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Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant
propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general
framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring
operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path
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algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second
aspect that we consider is that the control flow graphs for most programs have constant treewidth.

Our main contributions are simple and implementable algorithms that support multiple queries for algebraic path properties
for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time
preprocessing, but can answer subsequent queries significantly faster as compared to the current algorithmic solutions for
interprocedural dataflow analysis. We have also implemented our algorithms and evaluated their performance for performing
on-demand interprocedural dataflow analysis on various domains, such as for live variable analysis and reaching definitions,
on a standard benchmark set. Our experimental results align with our theoretical statements, and show that after a lightweight
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1. INTRODUCTION

Interprocedural analysis and RSMs. Interprocedural analysis is one of the classic algorithmic prob-
lem in programming languages which is at the heart of numerous applications, ranging from alias
analysis, to data dependencies (modification and reference side effect), to constant propagation, to
live and use analysis [Reps et al. 1995; Sagiv et al. 1996; Callahan et al. 1986; Grove and Torczon
1993; Landi and Ryder 1991; Knoop et al. 1996; Cousot and Cousot 1977; Giegerich et al. 1981;
Knoop and Steffen 1992; Naeem and Lhoták 2008; Zhang et al. 2014; Chatterjee et al. 2015b]. In
seminal works [Reps et al. 1995; Sagiv et al. 1996] it was shown that a large class of interprocedural
dataflow analysis problems can be solved in polynomial time. A standard model for interprocedural
analysis is recursive state machines (RSMs) [Alur et al. 2005] (aka supergraph in [Reps et al. 1995]).
A RSM is a formal model for control flow graphs of programs with recursion. We consider RSMs
that consist of component state machines (CSMs), one for each method that has a unique entry and
unique exit, and each CSM contains boxes which are labeled as CSMs that allows calls to other
methods. This class of, so called, single-entry single-exit RSMs is computationally less expressive
that multi-entry, multi-exit RSMs, and as expressive as the class of Basic Pushdown Systems, which
are pushdown systems with a single state [Clarke et al. 2018].

Algebraic path properties. To specify properties of traces of a RSM we consider a very general
framework, where edges of the RSM are labeled from a complete semiring (which subsumes
bounded and finite distributive semirings), and we refer to the labels of the edges as weights. For a
given path, the weight of the path is the semiring product of the weights on the edges of the path, and
to choose among different paths we use the semiring plus operator. For example, (i) with Boolean
semiring (with semiring product as AND, and semiring plus as OR) we can express the reachability
property; (ii) with tropical semiring (with real-edge weights, semiring product as standard sum, and
semiring plus as minimum) we can express the shortest path property; and (iii) with Viterbi semiring
(with probability value on edges, semiring product as standard multiplication and semiring plus as
maximum) we can express the most probable path property. The algebraic path properties expressed
in our framework subsumes the IFDS/IDE frameworks [Reps et al. 1995; Sagiv et al. 1996] which
consider finite semirings and meet over all paths as the semiring plus operator. Since IFDS/IDE are
subsumed in our framework, the large and important class of dataflow analysis problems that can
be expressed in IFDS/IDE frameworks can also be expressed in our framework.

On-demand analysis. Exhaustive data-flow analysis is computationally expensive and often un-
necessary. A topic of great interest in the software engineering community is that of on-demand
dataflow analysis [Babich and Jazayeri 1978; Zadeck 1984; Duesterwald et al. 1995; Horwitz et al.
1995; Reps 1995; Reps 1997; Yuan et al. 1997; Naeem et al. 2010]. On-demand analyses have sev-
eral applications, such as (quoting from [Horwitz et al. 1995; Reps 1997]) (i) narrowing down the
focus to specific points of interest, (ii) narrowing down the focus to specific data-flow facts of in-
terest, (iii) reducing work in preliminary phases, (iv) side-stepping incremental updating problems,
and (v) offering demand analysis as a user-level operation. On-demand analysis is also very useful
for speculative optimizations in just-in-time compilers [Chen et al. 2004; Lin et al. 2004; Bebenita
et al. 2010; Flückiger et al. 2017], where dynamic information can dramatically increase the preci-
sion of the analysis. In this setting, it is crucial that the the on-demand analysis runs fast, to incur as
little overhead as possible.

A motivating example. As a toy motivating example, consider the partial program shown in Figure 1,
compiled with a just-in-time compiler that uses speculative optimizations. Whether the compiler
must compile the expensive function h depends on whether x is 0 in line 7. In turn, this depends
on the value of the boolean variable b. Performing a value analysis from the entry of f reveals that
x can have the values {0, 1} in line 7. Hence, if the decision to compile h relies only on an offline
static analysis, h is always compiled, even when not needed.
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1 int x , y ;
2 void f (boolean b ){
3 y =0;
4 if ( b )
5 y =1;
6 g ( ) ;
7 if ( x ==0)
8 h ( x ) ;
9 }

9 void g ( ) {
10 x=y ;
11 }

13 void h (int x ){
14 //An expensive
15 //function
16 }

Fig. 1: A partial program. Whether the function h is called in line 8 depends on the value of the
argument b of function f .

Now consider the case where the execution of the program is in line 5, and at this point the compiler
decides on whether to compile h. It is clear that given this information, the set of possible values
for x in line 7 is the singleton {1} and thus h does not have to be compiled. As we have seen above,
this decision can not be made based on offline analysis. On the other hand, an on-demand analysis
starting from the current program location will correctly conclude that x will have the value 1. Note
however, that this decision is made by the compiler during runtime. Hence, such an on-demand
analysis is useful only if it can be performed fast. It is also highly desirable that the time for running
this analysis is predictable, so that the compiler can decide whether to run the analysis or simply
compile h proactively.

In this work, we address the above challenge algorithmically. We exploit the low-treewidth property
of control-flow graphs to devise fast algorithms for on-demand analysis that have minimal prepro-
cessing overhead.

Preprocess vs query. On-demand analyses can be naturally phrased in a preprocess vs query set-
ting. In the preprocessing phase, the program is analyzed without knowledge of the precise analysis
queries. Afterwards, in the query phase, analysis queries arrive in an online fashion (i.e., the ana-
lyzer is oblivious to future queries). In graph theoretic parlance, graph algorithms can consider two
types of queries: (i) a pair query that given nodes u and v (called (u, v)-pair query) asks for the
algebraic path property from u to v; and (ii) a single-source query that given a node u asks for the
answer of (u, v)-pair queries for all nodes v. In this vocabulary, the traditional algorithms for offline
interprocedural analysis has focused on the answer for one single-source query. This consideration
opens up a wide spectrum with regards to the resources spent in each phase. On the one end we
have no preprocessing, where each arising query is treated anew, as an offline analysis problem. On
the other end we have complete preprocessing, where we precompute the answer to every possible
query and store the answer in a lookup table. Hence, in the query phase, every query is answered by
a simple table lookup. The key technical challenge faced by the static analyzer is to achieve the best
possible tradeoff in this spectrum: spend as few resources as possible in the preprocessing phase (in
terms of running time and space usage) so that, afterwards, on-demand queries are answered fast.

Treewidth property of control-flow graphs. A very well-known concept in graph theory is the notion
of treewidth of a graph, which is a measure of how similar a graph is to a tree (a graph has treewidth 1
precisely if it is a tree) [Robertson and Seymour 1984]. The treewidth of a graph is defined based on
a tree decomposition of the graph [Halin 1976] (see Section 2 for a formal definition). Beyond the
mathematical elegance of the treewidth property for graphs, there are many classes of graphs which
arise in practice and have constant treewidth. The most important example is that the flow graph
for goto-free programs in many classic programming languages have constant treewidth [Thorup
1998]. The low treewidth of flow graphs has also been confirmed experimentally for programs
written in Java [Gustedt et al. 2002], C [Klaus Krause et al. 2019], Ada [Burgstaller et al. 2004] and
Solidity [Chatterjee et al. 2019].
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Preprocessing time Space Query Reference
Single-source Pair

Our O(n · logn + h · b · logn) O(n · logn) O(n) O(1) Theorem 4.2
Results O(n + h · b · logn) O(n) O(n) O(logn) Theorem 4.2

Table I: Interprocedural same-context algebraic paths on RSMs with b boxes and constant treewidth,
for stack height h.

Preprocessing time Space Query Reference
Single-source Pair

IFDS/IDE
(complete
preprocessing)

O(n2 · |D|3) O(n2 · |D|) O(n · |D|) O(|D|) [Reps et al. 1995]

IFDS/IDE
(no
preprocessing)

- O(n · |D|) O(n · |D|3) O(n · |D|3) [Reps et al. 1995]

Our O(n · logn · |D|3) O(n · logn · |D|2) O(n · |D|2) O(|D|2) Corollary 4.5
Results O((n + b · logn) · |D|3) O(n · |D|2) O(n · |D|2) O(logn · |D|2) Corollary 4.5

|D| = Ω(logn) O(n · |D|3) O(n · |D|2) O(n · |D|2/ logn) O(|D|2/ logn) Corollary 4.6

Table II: Interprocedural same-context algebraic paths on RSMs with b boxes and constant
treewidth, where the semiring is over the subset of |D| elements and the plus operator is the meet
operator of the IFDS framework. Existing results are taken from [Reps et al. 1995]. Our results are
obtained from Corollary 4.5 and Corollary 4.6.

Preprocessing time Space Query Reference
Single-source Pair

Complete
preprocessing

1 O(n2 · logn) O(n2) O(n) O(1) [Schwoon 2002]

No
preprocessing

2 - O(n) O(n · logn) O(n · logn) [Schwoon 2002]

Our O(n · logn) O(n · logn) O(n) O(1) Corollary 4.7
Result O(n + b · logn) O(n) O(n) O(logn) Corollary 4.7

Table III: Interprocedural same-context distances with non-negative weights for RSMs with n nodes,
k CSMs, b boxes and constant treewidth.
1 The preprocessing time is obtained by executing Dijkstra’s algorithm b times in each of the k
CMSs, followed by executing Dijkstra’s algorithm from n source nodes.
2 The single-source and pair query times are obtained by executing Dijkstra’s algorithm b times in
each of the k CMSs.

Algorithmic considerations. The current work focuses on the algorithmic problem of constructing
algebraic path oracles for handling general algebraic path queries on RSMs, as well as on the special
cases of IFDS/IDE and shortest-path semirings. In particular, we consider RSMs where every CSM
has constant treewidth, and the algorithmic question of answering multiple single-source and mul-
tiple pair queries, where each query is a same-context query (a same-context query starts and ends
with an empty stack, see [Chaudhuri 2008] for the significance of same-context queries). Although
these problems are of great practical importance, this work makes an algorithmic treatment aimed
at improved worst-case complexities. We address the practical side of our algorithms in an experi-
mental evaluation which, although not extensive, gives a promising indication that our algorithms
can be relevant in practice (e.g., wrt the hidden constant in the asymptotic complexity analysis).

Our contributions. Our main contributions are as follows:
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(1) (General result). Since we consider arbitrary semirings (i.e., not restricted to finite semirings)
we consider the stack-height-bounded problem, where the input contains a stack-height bound
h, and we are interested in semiring distances as witnessed by interprocedural paths of stack
height at most h. While in general for arbitrary semirings there does not exist a bound on the
stack height, if the semiring does not have infinite descending chains, then the stack height
bounded problem gives an exact answer to the general problem (i.e., without a bound on the
stack height), for large enough h. This is especially the case for the main semirings of interest, as
in the case of reachability and the case of IFDS. Our main result is an algorithm where the one-
time preprocessing phase requires O(n · log n+ h · b · log n) semiring operations, and then each
subsequent bounded stack height pair query can be answered in constant number of semiring
operations, where n is the number of nodes of the RSM and b the number of boxes (see Table I
and Theorem 4.2).

(2) IFDS/IDE If we specialize our result to the IFDS/IDE setting with finite semirings from a
finite universe of distributive functions 2D → 2D, and meet over all paths as the semiring plus
operator, then we obtain the results shown in Table II (Corollary 4.5). For example, our approach
with a factor ofO(log n) overhead for one-time preprocessing, as compared to no preprocessing,
can answer subsequent pair queries by a factor of Ω(n · |D|) faster. Additionally, when |D| =
Ω(log n), our algorithm requires only O(n · |D|3) preprocessing after which pair queries are
answered in O(|D|2/ log n) time. Note that the complexity of the standard IFDS/IDE algorithm
is O(n · |D|3) for answering one single-source query, whereas in the same preprocessing time,
our algorithm handles every pair query efficiently.

