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Abstract: Analytical theory describing the resonant excitation and coupling of volume and surface fields on the surface of 
two dimensional complex electrodynamic structures is presented. The theoretical analysis is valid over a broad frequency 
spectrum from mm-wave frequencies through THz and even optical frequencies. An experimental study of planar periodic 
structures has been carried out using a Vector Network Analyzer calibrated to operate in the 140-220 GHz frequency range. 
Experimental results compare resonant eigenmode formation in two periodic surface lattice structures designed to operate 
within the 140 GHz -220 GHz frequency band; one periodic surface lattice etched onto a metal-backed substrate and the other 
arranged to have an equivalent air separation.  Dispersion diagrams derived from the analytical theory are presented. The results 
and theory are fundamental to some of the routes to the innovation of high power, mm-wave and THz sources, solar cells and 
novel subwavelength absorbers.  

1. Introduction
Periodic structures, both one and two dimensional,

have importance in ‘fast wave’ and ‘slow wave’ 
applications, for instance in free electron lasers where 
they can be implemented as Bragg reflectors.  
Historically, periodic structures of coaxial, cylindrical 
and planar geometries have been studied [1-9].  The 
current work, which concerns two dimensional (2D) 
planar and cylindrical periodic surface lattice (PSL) 
structures, is driven by the desire for highly overmoded 
high power ‘slow wave’ (Cherenkov) sources of 
electromagnetic radiation. However, the theory, 
numerical and experimental results are also relevant to 
a number of other electromagnetic applications. One of 
the defining and most interesting properties of the 2D 
PSL structures of both geometries is the observation of 
volume and surface fields which co-exist at the 
corrugated metal boundary, and in suitable conditions 
[2-7], can couple to produce a single cavity eigenfield. 
This eigenfield, composed of ‘partial’ volume and 
surface fields is the means through which single mode 
excitation in the oversized, and highly overmoded, 
cavity is achieved.  An important physical characteristic 
of the 2D PSL structures is that the depth of the 
corrugation must be small in relation to the source 
wavelength.  When this transverse dimension is less 
than an electromagnetic wavelength the PSL can be 
likened to an effective ‘metadielectric’ which supports 
a unique hybrid eigenfield.  High power radiation 
sources at mm-wave and THz frequencies can be 
constructed by passing an appropriate electron beam 
close to the corrugated walls to facilitate a successful 
interaction between the electron beam and the 
eigenfield of the PSL. The theory also applies to 
frequencies beyond the mm-wave and THz regions and 

extends, for example, to optical frequencies where 
Cherenkov radiation can be produced by the 
exploitation of surface polaritons [10]. The PSL 
structures are suited to applications in solar cells [11], 
novel sub-wavelength absorbers [12,13], compact 
antennae [14] and electromagnetic filters [15-17] as 
well as the development of high power radiation sources 
which are required for mm-wave and THz imaging 
[18,19] and particle acceleration [20].  Periodic 
structures can be fabricated using copper 
electrodeposition [2,3] methods, chemical or laser 
etching [5-7] or additive manufacturing [4,21]. 

This paper delves into the complex field structure 
of the partial surface field and its potential scattering 
mechanisms and shows previously unpublished 
equations describing the complex field structure of the 
surface field. We also discuss in more detail the 
intermediate steps between the magnetic surface current 
boundary condition and the definition of the complex 
integral term of the coupled wave equation, providing a 
greater insight into the electromagnetic theory of the 
complex electrodynamic PSL structures. Experimental 
measurements of a planar ‘air-gap’ structure which, in 
the absence of the dielectric substrate, is more 
electromagnetically similar to cylindrical PSLs than the 
planar PSLs mounted on substrates, are presented. 

2. Theory
The 2D cylindrical PSLs that have been the subject

of past and present studies and ongoing experiments at 
the University of Strathclyde have a cosinusoidal 
corrugation that can be written in the form: 

�̃�𝑟 = 𝑟𝑟0 + ∆𝑟𝑟
4
�𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑��𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 + 𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧� (1) 

Accepted Author Manuscript   07/04/2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/305119361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.d.r.phelps@strath.ac.uk


2 
 

where 𝑟𝑟0  is the mean radius, ∆𝑟𝑟  is the corrugation 
amplitude, 𝑚𝑚�  is the number of azimuthal periods 
around the circumference of the cylinder, 𝑘𝑘�𝑧𝑧 = 2𝜋𝜋 𝑑𝑑𝑧𝑧⁄  
is the longitudinal lattice wavenumber and 𝑑𝑑𝑧𝑧  is the 
lattice period. Previously, the eigenfield of a 2D PSL 
was described as a slowly varying wave packet 𝑊𝑊𝑞𝑞(𝑧𝑧) 
composed of oscillating terms by considering a 
fictitious magnetic surface current 𝒋𝒋𝒎𝒎. This description 
is valid only when the lattice corrugation Δ𝑟𝑟 is suitably 
shallow in relation to the source wavelength, i.e. Δ𝑟𝑟 ≪
𝜆𝜆.  The transverse electric 𝑬𝑬  and magnetic 𝑯𝑯 fields are 
expanded as a summation of the possible modes and 
magnetic 𝒋𝒋𝒎𝒎  and electric 𝒋𝒋𝒆𝒆 surface currents are 
considered in place of the lattice corrugation �̃�𝑟  to 
simplify the geometry of the cavity to that of a smooth 
cylindrical waveguide. At the metal corrugation, 𝒋𝒋𝒆𝒆 = 0 
and hence only the 𝒋𝒋𝒎𝒎 boundary condition applies   
 

