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Abstract. A computational framework for the reduction and computation of Bayesian Net-
works enhanced with structural reliability methods is presented. During the last decades, the
inner flexibility of the Bayesian Network method, its intuitive graphical structure and the strong
mathematical background have attracted increasing interest in a large variety of applications
involving joint probability of complex events and dependencies. Furthermore, the fast growing
availability of computational power on the one side and the implementation of robust infer-
ence algorithms on the other, have additionally promoted the success of this method. Inference
in Bayesian Networks is limited to only discrete variables (with the only exception of Gaussian
distributions) in case of exact algorithms, whereas approximate approach allows to handle con-
tinuous distributions but can either result computationally inefficient or have unknown rates of
convergence.

This work provides a valid alternative to the traditional approach without renouncing to the
reliability and robustness of exact inference computation. The methodology adopted is based
on the combination of Bayesian Networks with structural reliability methods and allows to
integrate random and interval variables within the Bayesian Network framework in the so called
Enhanced Bayesian Networks. In the following, the computational algorithms developed are
described and a simple structural application is proposed in order to fully show the capability
of the tool developed.
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1 INTRODUCTION

The fast technological growth that has characterized the last century has progressively pro-
vided more efficient and advanced instruments for everyday life as well as for industrial and
scientific applications. This progress goes along with an ever increasing grade of complexity
which concerns the engineering field on any level, from industrial processes and technological
installations to devices of common and daily use. To adequately predict the behaviour of these
systems, optimize their performance, estimate their reliability and evaluate the risks they are
subject to, are challenging tasks. Hence, it is of primary importance to provide tools suitable
for the accurate representation not only of systems but also of data available.

The first of these aspects focuses mainly on the representation, as precise as possible, of
the network of dependencies and interactions among the parts which determine the correct
functioning of the overall system. The success of Bayesian Networks (BNs) is linked to their
capability to satisfy this requirement. Thanks to the robustness of Bayesian probability, they
provide an efficient factorization of joint probability distributions exploiting information about
the conditional dependencies existing among the variables involved. In addition, their intuitive
graphical framework has consolidated their attractiveness in quite different fields of science and
engineering, from artificial intelligence to medical and economic areas [21].

On the other side, representing as faithfully as possible the information available is a crucial
aspect of modelling. In fact, including in the modelling the lack of knowledge (i.e. epistemic un-
certainty) generally leads to a drastic improvement in the accuracy and reliability of the results
even if at the cost of a higher computational effort. This approach results in larger robustness,
not only avoiding bias and assumptions which can easily lead to misleading results but also
allowing to reduce the cost associated with more meticulous measurements. Examples can be
found in the structural reliability area which, as the related scientific literature shows, provides
a fertile breeding ground for this kind of approach such as imprecise probabilities theory [1].

The core of this study is to provide an efficient computational tool which combines two solid
and well consolidated methods (e.g. Bayesian Networks and Structural Reliability methods
considering epistemic uncertainty), fully exploiting the advantages of both.

In the following, the theoretical background and the methodology adopted are firstly in-
troduced. The main features of the computational framework developed are then described.
Finally, a simple application is presented in order to provide a basis for discussion towards the
advantages and limitations of the implementation.

2 THEORETICAL BACKGROUND

This section is dedicated to the overall theoretical background of the methodology adopted.
A brief introduction to BNs and structural reliability methods is provided. Finally, the method-
ology adopted is described.

2.1 Bayesian Networks

BNs, also known as belief networks, are statistical models based on the use of directed
acyclic graphs for the representation of probability distributions. They provide the factorization
of the joint probability distribution associated with an event of interest exploiting information
about the conditional dependencies existing among the variables. This approach relies on a
double nature graphically represented by the structure of the network itself, to which quantita-
tive values are associated throughout the introduction of conditional probability distributions.
The structure of a BN consists of a variable number of nodes, each of which represents a ran-
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dom variable of the problem modelled. The variables should be interpreted in Bayesian terms
or rather can have different origins: for instance, they may be observable quantities, unknown
parameters or even mere hypotheses.

