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In the RV144 trial, to date the only HIV-1 vaccine efficacy trial demonstrating a modestly

reduced risk of HIV-1 acquisition, antibody responses toward the HIV Envelope protein

(Env) variable (V) 2 and V3 regions were shown to be correlated with a reduced

risk of infection. These potentially protective antibody responses, in parallel with the

vaccine efficacy, however, waned quickly. Dissecting vaccine-induced IgG recognition

of antigenic regions and their variants within the HIV-1 Env from different vaccine

trials will aid in designing future HIV-1 immunogens and vaccination schedules. We,

therefore, analyzed the IgG response toward linear HIV-1 Env epitopes elicited by

a multi-clade, multigene HIVIS-DNA priming, and heterologous recombinant modified

vaccinia virus Ankara (MVA-CMDR) boosting regimen (HIVIS03) and assessed whether

a late MVA-CMDR boost 3 years after completion of the initial vaccination schedule

(HIVIS06) restored antibody responses toward these epitopes. Here we report that

vaccination schedule in the HIVIS03 trial elicited IgG responses against linear epitopes

within the V2 and V3 tip as well as against the gp41 immunodominant region in a

high proportion of vaccinees. Antibodies against the V2 and gp41 Env regions were

restricted to variants with close homology to the MVA-CMDR immunogen sequence,

while V3 responses were more cross-reactive. Boosting with a late third MVA-CMDR after
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3 years effectively restored waned IgG responses to linear Env epitopes and induced

targeting of identical antigenic regions and variants comparable to the previous combined

HIVIS-DNA/MVA-CMDR regimen. Our findings support the notion that anti-HIV-1 Env

responses, associated with a reduced risk of infection in RV144, could be maintained by

regular boosting with a single dose of MVA-CMDR.

Keywords: human immunodeficiency virus 1 (HIV-1), vaccine, envelope (Env), envelope-specific antibody

response, epitope variants, immunogen structure, immunogen sequence, linear peptide array

INTRODUCTION

With an estimated 1.7 million new HIV infections worldwide
in 2018 as reported by the WHO, HIV-1 remains a global
health challenge. To stop the on-going HIV epidemic, a safe
and effective HIV vaccine is urgently required. So far, the virus’
immune evasion mechanisms have hampered these attempts.
One of the main challenges lies in the extraordinarily high
mutation rate of HIV, which results in high antigenic variability
of the HIV-1 Envelope (Env) protein, the only viral antigen
exposed on the surface of the viral particle. The HIV-1 Env
comprises three gp120-gp41 heterodimers, together forming a
meta-stable trimer, which is well-shielded from the immune
system by N-linked glycans (1, 2).

Even though 10–50% of chronically HIV-1 infected
individuals, both adults and children, develop broadly
neutralizing antibodies (bnAbs) against the Env (3–5), and 1–2%
of naturally infected individuals are so-called elite neutralisers
with very high cross-clade activity (6), current immunization
regimens have not succeeded in inducing such broad and potent
HIV-1-neutralizing antibodies (7). Non-neutralizing antibodies
binding to the HIV-1 Env, however, might also have the potential
to protect against HIV-1 infection, as demonstrated by the
analysis of immune correlates of infection risk of the RV144
HIV-1 vaccine efficacy trial, whereby modest protection of 31%
was shown to correlate with specific binding antibody responses
to the HIV Env (8–10). IgG antibodies to the HIV-1 Env variable
(V) regions V1 and V2, as well as V3, were found to correlate
with a reduced risk of HIV-1 infection, while the presence of IgA
Env-binding antibodies was associated with an increased risk
of infection (9, 10). Antibody responses to other linear epitopes
of the HIV-1 Env gp120 did not correlate with infection risk
(10), which might be due to the fact that many of these regions
are not accessible on a native HIV-1 Env trimer (11). Viral
sieve analyses showed that the RV144 vaccine regimen induced

selection of viral variants with point mutations in the V2 and
V3 regions, indicating that strain-specific V2 and V3 antibodies
drove viral mutation to escape the vaccine-induced immune

response against HIV-1 (12, 13). In addition, for a rhesus monkey
adenovirus/poxvirus vaccine model, vaccine protection against
simian immunodeficiency virus (SIV) challenges correlated
with the presence of Env V2-specific binding antibodies (14).
Vaccine efficacy of RV144, however, declined over time, with
a cumulative vaccine efficacy of 60% at 6 months and 29%
at 42 months after the final vaccination (15). The parallel
waning of RV144-induced antibody responses toward the HIV-1

envelope, including anti-V2 responses (16, 17), suggests a link
between declining anti-Env antibodies and declining vaccine
efficacy. The exact mechanism by which these vaccine-induced
antibodies might reduce the risk of HIV-1 infection is unclear;
yet, monoclonal antibodies from RV144 vaccinees targeting the
V2 region have been shown to bind HIV-1 infected cells and
to mediate antibody-dependent cellular cytotoxicity (ADCC)
activity in vitro (18).

The V3 region, part of the chemokine receptor binding region,
is the least variable of the Env V regions, as the amino acid
sequence variability is restricted to the crown of the V3 loop
and length and structure are relatively conserved (19). The
functional importance of the V3 region was demonstrated by
a deficiency in the replication of V3-deletion viruses (20), and
anti-V3 responses were early associated with fewer mother-to-
child transmissions (21). The V2 region, which contains the
a4b7 binding motif (22), forms a double loop with the V1
region and varies strongly in length, but contains some degree of
sequence and structure conservation (19). While the V3 region
in the HIV Env gp120 is strongly immunogenic and induces
antibodies in essentially all HIV-infected individuals (10, 23),
some of which can neutralize HIV-1 diverse strains, the V2 region
only induces antibody responses in about 20–45% of infected
individuals (10, 24).