𝒋𝒋𝒎𝒎 = 𝒏𝒏 × �𝛁𝛁(�̃�𝑟𝑬𝑬.𝒏𝒏)� + 𝑖𝑖𝑖𝑖�̃�𝑟𝒏𝒏 × [𝒏𝒏 × 𝑯𝑯]        (2) 
 

The normal electric field component is defined 
𝐸𝐸𝑛𝑛 = 𝑬𝑬.𝒏𝒏 where 𝒏𝒏  is the unit vector of the normal to 
the unperturbed waveguide wall. In this analysis, the 
fictitious magnetic surface current acts as an external 
excitation source and a normalised wave equation is 
obtained by integrating the Poynting vector around the 
circumference of the cylinder as described in [6]. 
 
The Bragg resonance condition dictates that 𝑘𝑘�𝑧𝑧 = 𝑘𝑘𝑧𝑧𝑠𝑠 −
𝑘𝑘𝑧𝑧𝑣𝑣  and because we are considering a close to cut-off 
volume field, the resonant frequency of the surface field 
𝑖𝑖0
𝑠𝑠  must coincide with the Bragg frequency if 

successful eigenmode formation is to occur. The Bragg 
detuning is 𝛿𝛿̅ = �𝑖𝑖 − �((𝑖𝑖0𝑣𝑣)2 + (𝑖𝑖0𝑠𝑠)2) 2⁄ � 𝑐𝑐⁄ . 
Potential sources of detuning include small ohmic, 
diffractive and dissipative cavity losses. Coupling of 
volume and surface fields is best observed for a uniform, 
localized volume field with 𝑘𝑘𝑧𝑧 → 0.  The uniformity of 
the volume field is limited by the finite length of the 
cavity contributing to the overall detuning. The 
detuning between volume and surface modes 
Δ = ��((𝑖𝑖0𝑠𝑠)2 − (𝑖𝑖0𝑣𝑣)2) 2⁄ � 𝑐𝑐⁄  has been calculated 
for certain planar PSL structures where direct 
measurements of the partial surface field have been 
made. The detuning and dispersive properties of the 
PSL structures are considered in the analytical 
dispersion plots presented in section 4. 
 

The normalized wave equation derived in [6] is 
characterized by the complex integral term ∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ 𝑑𝑑𝑑𝑑 
which must be defined to obtain a complete description 
of the volume and surface fields that form the cavity 
eigenfield.  Evaluation of this term necessitates taking 
the closed contour integral over the entire surface 𝑑𝑑 of 
the cylinder.  By assuming that the structure is 

sufficiently long compared to its radius, whereby the 
integral contributions from the two planar, open ends of  

 
Fig. 1. Schematic diagram showing the shaded element 
 𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑧𝑧  of the integration surface. 

 
the structure can be neglected, the integral can be 
reduced to describe only the curved surface.  We can 
define an element of this surface as 𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑧𝑧 , 
which is indicated by the shaded region in Fig. 1.  
Considering the evaluation of the integral per unit axial 
length, the contour surface integral over the whole 
cylindrical area can therefore be reduced to a closed line 
integral over the angle 𝑑𝑑𝑟𝑟 , where 𝑟𝑟  is the azimuthal 
coordinate.  The closed integral over 𝑑𝑑𝑟𝑟 from 0 to 2π  
is defined in Eq.(3) where 𝑈𝑈 = 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗   is the integrand. 
 

∮𝑈𝑈(𝑟𝑟,𝑟𝑟)𝑑𝑑𝑑𝑑 = ∫ 𝑟𝑟𝑈𝑈(𝑟𝑟,𝑟𝑟)2𝜋𝜋
0 𝑑𝑑𝑟𝑟               (3) 

 
We obtain a general expression for the right-hand 

side of the wave equation given in [3,6]  where 𝑁𝑁𝑣𝑣,𝑠𝑠 =
𝑖𝑖𝑖𝑖𝑖𝑖

∮ 𝑯𝑯𝒒𝒒
𝒗𝒗,𝒔𝒔.𝑯𝑯𝒒𝒒

∗(𝒗𝒗,𝒔𝒔)
𝑆𝑆⊥ 𝑑𝑑𝑟𝑟

 is the wave norm which is modified to 

describe the volume (superscript 𝑣𝑣 ) or surface 
(superscript 𝑠𝑠 ) fields by multiplying by the complex 
conjugate of the specified field, 𝑯𝑯𝒒𝒒

∗(𝒗𝒗,𝒔𝒔). 
 
