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Abstract—This paper presents a framework for stochastic
analysis, simulation and optimisation of electric power grids com-
bined with heat district networks. In this framework, distributed
energy sources (e.g. wind turbines and storage systems) can be
integrated within the grids and their performance is modelled.
The effect of variable weather conditions on the overall system
cost and reliability is computed taking into account relevant
sources of uncertainty. A Monte Carlo Optimal Power Flow
simulator is employed and statistical indicators of the system cost
and reliability are computed. Reliability and cost expectations
are used to compare 4 different investments on heat pumps
and electric power generators to be installed on a real-world
grid. Generators’ sizes and positions are analysed to reveal the
sensitivity of the cost and reliability of the grid and an optimal
investment problem is tackled by using a multi-objective genetic
algorithm.

Keyworkds- Renewable Power; Interconnected Grids Re-
liability; Heat Pumps; Sensitivity; Stochastic Optimisation
Analysis;

I. INTRODUCTION

Future grids should provide reliable power supply at
lower achievable cost, mitigating power losses and overall
negative environmental impact. The present view on Smart
Grid projects (e.g. [1]) generally rates the power grid as
the most prominent infrastructure whilst different systems
(e.g. transportation and heat district networks) received a
relatively limited consideration. In the last years, however,
several researchers pointed out the benefits of combining
analysis of power grids to different networked systems which
are inevitably linked. For instance, integrated analysis of
interconnected heat and power networks [2]- [3]- [4] can
provide better insights on systems collective behaviours and
interactions. Similar conclusions can be obtained by analysis
of the so-called multi-energy-systems (i.e. systems for which
electricity, heating, cooling, fuels, transport optimally interact
with each other at various levels [5]).

Distributed Generators (DGs) and renewable energy
sources are broadly integrated within power girds and, if
optimally allocated and operated, can reduce electric energy

losses, minimise carbon dioxide emission and improve grid
reliability [6]- [7]. One of the most discussed issues of
renewable generators is the uncertainty associated with their
power outputs [8]- [9]- [10], which generally discourages
investments on high energy penetrations. In fact, renewable
power availability is generally hard to predict because
depends on variable and uncertain weather conditions. To
deal with this issue, robust stochastic frameworks specifically
designed to deal with the inevitable uncertainty associated
with renewable technologies, have been proposed [6]- [11]-
[12]- [13].

Efficient generation of heat and modern heat distribution
technologies (such as heat pumps and heat district networks)
are valuable resources for future grid sustainability. As a
matter of fact, the overall buildings energy consumption
shares a large amount of total energy demand of developed
countries (up to 40%) [14]. It is therefore of paramount
importance for the future grid sustainability to minimise
the overall buildings’ energy consumption and at the same
time maximise energy efficiency and heat supply reliability.
For this purpose, buildings envelopes can be enhanced
and efficient heating and cooling systems installed (e.g.
exploiting renewable air and ground energy [15]- [16]- [17]).
If energy-efficient technologies are employed, air source heat
pumps are some of the most interesting options available on
the market [15].

Air source Heat Pumps (HPs) are systems which transfer
heat from inside to outside a building (cooling) or from
outside to inside a building (heating) by exploiting a
refrigeration cycle. Air source heat pumps are relatively
convenient economically speaking and generally achieve high
coefficients of performance (i.e. efficiency). One of the major
downsides is that their operative states are strongly affected
by uncertain, variable ambient air temperate and, thus,
some sort of heating back-up system is normally required
to guarantee a reliable heating supply [18]. An increasing
number of research papers discussed the effects of combining
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heat pumps with renewable distributed electric generators
[19]- [20]. However, to the author’s knowledge, just a few
works embedded distributed air source heat pumps model
within stochastic frameworks for uncertainty quantification
(e.g. [21]- [22]). For instance, Essa and Cipcigan [21]
proposed a stochastic analysis and integration of Electric
Vehicles, Air Source Heat Pumps, and photovoltaic panels
in a low voltage grid. Cesena, Capuder and Mancarella [22]
proposed an optimisation framework for distributed multi-
energy-systems allocating combined heat power devices and
considering long-term uncertainty. More research should be
focused on improving and developing stochastic frameworks
for combined multi-energy-systems analysis and, to the
authors’ opinion, particular efforts should be devoted to the
minimization of costs while, at the same time, maximising
system sustainability and reliability.

