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Abstract. Synthetic Aperture Radar (SAR) image segmentation is an important 

step in SAR image interpretation. Common Patch-based methods treat all the 

pixels within the patch as a single category and do not take the label consisten-

cy between neighbor patches into consideration, which makes the segmentation 

results less accurate. In this paper, we use an encoder-decoder network to con-

duct pixel-wise segmentation. Then, in order to make full use of the contextual 

information between patches, we use fully-connected conditional random field 

to optimize the combined probability map output from encoder-decoder net-

work. The testing results on our SAR data set shows that our method can effec-

tively maintain contextual information of pixels and achieve better segmenta-

tion results. 

Keywords: SAR image segmentation, encoder-decoder network, fully-

connected CRF 

1 Introduction 

Synthetic Aperture Radar (SAR) is an advanced instrument for earth observation and 

is widely used in various areas of the country’s economy and defense construction 

[1,2].  SAR image segmentation plays an important role in SAR image interpretation 

[3] and it is a prerequisite for many further applications. For example, in the task of 

assessing crop coverage, different types of crops need to be segmented first [4] and 

areas with oil slick need to be first segmented when detecting slick on the sea surface 

[5]. 

The segmentation of SAR image means categorizing SAR image pixel by pixel, 

meanwhile maintaining the spatial structure of different regions. Patch-based methods 

are commonly used in recent research. These methods mainly compose of three steps: 

(1) divide the whole SAR image into patches; (2) extract the feature of each patch for 

classification; (3) combine the classification results of patches into segmentation re-

sults. For example, Geng [6] proposed a deep convolutional autoencoders (DCAE) to 

extract and optimize patch features. DCAE consists of a feature extractor, an average 

pooling layer, and sparse autocoders. The feature extractor extracts gray-level 
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cooccurrence matrix (GLCM) and Gabor features from images patches. The pooling 

layer conducts scale transformation. And the sparse autocoders are used for feature 

optimization. In [7], the author uses the pretrained Alexnet to extract patch features. 

K-means clustering is then applied for visual word encoding. Finally, a Naive Bayes-

ian classifier is adopted to classify the coded patches. In [8], a hierarchically adversar-

ial network is introduced to extract features of superpixels. Duan [9] integrates dual-

tree complex wavelet transform into convolutional neural network as a hidden layer to 

improve the feature extraction ability of the network. Inspired by biological vision 

system, Gao [10] presents a hierarchical method for river detection, where biological-

ly visual saliency modeling is used to extract superpixels’ features. However, a com-

mon drawback exists in these patch-based methods. Although the patch is relatively 

small, it may still contain different categories of pixels. The accuracy of segmentation 

results will be reduced if treating the whole patch as a single category.  

One way to overcome the above disadvantage is to adopt pixel-wise segmentation 

methods. In the field of optical image segmentation, pixel-based methods are main-

stream. In these methods, the original image is fed as input of specially designed con-

volutional neural network. The feature extraction process is automatically accom-

plished through hidden layers. And the pixel-wise segmentation result is obtained 

from the output of the network. For example, Long [11] proposes a fully convolution-

al network (FCN) for semantic segmentation of optical images. By replacing the ful-

ly-connected layer with convolution layer, the input image size of FCN can be arbi-

trary. The pixel-wise segmentation results are acquired directly from the output of 

FCN. In [12], the author proposes a U-shaped convolutional neural network, called 

Unet. Unet first downsamples the input image to small feature maps and then upsam-

ples them to pixel-wise segmentation results. It achieves good performance in bio-

medical image segmentation. Segnet [13] is a fully convolution network with encod-

er-decoder structure. It is initially used to deal with the semantic segmentation tasks 

of driverless vehicles or intelligent robots. The structure of its encoder and decoder is 

symmetrical. To make the segmentation result more accurate, the spatial information 

saved by the downsampling layer of encoder is then utilized in the upsampling layers 

of the decoder. In this way, more accurate segmentation result can be achieved by 

Segnet and it runs faster as well. The pixel-based method in optical image segmenta-

tion includes mainly two benefits. The first is that it is an end-to-end model that 

makes full use of the strong feature extraction ability of convolutional neural network. 