𝑁𝑁𝑣𝑣,𝑠𝑠 ∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ 𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑣𝑣,𝑠𝑠 ∫ 𝑟𝑟�𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗��

𝑟𝑟=𝑟𝑟0
𝑑𝑑𝑟𝑟  2𝜋𝜋

0   (4) 

 
We separate 𝒋𝒋𝒎𝒎  into two distinct terms 𝐼𝐼1 = 𝒏𝒏 ×

�𝛁𝛁(�̃�𝑟𝑬𝑬.𝒏𝒏)�  and 𝐼𝐼2 =  𝑖𝑖𝑖𝑖�̃�𝑟𝒏𝒏 × [𝒏𝒏 × 𝑯𝑯]  in order to 
simplify this integration.  Multiplying 𝐼𝐼1  by 𝑯𝑯𝒒𝒒

∗  gives 
�𝑯𝑯𝒒𝒒

∗ × �𝛁𝛁(�̃�𝑟𝐸𝐸𝑛𝑛)��𝒏𝒏 which can be written in the form; 
�̃�𝑟𝐸𝐸𝑛𝑛�𝛁𝛁 × 𝑯𝑯𝒒𝒒

∗� − 𝛁𝛁 × �(�̃�𝑟𝐸𝐸𝑛𝑛)𝑯𝑯𝒒𝒒
∗�  through use of the 

vector identity 𝑽𝑽 × 𝛁𝛁𝑓𝑓 = 𝑓𝑓 ∙ (𝛁𝛁 × 𝑽𝑽) − 𝛁𝛁 × (𝑓𝑓𝑽𝑽). It is 
known from Maxwell’s equations that 𝑯𝑯𝒒𝒒

∗  = 𝑖𝑖𝑖𝑖𝑖𝑖𝑬𝑬𝒒𝒒∗   
which can be used to express 𝑯𝑯𝒒𝒒

∗ 𝐼𝐼1  in terms of the 
complex conjugate of the electric field 𝑬𝑬𝒒𝒒∗  where 
𝛁𝛁 × 𝐸𝐸𝑛𝑛.𝒏𝒏 = 0  to give: 𝑯𝑯𝒒𝒒

∗ 𝐼𝐼1 = 𝑖𝑖𝑖𝑖�̃�𝑟𝐸𝐸𝑛𝑛�𝑬𝑬𝒒𝒒∗ .𝒏𝒏� . The 
term 𝑯𝑯𝒒𝒒

∗ 𝐼𝐼2  is written in a similar manner, albeit 
involving the tangential magnetic field component 𝑯𝑯𝝉𝝉 
which results from taking the cross product of the 
normal unit vector 𝒏𝒏  and 𝒏𝒏 × 𝑯𝑯  such that 𝒏𝒏 × [𝒏𝒏 ×
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𝑯𝑯] = 𝑯𝑯𝝉𝝉  to obtain 𝑯𝑯𝒒𝒒
∗ 𝐼𝐼2 = 𝑖𝑖𝑖𝑖�̃�𝑟𝒏𝒏 × [𝒏𝒏 × 𝑯𝑯]𝑯𝑯𝒒𝒒

∗ =
𝑖𝑖𝑖𝑖�̃�𝑟𝑯𝑯𝝉𝝉.𝑯𝑯𝒒𝒒,𝝉𝝉

∗ . Together, these terms define the  𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗  

term of the coupled wave equation, relevant to both 
planar and cylindrical PSLs. Expanding over the full set 
of modes gives 

 
𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ = 𝑖𝑖𝑖𝑖�̃�𝑟(𝑧𝑧,𝑟𝑟)�∑ 𝑊𝑊𝑞𝑞(𝑧𝑧)𝑞𝑞 𝑬𝑬𝒒𝒒,𝒏𝒏.𝑬𝑬𝒒𝒒,𝒏𝒏
∗ +

∑ 𝑊𝑊𝑞𝑞(𝑧𝑧)𝑞𝑞 𝑯𝑯𝒒𝒒,𝝉𝝉.𝑯𝑯𝒒𝒒,𝝉𝝉
∗ �  

(5) 
 

where 𝑬𝑬𝒒𝒒,𝒏𝒏
∗  and 𝑯𝑯𝒒𝒒,𝝉𝝉

∗   are the complex conjugates of the 
normal electric field and  tangential magnetic field 
components for the close to cut-off �𝑞𝑞𝑡𝑡ℎ� mode 
respectively. When considering an azimuthally 
symmetric and close to cut off volume field where 𝑘𝑘𝑧𝑧 ≅
0 and 𝐸𝐸𝑞𝑞,𝑛𝑛 = 0 we can write: 
 

𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗ =  𝑖𝑖𝑖𝑖�̃�𝑟(𝑧𝑧,𝑟𝑟)∑ 𝑊𝑊𝑞𝑞(𝑧𝑧)𝑞𝑞 𝑯𝑯𝒒𝒒,𝝉𝝉.𝑯𝑯𝒒𝒒,𝝉𝝉

∗        (6) 
 

The tangential magnetic field component can be 
separated into its tangential magnetic volume and 
surface field components. The cosinusoidal corrugation 
�̃�𝑟 inscribed on the inner cavity wall and defined in Eq.(1) 
is substituted into Eq.(6) to give 
 

𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗ = 𝑖𝑖𝑖𝑖 �𝑟𝑟0 + ∆𝑟𝑟

4
�𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑��𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 +

𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧��𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒗𝒗;𝒔𝒔. �𝑯𝑯𝒒𝒒,𝝉𝝉

𝒗𝒗 (𝑟𝑟)∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑣𝑣 +
𝑯𝑯𝒒𝒒,𝝉𝝉
𝒔𝒔 (𝑟𝑟)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑟𝑟∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑠𝑠 �  

(7) 
 
where ∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑣𝑣  and ∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑠𝑠  are 
Fourier expansions describing the spatial harmonics of 
the slowly evolving volume and surface fields along the 
longitudinal direction and 𝐴𝐴(𝑧𝑧)  and 𝐵𝐵(𝑧𝑧)  denote the 
volume and surface field amplitudes respectively. The 
complex conjugate of the tangential magnetic field 
𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒗𝒗;𝒔𝒔 is written 𝑯𝑯𝒒𝒒,𝝉𝝉

∗,𝒗𝒗 or 𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔  depending on whether the 

volume field is scattering into the surface field or vice 
versa. 
 

At this stage, we average over the fast oscillation 
terms from 0 to 2𝜋𝜋 to eradicate the exponential terms 
that would otherwise integrate to zero.  In [6] we 
described the scattering associated with the 
fundamental harmonic of the volume field and then 
considered the more general cases of volume and 
surface field scattering.  Here, we take a more detailed 
approach, this time describing the fundamental 
harmonic of the surface field 𝑛𝑛𝑠𝑠 = 0 interacting with 
the 𝑛𝑛𝑣𝑣 = ±1 spatial harmonics of the volume field and 
presenting previously unpublished equations that give 
further insight into the complex field coupling. To 
describe the forwards and backwards scattering of the 

surface field with wave norm 𝑁𝑁�𝑠𝑠 = −𝜔𝜔2𝜀𝜀
∮ 𝑯𝑯𝒒𝒒

𝒔𝒔 .𝑯𝑯𝒒𝒒
∗,𝒔𝒔

𝑆𝑆⊥ 𝑑𝑑𝜑𝜑
 we 

express  ∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗ 𝑑𝑑𝑑𝑑 as 

 
∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ 𝑑𝑑𝑑𝑑 = 𝑁𝑁�𝑠𝑠 ∫ 𝑟𝑟2𝜋𝜋
0 �𝑟𝑟0 + ∆𝑟𝑟

4
�𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 +

𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑��𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 +
𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧��𝑯𝑯𝒒𝒒,𝝉𝝉

∗,𝒔𝒔 (𝑟𝑟,𝑟𝑟). �𝑯𝑯𝒒𝒒,𝝉𝝉
𝒗𝒗 (𝑟𝑟)∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑣𝑣 +

𝑯𝑯𝒒𝒒,𝝉𝝉
𝒔𝒔 (𝑟𝑟)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑟𝑟∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑠𝑠 ��

𝑟𝑟=𝑟𝑟0
𝑑𝑑𝑟𝑟  

(8) 
 

which, when taking into account that 𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟,𝑟𝑟) =

𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 and expanding the brackets can be 

written in the form ∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗ 𝑑𝑑𝑑𝑑 = 𝑁𝑁�𝑠𝑠𝑟𝑟02 ∫ 𝑋𝑋|𝑟𝑟=𝑟𝑟0𝑑𝑑𝑟𝑟

2𝜋𝜋
0  

where  𝑋𝑋 is the integrand, comprised of terms (i)-(iv).  
 