(3) (Shortest path). We now consider the problem of distances with non-negative weights, where
the current best-known algorithm for RSMs with unique entries and exists comes from [Schwoon
2002]. Each single-source query requires O(n · log n) based on a variant of Dijkstra’s shortest-
path algorithm phrased on RSMs. The complete preprocessing requires O(n2 · log n) time for
computing the transitive closure using n single-source queries. The complete preprocessing ad-
ditionally requires Θ(n2) space, at the cost of which single-source and pair distance queries are
handled in O(n) and O(1) time respectively. In contrast, we show that (i) with O(n+ b · log n)
preprocessing time and O(n) space, we can answer single-source (resp. pair) queries in O(n)
(resp. O(log n)) time; and (i) with O(n · log n) time and space, we can answer single-source
(resp. pair) queries in O(n) (resp. O(1)) time. See Table III.

An important feature of our algorithms is that they are simple and implementable. Besides the
theoretical improvements, we demonstrate the effectiveness of our approach for performing on-
demand analysis on several standard benchmarks. We have used the tool JTDec [Chatterjee et al.
2017b] for computing tree decompositions, and all benchmarks of our experimental results have
small treewidth, and hence our treewidth considerations are justified. We have evaluated the perfor-
mance of our algorithms for 6 different interprocedural dataflow analyses, expressed in the IFDS
framework: control-flow reachability, unused variables, reaching definitions, live variables, sim-
ple uninitialized variables and possibly uninitialized variables. Our experiments show that our new
treewidth-based algorithms succeed in answering both single-source and pair on-demand queries
efficiently, only after a lightweight preprocessing.

Intuition and main technical contribution. Conceptually, the process of solving the algebraic-path
problem on an RSM can be viewed as an iterative process: first, every control-flow graph of the
RSM (corresponding to every method of the program) is analyzed independently, to solve the in-
traprocedural algebraic-path problem, from the entry to the exit of the module. This information
is then summarized to the calling site of every invocation to the respective RSM, and the process
repeats. The intuition behind our improvements is that, assuming the constant-treewidth property of
the control-flow graphs, the tasks of (i) updating each control-flow graph with summary information
and (ii querying each control-flow graph for the semiring distance between the entry and the exit
nodes can be done efficiently. Our main technical contribution is a dynamic algorithm (also referred
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to as incremental algorithm in the literature on graph algorithms) that given a graph with constant
treewidth, after a preprocessing phase of O(n · log n) semiring operations supports (1) changing the
label of an edge with O(log n) semiring operations; and (2) answering pair queries with O(log n)
semiring operations; and (3) answering single-source queries withO(n) semiring operations. These
results are presented in Theorem 3.8.

Preliminary versions of this work have appeared in [Chatterjee et al. 2015a; Chatterjee et al. 2016].

1.1. Related Work

In this section we compare our work with several related work from interprocedural analysis as well
as for constant treewidth property.

Interprocedural analysis. Interprocedural analysis is a classic algorithmic problem in static analysis
and several diverse applications have been studied in the literature [Reps et al. 1995; Sagiv et al.
1996; Callahan et al. 1986; Grove and Torczon 1993; Landi and Ryder 1991; Knoop et al. 1996;
Cousot and Cousot 1977; Giegerich et al. 1981; Knoop and Steffen 1992; Chatterjee et al. 2015a].
Our work is most closely related to the IFDS/IDE frameworks introduced in seminal works [Reps
et al. 1995; Sagiv et al. 1996]. In both IFDS/IDE framework the semiring is finite, and they study
the algorithmic question of solving one single-source query. While in our framework the semiring is
not necessarily finite, we consider the stack height bounded problem. We also consider the multiple
pair and single-source, same-context queries, and the additional restriction that RSMs have con-
stant treewidth. Our general result specialized to finite semirings (where the stack height bounded
problem coincides with the general problem) improves the existing best known algorithms for the
IFDS/IDE framework where the RSMs have constant treewidth. Additionally, the shortest path prob-
lem cannot be expressed in the IFDS/IDE framework [Reps et al. 2005], but can be expressed in
the GPR framework [Reps et al. 2005; Reps et al. 2007]. The GPR framework considers the more
general problem on weighted pushdown systems. Although the RSMs that we consider in this work
are a special case of pushdown systems, the GPR framework is efficient only for semirings of small
height. For example, although the shortest path problem can be phrased in the GPR framework,
the solution might take exponential time in the worst case. A solution to the shortest path problem
for RSMs is presented in [Schwoon 2002], by replacing the work queue data structure of the GPR
framework with a priority queue. The related problem of determining the minimum-mean cycle
in RSMs was addressed in [Chatterjee et al. 2015b], without the constant-treewidth consideration.
Finally, several works such as [Horwitz et al. 1995] ask for on-demand interprocedural analysis
and algorithms to support dynamic updates, and our main technical contributions are algorithms to
support dynamic updates in interprocedural analysis.

Recursive state machines (RSMs). Recursive state machines, which in general are equivalent to
pushdown graphs, have been studied as a formal model for interprocedural analysis [Alur et al.
2005]. However, in comparison to pushdown graphs, RSMs are a more convenient formalism for
interprocedural analysis. Games on recursive state machines with modular strategies have been
considered in [Alur et al. 2006; Chatterjee and Velner 2012], and subcubic algorithm for general
RSMs with reachability has been shown in [Chaudhuri 2008]. We focus on RSMs with unique
entries and exits and with the restriction that the components have constant tree width. RSMs with
unique entries and exits are less expressive than pushdown graphs, but remain a very natural model
for efficient interprocedural analysis [Reps et al. 1995; Sagiv et al. 1996].

Treewidth of graphs. The notion of treewidth for graphs as an elegant mathematical tool to analyze
graphs was introduced in [Robertson and Seymour 1984]. The significance of constant treewidth in
graph theory is huge mainly because several problems on graphs become complexity-wise easier.
Given a tree decomposition of a graph with low treewidth t, many NP-complete problems for arbi-
trary graphs can be solved in time polynomial in the size of the graph, but exponential in t [Arnborg

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth A:7

and Proskurowski 1989; Bern et al. 1987; Bodlaender 1988; Bodlaender 1993; Bodlaender 2005].
Even for problems that can be solved in polynomial time, faster algorithms can be obtained for
low treewidth graphs, for example, for the distance problem [Chaudhuri and Zaroliagis 1995]. The
constant-treewidth property of graphs has also been used in the context of logic: Monadic Second
Order (MSO) logic is a very expressive logic, and a celebrated result of [Courcelle 1990] showed
that for constant-treewidth graphs the decision questions for MSO can be solved in polynomial
time; and the result of [Elberfeld et al. 2010] shows that this can even be achieved in determinis-
tic log-space. Dynamic algorithms for the special case of 2-treewidth graphs has been considered
in [Bodlaender 1994] and extended to various tradeoffs by [Hagerup 2000]; and [Lacki 2013] shows
how to maintain the strongly connected component decomposition under edge deletions for constant
treewidth graphs. However, none of these works consider RSMs or interprocedural analysis. Var-
ious other models (such as probabilistic models of Markov decision processes and games played
on graphs for synthesis) with the constant-treewidth restriction have also been considered [Chatter-
jee and Lacki 2013; Obdrzálek 2003]. The problem of computing a balanced tree decomposition
for a constant treewidth graph was considered in [Reed 1992], and we use this algorithm in our
preprocessing phase.

2. PRELIMINARIES

We will in this section give definitions related to semirings, graphs, and recursive state machines.

2.1. Semirings

Definition 2.1 (Semirings). We consider complete semirings S = (Σ,⊕,⊗,0,1) where Σ is a
countable set, ⊕ and ⊗ are binary operators on Σ, and 0,1 ∈ Σ, and the following properties hold:

(1) ⊕ is infinitely associative, infinitely commutative, and 0 is the neutral element,
(2) ⊗ is associative, and 1 is the neutral element,
(3) ⊗ infinitely distributes over ⊕,
(4) 0 absorbs in multiplication, i.e., ∀a ∈ Σ : a⊗ 0 = 0.

Additionally, we consider that

(1) S is idempotent, i.e., for every s ∈ Σ we have that s⊕ s = s, and
(2) S is equipped with a closure operator ∗, such that ∀s ∈ Σ : s∗ = 1⊕ (s⊗ s∗) = 1⊕ (s∗ ⊗ s)

(i.e., the semiring is closed).

Conventionally, we let ⊕(∅) = 0 and ⊗(∅) = 1.

2.2. Graphs and tree decompositions

Definition 2.2 (Graphs and weighted paths). Let G = (V,E) be a finite directed graph where
V is a set of n nodes and E ⊆ V × V is an edge relation of m edges, along with a weight function
wt : E → Σ that assigns to each edge of G an element from Σ. A path P : u  v is a sequence
of nodes (u1, . . . , uk) such that for each 1 ≤ i < k we have (ui, ui+1) ∈ E. The length of P is
k − 1. A path P is simple if no node repeats in the path (i.e., it does not contain a cycle). A single
node is by itself a 0-length path. Given a path P = (u1, . . . , uk), we use the set notation u ∈ P to
denote that u appears in P , and A ∩ P to refer to the set of nodes that appear in both P and A. The
weight of P is ⊗(P ) =

⊗
(wt(u1, u2), . . . ,wt(uk−1, uk)) if |P | ≥ 1 else ⊗(P ) = 1. Given nodes

u, v ∈ V , the distance d(u, v) is defined as d(u, v) =
⊕

P :u v ⊗(P ), and d(u, v) = 0 if no such
P exists.

Definition 2.3. A (rooted) tree T = (VT , ET ) is an undirected graph with a distinguished node
r which is the root such that there is a unique simple path P vu : u  v for each pair of nodes u, v.
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Fig. 2: A graph G of treewidth 2 (left) and a corresponding tree-decomposition T (right).

The size of T is |VT |. Given a tree T with root r, the level Lv(u) of a node u is the length of the
simple path P ru from u to the root r, and every node in P ru is an ancestor of u. If v is an ancestor of
u, then u is a descendant of v. Note that a node u is both an ancestor and descendant of itself. For a
pair of nodes u, v ∈ VT , the lowest common ancestor (LCA) of u and v is the common ancestor of u
and v with the largest level. Given a node u with Lv(i) > 0, the parent u of v is the unique ancestor
of v in level Lv(v) − 1, and v is a child of u. A leaf of T is a node with no children. For a node
u ∈ VT , we denote by T (u) the subtree of T rooted in u (i.e., the tree consisting of all descendants
of u). The tree T is binary if every node has at most two children. The height of T is maxu Lv(u)
(i.e., it is the length of the longest path P ru ), and T is balanced if its height is bounded by c · log |VT |,
where c is a constant that does not depend on T . Given a tree T , a connected component C ⊆ VT
of T is a set of nodes of T such that for every pair of nodes u, v ∈ C, the unique simple path P vu in
T visits only nodes in C.

Definition 2.4 (Tree decomposition and treewidth [Robertson and Seymour 1984]). Given a
graph G, a tree-decomposition T = (VT , ET ) is a tree with the following properties.

T1: VT = {B1, . . . ,Bb : for all 1 ≤ i ≤ b. Bi ⊆ V } and
⋃

Bi∈VT
Bi = V . That is, each node of T

is a subset of nodes of G, and each node of G appears in some node of T .
T2: For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi. That is, the endpoints of each edge

of G appear together in some node of T .
T3: For all Bi, Bj and any bag Bk that appears in the simple path Bi  Bj in T , we have Bi∩Bj ⊆

Bk. That is, every node of G is contained in a contiguous subtree of T .

To distinguish between the nodes of G and the nodes of T , the sets Bi are called bags. The width
of a tree-decomposition T is the size of the largest bag minus 1 and the treewidth of G is the
width of a minimum-width tree decomposition of G. We refer to the treewidth t of G as constant
if t = O(1), i.e., the treewidth does not depend on G. It follows from the definition that if G has
constant treewidth, then m = O(n).

Example 2.5 (Graph and tree decomposition). The treewidth of a graph G is an intuitive mea-
sure which represents the proximity of G to a tree, though G itself is not a tree. The treewidth of G
is 1 precisely if G is itself a tree [Robertson and Seymour 1984]. Consider an example graph and
its tree decomposition shown in Figure 2. It is straightforward to verify that all the three conditions
of tree decomposition are met. Each node in the tree is a bag, and labeled by the set of nodes it
contains. Since each bag contains at most three nodes, the tree decomposition has width 2.