This paper presents a computational framework for
stochastic simulation and optimisation of distributed
generators within interconnected heat and electric power
grids. The considered electric and heat power generators
can be allocated within the grids’ nodes. The renewable
power outputs are affected by uncertain weather conditions.
Relevant sources of uncertainty are considered within the
probabilistic model of the systems (e.g. electric and thermal
load variability, wind speed variability). Linkage functions
are specifically designed to couple the heating system to
the electrical grid and a Monte Carlo Optimal-Power-Flow
(MC-OPF) simulator is employed to assess the system
reliability and cost. A variance-based sensitivity analysis
method is adopted to reveal the effect of different generators
type, size and location on the system cost and reliability. To
conclude, a multi-objective optimisation method is adopted
to find a set of good investments strategies, i.e. the optimal
DGs expansion plan which minimises both the system cost
and unreliability index.

The rest of this paper is organised as follows: Section II
introduces the probabilistic model for the weather conditions,
the DGs and the heat power electric power coupling. The
MC-OPF simulator system reliability and costs are presented
in Section III. In Section IV an optimisation strategy for
the allocation of heat and power generators is introduced. In
Section V the Barry island case study is described and the
simulation results are presented. Discussions and conclusions
close the paper in Section VI.

II. STOCHASTIC WEATHER AND COMPONENTS
MODELLING

The structure of a power grid can be mathematically repre-
sented by a graph Gel(Nel,Eel), such that i are nodes within
the set of electric grid nodes Nel and l = (i, j) are links
(between nodes i and j) within the edges set Eel (set of electric
cables). Similarly, the structure of a heat district network can
be represented by a graph Gth(Nth,Eth), main differences is
that edges set is actualy a collection of pipes and that the node

set contains the heat network nodes rather than electric grid
busbars.
The framework here proposed is flexible and can account
for the unavailability of specific components (e.g. unplanned
maintenances for Heat pumps or WT). However, random
failures of components are neglected for simplicity and only
weather and operational variability accounted for in assess-
ing network reliability. Random components failures will be
accounted for in future extension of the work.

A. Weather Model

The weather model takes into account the variability of
the wind speed, solar irradiance on the Earth surface and
external air temperature. For simplicity, the weather condition
is assumed the same over both the grids Gel and Gth. This
assumption is justified for the medium size distribution
systems and heat district networks under assessment in this
paper.

The wind speed v is considered as a stochastic variable
and it is assumed to be Rayleigh distributed. The probability
distribution function (PDF) is as follows:

fv(v) =
v

σ2
v

e
−v2

2σ2v (1)

where fitting parameter σv can estimated using historical data
for the specific geographical location in exam.

The sun radiation s is assumed Beta distributed as follows
[6]:

fs(s) =
sa−1(1− s)b−1

B(a, b)
(2)

where a and b are the distribution parameters. During night
hours (e.g. t from 7pm to 8am) s(t) is set to 0.

The variability of the external air temperature Text can be
characterised using a normal probability distribution function
i.e. fT (Text). The mean µText and standard deviation σText
of the probability distribution function are fitted based on
historical data from the geographical location in exam.

B. Electric Power Distributed Generators

A probabilistic model for distributed electric power gen-
erators was proposed in [6] [7] and it is reported here for
completeness. Four types of electric power distributed genera-
tors are considered: Wind Turbines (WT), Photovoltaic panels
(PV), Storage systems (ST) and Electric Vehicles (EV).

