribution starts with the
prior distribution and ends with the posterior, thus generating
samples from the updated model. In addition, convergence
is surely achieved and more effectively than traditional MH
since no burn-in is applied in the sampling scheme for the
intermediate distributions. However, many intermediate steps
might be required especially if the significant input space of
the prior distribution differs greatly from the posterior. In
this cases, simulation time can be efficiently improved by
employing meta-model while still maintaining the improved
convergence characteristics of the TMCMC algorithm.

IV. MULTIVARIATE INTERVAL IDENTIFICATION

This section explains the interval finite element method,
as well as the method that is used for the identification

and quantification of multivariate interval uncertainty based
on indirect measurement data. In the following, a model
parameter θ having interval uncertainty is denoted θI . Vectors
are expressed as lower-case boldface characters θ. For the re-
mainder of the text, interval parameters are either represented
using the bounds of the interval θI = [θ; θ] or the centre point
θ̂ = θ+θ

2 and interval radius rx = θ−θ
2 .

A. The interval finite element method

Suppose that a finite element (FE) model M is considered
to approximate the solution zm ∈ Rd of a (set of) differential
equations, parametrised by a vector θ ∈ F ⊂ Rk, with F the
subdomain of feasible parameters (e.g., non-negative contact
stiffness). In case the elements in the parameter vector θ are
uncertain, θ is modelled as an interval vector θI ∈ FI ⊂ IRk
when the interval paradigm is applied. Herein, IRk is the
vector space of k-dimensional interval vectors. As such, all
parameters θ of the model are considered independent by
definition. Then, the interval FE method comes down to
finding the solution set z̃m, which usually spans a general non-
convex region in Rd. This its computation is in general not



feasible within polynomial time, it is commonly approximated
by an uncertain realization set z̃m, which is obtained by
propagating q deterministic realizations zmi of the interval field
θI :

z̃m =
{
zmi | zmi =M(θi);θi ∈ θI ; i = 1, . . . , q

}
(5)

These q deterministic propagations should represent the
solution set z̃m as close as possible. In the case of strict
monotonicity of M() the transformation method [13] can be
used in this context.

B. Multivariate interval identification

When a truthfull estimation of z̃m is needed, the interval
uncertainty in θI has to be quantified accurately. In case
when a direct measurement of the variables is hard to obtain
(e.g., when connection stiffness is considered), this can be
performed by using indirect measurements of the system re-
sponses and a suitable inverse methodology. A generic method
was in this context recently introduced by some of the authors
[5], [14].

Hereto, a physical representation of the considered model
is tested t times in close correspondence with the numerical
model, in order to construct a measurement set z̃e. Then, the
non-determinism that is present in these replicated measure-
ments is bounded by its convex hull Ce. Similarly, also the
convex hull Cm of the uncertain realisation set z̃m is con-
structed. Moreover, the corresponding d-dimensional volumes
are computed, as they provide a measure for the enclosed
uncertainty. In fact, they can be regarded as an extension of the
1-dimensional interval width to general d-dimensions. These
computations are performed using the QuickHull algorithm.
However, since the time complexity of this algorithm is:

O
(
bv

d
2
c c/b

d

2
c!
)

(6)

with vc the number of vertices of Cm [15], care should be taken
when large-dimensional convex hulls need to be constructed.
Therefore, the dimension of the vector space Rd in which
these convex hull are computed, is reduced using the method
presented in [14]. Hereto, an orthogonal basis B is constructed
in Rdr , with dr << d, which is defined as:

B = {φe,d−dr ,φe,d−dr+1, ...φe,d} (7)

with dr chosen as such that all non-zero dimensions are
included in B, and φe the eigenvectors corresponding to
the dr largest eigenvalues of the covariance matrix of the
measurement data set z̃e. The number of needed eigenvectors
dr is selected as:

dr∑
i=1

λe,i
tr(Ξe)

≥ 1− ε (8)

with λe,i the ordered eigenvalues of the covariance matrix Ξe
of the measurement data set, and ε the reduction error. Sub-
sequently, d+r -dimensional sub-bases B+i are constructed from