The second is that it can directly output pixel-level segmentation results, which makes 

the segmentation result more accurate. However, for high-resolution SAR images, the 

computational cost is unacceptable if we directly take the whole SAR image as an 

input. In order to address this problem, we can first divide the SAR images into 

patches and get the pixel-level segmentation results of patches through the network. 

Final segmentation results can be obtained by combining them together. But in this 

way, the spatial relationships between patches is neglected, which makes the segmen-

tation results of neighbor patches not consistent enough.  

Conditional random field (CRF) is a discriminative model based on undirected 

graph. It can naturally combine the feature information of image patches and contex-

tual information between patches to model the posterior probability of labels. The 
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traditional CRF model used in SAR image segmentation is based on patches. For 

example, in order to effectively integrate contextual prior into segmentation process, 

Chu [14] combines CRF with Bayesian network to optimize the over-segmented SAR 

images. However, patch-based CRF is not suitable for the pixel-wise segmentation in 

this paper. In [15], a pixel-wise CRF called fully-connected CRF with gaussian edge 

potentials is proposed. In addition to taking pixel-wise features into consideration, this 

model can integrate the spatial relationship among all pixels to optimize the segmen-

tation result. Besides, an optimization algorithm is also proposed to make inference of 

pixel-wise CRF feasible.  

For the above reasons, in this paper, we first divide the original SAR image into 

patches so as to reduce the computational complexity. Then we choose Segnet to 

conduct pixel-level segmentation on the patches. In order to further utilize the contex-

tual information between patches and improve the neighborhood label consistency, 

we use fully-connected CRF to optimize the whole combined segmentation map.  

The segmentation results of our approach show that we can obtain more accurate 

segmentation results within patches by using Segnet and achieve better neighborhood 

label consistency among different patches by adopting fully-connected CRF. 

2 Proposed method 

 

Fig. 1. The flow diagram of our method 

The flow diagram of our segmentation method is shown in Fig. 1. In our approach, 

the original SAR image is first cropped into small image patches. Then these patches 

are fed into the encoder-decoder network, i.e. Segnet, to obtain patch-wise probability 

maps, which show the probability that each pixel belongs to different categories with-

in the patches. The combined probability map, together with the grayscale and posi-

tion features of the original SAR image pixels, are fed into fully-connected CRF for 

optimization. Final segmentation results can be obtained after several iteration steps 

using fully-connected CRF. 
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2.1 Encoder-decoder network for pixel-wise segmentation 

For pixel-wise segmentation network, we use Segnet proposed in [13], which 

achieves pixel-wise segmentation through end-to-end training. The network can be 

divided into two parts: encoder and decoder. The specific structure of these two parts 

is shown in Fig. 2. The encoder structure includes the first 13 convolution layers in 

VGG16. Five pooling layers is adopted to reduce the size of the feature maps. The 

structure of the decoder is symmetrical to the encoder, which consists of five upsam-

pling layers and 13 convolution layers. The upsampling layer utilizes the position 

information stored during pooling. In this way, the spatial relationship can be main-

tained when upsamping the feature maps to the original size. Besides, the number of 

the training parameters are greatly reduced. The feature maps are sparse after upsam-

pling, so trainable convolution layers are adopted to generate dense feature maps. The 

output of the decoder is fed into the softmax classifier to obtain the category probabil-

ity of each pixel. 
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Fig. 2. The structure of encoder and decoder used in Segnet, the first item in bracket means 

kernel size, the second item in bracket means output dimension. 

2.2 Fully-connected CRF for posteriori probability optimization 

Random field I  is a set of random variables  1 2, , , NI I I , which represents a high 

resolution the SAR image. iI  represents the feature vector of pixel i . Random field 

X  is a set of random variables  1 2, , , NX X X , iX  representing the label of pixel i . 

Conditional random field ( , )I X can be defined by Gibbs distribution as: 

 

1

( )
( | ) exp( ( | ))

Z I
P X x I E X I= = −

 (1) 

where ( | )E X I  denotes energy function, ( )Z I  is a normalization term. 