1) Wind Turbines: The power produced by a wind turbine
depends on the (random) wind speed v and is determined as
follows [6]:

Pw(v) =


P ra
w

v− vci
vr − vci

if vci ≤ v < vr

P ra
w if vr ≤ v < vco

0 otherwise

(3)



where vci is the cut-in wind speed in [m/s], vr is the rated
wind speed in [m/s], vco is the cut-out wind speed in [m/s]
and P ra

w is the rated power output for the turbine in [kW].

2) Photovoltaic panels: The power output from PV de-
pends on the sun radiation s and on the PV parameters. The
adopted model is the following [7]:

Ppv(s,Text) = ncells · FF · V · I

Tc(s,Text) = Text + s(t)
Not − 20

0.8

I(s) = s(t) · (Isc + ki(Tc − 25))

V = Voc + kv · Tc

FF =

(
VMPP · IMPP

Voc · Isc

)
where Text is the external air temperature in [°C], Ppv is the
PV power output in [kW], ncells is its number of cells, Isc
short circuit current in [A], ki current temperature coefficient
in [mA/°C], Voc open circuit voltage in [V], kv voltage
temperature coefficient in [mV/°C]. VMPP , IMPP and Tc
are the voltage at maximum power [V], current at maximum
power [A] and the cell temperature [°C], respectively.

3) Storage Systems and Electric Vehicles: Storage systems
and, similarly, electric vehicles can inject or withdraw electric
power from the network. Three EVs operating states have
been considered: the vehicle to grid (V2G), the grid to vehicle
(G2V) and the disconnected operative states [23]. The discrete
probability mass for EVs operative state f(t,op) is defined as
follows [24]:

f(t,op) =


pV 2G(t) if op = V2G

pG2V (t) if op = G2V

pdcn(t) if op = disconnected
(4)

where op is an EV operative state, pV 2G(t) is the V2G
operative state probability at time t, pG2V (t) is the G2V
operative state probability at time t, pdcn(t) is the probability
of EV disconnected at time t (for the probability mass
values the reader is reminded to [6]) or [7]. The power
injected or demanded by EVs, Pev(op), is equal to plus
or minus the rated power P ra

EV [kW] if the vehicle are
in the discharging or charging states, respectively. If the
random operative state result disconnected, Pev(op) is set to 0.

The state-of-charge (Est) for a package of storage devices
is assumed uniformly distributed between 0 and the maximum
package capacity and, for simplicity, only discharge operative
state is considered. The PDF is defined follows [7]:

fst(Est) =


1

ES ·Ms
if 0 ≤ Est ≤ ES ·Ms

0 otherwise

t′r =
Est

P ra
st

; Pst(tr) = P ra
st ∀tr ∈ [0, t′r]

where ES is the specific energy of the active chemical in
[kJ/kg], Ms is the total mass of the active chemical in the
battery [kg], P ra

st is the rated power in [kW] and t′r is the
discharging time interval [h].

C. Heat Pumps

The thermal power output PHP of an air-to-water mono
compressor On-Off HP depends on the external air temperature
as follows [18]:

PHP (Text) = a1 · Text + b1 · T 2
ext + c1 · Tw

Similarly, the HP’s coefficient of performance at full load
(COPDC) depends on Text and a quadratic model is adopted
[18]:

COPDC(Text) = a2 · Text + b2 · T 2
ext + c2 · Tw

where Tw is the hot water temperature provided to the thermal
load and the regression coefficients a1, a2, b1, b2, c1, c2 are
constant for a given heat pump and water temperature Tw.
In the proposed model, Tw is assumed to be 35 °C and
constant, this is a realistic assumption when the HP is coupled
to a radiant floor heating loop during the heating season
[18]. The HP temperature operating limit (TOL) depends on
the specific heat pump. For the On-Off HP analysed in this
work TOL is equal to -10 °C and the heat limit external
temperature is assumed to be +16 °C. Thus, if Text >+16°C
and Text < −10°C PHP is set to 0.