A thorough understanding of vaccine-induced IgG
recognition of antigenic regions and their variants within the
HIV-1 Env might inform rational immunogen and vaccination
schedule design. To this end, we here analyse the magnitude
and variant breadth of the IgG response toward linear HIV-1
Env epitopes in HIVIS03/06 vaccinees. We have previously
demonstrated that the multi-clade, multigene HIVIS-DNA
priming, and heterologous recombinant modified vaccinia
virus Ankara (MVA-CMDR) boosting regimen applied in the
HIVIS03 trial elicited high frequencies of potent and durable
antibody responses (25, 26). Neutralizing antibodies were not
detected in the TZM-bl neutralization assay, however, in an
infectious molecular clone (IMC)-PBMC assay, sera of up to
83% of vaccinees showed neutralizing activity (25, 26). ADCC-
mediating antibodies were detected in the majority of vaccinees
(97%) (26) and—in contrast to the waning antibody-responses
in RV144 (16, 17)—were still present in 84% of vaccinees 3
years after the last vaccination (27). In the HIVIS06 trial, a late
third MVA-CMDR boost, given after 3 years (between 2.7 and
3.2 years), successfully boosted HIV-1-specific humoral and
cellular immune responses amongst the vaccinees (27). We
here set out to dissect the antibody responses induced by the
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FIGURE 1 | Summary of the HIVIS03/06 vaccination schedule. The HIVIS03/06 vaccination regimen included three injections of HIVIS-DNA (3.8mg i.m./immunization

or 1mg id/immunization using Biojector), composed of 7 plasmids (encoding for gp160 Env subtypes A, B, and C, Rev subtype B, and Gag subtypes A, B, and

RTmut). This was followed by two injections of 108 pfu i.m. of MVA-CMDR (CRF01_AE) coding for a membrane-anchored, functional HIV Env (subtype E), as well as

Gag and Pol (subtype A) (25). An additional MVA-CMDR boost 3 years later concluded the vaccination schedule [HIVIS06 (27)].

initial combined HIVIS-DNA/MVA-CMDR vaccination and
the late third MVA-CMDR boost in more detail to elucidate
whether the HIVIS03/06 vaccination schedule can induce and
sustain antibody responses to HIV-1 Env epitopes associated
with reduced infection risk in RV144 (9, 10).

MATERIALS AND METHODS

Ethics Statement
The HIVIS03 and HIVIS06 trial protocols were approved by the
Tanzania National Health Research Ethics Committee and the
Senate Research and Publications Committee of the Muhimbili
University of Health and Allied Sciences (MUHAS), as well
as by the Regional Ethics Committee, Stockholm, Sweden.
The use of the vaccine candidate products for humans was
approved by the Tanzania Food and Drugs Authority. The
trials were conducted in accordance with the International
Conference on Harmonization Good Clinical Practice guideline.
Written informed consent was obtained from all volunteers
before enrolment.

Study Design
In the HIVIS03 trial, a phase I/II clinical trial, conducted in
Dar es Salaam, Tanzania among healthy adult volunteers, 60
HIV-uninfected volunteers were randomized into three groups
of 20 volunteers to receive either placebo, 1mg HIVIS-DNA
intradermally (i.d.), or 3.8mg intramuscularly (i.m.) prime.
HIVIS-DNA plasmids expressing HIV-1 gp160 subtypes A, B,
C; Rev B; Gag A, B, and RTmut B (28) were given at months
0, 1, and 3 using a needle-free Biojector device (25). This was
boosted in the non-placebo groups by a recombinant MVA-
CMDR encoding CRF01_AE derived Gag-Pol subtype A and
a membrane-anchored functional HIV-1 gp150 Env subtype
E (MVA-CMDR) that was administered at a dose of 108

p.f.u i.m. by needle at months 9 and 21 (25) (Figure 1). The
HIVIS06 trial was built upon the HIVIS03 trial, in which 20
volunteers, who had received 3 HIVIS-DNA and 2 MVA-CMDR

immunisations in the HIVIS03 trial, were again recruited to
receive an additional late 3rd MVA-CMDR vaccination, 3 years
after the 2nd MVA-CMDR immunization (27). Ten of these
20 selected vaccinees had received 1mg HIVIS-DNA i.d. and
the remaining 10 had received 3.8mg HIVIS-DNA i.m in
the initial HIVIS03 trial. All samples were stored at −80◦C
until the time of testing. Safety and immunogenicity of the
HIVIS03/06 vaccines were previously assessed in mice (28–31)
and humans (25, 27, 32). In the present study, we used plasma
samples collected from 20 vaccinees pre-vaccination (baseline),
4 weeks post 2nd MVA-CMDR vaccination, at the time of
the 3rd MVA-CMDR vaccination, i.e., 3 years after the 2nd
MVA-CMDR boost, and 4 weeks after the 3rd MVA-CMDR
vaccination (Figure 1).

Peptide Array Mapping of the HIV
Env-Specific IgG Antibody Response
The peptide array design has been previously described in
detail by our group (11). In brief, gp120 and gp41 sequences
of 8 recently transmitted HIV primary isolates of different
subtypes (A, B, C, CRF01_AE and CRF02_AG) were selected
for inclusion in the peptide array design to represent the HIV
Env variants of the current global pandemic. Additionally,
two HIV Env vaccine sequences—CN54gp140 (subtype C)
and CMDR (subtype AE)—were incorporated in the array.
Previously identified hot spots of IgG recognition on the
envelope (10, 11) were covered by up to 90 additional peptide
variants [V2 (HxB2 163-177), V3 (HxB2 300-324), V4 (HxB2
409-447), gp41 immunodominant region (HxB2 576-614),
and transmembrane cytoplasmic tail (HxB2 696-730)]. Each
individual linear overlapping 15mer peptide on the array was
present in triplicate.

