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An aim of systems biology is to understand complex interactions between genes, proteins and 

metabolites by integrating and modeling multiple data sources. We report an integrated-omics approach 

within XCMS Online1 that automatically superimposes raw metabolomic data onto metabolic pathways, 

and integrates it with transcriptomic and proteomic data (XCMSOnline.scripps.edu).  

Mapping downstream metabolite changes onto metabolic pathways and biological networks can 

provide considerable mechanistic insight that can be confirmed by association to multi-omic data. 

However, pathway analysis using untargeted metabolomics requires intense data curation, including 

feature filtering, statistical analysis and metabolite identification. Subjectively defined values such as 

fold change, p-value, and signal intensity cut-off are needed to identify significantly dysregulated 

metabolite features within enormous datasets. Confirming metabolite identities for pathway analysis 

typically requires additional tandem mass spectrometry (MS/MS) experiments and matching the spectra 

to standards or MS/MS spectral databases. The magnitude of these datasets makes it impractical to 

manually interpret and therefore the use of bioinformatic tools at each step is essential. Multiple analysis 

platforms are often needed to complete the entire workflow, which can take several weeks depending on 

the size of the sample cohort and the experience of the analyst.  

XCMS was originally developed as a metabolomics data processing algorithm to extract 

metabolic features out of raw MS data and perform statistical analysis. The evolution of XCMS from a 

command line tool2 to an intuitive cloud-based online platform1 facilitated its use by a broader 

community. However, the community is still in need of user-friendly tools to take metabolomic output 

and associate it with metabolic pathways to identify aberrant biological processes. To address this 

demand, we implemented automated predictive pathway analysis3 that operates directly on the entire 

metabolic feature table into the XCMS Online workflow (Fig. 1), removing the need to transfer data to 

another application, and enabling quick and efficient pathway analysis. This process involves uploading 

raw MS data to XCMS Online where the statistically significant features are identified, then using 

http://xcmsonline.scripps.edu/
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Fisher’s exact test, dysregulated metabolic pathways are identified from the processed accurate mass 

data.3 If gene and protein data are available, they are uploaded and overlaid with the results of the 

metabolomic analysis. Currently there are over 7600 metabolic models available for pathway analysis 

from BioCyc v19.5 – 20.0 with contents being updated regularly. Further confirmation of dysregulated 

pathways can be performed by comparing metabolite spectra, obtained via targeted or autonomous 

MS/MS, with standard fragmentation spectra from METLIN, which contains MS/MS data on over 

14,000 molecules4. To address instances where a standard spectrum is not available, we have also 

recently added machine learning in silico fragmentation data to METLIN, generating MS/MS spectra on 

over 220,000 additional molecules. Our workflow enables (1) evaluation of biochemical relevance by 

mapping high resolution MS data directly onto pathways, (2) cross-integration of genomic and 

proteomic data and (3) metabolite identity verification via data dependent MS/MS analysis either 

separately or as part of the autonomous workflow4. 

Our multi-omic analysis tool uses embedded BioCyc5 and Uniprot6 databases to map user-

uploaded gene and protein data onto the predicted metabolic pathways (Supplementary Figure 1). 

Results can be viewed in table form or using the interactive Pathway Cloud Plot (Figure 1). 

Visualization of dysregulated pathways appear with greater overlap and statistical significance in the 

upper right-hand quadrant of the cloud plot. Graph features can be clicked to view more information on 

overlapping gene, protein and metabolite data, with links to BioCyc, KEGG, and METLIN. Important 

features can be readily identified, helping to decipher underlying biological mechanisms. Details on the 

pathway analysis and integrated omics workflow can be found in the Supplementary Methods. 

Currently, data sharing is possible between collaborators and the public and we encourage users to share 

their data in the XCMS Online community.  

To demonstrate metabolic pathway analysis and multi-omic integration, we describe a number of 

representative sample sets in the Supplementary Note, including metabolic pathway analysis using 



 4 

progenitor cell proliferation data and a bacterial induced corrosion study (Supplementary Figure 2); 

proteomic integration with an aging study (Supplementary Figure 3); transcriptomic and proteomic 

integration using a human colon cancer study (Supplementary Figure 4 and Supplementary Table 1), 

a sulfate reducing bacteria nitrate stress-response study (Supplementary Figure 5) and a microbial 

media stress-response study (Supplementary Table 2 and Supplementary Figure 6); and a cohort of 

1,600 diabetes plasma samples (Supplementary Figure 7) which helps illustrate the scalability of the 

cloud-based XCMS Online.  

Other notable tools providing pathway analysis and multi-omic integration include Galaxy-M7, 

Open MS from KNIME8, and MetaboAnalyst9. However, many of these tools still require separate 

preprocessing of LC-MS data and are not fully integrated into a single program. Our workflow 

automatically maps metabolomic data directly onto pathways and integrates transcriptomics and 

proteomics for systems-wide interpretation in one cohesive platform. Additionally, metabolic network 

mapping is available based on the predictive activity network algorithm3 for analysis of metabolomic 

data only, with multi-omics networking in development. In the future, we will incorporate unique 

metabolic pathways and networks from other sources to provide more comprehensive biological 

resources.  

 

Data Availability 

 To assist users with the new workflow, we have provided a sample dataset entitled “Ecoli_glucose-vs-

adenosine” (Job ID#1133019) that can be found on XCMS Online under XCMS Public 

(https://xcmsonline.scripps.edu/landing_page.php?pgcontent=listPublicShares), as well as two 

instructional videos available within the XCMS Institute 

(https://xcmsonline.scripps.edu/landing_page.php?pgcontent=institute) under the Omics tab and by 

clicking Integrated Omics or Pathway Cloud Plot. 
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Figure 1. Workflow for metabolomic data and pathway analysis using XCMS Online. A Metabolite Feature 

Table of statistically significant features is generated from standard XCMS processing; these features 

automatically undergo Predictive Pathway Mapping using a specified biological model. The pathway cloud plot 

shows Dysregulated Pathways (blue circles) with increasing statistical significance on the y-axis, metabolite 

overlap on the x-axis and total number of metabolites in the pathway represented by the circle radius. The 

Multiscale Pathway Coverage table presents enriched metabolic pathways with overlapped and total metabolites, 

genes and proteins. MS/MS Data confirms dysregulated pathways by matching metabolite MS/MS spectra with 

the METLIN database. 

 