D. Electric and Heat Power Loads

The stochastic component of the electric power demanded at
node i and time t can be characterised by a normal probability
distribution as follows [7]:

f(Pd,el,t,i) =
1√

2πσel,i(t)
e
−

(Pd,el,t,i−µel,i(t))
2

2σel,i(t)
2

Similarly, the thermal power demanded at node i and time t
is characterised as follows:

f(Lth,t,i) =
1√

2πσth,i(t)
e
−

(Pd,th,t,i−µth,i(t))
2

2σth,i(t)
2

where σel,i(t), µel,i(t), σth,i(t) and µth,i(t) are the historically
fitted parameters of the probability distribution at time t of the
day (see [6] for further details).

E. Heat and Electric Power Coupling

The relationship between the thermal power output (PHP )
of an heat pump is related to the electrical power demanded
by the pump (LHP,el) through the following relation:

LHP,el =
PHP

COPPL
(5)

where COPPL is the coefficient of performance of the pump
at partial loads. The COPPL takes into account the losses
linked to the on-off conditions when the pump is operated at
partial regime and can be obtained by weighting the COPDC



for a function of the thermal load, the HP power output and
a degradation coefficient (see [18] for further details).

In this model, when the thermal power demand exceeds
the HP production in i,that is PHP,i < Lth,i, the residual heat
demand in the node i is sattisfied by a back-up heating system.
For modelling simplicity only electric back-up systems are
considered in this work. If the heat power demand exeeds the
production the electric power required by the back-up system
is computed as follows [18]:

LBU,el(t) = Lth(t)− PHP (t) (6)

where index i has been dropped for ease of notation. The
aggregated electric power demand at each node is simply
obtained as follows:

Lel(t) = Pd,el(t) +LHT,el(t) +LBU,el(t) (7)

where Pd,el(t) is the random component of the electric power
demanded by node i at time t.

III. MONTE CARLO OPTIMAL POWER FLOW AND
RELIABILITY INDEX

In this work, a Monte Carlo Optimal-Power-Flow [6] is
employed to evaluate the effect of uncertainty over the system.
The MC-OPF procedure is summarised by the following 5
steps:

1 Initialisation: Provide DGs size, type and location. Input
number of Monte Carlo runs (NMC) and parameters of
the stochastic model.

2 Sampling: Random sample the uncertain weather
variables (s, v, Text), the time of the day (td) and the
grids components operative states (op(t), Est, Lth(t),
Lel(t)) from the stochastic model.

3 Loads/production: The weather conditions are used to
compute the available power from renewable generators
(see Section II-D and II-C). The coupling equations are
solved and electric load increased by the electric power
demanded by HPs and back-up systems.

4 Grid Analysis: The electric load and the DGs power out-
puts are forwarded to an optimal power flow (OPF) solver
in Eq.8. Outputs are the minimum operative cost for the
grid Cmin

O,i and an indicator of the system reliability and
the Energy-not-Supplied (ENS) computed as follows:

ENS =

Th∑
t=1

∑
j∈Nel

Lcut,j,t · Th

where Lcut,j,t is the load curtailed at node j at time t
and Th is the simulation time.

5 Collect Results: Steps 2, 3 and 4 are repeated NMC

times. The probability density function of the ENS and

for a global cost of the system are obtained and the output
expectations are computed as follow:

E[ENS] =

NMC∑
i=1

ENSi/NMC

E[Cglb] =

NMC∑
i=1

(Cmin
O,i +Cinv −Cinc,i)/NMC

where Cinv is the cost of the investment in distributed
generators, Cinc,i is a gain due to the incentives available
for producing power with renewable sources.

Clearly, the cost Cinv depends only on the initial investment
in distributed generators (types and sizes) and it does not
depend on the randomised scenario (no i subscript). On the
other hand, the incentive cost and operative cost depend on
the randomised amount of available renewable power gener-
ation obtained within each scenario. The investment cost and
incentive gain are computed as follows:

Cinv =
∑
J

(NJ ·Cinv,J/Tinv,J)

Cinc,i =
∑
J

IncJ · Pg,J

where NJ is the number of generators of type J installed
within the system, Cinv,J is the investment cost for the
generator type J and the total initial investment cost is
prorated hourly over the lifetime Tinv,J , assumed here
to be 10 years for each generator type J in the set
{PV,WT,EV,ST,HP} [25]. Pg,J is the total power
produced by generators type J within the simulation i. IncJ
are the available incentives for producing a unit of power with
J . IncJ is assumed here to be 2.61 [p/kWh] for renewable
air source heat power [26] and 2.4 [p/kWh] plus the price of
the electricity (computed as in [6]) which is saved thanks to
the renewable production.