Plasma from 20 HIVIS03/06 volunteers was analyzed using
the peptide microarrays according to the manufacturer’s
instructions with minor modifications (www.jpt.com) as
described elsewhere (11). Briefly, after initial blocking of the
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FIGURE 2 | Maps of linear IgG epitopes along the HIV-1 Env targeted by HIVIS03/06 vaccinees with frequency of responders (A) and mean FI (B) given for each time

point tested. FI values of each peptide were mapped to the 10 full-length Env sequences included in the array. The maximum FI at each peptide position is then used

as a basis for the calculation of the frequency of responders. IgG responses against individual antigenic regions were considered positive if the corresponding

maximum FI was above 2,500 after subtraction of the pre-vaccination value. The mean FI was calculated from all vaccinees for peptide position-specific IgG

responses occurring in at least 10% of vaccinees. Numbered dots mark immunodominant Env regions, summarized in Table 1. FOR and mean FI at 4 weeks post

2nd MVA separated by subtype are depicted in Supplementary Figure 2.

TABLE 1 | Summary of immunodominant antigenic regions (IDR).

IDR Peptide

position

HXB2

position

Env

region

Representative

sequence

FOR (%) Mean FI

4weeks post

2nd MVA

3 years post

2nd MVA

4weeks post

3rd MVA

4weeks post

2nd MVA

3 years post

2nd MVA

4weeks post

3rd MVA

IDR1_V2 176 164 V2 ELRDKKQKVHALFYK 65 20 50 21,257 7,323 11,614

IDR2_V3 325 304 V3 RKSIRIGPGSTFYAT 55 5 55 19,441 – 9,221

326 305 V3 KSVRIGPGQTFYATG 80 25 70 20,287 7,765 12,669

IDR3_gp41 612 580 gp41 VLAVERYLKDQKFLG 60 0 65 9,248 – 9,247

IDRs were defined as being recognized by at least 50% of volunteers at 4 weeks post 2nd MVA-CMDR. Identity of the immunodominant peak (see Figure 2), with corresponding peptide

array and HXB2 Env amino acid starting position, and a representative amino acid sequence. For each time point investigated here, the FOR and mean FI is stated. FOR, frequency of

responders; FI, fluorescence intensity.

array slides, plasma samples were diluted 1:100 and incubated
for 2 h at RT. Human IgG bound to the array was then detected
using a secondary mouse anti-human-IgG Dylight649 antibody
(1:5,000, 1 h at RT; JPT). Plasma from all visits of one vaccinee
was processed simultaneously on the same day. After scanning
the microarrays with a GenePix 4000A scanner at 650 (signal)
and 532 nm (background) the resulting tiff files were analyzed
using GenePix Pro 6.0 (Molecular Devices) by adding the
array layout with an array-specific gal file. The layout was
then controlled manually for accuracy. Results were exported
from GenePix Pro 6.0 as gpr files, which link each position on

the array with a fluorescence intensity (FI) value. These were
processed using R scripts to first calculate the mean FI from
the triplicate peptides and then to combine the information
of each vaccinee at different time points. The resulting FI
was then linked with the corresponding peptide sequences
from a fasta file, containing the 10 full-length Env sequences
included in the array. IgG responses against individual peptides
were considered positive if the corresponding triplicate FI
value was above 2,500 after subtraction of the pre-vaccination
value (Figure 2). Mean FI values of all participants were
calculated, if at least 10% of the vaccinees showed a positive

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 719

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Joachim et al. HIV-1 Envelope Recognition in HIVIS03/06 Vaccinees

FIGURE 3 | Boosting after 3 years with a 3rd MVA-CMDR significantly restores diminished immune responses to all 3 IDRs. The absolute maximum FI of each

vaccinee to all variants (86 for HXB2 aa163, 36 for HXB2 aa304, and 21 for HXB2 aa580) corresponding to the respective HIV-1 Env position (A) IDR1_V2, (B)

IDR2_V3, and (C) IDR3_gp41 is given without subtraction of the baseline response. Each dot represents one vaccinee. Statistical analysis of changes in the anti-Env

IgG response against each IDR over all time points analyzed was conducted using the Wilcoxon matched-pair signed rank test. To showcase antibody-responses of

selected individual vaccinees over time and IDRs, we highlighted vaccinees that exhibited high maximum FI 4 weeks post 2nd MVA-CMDR by assigning a unique

color to them. All other vaccinees were assigned black dots.

response against the individual peptide. Immunodominant
antigenic regions (IDRs) (Table 1) were defined as being
recognized by at least 50% of volunteers at 4 weeks post
2nd MVA-CMDR. For statistical analysis (Figure 3), the
maximum response of each vaccinee to all variants of the
respective position without subtraction of the baseline response
was used.

Generation of phylogenetic Heat Maps and
Sequence Logos of Env IgG Recognition
Maximum likelihood phylogenetic trees of the peptide variants
corresponding to HxB2 amino acid positions 163 and 304
were generated using MEGA. The FI of each peptide variant
included in the Env peptide array for the V3 and V2 tip
(HxB2 163 and 305) has been linked with their phylogenetic
relationship as described previously (11). The mean FI of all
vaccinees for each peptide variant is color coded and the
frequency of occurrence of a given peptide variant in the
global HIV epidemic (www.hiv.lanl.gov) is depicted by its
icon size. Phylogenetic heat maps were generated using R
version 3.5.1.