X1

X3 X2

Figure 1: Example of an elementary BN

The nodes of a BN are connected to each other by edges (commonly represented as arrows)
expressing informal or causal dependencies existing among the variables. Only nodes among
which exists some sort of dependency are linked, whilst those that are not joined refer to vari-
ables that are conditionally independent of each other. The edges are characterized by precise
directions coherent with the causal relationship of the variables connected. With regards to the
BN introduced in Fig. 1, the node X1 is called the parent of X2 and X3, which are also referred
to as its children. Nodes that have no parents are defined as the roots of the network. Gener-
ally, on the basis of the Bayes’ theorem, the joint probability modelled by any BN with nodes
X1, X2, ..., Xn can be expressed as:

P (x1...xn) =
∏
i

P (xi | pi) (1)

where pi refers to the outcomes assumed by the parents of the node Xi, whose state is repre-
sented by xi. Then, the joint probability associated with the BN of Fig. 1 is:

P (x1, x2, x3) = P (x1)P (x2|x1)P (x3|x1) (2)

In a BN each node is conditionally independent of its non-descendants given its parent variables,
satisfying the local Markov property [17]. The strength of the dependencies associated with
each cluster of parent-child nodes is represented by the conditional probabilities mentioned.
These can be of different nature according to the structure of the variables concerned. BNs
also allow the updating of the marginal probabilities of the variables involved on the basis of
new information that might become available. This way, introducing evidence in the model, it
is also possible to analyse ”what if” scenarios, as well as the propagation of the information
in the direction of interest. Different software packages have been developed which allow the
adoptions of several algorithms, both exact and approximate, for the computation of inference
in BNs. Please see Ref. [11] for a review of the software packages available. A complete
overview of Bayesian networks is provided by Pearl and Russell [15].

2.2 Bayesian Networks Enhanced with Structural Reliability Methods

As mentioned in Section 2.1, two options are available for BNs inference computation,
namely approximate and exact algorithms. The choice of one or the other approach entails
advantages and drawbacks: the approximate approach allows to perform the inference on con-
tinuous nodes using simulation techniques (e.g. Markov chain Monte Carlo methods) but can
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result either computationally inefficient or have unknown rates of convergence. On the other
hand, exact inference algorithms (e.g. junction tree algorithm) are robust and well-established
in scientific literature but, due to computational costs, restrict the use of probability distributions
to the discrete field with the only exception of Gaussian distributions [13]. In most cases, this
implies the necessity to discretize continuous random variables, impoverishing the quality of the
information [19]. The integration of the BN approach with system reliability methods allows
to avoid this practise, benefiting of capabilities of exact inference algorithms and overcoming
their drawbacks. The resulting strategy is commonly known as Enhanced Bayesian Networks
(EBNs) [18].

The role of system reliability methods is to reduce the initial EBN (including discrete as well
as continuous variables) to a traditional BN on which it is possible to compute exact inference.
More in detail, each node child of at least one continuous node has to be defined as a domain
(or a set of domains) in the outcome space of its parents. This way, the use of system reliabil-
ity methods, not only allows to compute conditional probability values (as in traditional BNs)
starting from continuous variables but also erases the dependency of the computed node from
its non-discrete parents. Hence, the links among continuous and discrete nodes can be com-
pletely removed, finally allowing the elimination of all not-discrete nodes. The joint probability

D1

D2

C1 D1

D2

Figure 2: Example of an elementary EBN on the left hand side and its reduced network on the right, where C1
refers to a continuous whereas D1 and D2 to a discrete node

associated to the reduced network in Fig.2 can be represented according to the integral of Eq. 1
and then computed as:

P (D1, D2) =

∫
C1

p(D1)p(D2|D1, C1)f(C1)dC1 (3)

where p(D1),p(D2|D1, C1) are the probability values associated to the discrete nodes D1,D2

whilst f(C1) is the probability density function associated to the continuous node C1. Consid-
ering the Markov condition, hence the independence of the node D1 from the continuous node
C1, the solution of the integral in Eq.3 is reduced to:

P (D1|D2) =

∫
C1

p(D2|D1, C1)f(C1)dC1 (4)

Bearing in mind the initial hypothesis, any state d2 of the node D2 can be expressed as domain
in the outcome space of the nodes C1 and D2. The integral can be then expressed as:

P (D1|D2) =

∫
Ωd2

D2,d1

f(C1)dC1 (5)



Silvia Tolo, Edoardo Patelli, Michael Beer

where Ωd2
D2,d1 defines the domain of the event D2 = d2 in the space of C1 given the event

D1 = d1. The integral in Eq.5 appears in the form common to structural reliability problems
and can be easily solved using structural reliability methods, as shown in the following section.
Since the reduction procedure implies the elimination of all continuous nodes, it is clear that, in
order to keep in the reduced network variables initially defined as continuous, it is necessary to
discretize them. In particular, this results necessary when such variables receive evidence or the
computation of their marginal probabilities is required. In light of this, discretization still plays
a major role in the modelling and computation of EBN.

