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Survival signature-based sensitivity analysis of systems  
with epistemic uncertainties
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Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK

ABSTRACT:  The survival signature provides a basis for efficient reliability assessment of systems with 
more than one component type. Often a perfect probabilistic modelling of the system is not possible 
due to limited information, vagueness and imprecision. Hence generalized probabilistic methods need 
to be used. These methods allow to explicitly model the uncertainties without the need of unjustified 
hypotheses and approximation. In this paper, a novel and efficient sensitivity approach is presented. The 
proposed approach is based on survival signature, allowing to identify and rank components in a system. 
A numerical example is used to illustrate the above methods.

traditional probabilistic model with generalized 
methods, when the model involves uncertainties, 
Neumaier (1990) thought the definition of global 
sensitivity analysis is equivalent to that of inter-
val analysis. Probability bounds analysis, which 
is a marriage of probability theory and interval 
analysis, can also be viewed as a global sensitiv-
ity analysis by Ferson et al. (2002). Li et al. (2014) 
developed a technique called “contribution to 
failure probability plot” to detect the important 
aleatory and epistemic uncertain variables, and 
also measured the contribution of specific regions 
of these important input variables to the failure 
probability. The method of Monte Carlo simula-
tion and probability bounds analysis is applied in 
environmental risk and sensitivity assessments by 
Tucker et al. (2003).

All the methods discussed above can be applied 
to sensitivity analysis on a system. However, the 
computational costs of the traditional sensitivity 
analyses on systems are normally huge, especially 
when the systems consist of different component 
types. In order to overcome the restriction, sensi-
tivity analysis of systems based on survival signa-
ture is performed in this paper.

In recent years, system signature has been recog-
nized as an important tool to quantify reliability of 
system consists of exchangeable components. The 
main advantage of system signature is separating 
the structure of the system from the probabilistic 
model used to describe the random failure of com-
ponents. However, system signature assumes that 
all components in the system are of the same type. 
Real systems are generally formed by more than 
one component type, and therefore the application 
of system signature is not feasible.

1 intro duction

Systems are formed by a number of components 
interconnected by communication paths. It is 
essential to assess the importance of those compo-
nents for the reliability of the system over the time 
of interest. Moreover, the system component often 
has uncertain parameters and the uncertainty can 
propagate to the whole system, which makes it dif-
ficult to conduct sensitivity analysis on systems.

Sensitivity analysis is the general term for a sys-
tematic study of how the inputs to a model influ-
ence the results of the model, see Ferson et  al. 
(2006). Uncertainty exists widely in practical sys-
tems and networks, and it may be generated due 
to incomplete information, limited sampling data, 
ignorance and measure errors. Since the reliability 
and performance of network systems are directly 
affected by uncertainties, quantitative assessment 
of uncertainty is widely recognized as an impor-
tant task in practical engineering. Moreover, it is 
essential to know which component is critical to 
the whole system when considering uncertainties. 
Sensitivity analyses can be group two main groups: 
local and global sensitivity analysis. For Local 
Sensitivity Analysis (LSA), Tarantola et al. (2012) 
extended the concepts to a regional sensitivity 
analysis with consideration of how the input vari-
ables influence the variance of the model output. 
To capture sensitivities by a differential approach, 
Saltelli et  al. (2000) suggested a Global Sensitiv-
ity Analysis (GSA), which enlarges the scope for 
sensitivity analysis in computational modelling 
practice. Patelli et al. (2010) presented an efficient 
sampling-based algorithm for the estimation of the 
upper bounds of the total sensitivity indices. For 
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Coolen and Coolen-Maturi (2012) presented an 
improved method, which called survival signature, 
to conduct reliability analysis of systems with more 
than one component type. In the case of a single 
component type, the survival signature is closely 
related to system signature, whilst in case of more 
than one component type, the survival signature 
plays its advantages of not relying on an independ-
ent and identically distributed (iid) assumption 
between the different component types. Coolen 
et al. (2014) have shown how the survival signature 
can be derived from the signatures of two subsys-
tems in both series and parallel configuration, they 
developed a nonparametric-predictive inference 
for system reliability using the survival signature. 
Aslett et  al. (2014) presented the use of the sur-
vival signature for systems and network reliability 
quantification with both a nonparametric and a 
parametric approach.