Amino acid sequence logos depicting the amino acid
probability pattern at given Env positions (Figure 5) were
generated using WebLogo3 software (33).

Statistical Analysis
Statistical analysis of the maximum FI against the
V2 and V3 tip (Figure 3) was carried out using
GraphPad Prism version 6. The Wilcoxon matched-pair
signed rank test was used to compare the maximum
fluorescence intensity between the different time
points. A two-sided p-value of <0.05 was considered
statistically significant.

RESULTS

The HIVIS Vaccination Regimen Induces
IgG Responses Against the V2 and V3 tip
as Well as Against gp41
Mapping of antigenic regions targeted by vaccine-induced Env-
specific IgG responses was conducted in 20 participants of the
HIVIS03 trial, receiving 3 HIVIS-DNA priming immunizations
and 2 boosts withMVA-CMDR. The frequency andmagnitude of
the IgG response against individual linear overlapping peptides
covering the HIV envelope after priming with HIVIS-DNA
and boosting with MVA-CMDR are shown in Figures 2A,B

upper row. Individual antibody responses of each vaccinee are
depicted as a heat map in Supplementary Figure 1. Four weeks
after the 2nd MVA-CMDR boosting, 3 IDRs within the V2,
V3, and gp41 region of the HIV-1 Env, recognized by at least
50% of vaccinees, became apparent (Figure 2A upper row).
Responses to all 3 IDRs increased significantly (p < 0.01) 4
weeks post 2nd MVA-CMDR as compared to baseline (pre-
vaccination) (Figure 3). The IDRs, recognized by at least 50%
of vaccinees and their corresponding HXB2 position, as well as
the frequency of responders (FOR) andmean FI, are summarized
in Table 1.

In the V2 region, the most frequently targeted peptide
position (65% of participants; 13/20) corresponded to HXB2
aa164-178 (ELRDKKQKVHALFYK) (Table 1). An additional
peptide within the V2 loop, corresponding to HXB2 aa168
(KKQKVHALFYKLDIV) and consisting of a highly conserved
region including the α4β7 integrin-binding motif LDI/V (22),
was recognized in 20% of the vaccinees (mean FI = 13,012).
The IgG epitope targeted in the V3 region, was covered
by two overlapping 15mer peptides corresponding to HXB2
aa304-319 and aa305-320, which were targeted in up to 55
and 80% of vaccinees, respectively. A further epitope located
in the V3 loop, HXB2 aa311-324 was targeted in 35% of
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HIVIS03 recipients. IDR3_gp41, corresponding to HXB2 aa580-
594 (VLAVERYLKDQKFLG), which partly covers the gp41
immunodominant region, was recognized in 60% of HIVIS03
vaccinees after the 2nd MVA-CMDR. Additionally, peptides
corresponding to HXB2 aa727-741 in the gp41 cytoplasmic
tail were targeted in 35% of vaccinees (Figure 2A upper row).
Sixty percent of all vaccinees responded to both, IDR1_V2 and
IDR2_V3 and 45% to all three IDRs. Only 1 vaccinee (5%)
did not elicit an IgG response to any of the peptides in the
array (Supplementary Table 1).

No significant difference in the vaccine-induced anti-HIV-1
Env IgG response between the 3.8mg i.m. immunization and
the 1mg id immunization of the HIVIS-DNA could be observed
(data not shown). Vaccinees of both injection groups showed
the same pattern of Env recognition and antigenic regions were
targeted to comparable levels.

Boosting With a Late 3rd MVA-CMDR
Restores Env-Specific IgG Responses
Toward Identical Antigenic Regions as the
Original HIVIS-DNA/MVA-CMDR
Vaccination
In order to evaluate the durability of the HIV-1 Env-specific
IgG response described above and the effect of a late boost with
MVA-CMDR, we mapped HIV-1 Env antigenic regions in sera of
the same 20 participants at 3 years after completing the HIVIS03
regimen and after the late boost with MVA-CMDR. Three years
after the 2nd MVA-CMDR boosting of vaccinees in the HIVIS03
study, IgG response rates against linear HIV Env epitopes
had declined considerably to only 20% against IDR1_V2,
5 and 25% against IDR2_V3, and 0% against IDR3_gp41
(Figure 2A and Supplementary Figure 1 middle row), with
sera from 4 vaccinees (20%) completely failing to recognize
any of the presented Env peptides (Supplementary Table 1).
The magnitude of the response for all 3 IDRs also declined
significantly (p < 0.01) (Figure 2B middle row and Figure 3).
However, the late 3rdMVA-CMDR boosting (HIVIS06), restored
the overall pattern of HIV-1 Env IgG recognition to an
almost identical pattern as the one seen at 4 weeks after
the 2nd MVA-CMDR immunization (HIVIS03), albeit at a
lower magnitude (Figures 2A,B and Supplementary Figure 1

lower row). The FOR to the V2 loop was raised again to
50 and 70% to the V3 loop following the 3rd MVA-CMDR
boost. The response against the gp41 immunodominant region,
undetectable 3 years after the 2nd MVA-CMDR, was boosted
by the late 3rd MVA-CMDR to a similar frequency (65%) and
magnitude (9,247 mean FI) as after the 2nd MVA-CMDR. The
increase in the magnitude of the response after the late 3rd
MVA-CMDR was significant to all IDRs (p < 0.05) (Figure 3).
We observed that vaccinees with a distinct IgG response
against one of the IDRs after the 2nd MVA-CMDR, tended
to respond against the same epitope after the late 3rd MVA-
CMDR boost (colored dots in Figure 3). After the late boost,
50% of all vaccinees responded to IDR1_V2 and IDR2_V3
and 45% to all three IDRs. Only 2 vaccinees (10%) did not

show a response to any of the Env peptides in the array
(Supplementary Table 1). In summary, our data shows that
the late 3rd MVA-CMDR boost restores linear anti-Env IgG
responses to the same antigenic epitopes as the initial combined
HIVIS-DNA/MVA-CMDR vaccination to near post 2nd MVA-
CMDR levels.