2.2.1 Structural Reliability Methods

In the field of structural reliability, the domain bounding failure events is generally described
by the so-called limited state functions G(x), which represent the failure modes of the system
under study. In light of this, considering an event F defined as a domain in the outcome space
of m stochastic variables x = (x1, x2, ..., xm), the m-dimensional space can be divided in a
safe region, represented by the domain Ωs = {x : G(x) > 0}, whilst the failure domain can be
expressed as Ωf = {x : G(x) ≤ 0}. Hence, the probability of occurrence of the event F can be
quantified solving the integral of the form:

P (f) =

∫
x∈Ωf (x)

f(x)dx (6)

where f(x) is the joint probability density function associated to the m stochastic variables x.
Various methods for the solution of the integral in Eq. 6 are available such numerical integra-
tion techniques, Monte Carlo simulations [5] and asymptotic Laplace expansions [16]. Other
common solutions (e.g. First-Order and Second-Order Reliability Methods) rely instead on the
transformation of the reliability problem previously described into an optimization one [6]. In
this case, the random variables in the vector x are mapped into independent standard normal
variables and the minimum distance β between the limit state and the origin of the transformed
space identified (i.e. the so called reliability index). The probability of failure is then com-
puted on the basis of the assumption introduced. For example, in case of First Order Relia-
bility Method (FORM) a linear approximation of the limit-state function is adopted leading to
Pf = Φ(−β).

A more generalized approach which aims to take into account epistemic uncertainty has to
allow for uncertainty in both the structural parameters and those of the probabilistic models. As
for the probabilistic structural reliability, different methods are available, although the related
literature is by far more limited than the previous case. One of the most common approach
consists of treating epistemic uncertainty using set of descriptor values, such as in the case of
intervals [10], convex models [2], random sets [20] and fuzzy sets [22].

In this study only the epistemic uncertainty affecting the structural parameters of the model
has been taken into account. On the contrary, no imprecision is considered for the hyperparam-
eters of the random variables which hence are considered as precise probability distributions.
The implementation has been restricted to the adoption of two methods.

The first, developed by Luo et. al [8], is based on a nested minimization problem. Thanks
to the combination of uncertain parameters in the form of interval variables (v) represented
by convex models [7] and precise random variables (u), the limit state can be expressed as
a function of both the sets (G(u, v) = 0) and results in a cluster of limit-state surfaces in
the standard normal space. The method allows to seek the worst-case combination of interval
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variables value, identifying the limit state surface on which the most probable failure point lies.
The inverse of the normal cumulative distribution function of the distance between the identified
point and the origin of the standard normal space is assumed to be the upper bound of the failure
probability. This approach can be considered a more general case of the probabilistic method
FORM: in fact, when the epistemic uncertainty drops the intervals representing the uncertain
variables collapse into single values leading back to the traditional FORM procedure.

The second method adopted has been developed by De Angelis et al. [3] and provides the es-
timation of set-valued failure probabilities. The approach consists of coupling advanced Monte
Carlo methods (i.e. Adaptive Line Sampling) with optimization methods in order to estimate
the lower and upper bounds of the failure probability. Moreover, the method allows for both
imprecise probability distribution functions (i.e. credal sets) and sets of bounded variables.