The optimal power flow solves the economic dispatch
problem for the grid, i.e. it schedules the power produced by
the generators so that the operational cost is minimised. In this
optimal power flow formulation loads can be curtailed [6], this
is done if operational or physical constraints (e.g. line thermal
limits, generators capacity, etc.) cannot be fulfilled otherwise.
Mathematically, the minimization problem is defined as fol-
lows [27]:

Cmin
O,i = min

Pg,Lcut
f(Pg,Lcut) (8)

where Cmin
O,i is the minimum total operative cost for the power

grid. The cost function f depends on the power produced and
the load curtailed Lcut and has to be minimised when subject
to power generation constraints, line flow and nodal active
power balance constraints:

f(Pg,Lcut) =

Ng∑
g=1

Cg · Pg +

Nl∑
i=1

Ccut ·Lcut,i



P g ≤ Pg ≤ P g ∀ g = 1, ..,Ng

−P i,j ≤ Bi,jθi,j ≤ P i,j ∀ (i, j) ∈ Eel∑
g∈i

Pg +
∑
j 6=i

Bi,jθi,j +Lcut,i = Lel,i ∀ i ∈ Nel

where Cg and Ccut are the cost per-unit of power for the
generators and the load curtailed, respectively. Ng is the
total number of electric power generators allocated within the
electric grid, including both DGs and main supply generators.
P g and P g are the minimum and maximum active power
output of the generator g and Lel,i is the aggregated electric
load demanded at the power grid node i. P i,j and Bi,j

are the line (i, j) flow limit and susceptance, respectively.
The voltage phase difference θi,j = θi − θj is the difference
between voltage phases at nodes i and j.

IV. MULTI OBJECTIVE OPTIMISATION: OPTIMAL POWER
SOURCES ALLOCATION

The goal of the optimisation analysis is to identify an
optimal investment plan on distributed generators (i.e. optimal
HPs, WTs, PVs, STs and EVs sizes and positions) which
minimises both the E[ENS] and E[Cglb]. According to
earlier works [6], the two objectives appear to be concurrent
and, thus, no global optimum can be obtained (i.e. a solution
minimising both the system unreliability and the cost). The
optimisation problem is fairly complex due to the high
dimensionality of the design space (number of DGs types
and nodes) and due to the highly non-linear behaviour of
the grids and components, making its analytical solution not
treatable. For this reason, the Non-Dominated Sorted Genetic
Algorithm version two (NSGA-II) has been employed. The
algorithm allows a set of good solutions to be obtained in a
single run (i.e. moving toward the Pareto’s front) and it has
been proven to be very effective through the incorporation
of elitism in the search. Furthermore, it has no need for the
sharing parameter to be chosen a priori [7] which is a clear
advantage compared to previous NSGA versions.

The optimisation procedure can be summarised as follows:
First, the number of generations (Ngen), the population
size Npop, the number of MC-OPF runs are selected. A
population of chromosomes (i.e. decision variables) is
randomly generated and constrained between lower and an
upper limit which is fixed based on practical considerations
(e.g. maximum generator size or modularity constraints). The
information on the generators size and position is stored
within each chromosome as Chrom = [PV,ST,WT,EV,HP]
where, for instance, PV and HP are [1×|Nel|] and [1×|Nth|]
vectors, respectively. The ith value for PV (or HP) is the
number of PVs (or HPs) allocated within the ith electric
(or thermal) grid node. To conclude the initialization phase,
each chromosome Chrom is forwarded to the MC-OPF
(see Section III, and objectives (E[ENS] and E[Cglb])
evaluated as explained in Section II-C. In the following steps,
the evolutionary routine is repeated as follows. First, the