B. Specifically, each possible combination of d+r eigenvectors
are hereto combined, yielding a total of

(dr
d+r

)
projections. As

such, the computational complexity of determining the bounds
on the uncertainty in the model responses becomes:

O
(
bv

d+r
2
c c/b

d+r
2
c!×

(
dr
d+r

))
(9)

which is a reduction of computational complexity as long as
d+r is sufficiently small. Then, the result of the interval FE
computation and the measurement data set are projected onto
each of these bases B+i and the convex hulls Ce and Cm with
their respective volumes is computed in this lower-dimensional
basis. Incorporating this in the optimisation problem, presented
in eq. (12), this yields:

δ(θI) =

(
dr

d
+
r

)∑
i=1

(
∆V 2

e (B+i ) + ω0 ×∆V 2
o (B+i ) + ∆c2(B+i )

)
(10)

with:

∆Ve = 1− Vm(θI ,B+i )

Ve(B+i )
(11a)

∆Vo = 1− Vo(θ
I ,B+i )

Ve(B+i )
(11b)

∆c =
∥∥∥ce − cm(θI)

∥∥∥
2

(11c)

and where (B+i ) is used to indicate that the respective multi-
dimensional volumes are computed using the ith projection
of the dr dimensional orthogonal basis. The total error is
computed as the sum of squared errors over all considered
projections. Furthermore, the parameters ce and cm are the
geometrical centres of mass of respectively z̃e and z̃m. Vo is
the multidimensional volume of the overlap z̃o between z̃e and
z̃m. The weight ωo can be used to tune the objective function
to prioritise maximising the overlap between Ce and Cm or
match the volumes of these respective convex hulls. When ωo
is set to a large value (say 1 · 1006), the term ∆Vo acts as a
barrier function, forcing Cm ⊇ Ce. The interval vector θI,∗ if
input parameters is finally determined as :

θI,∗ =argmin
(
δ(θI)

)
s.t. θI ∈ FI

(12)

Since the optimisation problem, introduced in eq. (10)
is high dimensional and generally not convex, the Particle
Swarm Algorithm was applied prior to calling fmincon, as
to ensure that the solver already converged to the vicinity of
the global minimum of eq. (10). Specifically, a swarm size
of 100 particles with a convergence criterion of 10 stalling
generations was found to be sufficient for this problem. From
this estimate of the global minimum, fmincon iterates on
the objective function until converged (i.e. until the KKT
conditions of the optimiser are satisfied [16]).



V. NEURAL NETWORK META MODELLING

For both the interval and the Bayesian method, a consid-
erable amount of deterministic model evaluations are needed.
Since each deterministic model evaluation takes approximately
10 seconds of wall-clock time on a Intel Xeon E5-1620 @ 3.70
GHz, performing both methods would take prohibitively long.
Therefore, it is proposed to use an artificial neural network
metamodel (ANN) for the prediction of the deterministic
responses of the FE model. Specifically a 2-layer (16:16:14:1)
Neural Network that maps each vector of uncertain model
parameter to one eigenfrequency of the FE model is con-
structed. This specific network lay-out is selected iteratively.
Bayesian reguralisation is applied to prevent over-training of
the network.

For the training of the ANN, deterministic samples are gen-
erated by the FE model of the AIRMOD from a search space
covering 0.1 and 10 times the deterministic initial estimate
of the model. Since the range of parameters over which the
ANN has to provide the model’s responses is comparably
large, and the location of the global optimum within this
range is unknown a priori, the challenge in training the ANN
lies in ensuring that the ANN also performs accurately on a
tighter interval around the exact global optimum. Therefore,
the training data set for the ANN is constructed by propagating
10.000 Latin Hypercube samples of the FE model parameters,
drawn from the search space. As such, a dense sampling of
the search space is obtained. Such a dense sampling is chosen
because the risk exists that adaptive training methodologies
yields an ANN that performs well over the entire sampled
domain, but not on smaller subdomains.

The generation of the dataset took approximately 24 hours
of wall-clock time using only a single core. As concerns
the training of the ANN, on average 90 s are needed to
train a single neural network using Bayesian regularisation.
As compared to solving the problem using the FE model,
this leads to a drastic reduction in wall-clock time, as the
generation of the samples and training of the ANN takes less
time as compared to solving one interval FE model with the
deterministic FE model.