Notation on tree decompositions. Let G be a graph, T = (VT , ET ) a tree decomposition of G,
and B0 be the root of T . Denote with Lv (Bi) the depth of Bi in T , with Lv (B0) = 0. For u ∈ V ,
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we say that a bag B is the root bag of u if B is the bag with the smallest level among all bags that
contain u, i.e., Bu = arg minB∈VT : u∈B Lv (B). By definition, there is exactly one root bag for each
node u. We often write Bu for the root bag of node u, and denote with Lv(u) = Lv (Bu). We assume
wlog that all tree decompositions mentioned in this work have the property that every leaf bag is the
root bag of some node, as otherwise, we can remove that bag and obtain a valid tree decomposition.
Finally, we denote with B(u,v) the bag of the largest level that is the root bag of one of u, v.

Example 2.6 (Root bags). In the example of Figure 2, the bag {2, 8, 10} is the root of T , the
level of node 9 is Lv(9) = Lv({8, 9, 10}) = 1, and the bag of the edge (9, 1) is B(9,1) = {1, 8, 9}.

Separator property. A key property of a tree-decomposition T = (VT , ET ) of a graph G is that
the nodes of each bag B form a separator of G. Removing B splits T into a number of connected
components. The separator property states that every path between nodes that appear in bags of
different components has to go through some node in B. This is formally stated in the following
lemma.

LEMMA 2.7 ([BODLAENDER 1998, LEMMA 3]). Consider a graph G = (V,E), a tree-
decomposition T = (VT , ET ) of G, and a bag B of T . Let (Ci)i be the components of T created by
removing B from T , and let Vi be the set of nodes that appear in bags of component Ci. For every
i 6= j, nodes u ∈ Vi, v ∈ Vj and path P : u v, we have that P ∩B 6= ∅ (i.e., all paths between u
and v go through some node in B).

Using Lemma 2.7, we prove the following stronger version of the separator property, which will be
useful throughout the paper.

LEMMA 2.8. Consider a graph G = (V,E) and a tree-decomposition T = (VT , ET ) of G.
Let u, v ∈ V , and consider two distinct bags B1 and Bj such that u ∈ B1 and v ∈ Bj . Let
P ′ : B1,B2, . . . ,Bj be the unique simple path in T from B1 to Bj . For each i ∈ {2, . . . , j} and for
each path P : u v, there exists a node xi ∈ (Bi−1 ∩ Bi ∩ P ).

PROOF. Fix a number i ∈ {2, . . . , j}. We argue that for each path P : u v, there exists a node
xi ∈ (Bi−1 ∩Bi ∩P ). We construct a tree T ′, which is similar to T except that instead of having an
edge between bag Bi−1 and bag Bi, there is a new bag B, that contains the nodes in Bi−1 ∩ Bi, and
there is an edge between Bi−1 and B and one between B and Bi. It is easy to see that T ′ satisfies
the properties T1-T3 of a tree-decomposition of G. By Lemma 2.7, each bag B′ in the unique path
P ′′ : B1, . . . ,Bi−1,B,Bi, . . . ,Bj in T ′ separates u from v in G. Hence, each path u  v must go
through some node in B, and the result follows.

The following lemma states that for nodes u and v that appear in bags B, B′, respectively, of the tree-
decomposition T = (VT , ET ) of G, their distance can be written as a sum of distances d(xi, xi+1)
between pairs of nodes (xi, xi+1) that appear in bags Bi that constitute the unique B B′ path in T .
This holds because every path P : u v can be decomposed to j subpaths of the form xi  xi+1.
This yields a constructive way to compute d(u, v) assuming that all distances d(xi, xi+1) have been
already been computed.

LEMMA 2.9. Consider a weighted graph G = (V,E,wt) and a tree-decomposition T =
(VT , ET ) of G. Let u, v ∈ V , and P ′ : B1,B2, . . . ,Bj be a simple path in T such that

u ∈ B1 and v ∈ Bj . Let A = {u} ×
(∏

1<i≤j (Bi−1 ∩ Bi)
)
× {v}. Then d(u, v) =⊕

(x1,...,xj+1)∈A
⊗j

i=1 d(xi, xi+1).

PROOF. Consider the set of all paths {P` : u  v}`, and we have d(u, v) =
⊕

` wt(P`). By
Lemma 2.8, for each path P` and i ∈ {1, . . . , j}, there exists some node x`i ∈ (Bi−1 ∩Bi ∩P`). We
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let xi range over the i-th node of each path of A, and we have

d(u, v) =

j⊗
i=1

⊕
xi,xi+1

⊕
P :xi xi+1

wt(P )

=

j⊗
i=1

⊕
xi,xi+1

d(xi, xi+1)

=
⊕

(x1,...,xj+1)∈A

j⊗
i=1

d(xi, xi+1)

The desired result follows.

The following lemma states that balanced tree decompositions of constant-treewidth graphs can be
constructed efficiently.

LEMMA 2.10 ([BODLAENDER AND HAGERUP 1995, LEMMA 2]). Given a graph G =
(V,E) of treewidth t = O(1), a balanced tree decomposition of G with width O(t) can be con-
structed in O(n) time.

The following crucial lemma states that given a tree decomposition of constant width, the local
distance between every pair nodes that appear together in some bag can be computed in time linear
in the size of the tree-decomposition.

LEMMA 2.11 ([CHAUDHURI AND ZAROLIAGIS 1995]). Given a weighted graph G =
(V,E,wt) of treewidth t and a tree-decomposition T = (VT , ET ) of G of width O(t), we can
compute for all bags B ∈ VT a local distance map LDB : B× B→ Σ with LDB(u, v) = d(u, v) in
total time O(|VT | · t3) and space O(|VT | · t2).

Nicely rooted tree decompositions. A tree-decomposition T = (VT , ET ) of a graph G is nicely
rooted if every bag is the root bag of at most one node of G.

LEMMA 2.12. Given a tree decomposition T = (VT , ET ) of G of width O(t) and O(n) bags,
a nicely rooted, binary tree decomposition T ′ = (VT ′ , ET ′) of G of width O(t) can be constructed
in O(n · t) time. If t = O(1) and T is balanced, then so is T ′.

PROOF. First, T can be turned into a binary tree decomposition T1 by a standard tree-
binarization process [Chaudhuri and Zaroliagis 1995, Fact 3], which increases the size by at most a
factor 2. Hence T1 remains balanced. Then, we can make T1 nicely rooted simply by replacing each
bag B which is the root of k > 1 nodes x1, . . . xk with a chain of bags B1, . . . ,Bk = B, where each
Bi is the parent of Bi+1, and Bi+1 = Bi∪{xi+1}. Note that this keeps the tree binary and increases
its height by at most a factor t, hence if t = O(1) and T is balanced, then the resulting tree is also
balanced.

Hence, combined with Lemma 2.10, a nicely rooted, balanced tree decomposition of a constant-
treewidth graph can be constructed in O(n) time.

Small tree decompositions. A tree-decomposition T = (VT , ET ) of a graph G of n nodes and
treewidth t is called small if |VT | = O(nt ).

LEMMA 2.13. Given a tree decomposition T = (VT , ET ) of G of width O(t) and O(n) bags,
a small, binary tree decomposition T = (VT ′ , ET ′) of width O(t) can be constructed in O(n · t)
time. Moreover, if T is balanced, then so is T ′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth A:11

PROOF. Let k = O(t) be the width of T . The construction is achieved using the following steps.

(1) Following the steps of [Bodlaender 1996, Lemma 2.4], we turn T to a smooth tree-
decomposition T1 = (V1, E1), which has the properties that (i) for every bag B ∈ V1 we have
|B| = k + 1, and (ii) for every pair of bags (B1,B2) ∈ E1 we have |B1 ∩ B2| = k. The pro-
cess of [Bodlaender 1996, Lemma 2.4] can be performed O(n · t) time and increases the height
by at most a factor 2, hence if T is balanced, T1 is also balanced, and by [Bodlaender 1996,
Lemma 2.5], we have |V1| = O(n).

(2) We turn T1 to a binary tree-decomposition T2 = (V2, E2), as follows. We traverse T1 bottom-
up, and we replace every bag B of T1 with k > 2 children with a binary tree TB of height blog kc
and k leaves. The leaves of TB are the children of B, whereas every internal node of TB consists
of a copy of B. We call these copies the new bags of T2. Note that TB has size O(k), and thus
T2 has size O(n). Finally, note that a bag in T2 has a single child iff it is not a new bag in T2,
and it has a single child in T1 as well. Hence the height of T2 increases by at most a O(log n)
term compared to T1, and thus if T1 is balanced, so is T2. Finally, it is easy to see that T2 is a
tree decomposition of G, and has the same width as T1.

(3) We construct a tree-decomposition T3 = (V3, E3) by partitioning T2 to disjoint connected
components of size between k

2 and k each (the last component might have size less than k
2 ) and

contracting each such component to a single bag in T3. Since T2 is smooth, the number of nodes
in the union of the bags of each component is at most 2 · k. Hence the width of T3 is O(k). The
partitioning is done as follows. We traverse T2 bottom-up and group bags into components in
a greedy way. In particular, given that the traversal is on a current bag B, we keep track of the
number of bags iB below B (not including B) that have not been grouped to a component yet. The
first time we find iB ≥ t, let B′ be the child of B with the largest number iB′ among the children
of B. We group B′ and its ungrouped descendants into a new component C, and continue with
the traversal. Observe that the size of C is k

2 ≤ |C| < k.
(4) Finally, we construct T ′ by turning T3 to a binary tree-decomposition as in Step 2.

Note that all steps above require O(n · t) time. The desired result follows.

Hence, combined with Lemma 2.10, a small, balanced tree decomposition of a constant-treewidth
graph can be constructed in O(n) time.

The algebraic path problem on graphs of constant treewidth. Given a graph G = (V,E), a bal-
anced tree-decomposition T = (VT , ET ) of G with constant width t = O(1), a complete semiring
(Σ,⊕,⊗,0,1), and a weight function wt : E → Σ, the algebraic paths problem on input u, v ∈ V ,
asks for the distance d(u, v) from node u to node v. In addition, we allow the weight function to
change between successive queries. We measure the time complexity of our algorithms in number
of operations, with each operation being either a basic machine operation, or an application of one
of the operators of the semiring.

2.3. Recursive state machines

In this section we define recursive state machines (RSMs), which are a standard model for inter-
procedural analysis. Intuitively, an RSM represents a program as a collection of component state
machines (CSMs), where each CSM represents a method of the program as a graph. Additionally,
each CSM has distinguished nodes that represent method calls and returns to other CSMs. These
notions are made clear in the following definitions.

Definition 2.14 (RSMs and CSMs). A single-entry single-exit recursive state machine (RSM
from now on) over an alphabet Σ, as defined in [Alur et al. 2005], consists of a set {A1, A2, . . . , Ak},
such that for each 1 ≤ i ≤ k, the component state machine (CSM)Ai = (Bi, Yi, Vi, Ei,wti), where
Vi = Ni ∪ {eni} ∪ {exi} ∪ ci ∪ ri, consists of:
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— A set Bi of boxes.
— A map Yi, mapping each box in Bi to an index in {1, 2, . . . , k}. We say that a box b ∈ Bi

corresponds to the CSM with index Yi(b).
— A set Vi of nodes, consisting of the union of the sets Ni, {eni}, {exi}, ci and ri. The number
ni is the size of Vi. Each of these sets, besides Vi, are w.l.o.g. assumed to be pairwise disjoint.
— The set Ni is the set of internal nodes.
— The node eni is the entry node.
— The node exi is the exit node.
— The set ci is the set of call nodes. Each call node is a pair (x, b), where b is a box in Bi and

x is the entry node enYi(b) of the corresponding CSM with index Yi(b).
— The set ri is the set of return nodes. Each return node is a pair (y, b), where b is a box in Bi

and y is the exit node exYi(b) of the corresponding CSM with index Yi(b).
— A set Ei of internal edges. Each edge is a pair in (Ni ∪ {eni} ∪ ri)× (Ni ∪ {exi} ∪ ci).
— A map wti, mapping each edge in Ei to a label in Σ.

Definition 2.15 (Control flow graph of CSMs and treewidth of RSMs). Given a RSM A =
{A1, A2, . . . , Ak}, the control flow graph Gi = (Vi, E

′
i) for CSM Ai consists of Vi as the set

of vertices and E′i as the set of edges, where E′i consists of the edges Ei of Ai and for each box b,
each call node (v, b) of that box (i.e. for v = enYi(b)) has an edge to each return node (v′, b) of that
box (i.e. for v′ = exYi(b)). We say that the RSM has treewidth t, if t is the smallest integer such that
for each index 1 ≤ i ≤ k, the graph Gi = (Vi, E

′
i) has treewidth at most t. Programs are naturally

represented as RSMs, where the control flow graph of each method of a program is represented as a
CSM.