One of the uses of sensitivity analysis is to iden-
tify the most critical components and then allocate 
resources to repair the systems. For this purpose, 
two sensitivity measures are introduced: relative 
importance index and relative sensitivity index. 
The proposed approach allows to consider epis-
temic uncertainties into account, which can get 
bounds of survival function and relative impor-
tance index.

The next session provides an introduction of 
survival signature and survival function with epis-
temic uncertainties. The proposed relative impor-
tance index and relative sensitivity index of each 
component in the network system is presented in 
Session 3. A numerical example is illustrated in 
Session 4. Session 5 closed with a discussion and 
conclusions.

2 sU RVIVAL FUNCTION WITH 
EPISTEMIC UNCERTAINTY

Suppose there is one network system with m  compo-
nents, TS  and Tj m:  expresses the random failure time 
of the system and the jth order of the m  random 
component failure times for j m= …1 2, , , , respec-
tively. The signature of the system is the m-vector 
q  with jth component q P T Tj S j m= =( ): . So qj  
denotes the probability of the network system fails 
at the time the jth component fails. The survival 
function of the system is:

P T t q P T tS j j mj
m>( ) = >

=∑ ( ):1 	
(1)

Consider a network system with K ≥ 2 types 
of m  components, with mk components of type 
k K∈ …{ }1 2, , ,  and m mkk

K =∑ =1 , and assume 
the failure times of the same component type 

are independently and identically distributed 
or exchangeable. The state vector of compo-
nents x  =  (x1, x2, …, xm) ∈ 0 1, }{ m  describes the 
status of the system with xi   =  1 if  the i th com-
ponent is in working state and xi   =  0 if  not. 
∅ = ∅( ) { } → { }x m: , ,0 1 0 1  defines structure func-
tion, the network system status based on the state 
vectors x. ∅ is 1 if  the network system provides the 
expected function and 0 if  it does not. We refer to 
the function ∅( )x  as the structure function of the 
network system.

The survival signature can be generalized with 
K ≥ 2 types of components by ∅ …( )l l lk1 2, , , , with 
l mk k= …0 1, , ,  for k K= …1 2, , , . Let Sl l lK1 2, , ,…  denote 
the set of all state vectors for the whole system for 
which x li
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Let C t mk k( )∈ …{ }0 1, , ,  denote the number of 
components of type k  in the system which func-
tion at time t, and assume that the components of 
the same type have the known CDF F tk ( ) for type 
k , then:
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Hence, the survival function of the system with 
K  types of components is:
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Epistemic uncertainty is uncertainty that comes 
from ignorance or incomplete knowledge. This lack 
of knowledge comes from many sources: in ade-
quate understanding of the underlying processes, 
imprecise evaluation of the related characteristics, 
or incomplete knowledge of the phenomena. Beer 
et al. (2008, 2013) addressed this problem by impre-
cise probabilities. While Patelli et al. (2014) merged 
with advanced Monte Carlo simulation and further 
stochastic techniques and implemented into Open-
Cossan software to deal with epistemic uncertainty.

Suppose F  and F  are non-decreasing functions 
from the real line R  into [0,1] and F x F x( ) ≤ ( )  
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for all x ∈R. Let [F F, ] denote the set of the non-
decreasing functions F  from the reals into [0,1] such 
that F x F x F x( ) ≤ ( ) ≤ ( ) . When the functions F  
and F  circumscribe an imprecisely known prob-
ability distribution, [F F, ] is called “probability 
box” or “p-box”. Using the framework of imprecise 
probabilities in form of a p-box proposed by Fer-
son et al. (2004), the lower and upper CDF for the 
failure times of components of type k  are denoted 
by F tk ( ) and F tk ( ), respectively. For instance, it is 
assumed that the failure time of one component is 
according to different distribution types, but there 
exist epistemic uncertainties within its parameters 
[ ],α α  and [ ],β β . The lower and upper CDF bounds 
can be obtained by calculating the range of all distri-
butions that have parameters within the above inter-
vals. For some distribution families, only two CDFs 
need to be computed to enclose the p-box. For most 
distribution families, however, four or more crossing 
CDFs need to be computed to define a p-box. This 
method can be used in cases where empirical infor-
mation is available. Figure 1 depicts a p-box whose 
bounds arise from a lognormal distribution within 
parameters α = [ ]0 5 0 6. , .  and β = [ ]0 05 0 1. , . .