0.107 MWth

0.145 MWth0.145
MWth

0.107
MWth

0.0805
MWth

0.107
MWth

0.107
MWth

0.107
MWth

0.107
MWth

0.0805
MWth

0.0805
MWth

0.0805
MWth

0.0805
MWth

0.0805
MWth

0.107
MWth

0.107
MWth

0.107
MWth

0.107
MWth

0.107
MWth

0.107
MWth

Fig. 1. The Barry island power grid and heat network (modified from [2]). In
the figure are displayed links lengths, main electric generators positions and
the reference magnitude for electric and thermal loads at each node.

chromosomes are sorted and ranked based on non-domination
and crowding distance criteria. Then, the chromosomes with
the higher score are selected and the binary crossover and
polynomial mutation are performed to generate the offspring
population. Each offspring then evaluated using the described
MC-OPF and a fitness score is obtained. The offspring
population is mixed (set union) with the previous generation
of chromosomes. The chromosomes are newly sorted based
on non-domination and crowding distance and the Npop bests
are selected and the other discarded. The evolutionary routine
is repeated until the predefined number of generation Ngen is
reached.

V. CASE STUDY: THE BARRY ISLAND NETWORK

The Barry island combined heat-electric system [2] is
selected to test the framework. The layout for the multi-
energy system is presented in Fig.1. The heat district network
is composed of 32 nodes of which 20 are heat demand
nodes (i.e. aggregation of buildings’ heat loads). Differently
from Fig.1 and accordingly to [2], an additional heat power
demand is considered in node 7 and connected to the first
electric busbar (i in Fig.1). The power grid is composed of 8
bus bars, 3 main generator sources in nodes 2, 8 and 7 and
5 electric loads, lumped from the heat network as displayed
in Fig.1. The 7 electric cables current rating is 400 [A]
and resistances and reactances are R =0.164 and X =0.08
[Ω/km], respectively. For simplicity, the heat district network
pipes are neglected and only its nodes are considered in
this analysis. For further details on the system, the reader is
referred to [2].

The reference thermal and electrical power loads are re-
ported within Fig.1, adapted from [2]. Generally speaking,
changes in the load demand display both spatial and temporal



TABLE I
THE DGS’ MODEL DATA AND THE PARAMETERS OF THE STOCHASTIC

WEATHER MODEL.

Heat and Electric Power DGs’ parameters [6]- [18]- [23]
WT ST & EV PV ON-OFF HP

vco = 23.8 ES = 0.042 Voc = 55.5 a1 = 0.839
vci = 3.8 P ra

st = 0.275 IMPP = 1.38 a2 = 0.0874
vr = 9.5 Cinv = 6.76e3 Not = 43 b1 = 0.011
P ra
w = 50 Isc = 1.8 b2 = 12e-4

Cinv = 1.13e5 P ra
ev = 6.3 VMPP = 38 c1 = 0.877

Cinv = 1.65e4 ki = 1.40 c2 = 0.103
kv = 194 Tw = 35
kv = 194 Tw = 35

Cinv = 2.4e3 Cinv = 1e4
Parameters of the Stochastic Weather Model

Wind Sun Temperature
σv = 7.96 a = 0.26 µText = 6

b = 0.73 σText = 3

correlations, e.g. residential nodes will demand less power
during night hours. The power load is assumed distributed as
a normal at each grid’s node and at each hour of the day, mean
values and standard deviations are assumed to be a percentage
of the reference loads in Fig.1. Examples of thermal power
demanded and electrical power load samples over 10 days
simulation are presented in the upper and lower panel in Fig.2,
respectively. The parameters of the weather stochastic model,
DGs and heat pumps are reported in Table I.
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Fig. 2. An examples of random realisation of thermal power and nodal electric
power demanded at each node over a simulation time of 240 hours.