3 NUMERICAL IMPLEMENTATION

The aim of this research is to enrich and implement computationally the existent methodol-
ogy described in section 2.2. To achieve this goal, structural reliability methods able to include
non probabilistic variables such intervals have been integrated into the BN approach. This way
not only continuous but also interval variables can be considered and included in the user’s
models, adding further novelty to the computational tool developed. The EBN methodology
previously depicted has been extended and implemented in the general purpose software Open-
Cossan in an object oriented fashion, ensuring programming flexibility and avoiding code du-
plication. OpenCossan is a collections of methods and tools under continuous development,
coded exploiting the object-oriented Matlab programming environment. It allows to define spe-
cialized solution sequences including any reliability method. Furthermore, thanks to the strong
flexibility, new reliability methods or optimization algorithm can be easily added. The com-
putational framework is organized in classes, i.e. data structures consisting of data fields and
methods together with their interactions and interfaces [14]. Objects (i.e. instances of classes)
can be then easily aggregated, forming more complex objects and being processed according
to the related methods in order to obtain the output of interest. The numerical implementation
developed in this study consists mainly of two classes: the first of these, Node, provides the ba-
sic input of the graphical model; the combination of more object Node allows the construction
of EnhancedBayesianNetwork objects, defined by their namesake class. These two classes to-
gether provide the graphical and numerical implementation of the Enhanced Bayesian Network
model. Moreover, their interaction with the reliability methods available in the OpenCossan
framework allows the reduction of the initial network to a BN, according to the methodology
previously discussed. Finally, the computation of inference in the network is carried out thanks
to the interaction of the tool with the Bayes’ Toolbox for Matlab [12]. Figure 3 depict the main
structure of the computational tool implemented.

This section aims to give an overall description of the computational tool presented. In the
following, the two main classes directly related to the implementation of graphical models are
described.

3.1 Node Class

The basic objects defined by the user in the network design phase belong to the class Node.
The main properties associated to an object Node are shown in Table 1.

The nature of the Conditional Probability Distribution (CPD) depends on the node type: in
case of discrete nodes it results in a traditional Conditional Probability Table (CPT), in case
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Inference

Output

Reduction

Node

+Sname

+Stype

+CPD

+Cparents

EnhancedBayesianNetwork

+Cnodes

+Mdag

+Mcorrelation

+computeContinuousNodes()

+discretizeNode()

+reduce2BN()

Marginal Probability Values

Bayes’Toolbox for Matlab

Bayesian Network
(reduced EBN)

+computeInference()

+introduceEvidence()

Reliability Toolbox

+Monte Carlo Methods

(Probabilistic)

+First Order Reliability Method

(Probabilistic)

+Advanced Line Sampling

(Hybrid)

+FORM with convex set mixed model

(Hybrid)

Figure 3: Simplified representation of the computational toolbox

Property Type Required Description
Sname String Yes Name of the node
Cparents Cell array of strings Yes Name of parent nodes
Cchildren Cell array of strings No Name of children nodes
CPD Cell array Yes Conditional Probability Distribution
Nsize Integer No Size of the node
Stype String Yes Type of node, i.e. discrete, probabilistic or

bounded
V bounds Array of doubles No Vector of bound values (in case of discrete or

discretized nodes)
Evidence Integer No Value of the evidence eventually introduced in

the node

Table 1: Main properties of a Node object
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of bounded nodes it contains interval or a vector of interval variables; likewise, the CPD of
probabilistic nodes can contains one or more random variables. In this latter case, OpenCossan
offers a further grade of flexibility providing the options of defining random variables from a
set of well-known distributions (specifying the moments), from data available or user defined
functions.

In case of nodes children of at least one continuous node (i.e. bounded or probabilistic), the
CPD is initially characterized by one or more scripts, representing the user defined models to be
evaluated for the construction of the definitive CPD. These are expressed in the form of strings
in which the variables involved are named according to the parent nodes.

3.2 Enhanced Bayesian Network Class

The object Enhanced Bayesian Network, which contains the model and the related informa-
tion, is built introducing as input the node objects previously defined. Furthermore, a correla-
tion matrix can be introduced: this way it is possible to consider the correlation among random
variables or among interval variables (in the form of convex sets), whilst for other forms of
correlation (e.g. between random and interval variables) it is necessary to represent it in the
model itself (e.g. introducing a common parent). Apart form the correlation matrix and the
node objects, other properties which characterize the EBN object can either be defined by the
user or extrapolated from the input node objects. Overall, the main property of an EBN object
are defined in Table 2.

Property Type Required Description
Cnodes Cell array Yes Cell array of Node objects
Cnames Cell array of strings No Cell array of nodes names
Ctypes Cell array of strings No Cell array of nodes type
V size Cell array Yes Array of nodes size
Mdag Matrix of integers No Directed acyclic graph adjacency matrix

Cevidence Cell array No Cell array of evidence values
Cobserved Cell array of strings No Cell array of observed nodes names
Nnodes Integer No Number of nodes in the network

Mcorrelation Matrix of doubles No Correlation matrix

Table 2: Main properties of a Node object

The methods of the class Enhanced Bayesian Network which directly modify the object can
be divided in three categories according to as many tasks: methods dedicated to the modelling of
the network, involved in the reduction procedure or in the inference computation. Not included
in this classification is the method dedicated to the visualization of the graphical model, based
on the use of the biograph toolbox for Matlab [9].