Comparable Antigen Variant IgG
Recognition Patterns Are Detected After
the Late 3rd MVA-CMDR Boost and the
Original HIVIS-DNA/MVA-CMDR
Vaccination
Inclusion of additional peptide variants at previously identified
hot spots of IgG recognition of the HIV-1 Env in the peptide
array design allowed fine mapping of the vaccination-induced
IgG responses of the V2 and V3 tip (11), both correlated
with a decreased risk of HIV-1 infection (10). This thereby
enables a direct comparison of the variant recognition after the
initial combined HIVIS-DNA/MVA-CMDR vaccination and
the late 3rd MVA-CMDR boost. The V2 loop (HXB aa163_
TEIKDKKQKVHALFY, Figure 3A) was covered by 86 peptide
variants and the V3 tip (HXB aa304_ RKSIRIGPGSTFYAT,
Figure 3B) by 38 peptide variants. The mean FI of all 20
vaccinees per time point (4 weeks post 2nd MVA-CMDR, 3
years post 2nd MVA-CMDR, and 4 weeks post 3rd MVA-
CMDR) was calculated for each peptide variant included in
the array and projected as a heat map onto a phylogenetic
tree illustrating the relationship of the peptide variants as
well as their frequency within the global HIV epidemic
(Figure 4). HIVIS03/06 volunteers produced Env-specific IgG
responses toward several different peptide variants of the V2
tip (HxB2 aa163), with recognition of two clusters of closely
related variants TE(/I)LRDKKK(/R/Q/H)KVHS(/A/N/H)LFY
and TEI(/L)RDKKQRVHALFY, with one outlier
(TELRDKKQKVHSLFY) (Figure 4A). Variant
TEIKDKKQKVHALFY was the most strongly recognized at all
time points (Figure 4A). The corresponding, but non-analogous,
MVA-CMDR vaccine sequence ELRDKKQKVHALFYK, present
on the array at HxB2 position 164 due to differential cleavage, was
similarly strongly recognized at 4 weeks post 2nd MVA-CMDR
(mean FI: 13,746), but not as strongly boosted after the 3rd
MVA-CMDR (mean FI: 3,830) (data not shown). For the V3 tip
(HXB aa304), we observed a broader response with recognition
of several different variants with less clustering of positive
responses among closely related sequences (Figure 4B). This
response decreased 3 years after the 2nd MVA-CMDR but was
re-established to some extent following the single dose of the late
3rd MVA-CMDR (Figure 4B). The peptide variant most strongly
recognized at all 3 time points tested was RKSIPIGPGRAFYTT.
The corresponding MVA-CMDR sequence (HxB2 aa307:
TSIPIGPGQAFYRTG) was recognized equally well as the V3
variant RKSIPIGPGRAFYTT at all 3 time points (mean FI 4
weeks post 2nd MVA-CMDR: 14,825, mean FI 3 weeks post
2nd MVA-CMDR: 702, mean FI 4 weeks post 3rd MVA-CMDR:
7,460) (data not shown).
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FIGURE 4 | Phylogenetic heat map of IDR_V2 and IDR_V3 peptide variants targeted by vaccine-induced antibodies in HIVIS03/06 vaccinees. The strength of

antibody-responses of all 20 vaccinees tested against each peptide variant (mean FI) corresponding with either IDR1_V2 or IDR2_V3, both of which were correlated to

a reduced risk of HIV-infection in RV144, was calculated for each time point. The mean FI is illustrated in the context of their phylogenetic relationship, as well as their

frequency of occurrence in the HIV database. The color of the dots represents the strength of the IgG response toward the given peptide, with a strong reaction

displayed in red and a weaker reaction being displayed in blue. The icon size corresponds to the frequency of this peptide within the global HIV epidemic (www.hiv.

lanl.gov) with a larger dot indicating a greater prevalence of the peptide. (A) Phylogenetic tree of 86 peptide variants corresponding to the

HxB163_TGMIDKMKEEYALFY V2 position. (B) 36 peptide variants were tested for the V3 tip region (HxB304_RKSIRIGPGSTFYAT).

Of note, the V2 and the V3 loop sequence variants most
strongly recognized here were not the most frequent in the global
HIV epidemic as defined by occurrence in the HIV Los Alamos
database (www.hiv.lanl.gov) anddepicted inFigure 4by icon size.

For the relatively conserved IDR3_gp41, with only 21 peptide
variants present on the array, only one sequence variant
(VLAVERYLKDQKFLG) was recognized at both time points
(data not shown).
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These data show that a single late MVA-CMDR boost
can restore IgG-responses toward the same peptide variants
as those that were targeted by the combined initial HIVIS-
DNA/MVA-CMDR vaccination, even if administrated after a
3-year interval.