The performance of the ANN is tested by performing
another 1000 deterministic samples on the deterministic FE
model that are disjunct with the training data. The correlation
R between the prediction of the ANN and the FE model is
computed for for each considered eigenfrequency, which is on
average 0.99989.

VI. COMPARISON OF BOTH METHODS

A. Interval identification dimension reduction

The application of the multivariate interval identification
methods needs a reduction of the dimension of the uncer-
tain realisation set prior to computing the convex hulls as
a direct result of the complexity of the applied QuickHull
algorithm (see eq. (6)). If all 14 selected eigenmodes, as
visualised in fig. 1, would be used for the identification, the
computation of a 14-dimensional convex hull is needed, which

is computationally intractable. Therefore, the dimension of
this measurement data set is reduced following the procedure
elaborated in section IV-B. In this context, application of
equation (8) yields that the original 30-dimensional dataset
(i.e., without the prior selection of the 14 eigenmodes) can
accurately be represented in a dr = 13-dimensional orthogonal
basis, as the corresponding reduction error ε is 1 · 10−03. This
also can be seen in figure 2, which plots ε as a function
of the reduced dimension dr. As can be seen, the gain in
accuracy in terms of modelled uncertainty when including
more than 13 responses is negligible, while the computational
expense increases drastically. However the gain from 14 seems
negligible at a first glance, it needs to be stressed that the
computation of the convex hull has an exponential time
complexity with respect to the dimensionality of the problem
(eq. (6)). Therefore, based on the singular value decomposition
of the covariance matrix of the measured eigenfrequencies of
the pre-selected 14 eigenmodes, an orthogonal basis B ∈ R13

is constructed according to eq. (7). Then, the measurement
data set z̃e is projected onto this basis.

Fig. 2. Reduction error ε as a function of the reduced dimension dr , applied
to the AIRMOD data set.

However, as the computation of a single 13-dimensional
convex hull would take prohibitively long when used in an it-
erative identification procedure, this dataset is further projected
onto lower-dimensional sub-bases B+i , as elaborated in section
IV-B. In this context, the dimension of these sub-bases d+r is
set to 2, as it this entails the largest gain in computation time.
The latter can be seen from equation 9, where it is clear that
a low d+r also yields the lowest time complexity. Then, based
on these lower-dimensional sub-bases, the objective function
that is shown in eq. (10) can be minimized to quantify the
multivariate interval uncertainty.

B. Results of the AIRMOD identification

Three aspects of the application of both inverse methods
for uncertainty quantification is discussed in this section.
First, a general conceptual comparison is provided. Then,
the computational cost and conservatism of both methods is
critically compared.



Bayesian Identification result
Convex hull of interval result
Measurement data

Fig. 3. All measured eigenfrequencies of the AIRMOD structure (as red dots) vs the bounds on the frequencies that are predicted by the iterval FE model
with the identified input intervals and 500 realisations of the eigenfrequencies obtained by sampling the posterior of the Bayesian identification

1) Conceptual comparison: Conceptually, the main differ-
ence of the Bayesian identification with respect to the interval
method, is that the former approaches the problem from inside.
By applying the Bayesian identification method, a degree of
plausibility for each model response is obtained by sampling
the posterior distribution of the uncertain model parameters.
As such, when this identification is accurate, also a measure
of the system reliability can be obtained. Interval methods
on the other hand approach the system from the outside, and
aim to encompass all possible responses of the model, given
bounds on the uncertain parameters. As such, they do not make
any inference on the relative likelihood of the occurrence of
each possible response value. Therefore, these results should
be interpreted in a worst-case sense. Evidently, when sufficient
data are available, as to ensure that an accurate prior can be
constructed, Bayesian methods should be applied. However,
when only insufficient or vague data are available, interval

methods have the upper hand, since they are in this case more
objective as no assumptions on the underlying probabilistic
nature of the data are needed.