A. Results of the Stochastic Analysis

The uncertainty in the system reliability index and cost
is quantified using the Monte Carlo algorithm presented
in Section III and 4 cases have been analysed. In the first
case (C-1), the original network is tested (neither heat nor
electric power generators have been allocated). For the second
investment case (C-2), the electric grid invests on distributed
electric power generators (5 PVs 5 STs and 1 WT and 1 EV
in each node) but not on heat power generators. Case 3 (C-3)
accounts for an investment on both electric and heat power
generators (same as C-2 but 1 heat pump is allocated within
each node of the heat district network). For case 4 (C-4) only
heat pumps have been installed. The 4 different cases are
summarised using a simple vector notation as follows (see
Section IV):

C-1 [PV,ST,WT,EV,HP] = [0,0,0,0,0]
C-2 [PV,ST,WT,EV,HP] = [5,5,1,1,0]
C-3 [PV,ST,WT,EV,HP] = [5,5,1,1,1]
C-4 [PV,ST,WT,EV,HP] = [0,0,0,0,1]

The MC-OPF run number was set to 3000 and the results
of each run are the probability distribution function for the
ENS and Cglb. The convergence of the method is displayed in
Fig.3 for the 4 considered cases. The analysis confirms that the
system reliability and the cost are concurrent objectives within
the proposed model. In fact, a case with no investment (C-1 in
blue dotted lines) produced the lower expected cost and lower
grids reliability (i.e. higher E[ENS]) whilst the case with a
significant investment (C-3 in dashed yellow lines) resulted
in the higher reliability but also higher E[Cglb]. On the other
hand, C-2 and C-4 resulted in a compromise investment, i.e.
they improved less the system reliability but for a moderate
cost. The results pointed out that a combined investment on
HP and electric power generators can provide a significant
improvement in the system reliability. The expected values for
the system cost and reliability, the coefficients of variations
(CV ) and 95th percentiles (p95) for the 4 analysed cases
are reported in TableII. It can be seen that, although higher
expected reliability can be obtained by investing on DGs,
the CV increases when renewable and distributed generators
are allocated within the network. This indicates an inherently
higher variability of grids systems when renewable energy
sources are adopted which might also indicate a higher risk
of hazardous, unexpected low probability scenarios.
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Fig. 3. The E[ENS] and E[Cglb] for increasing number of MC-OPF runs
and the 4 considered investment cases.

TABLE II
THE RESULTS OF THE 4 INVESTMENT CASES ON HEAT AND ELECTRIC

POWER GENERATORS

Case C-1 C-2 C-3 C-4
E[ENS] 1110.4 793.7 498 723.9
CV [ENS] 0.59 0.85 1.18 0.87
p95[ENS] 2286 2178 1617 1779
E[Cglb] 179.5 203.2 209.7 203.8
CV [Cglb] 0.45 0.39 0.31 0.37
p95[Cglb] 291 302 289 296



B. Optimisation and Sensitivity Results

The sensitivity of the expected system cost and expected
unreliability to generators sizes and positions has been
assessed by adopting a variance-based sensitivity method
[28]. This method allows first order Sobol’s sensitivity indices
to be obtained (i.e. relative changes in outputs variances fixing
decision variables one-at-a-time) and with the advantage of
a relatively small computational cost. A Latin Hypercube
method [29] was used to sample 25000 realisations from the
design space (i.e. Chrom vectors) and each realisation is a
vector of 64 elements. The first 32 elements are electric DGs
numbers (4 for each of the 8 electric nodes) whilst the last 32
elements are the number of HPs which have been allocated to
the existing heat district network nodes. The number of PVs
and STs generators in each electric node can vary between
0 and 10 whilst for other generators (wind turbines, electric
vehicles and air source heat pumps) it can vary between 0 and
2. The expected cost and expected ENS have been estimated
using the Monte Carlo OPF method for each realisation.
The first order Sobol’s indices, i.e. Si = Var[E[y|xi]]