Example 2.16 (RSM and tree decomposition). Figure 3 shows an example of a program for ma-
trix multiplication consisting of two methods (one for vector multiplication invoked by the one for
matrix multiplication). The corresponding control flow graphs, and their tree decompositions that
achieve treewidth 2 are also shown in the figure.

Box sequences. For a sequence L of boxes and a box b, we denote with L ◦ b the concatenation of
L and b. Also, ∅ is the empty sequence of boxes.

Configurations and global edges. A configuration of a RSM is a pair (v, L), where v is a node in
(Ni ∪ {eni} ∪ ri) and L is a sequence of boxes. The stack height of a configuration (v, L) is the
number of boxes in the sequenceL. The set of global edgesE are edges between configurations. The
map wt maps each edge in E to a label in Σ. We have an edge between configuration C1 = (v1, L1),
where v1 ∈ Vi, and configuration C2 = (v2, L2) with label σ = wt(C1, C2) if and only if one of the
following holds:

— Internal edge: v2 is an internal node in Ni and each of the following (i) L1 = L2; and
(ii) (v1, v2) ∈ Ei; and (iii) σ = wti((v1, v2)).

— Entry edge: v2 is the entry node enYi(b), for some box b, and each of the following (i) L1 ◦ b =
L2; and (ii) (v1, (v2, b)) ∈ Ei; and (iii) σ = wti((v1, (v2, b))).

— Return edge: v2 = (v, b) is a return node, for some exit node v = exi and some box b and each
of the following (i) L1 = L2 ◦ b; and (ii) (v1, v) ∈ Ei; and (iii) σ = wti((v1, v)).

Note that in a configuration (v, L), the node v cannot be exi or in ci. In essence, the corresponding
configuration is at the corresponding return node, instead of at the exit node, or corresponding entry
node, instead of at the call node, respectively.

Execution paths. An execution path is a sequence of configurations P = 〈C1, C2, . . . , C`〉, such that
for each integer i where 1 ≤ i ≤ `− 1, we have that (Ci, Ci+1) is a global edge. The length of P is
|P | = `− 1, and a single configuration is by itself is 0-length execution path. Also, we say that the
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stack height of an execution path is the maximum stack height of a configuration in the execution
path. For a pair of configurations C, C′, the set C  C′, is the set of execution paths 〈C1, C2, . . . , C`〉,
for any `, where C = C1 and C′ = C`. For a set X of execution paths, the set B(X,h) ⊆ X is the
subset of execution paths, with stack height at most h. Given a complete semiring (Σ,⊕,⊗,0,1),
the weight of a execution path P = 〈C1, C2, . . . , C`〉 is⊗(P ) =

⊗
(wt(C1, C2), . . . ,wt(C`−1, C`)) if

|P | ≥ 1 and wt(P ) = 1 otherwise. Given configurations C, C′, the configuration distance d(C, C′) is
defined as d(C, C′) =

⊕
P :c C′ ⊗(P ) (the empty sum is 0). Also, given configurations C, C′ and a

stack height h, where c′ is h-reachable from c, the bounded height configuration distance d(C, C′, h)
is defined as d(C, C′, h) =

⊕
P :B(C C′,h)⊗(P ). Note that the above definition of execution paths

only allows for so called valid paths [Reps et al. 1995; Sagiv et al. 1996], i.e., paths that fully respect
the calling contexts of an execution.

The algebraic path problem on RSMs of constant treewidth. Given (i) a RSM A =
{A1, A2, . . . , Ak}; and (ii) for each 1 ≤ i ≤ k a balanced tree-decomposition Ti = (VTi , ETi)
of the graph (Vi, E

′
i) with constant treewidth at most t = O(1); and (iii) a complete semir-

ing (Σ,⊕,⊗,0,1), the algebraic path problem on input nodes u, v, asks for the distance
d((u, ∅), (v, ∅)), i.e. the distance between the configurations with the empty stack. Similarly, also
given a height h, the bounded height algebraic path problem on input configurations c, c′, asks for
the distance d((u, ∅), (v, ∅), h). When it is clear from the context, we will write d(u, v) to refer to
the algebraic path problem of nodes u and v on RSMs.

Remark 2.17. Note that the empty stack restriction implies that u and v are nodes of the same
CSM. However, the paths from u to v are, in general, interprocedural, and thus involve invoca-
tions and returns from other CSMs. This formulation has been used before in terms of same-
context [Chaudhuri 2008] and same-level [Reps et al. 1995] realizable paths and has several ap-
plications in program analysis, e.g. by capturing balanced parenthesis-like properties used in alias
analysis [Sridharan et al. 2005].

2.4. Problems

A wide range of interprocedural problems can be formulated as bounded height algebraic path
problems. Some examples follow.

(1) Reachability i.e., given nodes u, v in the same CSM, is there a path from u to v? The problem
can be formulated on the boolean semiring ({True,False},∨,∧,False,True).

(2) Shortest path i.e., given a weight function wt : E → R≥0 and nodes u, v in the same CSM,
what is the weight of the minimum-weight path from u to v? The problem can be formulated on
the tropical semiring (R≥0 ∪ {∞},min,+,∞, 0).

(3) Most probable path i.e., given a probability function P : E → [0, 1] and nodes u, v in the
same CSM, what is the probability of the highest-probable path from u to v? The problem can
be formulated on the Viterbi semiring ([0, 1],max, ·, 0, 1).

(4) The class of interprocedural, finite, distributive, subset (IFDS) problems defined in [Reps et al.
1995]. Given a finite domain D, a universe of flow functions F containing distributive functions
f : 2D → 2D, a weight function wt : E → F associates each edge with a flow function. The
weight of an interprocedural path is then defined as the composition ◦ of the flow functions along
its edges, and the IFDS problem given nodes u, v asks for the meet u (union or intersection)
of the weights of all u  v paths. The problem can be formulated on the meet-composition
semiring (F,u, ◦, ∅, I), where I is the identity function.

(5) The class of interprocedural distributive environment (IDE) problems defined in [Sagiv et al.
1996]. This class of dataflow problems is an extension to IFDS, with the difference that the flow
functions (called environment transformers) map elements from the finite domain D to values
in an infinite set (e.g., of the form f : D → N). An environment transformer is denoted as
f [d → `], meaning that the element d ∈ D is mapped to value `, while the mapping of all
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internal entry exit call return

Method: dot vector
Input: x, y ∈ Rn

Output: The dot product x>y
1 result← 0
2 for i← 1 to n do
3 z ← x[i] · y[i]
4 result← result + z
5 end
6 return result

Method: dot matrix

Input: A ∈ Rn×k, B ∈ Rk×m

Output: The dot product A×B
7 C ← zero matrix of size n×m
8 for i← 1 to n do
9 for j ← 1 to m do

10 Call dot vector(A[i, :], B[:, j])
11 C[i, j]← the value returned

by the call of line 10
12 end
13 end
14 return C
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2, 3, 4
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12

13
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9, 10

9, 10, 11

8, 9, 12

8, 13

13, 14

B1

B2

B3

B4

B5

B6

B7

B8

Fig. 3: Example of a program consisting of two methods, their control flow graphs Gi = (Vi, E
′
i)

where nodes correspond to line numbers, and the corresponding tree decompositions, each one
achieving treewidth 2.

other elements remains unchanged. The problem can be formulated on the meet-environment-
transformer semiring (F,u, ◦, ∅, I), where I is the identity environment transformer, leaving
every map unchanged.

Note that if we assume that the set of weights of all interprocedural paths in the system is finite,
then the size of this set bounds the stack height h. Additionally, several problems can be formulated
as algebraic path problems in which bounding the stack height can be viewed as an approximation
to them (e.g., the probability of reaching a node v from a node u).

Model and word tricks. We consider the standard RAM model with word size W = Θ(log n),
where poly(n) is the size of the input. Our reachability algorithm (in Section 5) uses so called
“word tricks” heavily. We use constant-time LCA queries which also use word tricks [Harel and
Tarjan 1984; Bender and Farach-Colton 2000].

3. DYNAMIC ALGORITHMS FOR PREPROCESS, UPDATE AND QUERY

In the current section we present data structures that take as input a constant treewidth graph G of
n nodes and a nicely rooted, balanced, binary tree decomposition T = (VT , ET ) of G, and achieve
the following tasks:

(1) Preprocessing the tree-decomposition T to answer algebraic path queries fast.
(2) Updating the preprocessed T upon change of the weight wt(u, v) of an edge (u, v).
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(3) Querying the preprocessed T to retrieve the distance d(u, v) of any pair of nodes u, v.

Note that by Lemma 2.10 and Lemma 2.12, a nicely rooted, balanced tree decomposition can be
constructed in time linear in the size of the input. In the following section we use the results of this
section in order to preprocess RSMs fast, in order to answer interprocedural same-context algebraic
path queries fast. Refer to Example 4.1 of Section 4 for an illustration on how these algorithms are
executed on an RSM.

Intuition and U-shaped paths. A central concept in our algorithms is that of U-shaped paths. Given
a bag B and nodes u, v ∈ B we say that a path P : u v is U-shaped in B, if one of the following
conditions hold:

(1) Either |P | > 1 and for all intermediate nodes w ∈ P , we have that B is an ancestor of the root
bag Bw of w,

(2) or |P | ≤ 1 and B is Bu or Bv (i.e., B is the root bag of u or v).

Informally, given a bag B, a U-shaped path in B is a path that traverses intermediate nodes whose
root bag is either B or some descendant bag of B in T .

Example 3.1 (U-shaped paths). Here we present some examples of U-shaped paths on the tree
decomposition of the control-flow graph of method dot vector of Figure 3.

(1) The path 3 → 4 → 2 is U-shaped in bag B3 since the root bag of the intermediate node 4 is
B4, which is a child of B3. The same path is also U-shaped in bag B4 since a node of the tree is
considered ancestor of itself.

(2) The path 1→ 2 is U-shaped in bag B2 since B2 is the root bag of node 2.

In the following we present three algorithms for (i) preprocessing a tree decomposition, (ii) updat-
ing the data structures of the preprocessing upon a weight change wt(u, v) of an edge (u, v), and
(iii) querying for the distance d(u, v) for any pair of nodes u, v. The intuition behind the overall ap-
proach is that for every path P : u  v and z = argminx∈PLv(x), the path P can be decomposed
to paths P1 : u z and P2 : z  v. By Lemma 2.8, if we consider the path P ′ : Bu  Bz and any
bag Bi ∈ P ′, we can find nodes x, y ∈ Bi ∩ P1 (not necessarily distinct). Then P1 is decomposed
to a sequence of U-shaped paths P i1, one for each such Bi, and the weight of P1 can be written
as the ⊗-product of the weights of P i1, i.e., ⊗(P1) =

⊗
(⊗(P i1)). A similar observation holds for

P2. Hence, the task of preprocessing and updating is to summarize in each Bi the weights of all
such U-shaped paths between all pairs of nodes appearing in Bi. To answer the query, the algorithm
traverses upwards the tree T from Bu and Bv , and combines the summarized paths to obtain the
weights of all such paths P1 and P2, and eventually P , such that ⊗(P ) = d(u, v).

Informal description of preprocessing. Algorithm Preprocess associates with each bag B a local
U-shaped distance map LUDB : B × B → Σ. Upon a weight change, algorithm Update updates
the local U-shaped distance map of some bags. It will hold that after the preprocessing and each
subsequent update, LUDB(u, v) =

⊕
P :u v{⊗(P )}, where all P are U-shaped paths in B. Given

this guarantee, we later present an algorithm for answering (u, v) queries with d(u, v), the distance
from u to v. Algorithm Preprocess is a dynamic programming algorithm. It traverses T bottom-up,
and for a currently examined bag B that is the root bag of a node x, it calls the method Merge to
compute the local U-shaped distance map LUDB. In turn, Merge computes LUDB depending only
on the local U-shaped distance maps LUDBi

of the children {Bi} of B, and uses the closure operator
∗ to capture possibly unbounded traversals of cycles whose smallest-level node is x. See Method 1
and Algorithm 2 for a formal description.