(i) 𝑯𝑯𝒒𝒒,𝝉𝝉

∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 𝑯𝑯𝒒𝒒,𝝉𝝉
𝒗𝒗 (𝑟𝑟0)∑ 𝑊𝑊𝑞𝑞

𝑣𝑣
2 (𝑧𝑧)  

(ii) 𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 𝑯𝑯𝒒𝒒,𝝉𝝉

𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑠𝑠  
(iii) ∆𝑟𝑟

4𝑟𝑟0
(𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑)�𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 +

𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧�𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 𝑯𝑯𝒒𝒒,𝝉𝝉

𝒗𝒗 (𝑟𝑟0)∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑣𝑣  
(iv) ∆𝑟𝑟

4𝑟𝑟0
(𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑)�𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 +

𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧�𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 𝑯𝑯𝑞𝑞,𝜏𝜏

𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑟𝑟∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑠𝑠  

Term (i) is at once neglected on the basis that 
∫ (𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 𝑑𝑑𝑟𝑟)2𝜋𝜋
0 = 0   following integration. The 

integrand is further simplified by eliminating (iv) which 
contains only surface field terms, since the inclusion of 
∆𝑟𝑟
4𝑟𝑟0

, which partly determines the strength of the coupling 
between the partial volume and surface fields, requires 
both volume and surface field components. 
Mathematically, 𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧�𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 + 𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧� ≠ 0   when 
𝑛𝑛𝑠𝑠 = 0 and  (iv)  vanishes after integration.  In term (ii) 
the Fourier expansion describing the slowly changing 
surface field is reduced to 𝐵𝐵0  when considering the 
fundamental surface field harmonic and we rewrite the 
expression in cosine notation using the trigonometric 
identity 2𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟 = �𝑒𝑒𝑖𝑖𝑚𝑚�𝜑𝜑 + 𝑒𝑒−𝑖𝑖𝑚𝑚�𝜑𝜑� to obtain 
 
∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ 𝑑𝑑𝑑𝑑 = 𝑁𝑁�𝑠𝑠𝑟𝑟02 �𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0).𝑯𝑯𝒒𝒒,𝝉𝝉

𝒔𝒔 (𝑟𝑟0)𝐵𝐵0(𝑧𝑧)∫ �1
2

+2𝜋𝜋
0

1
2
𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟�𝑑𝑑𝑟𝑟 + ∫ �∆𝑟𝑟

2𝑟𝑟0

2𝜋𝜋
0 �𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 +

𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧�𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑯𝑯𝒒𝒒,𝝉𝝉

𝒗𝒗 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠2𝑚𝑚�𝑟𝑟∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧𝑛𝑛𝑣𝑣 �𝑑𝑑𝑟𝑟�  
(9) 

Prior studies have shown that the fundamental 
surface field harmonic interacts with the ±1 spatial 
harmonics of the volume field and vice versa [3,6]. The 
fast oscillation terms along the 𝑧𝑧   coordinate are 
expanded for the 𝑛𝑛𝑣𝑣 = ±1 volume field harmonics to 
get  𝑒𝑒𝑖𝑖𝑛𝑛𝑣𝑣𝑘𝑘�𝑧𝑧𝑧𝑧�𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 + 𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧� = 1 + 𝑒𝑒±2𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧 . The 
remaining exponential term then disappears after 
integration. The definition of 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗  for the particular 
case of the fundamental surface field harmonic 
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scattering into the = ±1  volume field harmonics is 
given by 

𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒
∗ = 𝜋𝜋𝑁𝑁�𝑠𝑠𝑟𝑟02 �𝑯𝑯𝒒𝒒,𝝉𝝉

∗,𝒔𝒔 (𝑟𝑟0).𝑯𝑯𝒒𝒒,𝝉𝝉
𝒔𝒔 (𝑟𝑟0)𝐵𝐵0(𝑧𝑧) +

∆𝑟𝑟
2𝑟𝑟0

𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0).𝑯𝑯𝒒𝒒,𝝉𝝉

𝒗𝒗 (𝑟𝑟0)∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧)𝑛𝑛𝑣𝑣 �  
(10) 

 
The first part of the equation describes the surface 

field formed from the tangential component around the 
azimuth and the slowly varying surface field amplitude 
in the longitudinal direction.  This provides a full 
description of the localized surface field accumulating 
at the corrugation that does not involve the volume field 
or contribute to the coupling.  The second term 
describes the resonant scattering of the surface field into 
the volume field that leads to the excitation of a coupled, 
single cavity eigenmode. More generally, the scattering 
of the surface field into the volume field is investigated 
by multiplying the surface field components by 
𝑒𝑒−𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧 and discarding the terms that integrate to 0 . 
Taking into account that 𝑒𝑒−𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧. 𝑒𝑒𝑖𝑖𝑛𝑛𝑠𝑠𝑘𝑘�𝑧𝑧𝑧𝑧 = 1  we 
obtain 

 
∮ 𝒋𝒋𝒎𝒎.𝑯𝑯𝒒𝒒

∗ 𝑑𝑑𝑑𝑑 = 𝑟𝑟02𝑁𝑁�𝑠𝑠 ∫ �∆𝑟𝑟
2𝑟𝑟0

𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟�𝑒𝑒𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧(1−𝑛𝑛𝑠𝑠+𝑛𝑛𝑣𝑣) +2𝜋𝜋
0

𝑒𝑒−𝑖𝑖𝑘𝑘�𝑧𝑧𝑧𝑧(1+𝑛𝑛𝑠𝑠−𝑛𝑛𝑣𝑣)�𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟𝑯𝑯𝒒𝒒,𝝉𝝉