Because of the iid assumption within failure 
times of components in the same type k , while 
full independence are assumed for components in 
different types, then for a monotonic system with 
l mk k∈ …{ , , , }0 1 , the lower probability for C t lk k( ) =  
is P C t lk kk

K( { })( ) ==1∩  and the corresponding 
upper probability is P C t lk kk

K( { })( ) ==1∩ .
Consequently, the lower survival function of the 

system at time t  is:
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and the corresponding upper survival function is:
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That is, the bounds of the survival function of 
a system with epistemic uncertainty on the failure 
times of components can be obtained by using Eq. 
(5) to Eq. (6).

3 sensitivity  analysis

An important objective of a reliability and risk 
analysis is to identify those components or events 
that are most important (critical) from a reliability/
safety point of view and that should be given prior-
ity with respect to improvements. Sensitivity analy-
ses aim at identifying how the output of a model 
changes due to variations of the input. These tools 
allow one to study the relationship among com-
ponents and the system, and to identify the most 
signification components affecting the reliability 
of the whole system. Sensitivity analysis has many 
manifestations in probabilistic risk analyses and 
there are many disparate approaches based on 
various measures of influence and response. Patelli 
et  al. (2014) pointed out that due to the obvious 
importance of sensitivity analysis, it is essential 
to identify and rank the parameters that contrib-
ute mostly to the variability of the output of the 
system.

Relative importance index RII , is here intro-
duced and adopted to quantify the difference 
between the probability that the system functions 
if  the i th component works and the probability 
that the system functions if  the i th component 
fails. The value of the difference can be defined as 
relative importance index RII ti ( ) of  the i th com-
ponent over the time. The RII  can be expressed as 
follows:

RII t P T t T t P T t T ti s i i s i( ) = > >( ) − > <( ) 	 (7)

where, P T t T ts i( )> >  represents probability that 
the system functions if  the i th component works; 
P T t T ti s i( )> <  represents the probability that the 
system functions knowing that the i th component 
has failed.

The measure RII ti ( ) expresses the system reli-
ability potential improvement that can be obtained 
improving the reliability of the ith component. In 
other words, it represents the reliability loss if  the 
component i  fails. This measure can be used for 
all types of definitions of reliability, and it can be 

Figure 1.  A p-box whose bounds arise from a lognor-
mal distribution within parameters α = [ ]0 5 0 6. , .  and 
β = [ ]0 05 0 1. , . .
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used for repairable and non-repairable system as 
well.

Moore et al. (1966, 1979) described the use of 
interval arithmetic to evaluate the ranges of func-
tions taking interval arguments. This approach is 
to generalize the definitions of the binary opera-
tions out of which the function is compared to 
handle interval inputs. For instance, for all real 
numbers a , b, c  and d  such that 0 1≤ ≤ ≤a b  and 
0 1≤ ≤ ≤c d , then

a b c d a d b c, , ,[ ] − [ ] = − −[ ] 	
(8)

According to the interval arithmetic, the relative 
importance index can also be adopted in presence 
of epistemic uncertainties in the failure times of 
components, the lower bound RII  of  the network 
system at time t  is:

RII P T t T t P T t T ti s i i s it( ) = > >( ) − > <( ) 	
(9)

and the corresponding upper bound RII  is:

RII P T t T t P T t T ti s i i s it( ) = > >( ) − > <( ) 	
(10)

The overall effect of the epistemic uncertainty 
can be measured by:

RSI t RII RIIi i i( ) = ( ) − ( )t t
	

(11)

From the equation above, the relative sensitiv-
ity index RSI  is a positive value and it quanti-
fies the effect degree of each component contains 
parameters uncertainties, i.e., the bigger value of 
RSI ti ( ), the bigger influence of the i th component 
with uncertainties to the whole system at a specific 
time t, and vice versa. Moreover, the relative sensi-
tivity index can be introduced to conduct sensitiv-
ity analysis on different systems.