LEMMA 3.2. At the end of Preprocess, for every bag B and nodes u, v ∈ B, we have
LUDB(u, v) =

⊕
P :u v{⊗(P )}, where all P are U-shaped paths in B.
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Method 1: Merge

Input: A bag Bx with children {Bi}i
Output: A local U-shaped distance map LUDBx

1 Assign wt′(x, x)←
(⊗
{LUDB1(x, x)

∗, . . . , LUDBj (x, x)
∗}
)∗

2 foreach u ∈ Bx with u 6= x do
3 Assign wt′(x, u)←

⊕
{wt(x, u), LUDB1(x, u), . . . , LUDBj (x, u)}

4 Assign wt′(u, x)←
⊕
{wt(u, x), LUDB1(u, x), . . . , LUDBj (u, x)}

5 end
6 foreach u, v ∈ Bx do
7 Assign δ ←

⊗
(wt′(u, x),wt′(x, x),wt′(x, v))

8 Assign LUDBx(u, v)←
⊕
{δ, LUDB1(u, v), . . . , LUDBj (u, v)}

9 end

ALGORITHM 2: Preprocess

Input: A tree-decomposition T = (VT , ET )
Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Traverse T bottom up and examine each bag B with children {Bi}i
2 if B is the root bag of some node x then
3 Assign LUDB ← Merge on B
4 else
5 foreach u, v ∈ B do
6 Assign LUDB(u, v)←

⊕
{LUDB1(u, v), . . . , LUDBj (u, v)}

7 end
8 end

PROOF. The proof is by induction on the parents. Initially, B is a leaf, and hence the root bag of
some node x (recall that we assume wlog that every leaf bag is the root bag of some node). Thus
each such path P can only go through x, and hence will be captured by Preprocess. Now consider
the case that the algorithm examines a bag B, and by the induction hypothesis the statement is true
for all {Bi} children of Bx. The correctness follows easily if B is not the root bag of any node, since
every such P is a U-shaped path in some child Bi of B, and Preprocess propagates the contents of
all LUDBi

to LUDB in the else block of line 4. Now consider that B is the root bag some node x
(recall that since the tree decomposition is nicely-rooted, B can be the root bag of at most one node),
and any U-shaped path P ′ : u v that additionally visits x, and decompose it to paths P1 : u x,
P2 : x x and P3 : x v, such that x is not an intermediate node in either P1 or P3 (see Figure 4
for an illustration). By distributivity, we have:

⊕
P ′

⊗(P ′) =
⊕

P1,P2,P3

⊗
(⊗(P1),⊗(P2),⊗(P3))

=
⊗(⊕

P1

⊗(P1),
⊕
P2

⊗(P2),
⊕
P3

⊗(P3)

)

Note that P1 and P3 are also U-shaped in one of the children bags Bi of Bx, hence by the induction
hypothesis in lines 3 and 2 of Merge we have wt′(u, x) =

⊕
P1
⊗(P1) and wt′(x, v) =

⊕
P3
⊗(P3).

Also, by decomposing P2 into a (possibly unbounded) sequence of paths P i2 : x x such that x is
not an intermediate node in any P i2, we get that each such P i2 is a U-shaped path in some child Bli

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Faster Algorithms for Dynamic Algebraic Queries in Basic RSMs with Constant Treewidth A:17

of B, and we have by distributivity and the induction hypothesis⊕
P2

⊗(P2) =
⊕

P 1
2 ,P

2
2 ,...

⊗(
⊗(P 1

2 ),⊗(P 2
2 ), . . .

)

=
⊕

Bl1
,Bl2

,...

⊗⊕
P 1

2

⊗(P 1
2 ),
⊕
P 2

2

⊗(P 2
2 ), . . .


=

⊕
Bl1

,Bl2
,...

⊗(
LUDBl1

(x, x), LUDBl2
(x, x), . . .

)
and the last expression equals wt′(x, x) from line 1 of Merge. It follows that in line 6 of Merge we
have δ =

⊕
P ′ ⊗(P ′).

Finally, each U-shaped path P : u  v in B either visits x, or is U-shaped in one of the children
Bi. Hence after line 8 of Method Merge has run on B, for all u, v ∈ B we have that LUDB(u, v) =⊕

P :u v ⊗(P ) where all paths P are U-shaped in B. The desired results follows.

LEMMA 3.3. Preprocess requires O(n) semiring operations.

PROOF. Merge requires O(t2) = O(1) operations, and Preprocess calls Merge at most once for
each bag, hence requiring O(n) operations.

u

x

v

P1

P3

P2

wt′(u, x)
wt′(x, v)

wt′(x, x)

Fig. 4: Illustration of the inductive argument of Preprocess when the algorithm processes a bag
Bx that is the root bag of node x. Every u  v path is decomposed to three paths P1 : u  x,
P2 : x  x and P3 : x  v such that x is not an intermediate node of either P1 or P3. All
paths P1 and P3 are U-shaped in some child bag of Bx, thus their weights have been captured in the
corresponding LUD maps by the induction hypothesis, and hence as weights wt′(u, x) and wt′(x, v).
The path P2 is not necessarily U-shaped in Bx, as it might contain x as an intermediate node.
However, P2 is decomposed to paths P i2 : x  x such that x does not appear as an intermediate
node of any P i2. Hence, every such path is also U-shaped, and the argument proceeds as in the case
of P1 and P3. Note that this is where the algorithm makes use of the semiring closure operator ∗ to
capture the effect of (unbounded) cycle traversals, since P2 is a cycle around x.

Informal description of updating. Algorithm Update is called whenever the weight wt(x, y) of an
edge of G has changed. Given the guarantee of Lemma 3.2, after Update has run on an edge update
wt(x, y), it restores the property that for each bag B we have LUDB(u, v) =

⊕
P :u v{⊗(P )},

where all P are U-shaped paths in B. See Algorithm 3 for a formal description.

LEMMA 3.4. At the end of each run of Update, for every bag B and nodes u, v ∈ B, we have
LUDB(u, v) =

⊕
P :u v{⊗(P )}, where all P are U-shaped paths in B.
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ALGORITHM 3: Update

Input: An edge (x, y) with new weight wt(x, y)
Output: A local U-shaped distance map LUDB for each bag B ∈ VT

1 Assign B← B(x,y), the highest bag containing the edge (x, y)
2 repeat
3 Call Merge on B
4 Assign B← B′ where B′ is the parent of B
5 until Lv(B) = 0

PROOF. First, by the definition of a U-shaped path P in B it follows that the statement holds for
all bags not processed by Update, since for any such bag B and U-shaped path P in B, the path P
cannot traverse (u, v). For the remaining bags, the proof follows an induction on the parents updated
by Update, similar to that of Lemma 3.2.

LEMMA 3.5. Update requires O(log n) operations per update.

PROOF. Merge requires O(t2) = O(1) operations, and Update calls Merge once for each bag in
the path from B(u,v) to the root. Recall that the height of T is O(log n), and the result follows.

Informal description of querying. Algorithm Query answers a (u, v) query with the distance
d(u, v) from u to v. Because of Lemma 2.8, every path P : u  v is guaranteed to go through
the least common ancestor (LCA) BL of Bu and Bv , and possibly some of the ancestors B of BL.
Given this fact, algorithm Query uses the procedure Climb to climb up the tree from Bu and Bv
until it reaches BL and then the root of T . For each encountered bag B along the way, it com-
putes maps δu(w) =

⊕
P1
{⊗(P1)}, and δv(w) =

⊕
P2
{⊗(P2)} where all P1 : u  w and

P2 : w  v are such that the root bag of each intermediate node y is a descendant of B. This guar-
antees that for path P such that d(u, v) = ⊗(P ), when Query examines the bag Bz that is the root
bag of z = argminx∈PLv(x), it will be d(u, v) =

⊗
(δu(z), δv(z)). Hence, for Query it suffices to

maintain a current best solution δ, and update it with δ ←
⊕
{δ,
⊗

(δu(x), δv(x))} every time it
examines a bag B that is the root bag of some node x. Figure 5 presents a pictorial illustration of
Query and its correctness. Method 4 presents the Climb procedure which, given a current distance
map of a node δ, a current bag B and a flag Up, updates δ with the distance to (if Up = True), or
from (if Up = False) each node in B. See Method 4 and Algorithm 5 for a formal description.

Method 4: Climb
Input: A bag B, a map δ, a flag Up
Output: A new map δ

1 Remove from δ all w 6∈ B

2 Assign δ(w)← 0 for all w ∈ B and not in δ
3 if B is the root bag of some node x then
4 if Up then /* Climbing up */
5 Update δ with δ(w)←

⊕
{δ(w),

⊗
(δ(x), LUDB(x,w))}

6 else /* Climbing down */
7 Update δ with δ(w)←

⊕
{δ(w),

⊗
(δ(x), LUDB(w, x))}

8 end
9 return δ

LEMMA 3.6. Query returns δ = d(u, v).

PROOF. Let P : u v be any path from u to v, and z = argminx∈PLv(x) the lowest level node
in P . Decompose P to P1 : u  z, P2 : z  v, and it follows that ⊗(P ) =

⊗
(⊗(P1),⊗(P2)).
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ALGORITHM 5: Query

Input: A pair (u, v)
Output: The distance d(u, v) from u to v

1 Initialize map δu with δu(w)← LUDBu(u,w)
2 Initialize map δv with δv(w)← LUDBv (w, v)
3 Assign BL ← the LCA of Bu, Bv in T
4 Assign B← Bu

5 repeat
6 Assign B← B′ where B′ is the parent of B
7 Call Climb on B and δu with flag Up set to True
8 until B = BL

9 Assign B← Bv

10 repeat
11 Assign B← B′ where B′ is the parent of B
12 Call Climb on B and δv with flag Up set to False
13 until B = BL

14 Assign B← BL

15 Assign δ ←
⊕

x∈BL
⊗(δu(x), δv(x))

16 repeat
17 Assign B← B′ where B′ is the parent of B
18 Call Climb on B and δu with flag Up set to True
19 Call Climb on B and δv with flag Up set to False
20 if B is the root bag of some node x then
21 Assign δ ←

⊕
{δ,
⊗

(δu(x), δv(x))}
22 until Lv(B) = 0
23 return δ

We argue that when Query examines Bz , it will be δu(z) =
⊕

P1
⊗(P1) and

⊕
P2
δv(z) = ⊗(P2).

We only focus on the δu(z) case here, as the δv(z) is similar. We argue inductively that when
algorithm Query examines a bag Bx, for all w ∈ Bx we have δu(w) =

⊕
P ′{⊗(P ′)}, where

all P ′ are such that for each intermediate node y we have Lv(y) ≥ Lv(x). Initially (line 1), it is
x = u, Bx = Bu, and every such P ′ is U-shaped in Bu, hence LUDBx(x,w) =

⊕
P ′{⊗(P ′)} and

δu(w) =
⊕

P ′{⊗(P ′)}. Now consider that Query examines a bag Bx (Lines 7 and 18) and the
claim holds for Bx′ a descendant of Bx previously examined by Query. If x does not occur in P ′,
it is a consequence of Lemma 2.8 that w ∈ Bx′ , hence by the induction hypothesis, P ′ has been
considered by Query. Otherwise, x occurs in P ′ and decompose P ′ to P ′1, P ′2, such that P ′1 ends
with the first occurrence of x in P ′, and it is⊗(P ) =

⊗
(⊗(P ′1),⊗(P ′2)). Note that P ′2 is a U-shaped

path in Bx, hence LUDBx
(x,w) =

⊕
P ′

2
{⊗(P ′2)}. Finally, as a consequence of Lemma 2.8, we have

that x ∈ Bx′ , and by the induction hypothesis, δu(x) =
⊕

P ′
1
{⊗(P ′1)}. It follows that after Query

processes Bx, it will be δu(w) =
⊕

P ′{⊗(P ′)}. By the choice of z, when Query examines the bag
Bz , it will be δu(z) =

⊕
P1
{⊗(P1)}. A similar argument shows that at that point it will also be

δv(z) =
⊕

P2
{⊗(P2)}, hence at that point δ =

⊗
(⊗(P1),⊗(P2)) = d(u, v).

LEMMA 3.7. Query requires O(log n) semiring operations.

PROOF. Climb requires O(t2) = O(1) operations and Query calls Climb once for every bag
in the paths from Bu and Bv to the root. Recall that the height of T is O(log n), and the result
follows.

We conclude the results of this section with the following theorem.
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uBu
x1

x1 zBx1 = BL

z x2Bx2

vx2Bv

Bz
z

Fig. 5: Illustration of Query in computing the distance d(u, v) = ⊗(P ) as a sequence of U-shaped
paths, whose weight has been captured in the local distance map of each bag. When Bz is exam-
ined, with z = argminx∈PLv(x), it will be δu(z) = d(u, z) and δv(z) = d(z, v), and hence by
distributivity d(u, v) =

⊗
(δu(z), δv(z)).

THEOREM 3.8. Consider a graphG = (V,E) of n nodes and treewidth t = O(1), and a nicely
rooted, balanced and binary tree-decomposition T = (VT , ET ) of G that has constant width. The
following assertions hold:

(1) Preprocess requires O(n) semiring operations;
(2) Update requires O(log n) semiring operations per edge weight update; and
(3) Query correctly answers distance queries in O(log n) semiring operations.