3.2.1 Modelling

The methods of this category have the capability of directly modify the topography of the
network. Hence, this includes the removal of old nodes from the network, the inclusion of
new nodes (e.g. those newly defined from the reduction procedure), the identification of barren
nodes (namely those which do not receive any inference and have no children and so do not
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give any contribution towards the computation of the model) and the dicretization of continu-
ous nodes. The latter, as specified in section 2.2, plays an essential role when a not-discrete
variable needs to be included in the resulting BN. More generally, it is an important tool of
modelling strategy (e.g. to preserve causal links in the reduced network). In order to minimize

A1

A2

A3 A4

A1

A2discrete

A2continuous

A3 A4

Figure 4: Graphical representation of the discretization procedure described

the impact of discretization on the quality of the information the procedure suggested by Straub
and Kiureghiam [18] has been implemented computationally and extended to interval variables.
Briefly, it consists in the substitution of the initial node with a discrete one (which inherit the
parents of the initial node) associated to one or more continuous children (which inherit the
children). The values of the discrete node CPT are equal to the cumulative probability values
of the initial random variable sub-domains of discretization (in case of interval variables all the
states are considered equally possible). Each of this state is then associated to a random vari-
able of the continuous child which is built from the starting distribution on the sub-domain of
discretization. This way neither the parents of the initial continuous nodes neither the children,
are affected by the discretization procedure. Figure 4 summarizes graphically the procedure
described.

3.2.2 Reduction

In case of discrete nodes children of at least one continuous node, the related CPT is com-
puted through structural reliability methods. The nature and method of the reliability analysis
to be carried out depends on the type of variables involved. If all the parents of the node to
compute are modelled as random variables, probabilistic models are built for each combination
of them. Hence, the mentioned models are subject to structural reliability analysis in order to
compute the associated probability. This latter can be evaluated using FORM (default option) or
traditional Monte Carlo approach (with a number of samples equal to 105 if not specified other-
wise). Likewise, in case of both intervals and random variables involved, the entries of the new
CPT can be computed using either the Advanced Line Sampling method [3] or the generalized
FORM [8] mentioned in section 2.2.1. In both the analysis the selection of one method is driven
by the user choice of focusing on near-real time output rather than more accurate results or vice
versa. In case of probabilistic nodes children of non-discrete variables, Monte Carlo methods
with 106 samples are used to collect data for the construction of the related random variables.
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Finally, in case of bounded nodes children of probabilistic and bounded parent nodes, a ran-
dom search is carried out in the parents domain in order to find the bounds of the new interval
variables.

The methods adopted for the computation of nodes children of at least one non-continuous
variable, according to their type, are specified in Table 3. This procedure not only assigns to

Node Type Parent Nodes Method New CPD
Discrete Random, Discrete MC or FORM CPT
Discrete Random,

Bounded,Discrete
FORM with convex set models or
Advanced Line Sampling

CPT

Bounded∗ Random,
Bounded,Discrete

Random Search Interval(s)

Random∗ Random, Discrete Monte Carlo Random Variable(s)
*to be removed after children nodes computation

Table 3: Methods for the computation of EBN nodes according to their type

the node under study the CDT computed through the reliability analysis but also ensures the
elimination of the causal links between the node and its initial continuous parents. Indeed, the
new discrete node inherits the discrete ancestors of its continuous parent nodes that, loosing this
way all continuous children, can be finally removed from the network since barren. In the end,
the elimination of all continuous nodes leads to the reduction of the initial Enhanced Bayesian
Network to a traditional BN.

3.2.3 Inference

The inference computation on the network benefits from the capabilities of the Bayes’Toolbox
for Matlab. Linking the OpenCossan implementation to the toolbox, the methods of this cate-
gory allow to introduce evidence in the network and compute marginal probability values for
the nodes of interest selecting the exact inference algorithms among those available (the default
option being the Junction Tree algorithm).