𝒗𝒗 (𝑟𝑟0)∑ 𝐴𝐴𝑛𝑛𝑣𝑣(𝑧𝑧))∞
𝑛𝑛𝑣𝑣=−∞ +

𝑯𝑯𝒒𝒒,𝝉𝝉
∗,𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟𝑯𝑯𝒒𝒒,𝝉𝝉

𝒔𝒔 (𝑟𝑟0)𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚�𝑟𝑟∑ 𝐵𝐵𝑛𝑛𝑠𝑠(𝑧𝑧)𝑛𝑛𝑠𝑠 � 𝑑𝑑𝑟𝑟  

 (11) 

which, after integration, leads to the derivation of a 
coupled wave equation describing the scattering of 
either the fundamental surface field, or the  ±2 spatial 
harmonics of the surface field, into the ±1  spatial 
harmonics of the volume field [6]. 
 

3. Experimental Measurement of PSL Structure 
The theory describing the coupled eigenfield of a 

2D PSL is relevant to structures of both planar and 
cylindrical geometry in the case of the large radius 
approximation.  It is known that planar PSLs can be 
converted to cylindrical PSLs using the conformal 
mapping method.  The structures with the two different 
geometries are both over-moded but in the case of the 
planar structure, the volume field is less well-defined 
and a dielectric substrate has previously [5-7] been used 
to support field confinement via internal reflection.   
The planar PSLs were designed under the assumption 
that the periodicity 𝑑𝑑𝑧𝑧  of the lattice governs the 
wavelength of the localized surface field 𝜆𝜆𝑠𝑠 inside each 
lattice cell such that 𝜆𝜆𝑠𝑠 ≅ 𝑑𝑑𝑧𝑧. The PSLs can be likened 
to an array of rectangular waveguide apertures where 
the reflected frequency is close to the cut-off of the 
fundamental waveguide mode [5].  

 
Fig. 2. Schematic diagram showing ‘air-gap’ PSL structure 
with period 1.94 mm. 

Here we compare the results for the planar PSL with 
period 1.94 mm, mounted on the copper-backed, 0.76 
mm thick FR-4 substrate to a tunable “air-gap” PSL 
structure composed of a 2D PSL with period 1.94 mm, 
held by four nylon screws at a variable distance from a 
copper back plate, as illustrated in Figure 2. The air 
separation was adjusted to approximately 1.6 mm to 
maintain an equivalent optical path length to that of the 
0.76 mm FR-4 substrate used in similar PSL structures 
[5,6]. For the “air-gap” structure, the PSL was etched 
onto a thicker, 0.3 mm copper layer (compared to  the 
35 𝜇𝜇𝑚𝑚 thick copper used in the PSLs with copper 
backed substrates) in order to provide sufficient 
amplitude and therefore coupling of the surface field in 
the absence of the dielectric. A full description of the 
manufacturing and experimental techniques relating to 
the fabrication and measurement of the planar PSLs is 
given in [5].  
 

Figure 3 shows measurements made with a Vector 
Network Analyzer (VNA) and pair of high frequency 
modules assembled with two 140-220 GHz standard 
20 dBi gain rectangular horn antennae transmitting and 
receiving respectively a plane-polarised wave with the 
electric field vector orthogonal to the plane of incidence. 
For these reflection measurements, the transmitting and 
receiving antennae were carefully positioned with an 
equal angle of incidence and reflection and both at the 
same distance from the PSL, just within the farfield 
[5,7]. Transmission measurements (Fig.4) were made 
only for the mesh PSL with no metal back plate and in 
this arrangement, the transmitting and receiving 
antennae were directly aligned with the PSL equidistant 
between the two antennae and rotated through an 
angular range of 0° to 90°. The VNA was calibrated to 
operate within the 140-220 GHz frequency range and 
measurements were made for both the ‘air-gap’ PSL 
(red trace) and the conventional PSL (blue trace) at a 
fixed incident and measurement angle of 60°. 
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Fig.3. Reflection measurements for the 1.94 mm ‘air-gap’ 
PSL (red trace) and the 1.94 mm PSL (blue trace) mounted 
on a copper backed dielectric substrate. 

 

Fig. 4. Transmission measurements for the 1.94 mm mesh 
PSL (no metal back plate) showing surface field at different 
irradiation angles (0ͦ°-90°). 

A high-Q resonance is observed at 145 GHz for the 
‘air-gap’ PSL and 146 GHz for the conventional 1.94 
mm PSL etched on the dielectric substrate. This 
frequency is different to that of the surface field at 60° 
(141 GHz) which has been measured directly in a 1.94 
mm mesh PSL (equivalent to the ‘air-gap’ PSL without 
the copper back plate) as shown in Fig.4. The results for 
the two PSL structures are in close agreement with a 
frequency discrepancy of just 1 GHz which may arise 
due to minor changes in experimental alignment, 
suggesting that the ‘air-gap’ structure has the potential 
to support volume and surface field coupling at some 
angles.  
 