Example 3.9 (Illustration of Preprocess, Update and Query). Here we illustrate the operations
Preprocess, Update and Query on the tree decomposition of the control-flow graph of method
dot matrix in Figure 3 for the boolean semiring ({True,False},∨,∧,False,True) that expresses
reachability.

Preprocess. We illustrate Preprocess along the path B6  B1 of the tree decomposition. The algo-
rithm traverses the tree decomposition bottom-up starting from B6, which is passed as argument
to Merge. The map LUDB6

contains the reachability information as obtained by the edge set
of the algorithm, i.e., we have LUDB6(8, 9) = LUDB6(9, 12) = LUDB6(12, 8) = True, and
all other entries of LUDB12 between different nodes equal False. These values of LUDB12 are
stored in function wt′ constructed in the first 5 lines of Merge. Note that B6 is the root bag of
node 12, and hence Merge will perform path-shortening on paths that go through node 12. In
particular, after the loop in line 6 is executed, we also have that LUDB12(9, 8) = True (i.e.,
the algorithm discovers new reachability information from 9 to 8), and Merge terminates. Next,
Preprocess calls Merge on bag B3 which is the root bag of node 9. Due to initialization, we
have LUDB3

(8, 9) = True, since (8, 9) is an edge of the graph, and thus wt′(8, 9) = True in
line 4 of Merge. On the other hand, LUDB3

(9, 8) = False, as (9, 8) is not an edge of the graph.
However, due to the previous step, we have LUDB6

(9, 8) = True, and line 3 of Merge sets
wt′(9, 8) = True. This shows how the reachability information discovered in the child bag B6

is propagated to the parent bag B3. After the loop of line 6 is executed, this reachability infor-
mation is stored to the map LUDB3 , i.e., we have LUDB3(8, 9) = LUDB3(9, 8) = True. Finally,
Preprocess processes bags B2 and B1 without discovering any new reachability information.
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Update. We illustrate Update after inserting the reachability information 10  11, i.e., setting
wt(10, 11) = True. Before the update, we assume that we have wt(10, 11) = 0, i.e., there is no
edge (10, 11) in the graph. This is because 10 is a call node and 11 is the corresponding return
node, hence it is not to be assumed that 10 11 as the invocation might never return. By calling
Update on the pair (10, 11), the algorithm in line 1 identifies B5 as the highest bag that contains
both nodes, and calls Merge on that bag. In turn, Merge constructs the weight function wt′ with
wt′(9, 10) = wt′(10, 11) = wt′(11, 9) = True. Note that B5 is the root bag of node 11, hence
the loop in line 6 performs path shortening through node 11, and will set LUDB5

(10, 11) =
LUDB5

(10, 9) = True. After Merge has terminated, Update will move to the parent bag B4

of B5, which is passed to Merge. Due to the previous step, we have LUDB5
(10, 9) = True,

and line 3 of Merge sets wt′(10, 9) = True. This bag is the root bag of node 10, and the path
shortening in the loop of line 6 will set LUDB4

(10, 9) = True. After Merge terminates, Update
will move to bags B3, B2 and B1, and the corresponding invocations to Merge will not discover
any new reachability information.

Query. We illustrate Query on the pair (10, 13). The root bag of nodes 10 and 13 are B4 and B7,
respectively, and their LCA bag is B2. In line 1 and line 2, Query initializes the maps δ10 and δ13,
respectively, with δ10(10) = δ10(9) = True and δ13(13) = δ13(8) = True. The first step is to
execute the loop in line 5, which will call Climb on input the parent bag B3 of B4 and the map δ10.
Note that B3 is the root bag of node 8, and since LUDB3

(8, 19) = True due to the preprocessing,
line 5 of Climb will insert δ10(8) = True. Afterwards, Query will proceed with the parent bag
B2 of B3, and the call to Climb will not modify the map δ10. The second step is to execute the
loop in line 10, which will call Climb on input the parent bag B2 of B7 and the map δ13. Note that
B2 is the root bag of node 8, and since LUDB2

(7, 8) = True due to the preprocessing, line 7 of
Climb will insert δ13(7) = True. Finally, line 15 of Query will set δ = δ10(8)⊗ δ13(8) = True,
and the reachability relation between nodes 10 and 13 is discovered. Note that the loop of line 16
will further process the parent bag B1 of B2, without any effect in the returned value δ, hence
Query will return True (i.e., indeed node 13 is reachable from node 10) as desired.

4. ALGORITHMS FOR CONSTANT TREEWIDTH RSMS

In this section we consider the bounded height algebraic path problem on RSMs of constant
treewidth. That is, we consider (i) an RSM A = {A1, A2, . . . , Ak}, where Ai consists of ni nodes
and bi boxes; (ii) a complete semiring (Σ,⊕,⊗,0,1); and (iii) a maximum stack height h. Our task
is to create a data structure that after some preprocessing can answer queries of the form: Given
a pair ((u, ∅), (v, ∅)) of configurations compute d((u, ∅), (v, ∅), h) (also recall Remark 2.17). For
this purpose, we present the algorithm RSMDistance, which performs such preprocessing using a
data structure D consisting of the algorithms Preprocess, Update and Query of Section 3. At the
end of RSMDistance it will hold that algebraic path pair queries in a CSM Ai can be answered in
O(log ni) semiring operations. Although our algorithms apply to RSMs of arbitrary treewidth, they
are efficient only when treewidth is small. We later present some additional preprocessing which
suffers a factor of O(log ni) in the preprocessing space, but reduces the pair query time to constant.

4.1. Algorithms For The Bounded Stack Height Problem

We start with our general solution to the bounded-stack height problem. We first describe the al-
gorithm RSMDistance for preprocessing the RSM, and afterwards the algorithms for performing
same-context queries.

Algorithm RSMDistance for bounded-stack-height preprocessing. Our algorithm RSMDistance
can be viewed as a Bellman-Ford computation on the call graph of the RSM (i.e., a graph where
every node corresponds to a CSM, and an edge connects two CSMs if one appears as a box in the
other). Informally, RSMDistance consists of the following steps.
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(1) In a preprocessing phase, it computes a nicely rooted, balanced, binary tree decomposition
Ti = (VTi

, ETi
) of each CSM Gi.

(2) It preprocesses the control flow graphs Gi = (Vi, E
′
i) of the CSMs Ai using Preprocess of

Section 3, where the weight function wti for eachGi is extended such that wti((en, b), (ex, b)) =
0 for all pairs of call and return nodes to the same box b. This allows the computation of d(u, v, 0)
for all pairs of nodes (u, v), since no call can be made while still having zero stack height.

(3) Then, iteratively for each `, where 1 ≤ ` ≤ h, given that we have a dynamic data structure
D (concretely, an instance of the dynamic algorithms Update and Query from Section 3) for
computing d(u, v, ` − 1), the algorithm does as follows: First, for each Gi whose entry to exit
distance d(eni, exi, `−1) has changed from the last iteration and for eachGj that contains a box
pointing to Gi, it updates the call to return distance of the corresponding nodes, using Query.

(4) Then, it obtains the entry to exit distance d(enj , exj , `) to see if it was modified, and continues
with the next iteration of `+ 1.

See Algorithm 6 for a formal description.

ALGORITHM 6: RSMDistance

Input: A set of control flow graphs G = {Gi}1≤i≤k, stack height h

1 foreach Gi ∈ G do
2 Construct a nicely rooted, balanced, binary tree-decomposition Ti = (VTi , ETi)
3 Call Preprocess on Ti

4 end
5 distances← [Call Query on (eni, exi) of Gi]1≤i≤k

6 modified← {1, . . . , k}
7 for `← 1 to h do
8 modified′ ← ∅
9 foreach i ∈ modified do

10 foreach Gj that contains boxes bj1 , . . . , bjl s.t. Yj(bjx) = i do
11 Call Update on Gj for the weight change wt((eni, bjl), (exi, bjx))← distances[i]
12 δ ← Query(enj , exj)
13 if δ 6= distances[j] then
14 modified′ ← modified′ ∪ {j}
15 distances[j]← δ
16 end
17 end
18 modified← modified′

19 end

Correctness and logarithmic pair query time. The algorithm RSMDistance is described so that
a proof by induction is straightforward for correctness. Initially, running the algorithm Preprocess
from Section 3 on each of the graphs Gi allows queries for the distances d(u, v, 0) for all pairs of
nodes (u, v), since no method call can be made. Also, the induction follows directly since for every
CSM Ai, updating the distance from call nodes (en, b) to the corresponding return nodes (ex, b)
of every box b that corresponds to a CSM Aj whose distance d(enj , exj) was changed in the last
iteration `, ensures that the distance d(u, v, ` + 1) of every pair of nodes u, v in Ai is computed
correctly. This is also true for the special pair of nodes eni, exi, which feeds the next iteration
of RSMDistance. Finally, RSMDistance requires O(

∑k
i=1 ni) time to construct a nicely rooted,

balanced, binary tree decomposition (Lemma 2.10 and Lemma 2.12), O(n) time to preprocess all
Gi initially, and O(

∑k
i=1(bi · log ni)) to update all Gi for one iteration of the loop of Line 10 (from

Theorem 3.8). Hence, RSMDistance uses O(
∑k
i=1(ni + h · bi · log ni)) preprocessing semiring

operations. Finally, it is easy to verify that all preprocessing is done in O(
∑
i ni) = O(n) space.
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dot vector dot matrix
`/LUDBx B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6 B7 B8

` = 0
− (1, 2) (2, 3) (2, 3) (2, 5) (5, 6) − (7, 8) (8, 9) (9, 10) (9, 10) (8, 9) (8, 13) (13, 14)

(3, 4) (11, 9) (9, 12)
(Preprocess) (4, 2) (12, 8)

(3,2) (9,8)

` = 1
− (1, 2) (2, 3) (2, 3) (2, 5) (5, 6) − (7, 8) (8, 9) (9, 10) (9, 10) (8, 12) (8, 13) (13, 14)

(3, 4) (11, 9) (9, 12)
(Update) (4, 2) (10,11) (12, 8)

(3, 2) (10,9) (9, 8)

(a)

dot vector
B6 B5 B2 B1

Query δ6 = {5, 6} δ6 = {2, 5} δ6 = {1, 2} δ6 = {1}

d(1, 6)
− − δ1 = {1, 2} δ1 = {1}
− − δ = True δ = True

(b)

Table IV: Illustration of RSMDistance on the tree decompositions of methods dot vector and
dot matrix from Figure 3. Table (a) shows the local distance maps for each bag and stack height
` = 0, 1. Table (b) shows how the distance query d(1, 6) in method dot vector is handled.

After the last iteration of algorithm RSMDistance, we have a data structure D that occupies O(n)
space and answers distance queries d(u, v, h) in O(log ni) time, with u, v ∈ Vi, by calling Query
from Theorem 3 for the distance d(u, v) in Gi.

Example 4.1 (Illustration of RSMDistance). We now present a small example of how
RSMDistance is executed on the RSM of Figure 3 for the case of reachability. In this case, for
any pair of nodes (u, v), we have d(u, v) = True iff u reaches v. Table IV(a) illustrates how the lo-
cal distance maps LUDBx

look for each bag Bx of each of the CSMs of the two methods dot vector
and dot matrix. Each column represents the local distance map of the corresponding bag Bx, and an
entry (u, v) means that LUDBx

(u, v) = True (i.e., u reaches v). For brevity, in the table we hide self
loops (i.e., entries of the form (u, u)) although they are stored by the algorithms. Initially, the stack
height ` = 0, and Preprocess is called for each graph (line 3). The new reachability relations dis-
covered by Merge are shown in bold. Note that at this point we have wt(10, 11) = False in method
dot matrix, as we do not know whether the call to method dot vector actually returns. Afterwards,
Query is called to discover the distance d(1, 6) in method dot vector (line 5). Table IV (b) shows
the sequence in which Query examines the bags of the tree decomposition, and the distances δ1, δ6
and δ it maintains. When B2 is examined, δ = True and hence at the end Query returns δ = True.
Finally, since Query returns δ = True, the weight wt(10, 11) between the call-return pair of nodes
(10, 11) in method dot matrix is set to True. An execution of Update (line 11) with this update
on the corresponding tree decomposition (Table IV(a) for ` = 1) updates the entries (10, 11) and
(10, 9) in LUDB5 of method dot matrix (shown in bold). From this point, any same-context distance
query can be answered in logarithmic time in the size of its CSM by further calls to Query.