4 APPLICATION

A simple application is introduced in this section. Firstly the case study is described together
with the specifications of the input involved. The related EBN is then described and the results
presented and analysed.

4.1 Case Study and Model Implementation

The case study proposed consists of a simple structure subject to horizontal and vertical
loads. According to models available in literature [4, 18], three failure modes are considered
and described by as many limit-state functions:

g1(x) = r1 + r2 + r4 + r5 − 5h (7)
g2(x) = r2 + 2r3 + r4 − 5v (8)

g3(x) = r1 + 2r3 + 2r4 + r5 − 5h − 5v (9)



Silvia Tolo, Edoardo Patelli, Michael Beer

where R1, R2, R3, R4 and R5 represent the plastic moment capacities of the structure, whilst H
and V are the horizontal and vertical loads respectively. The failure of the structure occurs when
at least one of the failure modes is verified. In order to proof the Bayesian updating capabilities
of EBN additional information in the form of measurements (M4,M5) of the plastic moments
R4, R5 is assumed to be available. The measurements are considered affected by an error ε so
that:

M4 = R4 + ε (10)
M5 = R5 + ε (11)

Two cases have been analysed: in the first, all the variables are represented by random dis-
tributions (see Table 1). Conversely, in the second case the loads and the measurement error
are represented by intervals, whose range is equal to 2 standard deviations of the distributions
previously assigned to the same variables (see Table 2). In both examples the plastic moments
capacities are considered equicorrelated with a linear correlation factor equal to 0.3.

Variable Unit of Measurement Distribution Type Mean STD Correlation
Ri, i = 1...5 kN ·m Lognormal 150 30 0.3

H kN Gumbel 50 20 Independent
V kN Gamma 60 12 Independent

epsilon Normal 0 15 Independent

Table 4: Probabilistic models specification

The model related to the first case which takes into account only random variables, is shown
in Fig.5a. The discrete nodes (rectangular shaped in the graph) FailureMode1, FailureMode2,
FailureMode3 refer to the occurrence of structural failure according to Eq. 7,8 and 9 respec-
tively. The node E is the only other discrete node in the initial network and represents the
occurrence of the overall structural failure. The continuous nodes M4 and M5 refer to the
measurements available and result from the true value of the related plastic capacities and the
measurement error epsilon as shown in Eq.10. In order to take into account the evidence in-
troduced on the nodes M4 and M5 these latter are automatically discretized together with their
parents R4 and R5. On the contrary, the parent node epsilon is automatically eliminated from
the model after the computation of the children nodes M4 and M5, since it plays no role in the
inference computation neither in the structural connection of the evidence nodes to the overall
network (see Fig.5b). Finally, as shown in Fig.5c, the continuous nodes originated from the
discretization of M4 and M5 are eliminated since do not affect in any way the computation of
the model (i.e. barren nodes).

Variable Unit of Measurement Mean Lower Bound Upper Bound Correlation
H kN 50 10 90 Independent
V kN 60 20 100 Independent

epsilon 0 -30 30 Independent

Table 5: Specifications of the interval variables of the model considering epistemic uncertainty

Similarly to the previous case, the EBN considering epistemic uncertain variables (Fig.6a)
contains four discrete nodes initially. Nevertheless, the nodes H and V as well as the nodes
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R1R2R3 R4 R5V H

E

epsilon

M4 M5FailureMode1FailureMode2 FailureMode3

(a)

R1 R2 R3 VH

E

FailureMode1 FailureMode2FailureMode3

R5discrete

R5continuous

R4discrete

R4continuous

M5discrete

M5continuous

M4discrete

M4continuous

(b)

R1 R2 R3VH

E

FailureMode1 FailureMode2FailureMode3

R5discrete

R5continuous

R4discrete

R4continuous
M5discrete M4discrete

(c)
Figure 5: Evolution of the EBN model for the probabilistic analysis: (a) the initial model, (b) the model following
the discretization of the variables of interest,(c) the model after the elimination of barren nodes

epsilon and its children are considered to be bounded variables (oval-shaped in Fig.6). Apart
from this difference in the input, the procedure follows the same steps of the previous case, as
shown by Fig. 6.
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R1R2R3 R4 R5V H

E

epsilon

M4 M5FailureMode1FailureMode2 FailureMode3

(a)