We note that the reflected power for the ‘air-gap’ 
structure (approx. -49 dB) is substantially greater than 
that for the PSL with the dielectric substrate (approx. -
41 dB) which may occur due to a reduction in dielectric 
losses. However, despite smaller dielectric losses, the 
‘air-gap’ structure does not support eigenmode 

formation and ‘mode-locking’ at all angles unlike the 
metal-substrate backed PSLs [5-7], possibly due to 
more energy escaping from the unbound edges at certain 
angles. Also without the dielectric providing the 
spacing between the two planar surfaces, it is more 
difficult to maintain the uniform separation required to 
control the frequency definition of the volume mode 
over the area of the planar structure. 
 

Nevertheless, since these ‘air-gap’ planar PSLs 
closely approximate electromagnetically to ‘vacuum-
gap’ planar PSLs the results show potential for 
‘vacuum-gap’ planar PSLs to be combined with a sheet 
electron beam [22] and therefore incorporated into high 
power radiation sources. The applications in high power 
radiation sources are in addition to the wide-ranging 
applications that include solar cells, filters and perfect 
absorbers. 
 

In our previous work only cylindrical 
‘metadielectric’ PSLs constructed solely from 
conducting material e.g. copper, with no dielectric 
lining were considered for high power radiation sources. 
Due to the ‘oversized’ radius 𝑟𝑟  of the cylindrical 
structures  (𝑟𝑟 ≫ 𝜆𝜆) a ‘quasi-planar’ approximation can 
be applied [2,3,6,8,9] where the cylindrical structure is 
described by a planar PSL, without a dielectric substrate. 
The ‘air-gap’ planar PSL therefore more closely 
resembles the 2D cylindrical PSLs used in electron 
beam driven experiments at the University of 
Strathclyde [4], than the previous planar PSLs with 
dielectric substrates, since here no dielectric material is 
included and the corrugated surface structure behaves 
as a ‘metadielectric’. 
 

The ability to adjust conveniently the separation 
between the PSL and the metal backing means that a 
structure of this type could possibly be used to 
compensate for the detuning associated with the 
difference in angular frequency of the volume and 
surface fields by subtly adjusting the separation 
between the PSL and the metal back plate to observe 
optimum coupling.  This could be advantageous in 
applications where a specific eigenmode frequency is 
required.  

4. Analytical Dispersion Plots 
In the coupled eigenfield dispersion equation 

presented in [3,6] the detuning parameters have been 
renormalized using division by the parameter 𝐾𝐾� where 
𝐾𝐾� =  Ω/c and,  
 

                                Ω = ��𝜔𝜔0
𝑣𝑣�2+�𝜔𝜔0

𝑠𝑠�2

2
    (12) 
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The renormalized Bragg detuning parameter 𝛿𝛿 and 
the detuning of the volume and surface field angular 
cut-off frequencies Δ �  are written 
 

𝛿𝛿= �𝑖𝑖 − �
(𝑖𝑖0

𝑣𝑣)2 + (𝑖𝑖0
𝑠𝑠)2

2
�

1
2
� �

(𝑖𝑖0
𝑣𝑣)2 + (𝑖𝑖0

𝑠𝑠)2

2
�

1
2

 �  

=
𝑖𝑖 − Ω
Ω

 
(13a) 

 

Δ � = �
(𝑖𝑖0

𝑠𝑠)2 − (𝑖𝑖0
𝑣𝑣)2

2
�

1
2

�
(𝑖𝑖0

𝑣𝑣)2 + (𝑖𝑖0
𝑠𝑠)2

2
�

1
2

�  

(13b) 
 

The overall detuning Γ = 2𝑘𝑘�𝑧𝑧𝑐𝑐 ((𝑖𝑖0
𝑣𝑣)2 + (𝑖𝑖0

𝑠𝑠)2)
1
2⁄  

takes into account the permittivity, substrate thickness 
(or air separation) and the lattice periodicity. The 
present analytical study has been carried out assuming 
that 𝛼𝛼~0.45 [6].  A unit cell of the planar PSL was 
modelled with periodic boundaries using the 
Electromagnetic solver CST Microwave Studio and 
eigenmode calculations over a large number of modes 
were used to establish the approximate cut-off 
frequency of the volume field at an incident angle of 0°.  
The surface field, observed exclusively in the 1.94 mm 
mesh PSL, exists within the region of 185 -200 GHz at 
0°. The analytical dispersions at 0° differ from the 
experimental measurements shown in Fig.3 which were 
made at oblique incident angles. The volume field 
eigenmode calculations performed using CST MWS are 
also applicable to the case of an incident angle of 0°, but 
serve as a good approximation for the cut-off frequency 
of the partial volume field at all incident angles. 