2) Computational aspects: For the Bayesian inference,
uniform prior distribution are used for the input parameters,
to indicate virtually no knowledge of the AIRMOD physics.
The uniform distribution range is of 5% − 200% of the
nominal parameter values. Finally, the likelihood is defined
as in equation 3. 500 Markov Chain samples were used in
the TMCMC algorithm, and convergence to the posterior was
reached after 21 steps. For each iteration, the Markov chains
had an average length of 10 steps to move the sample from
the one intermediate distribution to the next, thus a total
of approximately 105 model evaluation were necessary. By
employing both neural networks and thread parallelism for
each Markow chain, the simulation took approximately 230
minutes with 12 threads running on a workstation having Intel



Xeon E5-xxx using CentOS 6 in combination with 64 Gb of
RAM. As such, the Bayesian method is more efficient in this
context. It should be noted however that 12 CPU threads where
used in this context, as compared to a single thread for the
interval identification.

For the interval identification method, the global optimum of
eq. (10) was found after 81 generations of the PSO algorithm
and another 33 iterations by fmincon, resulting in 9320 in-
terval function evaluations. This corresponds to approximately
420 minutes of wall-clock time on a desktop computer having
an Intel Xeon E5-1620 @ 3.70 GHz processor using only a
single thread of the CPU using XUbuntu 16.04 in combination
with 32 Gb of RAM. It should be noted that the PSO algorithm
is theoretically embarrassingly parallel, and that also a large
computational gain in the determination of the gradients of
eq. (10) in fmincon can be achieved do to the large number
of uncertain parameters. By using the ANN, the combined
effort of the training of the network and identification of the
uncertainty still proves to be less computationally intensive
as compared to propagating the interval uncertainty one time
using the deterministic FE model, as one solution of the
interval FE model would need 65536 deterministic FE function
evaluations.

3) Discussion of the results: Figure 3 shows all combi-
nations of selected eigenfrequencies of the AIRMOD model.
The replica from the measurement data set are indicated as
red dots, whereas the black lines indicate the convex hull
of the interval FE model response, obtained by propagating
the interval uncertain model parameters. The blue crosses
are 500 realisations of the eigenfrequencies of the AIRMOD,
obtained by sampling the identified posterior distributions. For
the application of the inverse interval method, it was assumed
that the masses at both wing tips are equal. This assumption
was not made for the Bayesian inference.

As can be noted, the identified interval model is capable
of accurately predicting the spread in the measured eigen-
frequencies that were incorporated into the analysis. It may
be noted that some values (e.g., considering the 14th or
19th eigenmode) lie outside the predicted intervals, whereas
other estimates are too conservative (e.g., the 8th or 10th

eigenmode). This is apparent contradiction is caused by the
fact that the objective function both aims at minimising the
mismatch in volume between the two convex hulls, as on
maximising the overlap between these convex hulls. However,
the multidimensional volumes cannot be matched perfectly,
since the set of measurement data does generally not contain
all necessary extreme responses, which biases the multidimen-
sional volume of the measurement data set with respect to
the multidimensional volume of the set of interval responses.
As such, some sort of equilibrium is found by the optimisers,
where the volume is matched at the price of losing some over-
lap. Moreover, it can also be noted that when the combinations
of the 7th−8th and 8th−12th eigenfrequency are considered,
the convex hull fails to encompass these results, whereas the
separate intervals on the parameter responses do provide an
accurate prediction of the uncertainty in the model response,

albeit somehow conservative. Since the 7th, 8th and 12th

eigenmode correspond to respectively anti-symmetric torsion,
symmetric torsion and wing fore-after bending modes, the
lack of accurately predicting the dependency between these
eigenfrequencies is most probably caused by the assumption
that was used in the interval identification that the masses at
both wing tips are equal.

From the results of the Bayesian inference, presented in
table I, it is also clear that the 500 samples that are obtained
by the Bayesian procedure provide a better match with the
set of measured replica. However, opposed to the interval
method, no finite bounds are given by the Bayesian method,
but rather a degree of plausibility for each response value. As
such, more samples are located in a region that corresponds
to the model parameters that were deemed the most plausible
by the Bayesian method. The over-conservatism of interval
methods compared to probabilistic methods in inverse UQ
was also noted by Govers et al. [4]. A possible explanation
for this phenomenon lies in the conceptual differences of
both methods, as elaborated earlier on. As a final remark,
that a dataset containing 86 specimens can be regarded as a
large dataset. It is well-known that Bayesian methods perform
very well in this context. Therefore, it could be interesting
to evaluate the performance of both methods when only a
small subset of this dataset is used for the identification and
quantification.