Linear single-source query time. In order to handle single-source queries, some additional pre-
processing is required. The basic idea is to use RSMDistance to process the graphs Gi, and then
use additional preprocessing on each Gi by applying existing algorithms for graphs with constant
treewidth. This is achieved using Lemma 2.11, which states that for each bag B of each tree-
decomposition Ti, a local distance map LDB : B × B → Σ with LDB(u, v) = d(u, v) can be
computed in time and space O(ni). After all such maps LDB have been computed for each B, it
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is straightforward to answer single-source queries from some node u in linear time. The algorithm
simply maintains a map A : Vi → Σ, and initially A(v) = d(u, v) for all v ∈ Bu, and A(v) = 0
otherwise. Then, it traverses Ti in a BFS manner starting at Bu, and for every encountered bag B
and v ∈ B, if A(v) = 0, it sets A(v) =

⊕
z∈B

⊗
(A(z), d(z, v)). The correctness follows directly

from Lemma 2.9. For constant treewidth, this results in a constant number of semiring operations
per bag, and hence O(ni) time in total.

Constant pair query time. After RSMDistance has returned, it is possible to further preprocess
the graphs Gi to reduce the pair query time to constant, while increasing the space by a factor of
log ni. For constant treewidth, this can be obtained by adapting [Chaudhuri and Zaroliagis 1995,
Theorem 10] to our setting, which in turn is based on a rather complicated algorithmic technique
of [Alon and Schieber 1987]. We present a more intuitive, simpler and implementable approach that
has a dynamic programming nature. In Section 6 we present some experimental results obtained by
this approach.

Recall that the extra preprocessing for answering single-source queries in linear time consists in
computing the local distance maps LDB for every bag B. To handle pair queries in constant time,
we further traverse each Ti one last time, bottom-up, and for each node u we store maps Fu,Tu :
V Bu
i → Σ, where V Bu

i is the subset of Vi of nodes that appear in Bu and its descendants in Ti. The
maps are such that Fu(v) = d(u, v) and Tu = d(v, u). Hence, Fu stores the distances from u to
nodes in V Bu

i , and Tu stores the distances from nodes in V Bu
i to u. The maps are computed in a

dynamic programming fashion, as follows:

(1) Initially, the maps Fu and Tu are constructed for all u that appear in a bag B which is a leaf of Ti.
The information required has already been computed as part of the preprocessing for answering
single-source queries. Then, Ti is traversed up, level by level.

(2) When examining a bag B such that the computation has been performed for all its children, for
every node u ∈ B and v ∈ V B

i , we set Fu(v) =
⊕

z∈B
⊗
{d(u, z),Fz(v)}, and similarly for

Tu =
⊕

z∈B
⊗
{d(z, u),Tz(v)}.

An application of Lemma 2.8 inductively on the levels processed by the algorithm can be used
to show that when a bag B is processed, for every node u ∈ B and v ∈ V B

i , we have Tu(v) =⊕
P :v u⊗(P ) and Fu(v) =

⊕
P :u v ⊗(P ). Finally, there are O(ni) semiring operations done at

each level of Ti, and since there are O(log ni) levels, O(ni · log ni) operations are required in total.
Hence, the space used is also O(ni · log ni). We furthermore preprocess Ti in linear time and space
to answer LCA queries in constant time (note that since Ti is balanced, this is standard). To answer
a pair query u, v, it suffices to first obtain the LCA B of Bu and Bv , and it follows from Lemma 2.9
that d(u, v) =

⊕
z∈B

⊗
{Tz(u), Fz(v)}, which requires a constant number of semiring operations.

We conclude the results of this section with the following theorem. Afterwards, we obtain the results
for the special cases of the IFDS/IDE framework, reachability and shortest path.

THEOREM 4.2. Fix the following input: (i) an RSM A = {A1, A2, . . . , Ak} with treewidth
t = O(1), whereAi consists of ni nodes and bi boxes; (ii) a complete semiring (Σ,⊕,⊗,0,1); and
(iii) a maximum stack height h. Let n =

∑
i ni. RSMDistance operates in the following complexity

bounds.

(1) Using O(
∑k
i=1(ni + h · bi · log ni)) semiring operations and O(n) space, it correctly answers

same-context algebraic pair queries in O(log ni), and same-context algebraic single-source
queries in O(ni) semiring operations.

(2) Using O(
∑k
i=1(ni · log ni +h · bi · log ni)) semiring operations O(

∑k
i=1(ni · log ni)) space, it

correctly answers same-context algebraic pair queries in O(1) semiring operations, and same-
context algebraic single-source queries in O(ni) semiring operations.
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Remark 4.3. We note that the pair query time of Item 1 in Theorem 4.2 can be improved further
to O(α(ni)) time, where α(ni) is the inverse of the Ackermann function on input (ni, ni). This
is achieved using [Chaudhuri and Zaroliagis 1995, Theorem 10, Item (ii)], instead of the process
described above. This result is only of theoretical interest, as (i) the hidden constants are large, and
(ii) the data structure for achieving such bounds is hard to be implemented in practice.

Remark 4.4. Our complexity analysis so far has neglected the precise dependency on treewidth,
since we assume that the treewidth t of the RSM is bounded by a constant, i.e., t = O(1). Here
we clarify this dependency. Assuming that the tree decompositions in line 2 are given, all our al-
gorithms have dependency of factor O(t2) in their complexity. This can be traced to the proofs
Lemma 3.3, Lemma 3.5 and Lemma 3.7, which state explicitly that the time dependency of the
algorithms Preprocess, Update and Query, respectively, is O(t2). Since, in general, computing the
treewidth of a graph is NP-hard, the complexity of computing the tree decompositions in line 2 is at
least 2t, depending on the precise algorithm used.

4.2. IFDS Framework

In the special case where the algebraic path problem belongs to the IFDS/IDE framework, we have a
meet-composition semiring (F,u, ◦, ∅, I), where F is a set of distributive flow functions 2D → 2D,
D is a set of data facts, u is the meet operator (either union or intersection), ◦ is the flow function
composition operator, and I is the identity flow function. For a fair comparison, the ◦ semiring
operation does not induce a unit time cost, but instead a cost of O(|D|) per data fact (as functions
are represented as bipartite graphs [Reps et al. 1995]). Because the set D is finite and the meet
operator is either union or intersection, it follows that the image of every data fact will be updated at
most |D| times. Hence, in the preprocessing phase where Preprocess(Gi) is called for each graph
Gi, the total time spent for each Gi is O(ni · |D|3). Additionally, line 7 of RSMDistance needs to
change so that instead of h iterations, the body of the loop is carried up to a fixpoint. The amortized
cost for all edge updates perGi is thenO(bi · log ni · |D|3) (as there are |D| data facts), and we have
the following corollary (also see Table II).

In the query phase we fix a source node u (in the case of single-source queries) or a source/destina-
tion pair (u, v) (in the case of pair queries), as well as the set of data facts X that hold in the source
node u (of either query). Since we deal with sets of data facts and not flow functions, each applica-
tion of the composition operator yields a new set of data facts, and the meet operator corresponds to
the union or intersection of two data-fact sets. Each such operation incurs a cost O(|D|2). We thus
arrive at the following corollary.

COROLLARY 4.5 (IFDS/IDE). Fix the following input (i) an RSM A = {A1, A2, . . . , Ak}
with treewidth t = O(1), where Ai consists of ni nodes and bi boxes; and (ii) a meet-composition
semiring (F,u, ◦, ∅, I) where F is a set of distributive flow functions D → D, ◦ is the flow function
composition operator and u is the meet operator. Let n =

∑
i ni. RSMDistance operates in the

following complexity bounds.

(1) Using O(
∑k
i=1(ni + bi · log ni) · |D|3) preprocessing time and O(n · |D|2) space, it correctly

answers same-context algebraic pair queries inO(log ni·|D|2) time, and same-context algebraic
single-source queries in O(ni · |D|2) time.

(2) Using O(
∑k
i=1(ni · log ni · |D|3)) preprocessing time and O(|D|2 ·

∑k
i=1(ni · log ni)) space,

it correctly answers same-context algebraic pair queries in O(|D|2) time, and same-context
algebraic single-source queries in O(ni · |D|2) time.

A speedup for large data-fact domains. Here we outline a speedup for the algebraic path problem
wrt the IFDS framework when the domain of data facts D is such that |D| = Ω(log n). In this case,
sets of data facts can be represented as bit sets, where the i-th bit of a bit set X is one iff it contains
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the i-th data fact. When |D| = Ω(log n), such bit sets can be stored compactly in machine words.
Since in the standard RAM model each machine word has size Θ(log n), such a set X can be stored
using O(|D|/ log n) words. The meet u (union/intersection) of two data-fact sets can be performed
inO(|D|/ log n) time, by computing the bit-wise OR/AND operation on the corresponding machine
words. Similarly, a distributive flow function f : 2D → 2D can be represented usingO(|D|2/ log n)
words, by storing a bit set Xi for every data fact di for which f(di) = Xi. Using bit sets, every
update of a flow function with a new data flow pair di → dj incurs a O(|D|/ log n) time cost,
simply by performing the bit-wise OR/AND operation (depending on whether the meet operator
is union/intersection) between the data-fact sets f(di) and f(dj). Since there can be at most |D|2
updates of data flow pairs di → dj per graph edge, the total preprocessing cost for each graph
Gi is ni · |D|3/ log n. Similarly, in the update phase (line 7) the amortized cost per Gi is bi ·
log ni · |D|3/ log n. Finally, in the query phase, where we track data facts rather than data-flow
functions, data-fact operations require O(|D|/ log n) word operations per data fact. We thus arrive
at the following corollary.

COROLLARY 4.6 (IFDS/IDE, LARGE DOMAIN). Fix the following input (i) an RSM A =
{A1, A2, . . . , Ak} with treewidth t = O(1), where Ai consists of ni nodes and bi boxes; and (ii) a
meet-composition semiring (F,u, ◦, ∅, I) where F is a set of distributive flow functions D → D
with |D| = Ω(log n), ◦ is the flow function composition operator and u is the meet operator. Let
n =

∑
i ni. RSMDistance operates in the following complexity bounds.

(1) Using O(
∑k
i=1(ni + bi · log ni) · |D|3/ log n) preprocessing time and O((n/ log n) · |D|2)

space, it correctly answers same-context algebraic pair queries in O(|D|2) time, and same-
context algebraic single-source queries in O(ni · |D|2/ log n) time.

(2) Using O(n · |D|3) preprocessing time and O(n · |D|2) space, it correctly answers same-context
algebraic pair queries inO(|D|2/ log n) time, and same-context algebraic single-source queries
in O(ni · |D|2/ log n) time.

Finally, we note that the special case of reachability is obtained by setting |D| = 1 in Corollary 4.5.
In the next section we present some further improvements which allow to reduce the cost of prepro-
cessing and querying.

4.3. Distances With Non-Negative Weights.

The distance (or shortest path) problem can be formulated on the tropical semiring (R≥0 ∪
{∞},min,+,∞, 0). We consider that both semiring operators cost unit time (i.e., the weights oc-
curring in the computation fit in a constant number of machine words). Since we consider non-
negative weights, the distance between any pair of nodes is realized by an interprocedural path of
stack height at most b, as no boxes need to appear more than once at any time in the stack of the path.
Hence, we can solve the distance problem by setting h = b in Theorem 4.2. However, our restriction
to non-negative weights allows for a significant speedup, achieved by algorithm RSMDistanceTrop
(see Algorithm 7). RSMDistanceTrop is obtained from RSMDistance by using a priority queue to
store the distances from entries to exits. In each iteration of the while loop in Line 7 we extract the
element of the queue with the smallest entry-to-exit distance, and update the entry-to-exit distances
of all remaining elements in the queue that correspond to CSMs which invoke the CSM that corre-
sponds to the extracted element. The algorithm has similar flavor to the classic Dijkstra’s algorithm
for distances on finite graphs with non-negative edge weights [Dijkstra 1959; Cormen et al. 2001].
The time complexity is O(n) time for executing Preprocess, plus the time required for each exe-
cution of Update and Query. Note that Update is executed at least as many times as Query, and
since both require time logarithmic in the size of the respective Gi, it suffices to count the total time
spent on Update. Since Line 10 is executed at most once per box, the total time spent on Update is
O(
∑k
i=1 bi ·log ni). We thus obtain the following corollary for distances with non-negative weights.
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COROLLARY 4.7 (INTERPROCEDURAL SHORTEST PATHS). Fix the following input (i) an
RSM A = {A1, A2, . . . , Ak} with treewidth t = O(1), where Ai consists of ni nodes and bi boxes;
(ii) a tropical semiring (R≥0 ∪ {∞},min,+,∞, 0). Let n =

∑
i ni. RSMDistanceTrop operates

in the following complexity bounds.