 The transmission measurements [23] of Fig.4 
showed that the frequency of the surface field at normal 
incidence is much higher than predicted by the λs ≅ dz 
approximation [5] which in turn affects the detuning and 
dispersive properties. Provided with an initial value of 
the renormalized Bragg detuning 𝛿𝛿 , the dispersion 
equation [3,6] is solved over a number of data points by 
increasing 𝛿𝛿  in small increments 𝛿𝛿 = 𝛿𝛿 + ∆𝛿𝛿  and 
solving for the normalized wave vector Λ  for each 
value of 𝛿𝛿.  For every iteration, 𝑘𝑘𝑧𝑧 and 𝑖𝑖 are evaluated 
from the relations: 

 𝑘𝑘𝑧𝑧 = Λ
𝑐𝑐
�(𝜔𝜔0

𝑣𝑣)2+(𝜔𝜔0
𝑠𝑠)2

2
�
1
2  (14a) 

 

𝑖𝑖 = 𝛿𝛿 �
(𝑖𝑖0

𝑣𝑣)2 + (𝑖𝑖0
𝑠𝑠)2

2
�

1
2

+ �
(𝑖𝑖0

𝑣𝑣)2 + (𝑖𝑖0
𝑠𝑠)2

2
�

1
2
 

(14b) 
 

Analytical dispersion diagrams for the ‘air-gap’ 
structure at 0° and 60°, both for a separation of 1.6 mm, 

are presented in Fig.5(a) and (b) respectively. The solid 
black traces represent the coupled eigenfield dispersion 
while the dashed and dot-dashed grey traces show the 
uncoupled surface and volume field dispersions 
respectively.  The surface field is characterised by an 
imaginary transverse wavenumber, and the surface field 
spatial harmonics are evident at large values of kz. 

Fig.5(a) shows the dispersion diagram for the ‘air-
gap’ structure at 0° when Γ < √2 and Δ � = 0.53. The 
surface field harmonics cross one another below the cut-
off frequency of the uncoupled volume field, distorting 
the overall appearance of the dispersion.  We note that 
Γ~√2 when the periodicity of the PSL is chosen such 
that �𝑘𝑘�𝑧𝑧�

2 = (𝑘𝑘⊥𝑣𝑣)2 + (𝑘𝑘⊥𝑠𝑠 )2  where 𝑘𝑘⊥𝑣𝑣  and 𝑘𝑘⊥𝑠𝑠  are the 
transverse wavenumbers of the volume and surface 
fields. The number of coupled dispersion branches and 
their frequency location are influenced by where the 
surface field harmonics intersect one another.  The 
surface field frequency and the parameter values of both 
Γ and Δ �  predict the frequencies and wavenumbers at 
which coupled eigenfield solutions exist. Different 
dispersive properties are typically observed as Γ  is 
increased beyond √2 and the surface field harmonics 
intersect at higher frequencies. 

The dispersion for the ‘air-gap’ structure at 60°  
where Γ~√2 and Δ � = 0.36  is provided in Fig.5(b).  
Due to the reduced frequency separation between the 
volume and surface fields at the larger incident angle, 
the surface field harmonics intersect at a higher 
frequency. Here, a backwards wave interaction with an 
electron beam is viable, demonstrating that, if the planar 
air-gap PSL is intended for use in a novel radiation 
source in combination with a sheet electron beam, the 
PSL must be positioned at a suitable angle from the 
excitation source. 

 

(a) 
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Fig. 5.  Analytical dispersion for 1.94 mm ‘air-gap’ PSL at 
(a) 0° and (b) 60°

5. Conclusion
Complex integral equations describing the surface

field scattering into the volume field are presented in 
this paper.  The surface field is studied experimentally 
through the use of a novel 2D ‘air-gap’ PSL structure, 
which more closely resembles the 2D cylindrical PSL 
structures used in the electron beam driven experiments 
and, without the dielectric material, the corrugated 
surface behaves more like a metadieletric.  
Transmission measurements show the surface field 
frequency shifting significantly, depending on the 
irradiation angle. Despite the absence of a dielectric 
substrate, it has been shown that coupling of the surface 
field with a weakly defined volume field formed 
between the two planar copper layers is still possible, 
resulting in a coupled cavity eigenmode at an irradiation 
angle of 60°. 

It has been shown both experimentally and 
analytically, by solving the coupled dispersion equation, 
that volume and surface field coupling in the ‘air-gap’ 
structure is most effective at more oblique incident 
angles where there is less frequency disparity between 
the volume and surface fields.  The coupled dispersion 
analysis demonstrates that a backwards slow wave 
interaction with an electron beam is feasible.  The planar 
‘air-gap’ PSL discussed in this paper is relevant to a 
number of electromagnetic applications including novel, 
high-power mm-wave and THz radiation sources, solar 
cells, ‘perfect’ absorbers and tunable filters. 
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