Table I shows the results of the interval identification and
Bayesian inference methods using the ANN surrogate model
on the AIRMOD data set. The results are scaled by the
deterministic initial estimate on the parameter values.

TABLE I
RESULTING PARAMETERS AFTER IDENTIFICATION

Interval UQ Bayes UQ
Param. θi θi mean(θ) std(θ)
θ1 0.94 1.19 1.31 0.35
θ2 0.98 1.07 0.84 0.20
θ3 1.20 1.57 1.45 0.11
θ4 0.55 0.68 0.68 0.33
θ5 0.55 0.68 0.53 0.31
θ6 0.19 0.33 0.13 0.01
θ7 0.54 1.39 1.49 0.78
θ8 0.81 0.93 1.00 0.17
θ9 1.02 1.13 1.24 0.12
θ10 1.02 1.13 1.16 0.11
θ11 1.73 1.99 1.57 0.34
θ12 0.47 0.65 0.58 0.30
θ13 0.91 0.98 1.39 0.75
θ14 1.81 2.27 2.04 0.41
θ15 0.44 0.61 0.54 0.16
θ16 0.42 0.50 0.34 0.08
θ17 0.01 0.31 1.07 0.72
θ18 0.59 0.77 8.28 3.52

The interval quantification, as already mentioned, provides
the analyst with crisp bounds between which the uncertain
value of the corresponding parameter is believed to lie. No
inference on dependence is made, due to the nature of inter-
vals. The outside approach of the interval method is thus also
visualised, as only inference on the extreme responses of the



structure is made.
As concerns the Bayesian result, the mean value (i.e., the

most plausible point) and the standard deviation are given.
It should be noted that the identified distributions for θ1
and θ2 are bimodal. The presented central moments should
therefore be interpreted with care in this context. Next to these
distributions, the Bayesian method also provides a measure of
correlation between the model parameters. In this context, it
was found that a high correlation (i.e., more than 75 %) exist
between θ1 and θ2, θ4 and θ5, θ9, θ10 and θ11 and finally
between θ14 and θ15. As is clear, the Bayesian method ap-
proaches the problem from the inside by assigning a plausibil-
ity distribution to each parameter value and infers dependence,
without making inference on the extreme responses of the
structure.

VII. CONCLUSION

This paper presents a comparison between the probabilistic
Bayesian method for uncertainty quantification with a novel
method for the identification and quantification of multivariate
interval uncertainty, based on the AIRMOD test data set. In
order to limit the computational expense of the identification
associated with both methods, Artificial Neural Networks are
trained using Bayesian regularisation to predict the compli-
cated dynamic behaviour of the AIRMOD structure within
limited computational cost. The paper gives an elaborate
theoretic overview of both the Bayesian and interval methods,
as well as discusses the application of both techniques to the
AIRMOD structure. Based on the comparison of the obtained
results, following conclusions can be made:

• It is possible to obtain a highly accurate quantification
of high-dimensional parameter uncertainty using Artifical
Neural Network surrogate models for the prediction fo the
dynamic response of the system. This is evidenced by
both the high R2 values of the ANN model prediction,
as well as by the accuracy of the performed uncertainty
quantification.

• The results that are obtained by applying the Bayesian
method are highly accurate, as evidenced by the tight
prediction of the uncertain dynamic behaviour of the
structure.

• The results that are obtained by applying the multivariate
interval identification method are also very accurate,
albeit being more conservative. The assumption of de-
pendency between two parameters of the model led to the
convex hull over two model responses not encompassing
the measurement data, whereas this was obtained in a
hypercubic sense.

Future work will be aimed at comparing the performance
of both methods in the context of scarce data. It is expected
that when decreasing the size of the dataset, at some point
the interval method will become more accurate since no
assumptions on the underlying probabilistic nature of the data
are needed. It will also be investigated if more efficient interval
propagation algorithms are applicable in this context.
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