IDR1_V2 and IDR3_gp41 Responses Are
Restricted to Variants With Close
Homology to the MVA-CMDR Immunogen
Sequence, While IDR2_V3 Responses Are
More Cross-Reactive
To determine the effect of the different immunogens on the
elicited antibody response, we analyzed preferred targeting of
certain amino acid motifs of the 3 IDRs in the context of the
immunogen sequences (Figure 5). A direct comparison of strong
to moderately recognized (mean FI >5,000; n = 10) and non-
recognized (mean FI <2,500; n = 70) peptide variants in the
V2 loop (HXB2 aa163), at 4 weeks after the 2nd MVA-CMDR,
corresponding to IDR1_V2, showed a distinct preference of
E164, K169, and VH172−173 of the HIVIS vaccine-induced IgG
response (Figure 5A). The amino acids with a probability of
recognition of >0.6 closely match the MVA-CMDR immunogen
sequence (Figures 5A,D). Dissecting the antibody-targeting of
the HIV-1 Env by HIV-1 subtype and vaccine also shows a
strong preference of the MVA-CMDR sequence at IDR1_V2,
followed by sequences representative for subtype AG and C
(Supplementary Figure 2). Representative IDR1_V2 peptides
sequences, which had a strong recognition (mean FI >2,500)
where aligned against the HIV Los Alamos database. Only a
small number of these sequences showed a close homology to
our peptides (Supplementary Figure 3). The reactive peptides
recognize mainly subtype AE and C sequences, reflecting the
subtype of the MVA-CMDR, however, there is no difference
in the homology profile of highly reactive and non-reactive
sequence pairs.The IgG-response toward the V3 was more cross-
reactive than the V2 response with a total recognition of 22
out of 36 peptide variants. Comparison of strong to moderately
recognized (man FI >5,000; n = 14) variants to non-recognized
variants (mean FI <2,500; n = 14) of the V3 loop (represented
by HXB2 aa304) revealed a preferred recognition of amino acids
KS305−306, IGP309−311, and FY315−316 (Figure 5B). Amino acids
targeted with a high probability (>0.6) match relatively close to
the MVA-CMDR as well as two out of the three HIVIS-DNA
plasmids (subtypes A and C, but not B) immunogen sequences
(Figures 5B,E). This broad recognition of V3 epitopes of various
subtypes is shown in Supplementary Figure 2, where high
percentages of vaccinees elicit IgG responses against sequences
representing subtype C, followed by MVA-CMDR, subtype AG,
and then subtypes B and A. Similar results can be seen from
the homology profile of representative IDR2_V3 peptides in
Supplementary Figure 3, where each peptide shows homology
to a large number of sequences and all subtypes are represented.
Even within the relatively conserved IDR3_gp41 (HXB2 aa580),
partly covering the gp41 immunodominant region, a vaccine-
induced preference of IgG targeting peptide variants with V583,
K588, and KF591−592 could be observed (Figure 5C). Here,

only one sequence variant (VLAVERYLKDQKFLG), out of 21
included in the array was recognized 4 weeks after the 2nd MVA-
CMDR (mean FI: 5,554) and the 3rd MVA-CMDR (mean FI:
6,455). The recognized sequence was an exact match to that of the
MVA-CMDR subtype AE immunogen sequence (Figure 5F and
Supplementary Figure 2). As described in paragraph 3.3, peptide
variant recognition after the 3rd MVA-CMDR closely matched
recognition after the 2nd MVA-CMDR.

The comparison of peptide variants preferentially targeted
by HIVIS03/06 vaccinees with the corresponding immunogen
sequences revealed a strong influence of theMVA-CMDR vaccine
for the IgG recognition of IDR1_V2 as well as IDR3_gp41, where
the amino acid sequences of preferred peptides closely match the
MVA-CMDR immunogen sequence. IgG targeting of IDR2_V3,
on the other hand, was more cross-reactive and less constrained
to one of the immunogen sequences.

DISCUSSION

In the present study, we assessed the magnitude and cross-
reactivity of the IgG antibody response against linear HIV-1
Env epitopes induced by a heterologous multi-clade, multigene
HIVIS-DNA prime and heterologousMVA-CMDR boost vaccine
regimen (25), using a linear peptide array spanning the complete
HIV-1 Env. We further analyzed the effect of a late boosting
injection with solely MVA-CMDR (27) on restoring the anti-
HIV-1 Env IgG response to comparable magnitudes and
antigenic variant recognition.

We demonstrate that the HIVIS03 vaccination regimen
induced IgG responses against linear epitopes within the V2
and V3 tip, both associated with a reduced risk of HIV
infection in the RV144 trial (9, 10), as well as the gp41
immunodominant region. Antibody responses against the V2
loop and the gp41 immunodominant region were relatively
narrow and more pronounced against peptide variants closely
resembling the MVA-CMDR immunogen sequence rather than
the HIVIS-DNA sequences used for priming, whereas the anti-
V3 response was more cross-reactive. Three years after the
second MVA-CMDR boost, these HIV Env-specific antibody
responses had declined significantly, however boosting with
a late third MVA-CMDR in HIVIS06 restored IgG responses
to the same linear Env epitopes and antigenic variants. This
finding has potential implications for HIV-vaccine design, as
it shows that a single boost with MVA-CMDR can sustain
anti-Env antibody responses, associated with a reduced risk of
infection in RV144 (9, 10) as well as in an SIV challenge NHP
model (14).