It can be seen from Eq. (1) that solving the maximum posteriori probability can be 

simplified to minimizing the energy function ( | )E X I , as is shown in (2). 

 

* arg max ( | ) arg min ( | )
x x

x P x I E x I= =
 (2) 

The energy function is composed of unary term u  and pairwise term p : 
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( ) ( ) ( , )u p i ji i j

E x x x x 


= + 
 (3) 

For fully-connected CRF, the output probability map by Segnet can be used for 

unary term u . And the pairwise term p  considers the relationship between each 

pixel and all other pixels, which can be describe by (4). 
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where   denotes label compatibility function， ( )m  is the weight coefficient and 

( , )i jk f f  indicates two-kernel potentials, which is shown in (5). 
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where ip and jp  denotes the position of pixel i  and pixel j , ig  and jg  denotes the 

grayscale value of the pixels in SAR image.   and   control the degree of nearness 

and similarity,   controls the degree of smoothness. These parameters are not traina-

ble in our experiment. 

According to mean field approximation theory, the problem of estimating the max-

imum posteriori probability can be transformed into minimizing the K-L divergence 

of a distribution function ( )Q x  and the probability function ( )P x  by iteration. The 

iteration process is as follows: 
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3 Experiment 

3.1 Experiment data 

The SAR data set for experiment includes 36 airborne SAR images, which were ac-

quired in Fangchenggang, Guangxi, China. These images cover an area of about 30 

km 30 km in total. The size of each image is 1419  1122 and the resolution is 2m. 

For training and testing, we labeled all the images manually according to Google 

Map, categorizing the area into four classes: urban, farmland, river and background. 

For the purpose of comparison, 7 of all 36 SAR images were selected as training 

set and the rest 29 SAR images belong to test set in all experiments. Several SAR 

images and corresponding ground truth in the training set are shown in Fig. 3 It can be 

seen that although the distribution of different regions in high resolution images is not 
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uniform, each category of regions is relatively concentrated. It reflects the neighbor-

hood consistency of SAR images. 

 

Fig. 3. Several SAR images and corresponding ground truth from our dataset 

3.2 Evaluation metrics 

In our experiment, we choose four pixel-wise metrics, including overall accuracy 

(OA), overall precision (OP), f1-score and kappa coefficient to quantitatively evaluate 

the performance of segmentation methods. These metrics are calculated according to 

(7)-(10). Our experiment platform is configured with 32G memory, Intel (R) Xeon 

(R) CPU L5639 @ 2.13GHz * 1, and one Tesla K20c GPU.  

 

1

 = /
c

ii

i
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=

  (7) 

where iix denotes the diagonal elements of the confusion matrix, N stands for the 

total number of pixels of SAR image and c  represents the number of the categories. 
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3.3 Experiment settings 

We conduct three experiments for comparison, finetune Alexnet [7], deep convolu-

tional autoencoder (DCAE) [6], and Segnet without fully-connected CRF. 

In the Alexnet model, the convolution and pooling layers of Alexnet pretrained on 

Imagenet dataset are used as feature extractor, which outputs 256-dimensional fea-

tures. These features are then fed into a fully-connected network with a hidden layer 

for classification. During training, the parameters of convolution and pooling layers 

are fixed and the parameters of the full connection layer are updated by backward 

propagation algorithm. The loss function used in this model is mean square error 

function; learning rate is set to 1e-4; batch size is set to 330; the number of epochs is 

40; the weight decay coefficient is 0.0005. As suggested in [7], the patches are 

cropped with the size of 21*21 and the step of 10. 

In DCAE model, GLCM and Gabor features are first extracted using convolutional 

kernels. Average pooling is then employed for scale transformation and Principal 

Component Analysis (PCA) is used to reduce the computational cost. Two cascaded 

autoencoders are then utilized to optimize these features.  The training of the autoen-

coders is conduct through greedy layer-wise strategy. Finally, a fully-connected layer 

with the softmax activation function is used to classify the optimized features. Mean 

square error function is used as loss function; the learning rate is set to 1e-4; batch 

size is set to 330; the number of epochs is set to 40; the weight decay coefficient is 

1e-8 and the patch size is 32*32 with a step of 16. 