Var[y] , have
been obtained for each design variable xi and each output
y. In this analysis, the considered outputs y are the expected
ENS and expected Cglb and the sensitivity results are
presented in top and bottom panel of Fig.4, respectively.
It can be observed a sensitivity of the objective to specific
technologies. In fact, the allocation of wind turbines affects
the most the system reliability followed by heat pumps in
the heat district network. On the other hand, other generators
seem less influencing the system cost and reliability, probably
due to the smaller power output capacity and the limited
modularity allowed within this analysis (e.g. max 10 PVs
and 10 STs). In addition to a technological sensitivity,
we can also observe a nodal sensitivity (i.e. sensitivity to
a specific nodal allocation of heat pumps). Consider for
instance nodes 1, 2 or 3. Introducing HPs in those nodes does
not affect the system reliability and this can be explained
considering the topology of the heat district network. In
Gth, the nodes 1, 2 and 3 are not load-carrying nodes and
therefore allocate there HPs does not provide any benefit for
the system (also because pipes are neglected for this analysis).

The NSGA-II optimisation procedure starts by selecting
Npop, Ngen and NMC set to 500, 50 and 2000, respec-
tively. Each chromosome decision vector is, in this case, a
list of 64 integers which indicate the amount and type of
distributed generators allocated in each node. A maximum of
10 photovoltaic generators and storage systems are assumed
in each bus bar, whilst up to 2 wind turbines, electric vehicles
and air source heat pumps can be allocated. The fitness of
the best chromosomes evaluated within the last generation
are displayed in Fig.5. The y-axis contains the Energy-not-
supplied expectation and the y-axis contains the global cost
expectation; 3 solutions have been selected and displayed with
red diamond markers. A ‘best reliable’ solution with higher
reliability, a ‘best cheap’ solution having the lower cost (but
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Fig. 4. The first order sensitivity indices Si for the expected ENS (top
panel) and expected cost (bottom panel).
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Fig. 5. The 3 best chromosomes selected among the best front in the
generation of the NSGA-II procedure.
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Fig. 6. The renewable generator number, type and position for the 3 best
solutions selected.

more unreliable) and a third with a compromise cost and
reliability (see Fig.5). The generator sizes per each grids’ node
are presented in Fig.6 and statistical results retailed from the
MC-OPF are presented in Table III.

VI. DISCUSSION AND CONCLUSION

This paper presented a stochastic framework for simulations
and analysis of coupled electric and heat power networks.
A Monte Carlo optimal power flow simulator is used to
analyse different investment scenarios in heat and electric
power generation technologies. A probabilistic model to de-
scribe weather conditions and grid’s operations variability has
been proposed. This allows random realistic scenarios to be



TABLE III
LOW COST INVESTMENT , HIGH RELIABILITY INVESTMENT
AND THE COMPROMISE SOLUTION FOR THE BARRY ISLAND

NETWORK

Solution Reliable Compromise Cheap
E[ENS] 320 370 842
E[Cglb] 205 200 195
CV [ENS] 1.55 1.46 0.79
p95[ENS] 1302 1578 2520
CV [Cglb] 0.27 0.29 0.42
p95[Cglb] 287.1 284.3 301.1

generated by the simulator and uncertainty quantified in the
grids reliability and global cost. The proposed framework
has been applied to a representative case study: The Barry
Island power-heat network. Four different investment scenarios
have been analysed. Results show that a combined investment
on renewable heat and electric power generators provides
greater benefits for the system in terms of reliability, and
for a moderate cost due to available incentives. Sensitivity
analysis pointed out that installation of wind turbines and
heat pumps are affecting most the system reliability and that
the load-carrying nodes were the only relevant nodes for the
system outputs. To conclude, an optimisation strategy was
employed to obtain a set of best investments on renewable heat
and electric sources. The optimisation provides a set of good
investments, in terms of sizing and positioning of renewable
energy sources, which minimises both system unreliability and
global cost. The high dimensionality and the stochastic nature
of the fitness function have been successfully addressed by the
proposed method.
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