4  NUMERICAL EXAMPLE

Now illustrate the above approaches using the sys-
tem layout given in Figure 2, with K = 6 types of 
components.

It is assumed that components with the same 
type have the same failure time distribution. There 
are so many influential factors affecting the value 
range of parameters in the real world, which 
causes epistemic uncertainties. If  the system under 
an ideal condition, the component has higher 
parameters, while if  it is affected by temperature, 
acid rain, man-made sabotage, different working 
environment or the other influence factors, the 
component has lower parameters. Therefore, it is 

necessary to take the epistemic uncertainties into 
account when considering the failure time distribu-
tion parameters of each component in the system. 
Now let suppose only intervals of the distribution 
parameters of the failure times are known. These 
parameters are shown in Table 1.

Since the upper and lower bounds of parameters 
reflect the ideal and bad work conditions of the 
system respectively. As a result, this leads to upper 
and lower survival functions of the system with 
epistemic uncertainties, see Figure 3. It is obvious 
that the interval inputs can get interval outputs.

Now taking the upper and lower bounds of each 
component failure time parameters in Table 1 into 
account, it is easy to get the range relative impor-
tance index values of each component, just as 
revealed in Figure 4 and Figure 5.

From the above two pictures, it is cleat relative 
importance index values are difficult to express the 
sensitivity degree of component with epistemic 
uncertainties. So relative sensitivity index values 
can be calculated and plotted, as Figure 6 depicts.

It is clear from the above figure that which com-
ponent with uncertain parameters has bigger influ-
ence degree to the system at different time. At the 
beginning time, the relative sensitivity index values 
of C5 and C6 are much bigger than other compo-
nents, and then the influence degree of uncertain-
ties within these components decreases. As time 
goes on, the relative sensitivity index values of 
components C1, C7 and C13 are the biggest, which 

Figure 2.  A thirteen components system with six differ-
ent component types, while the component type is inside 
the rectangle.

Table 1.  Components failure time distribution param-
eters bounds of the system.

Component  
name

Distribution  
type

Parameters

(α,β) or λ

T1 Beta [1.2,1.5] [1.5,2.1]
T2 Weibull [1.0,1.6] [2.1,2.5]
T3 Exponential [0.4,1.2]
T4 Beta [1.3,1.8] [2.3,2.9]
T5 Gamma [1.2,1.4] [2.8,3.3]
T6 Exponential [0.8,1.3]
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means the uncertain parameters have the biggest 
influence degree to the whole system during that 
period. While for components C9, C10, C11 and 
C12, the relative sensitivity index values are always 
lower than other components, and the values are 
close to 0. However, C12 is more sensitive than C10 
and C11, while the RSI values of C12 are always 
less than C9. Although C8 always has smaller val-
ues than C4, they have the same trend. For C2 and 
C3, RSI values are between C4 and C8 at first time 
and then decrease between C8 and C9.

5  CONCLUSIONS

In this paper an efficient approach for sensitivity 
analysis has been presented. The method is based 
on survival signature. Survival signature has been 
proven to be an efficient method to estimate the sur-
vival function of systems with multiple component 
types. Conducting sensitivity analysis on systems by 
introducing survival signature is a novel way.

In addition, here the effect of imprecision as 
incomplete data has been taken into account. As a 
consequence, lower and upper survival functions of 
the network system can be obtained. In this paper, 
both relative importance index and relative sensi-
tivity index of the i th component is introduced to 
identify the most “critical” network system com-
ponent at a specific time t. This allows an optimal 
allocation of resources for repair, maintenance and 
inspection. When taking the epistemic uncertainties 
into account, the upper and lower relative impor-
tance index of the i th component in the system are 
obtained. This is a novel and efficient way to see 
the sensitivity of each component at different time, 
so it is easy to know which component is the most 
critical one to the whole system.

Figure  3. U pper and lower survival functions of the 
system.

Figure  4. U pper and lower relative importance index 
values of components C1, C2, C3, C4, C5, C6, C7  
and C13.

Figure  5. U pper and lower relative importance index 
values of components C8, C9, C10, C11 and C12.

Figure  6.  Relative sensitivity index values of compo-
nents C1 to C13.
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Further research may focus on survival signa-
ture used in repairable systems.
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