The HIV-1 Env linear B cell epitopes (IDR1_V2, IDR2_V3,
and IDR3_gp41) detected here in HIVIS03/06 participants are
similar to those recognized in TaMoVac I vaccinees after HIV-
DNA priming andMVA-CMDR boosting using the same peptide
microarray (11). The TaMoVac I vaccinees received the same
HIV-DNA and MVA-CMDR immunogens used here, with i.d.
HIV-DNA immunizations delivered at weeks 0, 4, 12, and 108

pfu HIV-MVA given i.m. at weeks 30 and 46. TaMoVac I was
designed to evaluate a simplified DNA vaccination regimen and
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FIGURE 5 | Amino acid probability analysis for the three IDRs shows preferential targeting of certain amino acids by vaccine-induced IgG. Sequence logos depicting

the amino acid probability pattern of the most strongly recognized peptides (mean FI >5,000) at 4 weeks after 2nd MVA-CMDR for HXB2 163 V2 (n = 10) (A upper

row), HXB2 304 V3 (n = 14) (B upper row), and HXB2 580 gp41 (n = 1) (C upper row) IDRs. The lower row represents peptide variants with a mean FI below

threshold (<2,500) for IDR1_V2 (A; n = 70), IDR2_V3 (B; n = 14), and IDR3_gp41 (C; n = 20). The height of the letter indicates the probability of an amino acid

occurring at a given position. Red boxes highlight amino acids with preferred targeting after vaccination. Amino acids are colored according to their hydrophobicity

(hydrophilic—blue; neutral—green; hydrophobic—black). (D–F) Vaccine and HXB2 sequences corresponding to the 3 IDRs. Amino acids with a ≥0.6 probability of

targeting in the HIVIS03 vaccine regimen are highlighted in red.

compared 5 injections of HIV-DNA, 1,000 µg total dose (3 Env
and 2 Gag encoding plasmids) with two “simplified” regimens of
2 injections of HIV-DNA, 600 µg total dose, of Env- and Gag-
encoding plasmid (34). Additionally, the TaMoVac I vaccinees
received two boosts of CN54rgp140/GLA-AF protein 4 weeks
apart 30–71 weeks after the last MVA-CMDR vaccination (35).
Both vaccine trials induced IgG antibody responses toward linear
epitopes located in the V2 and V3 loop as well as in the gp41
immunodominant region. Boosting with CN54gp140 protein in
TaMoVac I recipients resulted in a higher magnitude and breadth
of the V3 response, as well as in the recognition of additional
Env regions, which are, however, mostly inaccessible on a
native trimer (11). Interestingly, the V2 response in TaMoVac
I vaccinees was not affected by the protein boost and was also
focussed on peptide variants with close homology to the MVA-
CMDR immunogen sequence. Antibody responses toward the
same area in the V2 loop—N-terminal to the α4β7 binding
motif—as detected in HIVIS03/06 and in TaMoVac I vaccinees,
were also detected in RV144, RV305, VAX003, and HVTN100
vaccine recipients, but not in VAX004 and UKHVC 003SG
vaccinees, and only in few HIV-1 infected subjects (10, 11, 23,
36–39). In the RV144 trial, this V2-specific IgG response was
associated with a reduced risk of HIV infection (10), however,
no reduced risk of infection was seen in the VAX003 trial, which
might have been due to differences in IgG subclasses of the
antibodies specific for the V2 loop crown (16, 40). While the anti-
V2 response in RV144 was dominated by IgG3 antibodies, IgG4
antibodies prevailed in VAX003.

Interestingly, the late boost consisting of a single dose
of MVA-CMDR employed here in the HIVIS06 vaccination
schedule, not only induced recognition of the same antigenic
epitopes but also the same peptide variants as detected

following the original HIVIS-DNA/MVA-CMDR vaccination.
We, therefore, compared preferably targeted peptide variants to
the immunogen sequences used. This revealed that for both,
IDR1_V2 and IDR3_gp41, only variants with close homology
to the MVA-CMDR immunogen sequence were recognized. The
IgG anti-V3 response, however, was much broader at both time
points—recognizing several HIV-1 subtypes, which might be
due to the fact that the V3 region is the least variable of the
HIV-1 variable regions and therefore might be structurally more
conserved (19).

Single amino acids can be critical for epitope formation and
therefore antibody binding, as was reported in RV144 vaccinees,
where K169 and V172 were critical for V2 loop binding by IgG (36,
37). The importance of K169 for IgG antibody binding was further
demonstrated by its sieve effect on break-through viruses in
RV144 (12). Interestingly, when applying theHIVIS03/06 vaccine
regimen, where the MVA-CMDR immunogen V2 sequence is
identical to the RV144 immunogens ALVAC-HIV and AIDSVAX
E, also only peptide variants with K169 and V172 were targeted.
All amino acid positions that proved to be crucial for targeting by
antibodies elicited by the HIVIS03/06 vaccination regimen (E164,
K169, and VH172−173) are located at Env positions with lower
sequence conservation (13), which might explain the limited
breadth of the V2 response detected here. This lower sequence
conservation can also be observed in the homology profile
representative IDR1_V2 sequences. Even though, the breadth
of V2 response observed in HIVIS vaccinees seems narrower
than Gottardo et al. reported for RV144 and VAX003 vaccinees,
still a similar preference of peptides present in Env sequences
of subtype AE (corresponding to the MVA-CMDR), AG, and
subtype C can be observed. This leads to the conclusion that the
immunogen sequence strongly influences IgG responses elicited
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by the immunogen and calls for optimal immunogen design
to achieve broader anti-V2 responses. Amino acids that were
important for V3 targeting in HIVIS03/06 vaccinees—especially
IGP309−311 and FY315−316–on the other hand, are much more
conserved (13), and thus might lead to a much broader IgG
response, targeting various HIV-1 subtypes. In contrast to IgG
responses targeting the V2 region, antibodies toward the V3 loop
are present in essentially all HIV infected patients and human and
animal model vaccine studies using immunogens that include
the Env V3 region (10, 11, 24, 41–43). Presence of such anti-V3
antibodies in vaccinees with low levels of anti-Env specific IgA
was also associated with protection in the RV144 trial (10).