The Segnet model is introduced in Section 2. For hyperparameters, we adopt mean 

square error function as the loss function; the learning rate is set to 0.01; batch size is 

set to 300; the training epochs is set to 50; the weight decay coefficient is 1e-8 and 

patch size is 32*32. 

3.4 Experiment result 

In this part, we will quantitatively compare our method with the aforementioned 

methods, i.e. Segnet, DCAE and Alexnet. Table 1 lists the segmentation results of 

these methods on test set. As is shown in Table 1, the segmentation results of Segnet 

combined with fully-connected CRF is better than other methods in OA, OP, f1-score 

and kappa, reaching 86.36, 86.54, 85.69, 0.7187 respectively. And the segmentation 

result of Segnet is better than DCAE and Alexnet. The results suggest that Segnet is 

capable of making more accurate prediction within patches. Fully-connected CRF 

makes further improvement thanks to its ability of utilizing contextual information.   

In order to further compare the segmentation performance of different methods in 

different categories, Table 2 gives the f1-score in different categories achieved by 

each method. We can see from the table that fully-connected CRF greatly improves 

the segmentation result in different categories, especially in farmland and urban areas. 
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Table 1. The overall performance metrics for each method 

Metrics Segnet-fullCRF Segnet DCAE Alexnet 

OA 86.36 81.86 81.09 78.32 

OP 86.54 83.02 82.66 78.09 

f1-score 85.69 81.98 80.99 76.56 

κ 0.7187 0.6233 0.6076 0.5289 

Fig. 4 and Fig. 5 visually illustrate the segmentation results of the methods on two 

SAR images in the test set. It is shown in Fig. 4 that the segmentation result of Segnet 

is better than other patch-based methods. After further optimization by fully-

connected CRF, the label consistency of farmland and river areas is strengthened and 

the edges between different categories of areas are preserved. It proves that the con-

textual information between patches is effectively utilized by fully-connected CRF. 

Table 2. f1-score in different categories 

Category Segnet-fullCRF Segnet DCAE Alexnet 

urban 66.62 56.69 61.63 45.79 

farmland 80.71 61.45 43.25 25.12 

river 79.84 75.00 76.20 70.15 

background 90.50 87.80 86.98 80.69 

The segmentation results shown in Fig. 5 clearly indicate that the label consistency 

of farmland area is enhanced and the edges of river and farmland become smoother 

after optimization by fully-connected CRF. In addition, many misclassified pixels in 

the river and background area are corrected after optimization. It verifies that fully-

connected CRF model is capable of jointly utilizing the gray feature of pixels and the 

contextual information so that better segmentation can be achieved. 

 

Fig. 4. The segmentation results of each model(a) Input SAR image (b) Ground truth. (c) Se-

gnet-fullCRF(OA=86.36) (d)Segnet(OA=81.86) (e)DCAE(OA=81.09) (f) Alexnet (OA=78.32)  

 

(f) Alexnet (e) DCAE 

(c)Segnet-fullCRF (b) ground truth (a) test image 

(d) Segnet 
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Fig. 5. The segmentation results of each model (a) Input SAR image. (b) Ground truth. (c) 

Segnet-full CRF. (d) Segnet. (e) DCAE. (f) Alexnet 

4 Conclusion 

In this paper, we combine the encoder-decoder network used in optical image seg-

mentation with fully-connected CRF for high resolution SAR image segmentation. To 

improve the segmentation accuracy within the patch, we use Segnet to obtain pixel-

wise segmentation result of the patches. In order to make full use of contextual infor-

mation and strengthen neighborhood label consistency between patches, we adopt 

fully-connected CRF to optimize the probability maps output by Segnet. This method 

is compared with several other patch-based segmentation methods in our experiment. 

The experiment result demonstrates that the encoder-decoder network has superior 

performance in SAR image segmentation, and that fully-connected CRF effectively 

utilizes contextual information and greatly optimizes the segmentation results.  
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