R1 R2 R3 VH

E

FailureMode1 FailureMode2FailureMode3

R5discrete

R5continuous

R4discrete

R4continuous

M5discrete

M5bounded

M4discrete

M4bounded

(b)

R1 R2 R3VH

E

FailureMode1 FailureMode2FailureMode3

R5discrete

R5continuous

R4discrete

R4continuousM5discrete M4discrete

(c)
Figure 6: Evolution of the EBN model considering epistemic uncertainty: (a) the initial model, (b) the model
following the discretization of the variables of interest,(c) the model after the elimination of barren nodes

4.2 Results

Both the initial models, with and without interval variables, result in the reduced BN of
Fig.7. The numerical results have been computed using different structural reliability methods,
considering 11 states for the discretization of nodes R4, R5, M4, M5. Table 6 shows the results
of the analysis considering only probabilistic models for different values of evidence. The
analysis has been carried out adopting Monte Carlo methods with 106 samples and FORM. As
the figures show, the probability of structural failure grows for lower values of plastic moments
measurements, reaching a maximum of 0.211. Thanks to the flexibility of BNs is also possible
to analyse What-if scenarios. Table 7 shows the probability associated to each failure mode in
case of occurrence of overall structural failure: the most probable mechanism of failure is the
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E

FailureMode1FailureMode2 FailureMode3

R4discrete R5discrete

M4discrete M5discrete

Figure 7: BN resulting from the reducing procedure applied on the two case studies analysed

Event SRM No 70 > M4 > 50 150 > M4 > 170 150 > M4 > 170
Evidence 90 < M5 < 110 90 < M5 < 110 190 > M5 > 210

E MC 0.099 0.211 0.116 0.0520
E FORM 0.100 0.202 0.116 0.0520

Table 6: Results of the analysis considering only probabilistic model according to different values of evidence

third of the failure modes considered (described by Eq.9) for every combination of evidence
values.

If structural failure No 70 > M4 > 50 150 > M4 > 170 150 > M4 > 170
occurred Measurement 90 < M5 < 110 90 < M5 < 110 190 > M5 > 210

FailureMode1 0.093 0.107 0.095 0.085
FailureMode2 0.008 0.015 0.004 0.009
FailureMode3 0.909 0.902 0.912 0.910

Table 7: Probability associated to each failure mode in case of failure of the structure

In Table 8 the results related to the analysis with uncertain bounded variables are presented
for both the reliability methods adopted in the resolution of the model. As foreseeable, the

Event SRM No 70 > M4 > 50 150 > M4 > 170 150 > M4 > 170
Evidence 90 < M5 < 110 90 < M5 < 110 190 > M5 > 210

E Ref. [8] 0.491 0.582 0.499 0.472
E Ref. [3] 0.520 0.527 0.521 0.484

Table 8: Results of the analysis considering epistemic uncertainty according to different values of evidence

introduction of intervals instead of precise probability distributions leads to significant higher
values of the failure probability. Furthermore, the trend is much less sensible to fluctuations
along with the increasing evidence values: this possibly indicates that the epistemic uncertainty
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introduced affects strongly the output values, making the influence of the evidence introduced
almost negligible. In spite of this, it is still possible to observe a similar behaviour in the
probability of failure which decreases with the growth of the measurements values introduced.

5 CONCLUSIONS

A computational tool for the reduction of Bayesian Networks enhanced with structural re-
liability methods is proposed. The algorithms allow to include in the initial network discrete,
continuous as well as interval variables, providing a more accurate representation of the infor-
mation available. Robust structural reliability methods are integrated in the framework in order
to reduce the initial network to a traditional BN. This allows to adopt exact inference methods
in the computation of the networks without limiting the analysis to only discrete variables. Two
models of a same case study are proposed and analysed: the first relies only on probabilistic
models (hence on the adoption of traditional structural reliability methods), the second one takes
into account variables affected by epistemic uncertainty represented by intervals. The results of
the two models are computed, compared and discussed.

In the case of models including epistemic uncertainty, only the upper bound of the probability
computed through structural reliability methods is considered in the current implementation. On
the one side, this is supposed to result in a conservative approach in case of failure events, on
the other it leads to a loss of important information about the amount of uncertainty affecting
the output and could lead to misleading estimations. Current efforts are dealing with extension
of the methodology to allow the estimation of the probability bounds hence to represent the
propagation of epistemic uncertainty from the input to the output of the network.
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