Glycosylation patterns and conformational aspects of the
immunogens will influence the accessibility of B cell epitopes
and therefore direct the vaccine-induced antibody response.
None of the 3 IDRs detected in HIVIS03/06 vaccinees contains
glycosylation motifs and are thus more likely to be accessible.
Furthermore, only antibodies targeting epitopes accessible on
the native HIV-1 Env trimer will be able to bind in the natural
course of infection and prevent infection. Mapping of the IDRs
onto a 3D structure of a native-like Env trimer described
in Nadai et al. (11), allowed us to infer the conformational
location of the 3 IDRs detected here. Both IDR1_V2 and
IDR2_V3 map to the trimer apex and are located on the
surface of the trimer, while IDR3_gp41 would be hidden in
the inter-protomer region of a native trimer. Yet, in the
native-like membrane-bound, functional MVA-CMDR encoded
gp150 immunogen, IDR3_gp41 lies close to the C-terminus, and
might, therefore, be accessible.

An earlier study on the durability of immune responses
induced by HIVIS03/06 vaccination (27) showed that 3 years
after the 2nd MVA-CMDR 90 and 85% of the participants still
had detectable ELISA binding antibodies to subtype C gp140 and
subtype B gp160 antigen, respectively, albeit at significantly lower
titres than at peak immunogenicity. In the present study, we show
comparable 3-year durability of IgG antibodies targeting linear
HIV-1 Env peptides, with 80% of vaccinees still recognizing any
of the linear HIV-1 Env peptides presented by the microarray.
When dissecting this total anti-Env IgG response into individual
specificities, however, a strong variance in the durability of
antibodies targeting discriminative epitopes can be observed.
IgG antibodies to all three immunodominant linear HIV-1
Env epitopes elicited by the initial HIVIS03 vaccination show
a significant decline 3 years after the second MVA-CMDR.
Yet, when comparing classical protein-based ELISAs and linear
peptide microarrays, advantages and limitations of each assay
have to be considered. As only linear epitopes will be displayed
on the peptide array, antibodies to conformational epitopes such
as discontinuous (i.e., CD4-binding site) or quaternary epitopes
(i.e., arising from Env trimerisation) will not be detected. Such
discontinuous and structural epitopes might be present on the
antigens used in ELISA assays and therefore, could lead to a
higher sensitivity of the ELISA assays. Linear peptidemicroarrays
in contrast to classical protein-based ELISAs, however, allow
for the simultaneous analysis of the magnitude as well as the
breadth of the IgG response toward multiple linear epitopes
and is therefore suitable for high-throughput fine mapping of
antibody specificities.

In the light of the parallel decline of vaccine efficacy (15) and
anti-HIV-1 Env antibodies (16, 17) in RV144, the restoration
of antibody responses to the V2 and V3 epitopes, associated
with a reduced risk of infection, by repeated boosts would
be desirable. Considering these findings, the sustainability of
antibody responses to the V2 and V3 HIV-1 Env epitopes by
a single dose of the MVA-CMDR vector immunogen instead
of protein-based immunogens described in the present study
might, therefore, have implications to the advancement of HIV-
vaccine design. Regular protein boosts in the non-protective
HIV vaccine trial VAX003 were shown to increase levels of
total IgG anti-V2 antibodies, yet, did not improve magnitude
or durability of V2 responses and led to a decline in anti-V2
IgG3 antibodies. A IgG3 dominated V2 response was associated
with a reduced risk of HIV infection in RV144 (16, 44). Boosting
of HIV-1 uninfected RV144 participants 6–8 years after the
completion of RV144 in the RV305 trial showed promising results
as an increase in the breadth of antibody effector functions in
V2-specific antibodies as well as long durability of V2-specific
memory B-cell clones could be detected (45). Yet, an analysis
into anti-Env and anti-V1V2 antibody titres by vaccination group
showed significant differences in the immunogens used (38).
While immunisations solely with the ALVAC-HIV canarypox
vector only slightly increased anti-gp70 V1V2 titres, they did
not increase IgA responses to the HIV-1 Env (38), which
previously were inversely correlated with infection risk in RV144
(10). Immunisations with the bivalent HIV-1 gp120 AIDSVAX
B/E protein alone or in combination with ALVAC-HIV, on
the other hand, led to significantly increased anti-gp70 V1V2
IgG levels, but, similarly to the VAX003 and VAX004 trials
(16), simultaneously increased IgA responses to the HIV-1 Env
(38). Potential IgG subclass changes induced by the MVA-
CMDR boost are of interest. Studies of V1V2-specific IgG and
IgG subclass responses in HIVIS03/06 vaccinees are reported
separately (Joachim et al.; submitted).

In summary, combined heterologous prime-boost vaccination
of HIVIS-DNA and MVA-CMDR induced strong anti-V2, V3
and gp41 immunodominant region IgG responses that were
efficiently boosted—and targeted the same peptide variants—by
a single injection of MVA-CMDR 3 years after the original
vaccination. This indicates that antibody responses against the
HIV-1 Env, potentially reducing the HIV-1 infection risk that
were induced by the initial prime-boost schedule, can be boosted
andmaintained by repeated injections with a single dose ofMVA-
CMDR.
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