(1) Using O(n+
∑k
i=1 bi · log ni)) preprocessing time and O(n) space, it correctly answers same-

context shortest path pair queries in O(log ni), and same-context single-source distance queries
in O(ni) time.

(2) Using O(
∑k
i=1 ni · log ni) preprocessing time and O(

∑k
i=1(ni · log ni)) space, it correctly

answers same-context pair distance queries in O(1) time.

ALGORITHM 7: RSMDistanceTrop

Input: A set of control-flow graphs G = {Gi}1≤i≤k

1 foreach Gi ∈ G do
2 Construct a nicely rooted, balanced, binary tree-decomposition Ti = (VTi , ETi) of Gi

3 Call Preprocess on Ti

4 end
5 distances← [Call Query on (eni, exi) of Gi]1≤i≤k

6 PriorityQueueQ← [(i,Call Query on (eni, exi) of Gi)]1≤i≤k

7 while Q is not empty do
8 (i, δ)← Q.pop()
9 foreach Gj that contains boxes bj1 , . . . , bjl s.t. Yj(bjx) = i do

10 Call Update on Gj for the weight change wt((eni, bjl), (exi, bjx))← δ
11 δ′ ← Query(enj , exj)
12 if δ′ < distances[j] then
13 distances[j]← δ′

14 Decrease the key of j in Q to δ′

15 end
16 end

4.4. A Note On Non-Same-Context Queries

The focus of this work is on exploiting the constant-treewidth property of control-flow graphs for
speeding up same-context interprocedural algebraic path queries. In full generality, interprocedu-
ral static analyses are also concerned with non-same-context queries, i.e., where the endpoints of a
query are control nodes of different CSMs. We note that our techniques do not extend straightfor-
wardly to general queries. Since non-same-context queries take place at the RSM level instead of the
local CSM, fast algorithms for such queries will likely have to depend on the structural properties of
the RSM rather than the CSM. However, although it is well known that the control-flow graphs of
programs have small treewidth [Thorup 1998], this property is not guaranteed for the whole RSM
(e.g., when viewed as a supergraph [Sagiv et al. 1996]). Although in practice a non-same-context
query can be broken down to multiple same-context queries, this does not lead to complexity im-
provements (compared to doing the analysis offline) unless further restrictions are assumed about
the structure of the RSM.

5. OPTIMAL REACHABILITY FOR LOW-TREEWIDTH GRAPHS

In this section we turn our attention to the problem of reachability on low-treewidth graphs. We
present algorithms for building and querying a data-structure Reachability, which handles single-
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source and pair reachability queries over an input graph G of n nodes and treewidth t. In particular,
we establish the following.

THEOREM 5.1. Given a graph G of n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition T = (VT , ET ) of O(n) bags
and widthO(t) on the standard RAM with wordsizeW = Θ(log n). The data-structure Reachability
correctly answers reachability queries and requires

(1) O(T (G) + n · t2) preprocessing time;
(2) O(S(G) + n · t) preprocessing space;

(3) O
(⌈

t
logn

⌉)
pair query time; and

(4) O
(
n·t
logn

)
single-source query time.

For constant-treewidth graphs we have that T (G) = O(n) and S(G) = O(n) (Lemma 2.10), and
thus along with Theorem 5.1 we obtain the following corollary.

COROLLARY 5.2. Given a graph G of n nodes and treewidth t = O(1), the data-structure
Reachability requires O(n) preprocessing time and space, and correctly answers (i) pair reachabil-

ity queries in O(1) time, and (ii) single-source reachability queries in O
(

n
logn

)
time.

Implications on the reachability of constant-treewidth RSMs. In conjunction with Theo-
rem 4.2, we obtain the following corollary for RSMs. This is achieved by executing the algorithm
RSMDistance as before, in order to infer in every CSM Ai the reachability information between
every pair of call and return nodes (c, r). Afterwards, every corresponding graph Gi can be viewed
independently, so that we can use Reachability to further preprocess it in order to handle same-
context reachability queries. This approach yields the following corollary.

COROLLARY 5.3 (INTERPROCEDURAL REACHABILITY). Fix the following input a (i) con-
stant treewidth RSM A = {A1, A2, . . . , Ak}, where Ai consists of ni nodes and bi boxes. Let
n =

∑
i ni. UsingO(

∑k
i=1(ni+bi · log ni)) preprocessing time andO(n) space, one can correctly

answer same-context algebraic pair queries inO(1) time, and same-context algebraic single-source
queries in O( ni

logn ) time.

In the remaining of this section we focus on a single input graph G = (V,E) of treewidth t, without
further mention of RSMs.

Intuition. Informally, the preprocessing consists of first obtaining a small, balanced and binary
tree-decomposition T of G, and computing the local reachability information in each bag B (i.e.,
the pairs (u, v) ∈ E∗ with u, v ∈ B) using Lemma 2.11. Then, the whole of preprocessing is done
on T , by constructing two types of sets, which are represented as bit sequences and packed into
words of length W = Θ(log n). Initially, every node u receives an index iu, such that for every bag
B, the indices of nodes whose root bag is in T (B) form a contiguous interval. Additionally, for every
appearance of node u in a bag B, the node u receives a local index lBu in B. For brevity, a sequence
(A0, A1, . . . Ak) will be denoted by (Ai)0≤i≤k. When k is implied, we simply write (Ai)i. The
following two types of sets are constructed.

(1) Sets that store information about subtrees. Specifically, for every node u, the set Fu stores the
relative indices of nodes v that can be reached from u, and whose root bag is in T (Bu). These
sets are used to answer single-source queries.

(2) Sets that store information about ancestors. Specifically, for every node u, two sequences of sets
are stored (Fiu)0≤i≤Lv(u), (Tiu)0≤i≤Lv(u), such that Fiu (resp., Tiu) contains the local indices of
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nodes v in the ancestor bag Biu of Bu at level i, such that (u, v) ∈ E∗ (resp., (v, u) ∈ E∗). These
sets are used to answer pair queries.

The sets of the first type are constructed by a bottom-up pass, whereas the sets of the second type
are constructed by a top-down pass. Both passes are based on the separator property of tree decom-
positions (recall Lemma2.7 and Lemma 2.8), which informally states that reachability properties
between nodes in distant bags will be captured transitively, through nodes in intermediate bags.

Reachability Preprocessing. We now give a formal description of the preprocessing of Reachability
that takes as input a graph G of n nodes and treewidth t, and a balanced tree-decomposition T =
(VT , ET ) of G that has O(t). After the preprocessing, Reachability supports single-source and pair
reachability queries. We say that we “insert” setA to setA′ meaning that we replaceA′ withA∪A′.
Sets are represented as bit sequences where 1 denotes membership in the set, and the operation of
inserting a set A “at the i-th position” of a set A′ is performed by taking the bit-wise logical OR
between A and the segment [i, i+ |A|] of A′. The preprocessing consists of the following steps.

(1) Turn T to a small, balanced binary tree-decomposition of G of width O(t), using Lemma 2.13.
(2) Preprocess T to answer LCA queries in O(1) time [Harel and Tarjan 1984].
(3) Compute the local distance map LDB : B × B → R for every bag B w.r.t reachability, using

Lemma 2.11. Hence, for any bag B and nodes u, v ∈ B, we have LDB(u, v) = 1 iff (u, v) ∈ E∗.
(4) Apply a pre-order traversal on T , and assign an incremental index iu to each node u at the time

the root bag B of u is visited. If there are multiple nodes u for which B is the root bag, assign the
indices to those nodes in some arbitrary order. Additionally, store the number su of nodes whose
root bag is in T (B) and have index at least iu. Finally, for each bag B and u ∈ B, assign a unique
local index lBu to u, and store in B the number of nodes (with multiplicities) aB contained in all
ancestors of B, and the number bB of nodes in B.

(5) For every node u, initialize a bit set Fu of length su, pack it into words, and set the first bit to 1.
(6) Traverse T bottom-up, and for every bag B execute the following step. For every pair of nodes
u, v ∈ B such that B is the root bag of v and iu < iv and LDB(u, v) = 1, insert Fv to the segment
[iv − iu, iv − iu + sv] of Fu (the nodes reachable from v now become reachable from u, through
v).

(7) For every node u initialize two sequences of bit sets (Tiu)0≤i≤Lv(u), (Fiu)0≤i≤Lv(u), and pack
them into consecutive words. Each set Tiu and Fiu has size bBi

u
, where Biu is the ancestor of Bu

at level i.
(8) Traverse T top-down, and for B the bag currently visited, for every node x ∈ B, maintain

two sequences of bit sets (T
i

x)0≤i≤Lv(B) and (F
i

x)0≤i≤Lv(B). Each set T
i

x and F
i

x has size bBi ,
where Bi is the ancestor of B at level i. Initially, B is the root of T (hence Lv(B) = 0), and
set the position lBw of F

0

x (resp., T
0

x) to 1 for every node w such that LDB(x,w) = 1 (resp.,
LDB(w, x) = 1). For each other bag B encountered in the traversal, do as follows. Let S = B∩B′,
where B′ is the parent of B in T , and let x range over S.
(a) For each node x, create a set Tx (resp., Fx) of 0s of length bB, and for every w ∈ B such

that LDB(x,w) = 1 (resp., LDB(w, x) = 1), set the lBw-th bit of Fx (resp., Tx) to 1. Append
the set Tx (resp., Fx) to (T

i

x)i (resp., (F
i

x)i). Now each set sequence (T
i

x)i and (F
i

x)i has
size aB + bB.

(b) For each u ∈ B whose root bag is B, initialize set sequences (F
i

u)i and (T
i

u)i with 0s of

length aB + bB each, and set the bit at position lBu of F
Lv(B)

u and T
Lv(B)

u to 1. For every w ∈ B

with LDB(u,w) = 1 (resp., LDB(w, u) = 1), insert (F
i

w)i to (F
i

u)i (resp., (T
i

w)i to (T
i

u)i).
Finally, set (Fiu)i equal to (F

i

u)i (resp., (Tiu)i equal to (T
i

u)i).

Figure 6 illustrates the constructed sets on a small example.
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1

8

9

2

10

3

6

4

7 5

(a)

u iu Bit-set Fu

0 1 2 3 4 5 6 7 8 9
2 0 1 1 1 1 0 0 1 0 1 1
8 1 1 0 0 0 0 0 0 0 1
10 2 1 1 0 0 1 0 1 1
9 3 1 0 0 1 0 1
7 4 1 1 1 1
6 5 1 1 0
4 6 1
5 7 1
1 8 1
3 9 1

(b)

8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

(c)

i = 0 i = 1 i = 2 i = 3
v 2 8 10 8 9 10 7 8 9 6 7 9

l
Bi
6

v 0 1 2 0 1 2 0 1 2 0 1 2
(Fi

6)i 1 1 1 1 1 1 0 1 1 1 0 1
(Ti

6)i 0 0 0 0 0 0 1 0 0 1 1 0

(d)

Fig. 6: (a), (c): A graph G and a tree-decomposition T = (VT , ET ) of G. (b): The sets Fu con-
structed from step 5 to answer single-source queries. The j-th bit of a set Fu is 1 iff (u, v) ∈ E∗,
where v is such that iv − iu = j. (d): The set sequences (Fiu)i and (Tiu)i constructed from step 6
to answer pair queries, for u = 6. For every i ∈ {0, 1, 2, 3} and ancestor Bi6 of B6 at level i, every

node v ∈ Biu is assigned a local index lB
i
6
v . The j-th bit of set Fi6 (resp. Ti6) is 1 iff (6, v) ∈ E∗ (resp.

(v, 6) ∈ E∗), where v is such that lB
i
6
v = j.

It is fairly straightforward that at the end of the preprocessing, the i-th position of each set Fu is
1 only if (u, v) ∈ E∗, where v is such that iv − iu = i. The following lemma states the opposite
direction, namely that each such i-th position will be 1, as long as the path P : u  v only visits
nodes with certain indices.

LEMMA 5.4. At the end of preprocessing, for every pair of nodes u and v with iu ≤ iv ≤
iu + su, if there exists a path P : u  v such that for every w ∈ P , we have iu ≤ iw ≤ iu + su,
then the (iv − iu)-th bit of Fu is 1.

PROOF. We prove inductively the following claim. For every ancestor B of Bv , if there exists
w ∈ B and a path P1 : w  v, then exists x ∈ B∩P1 such that ix ≤ iv ≤ ix+sx and the iv− ix-th
bit of Fx is 1. The proof is by induction on the length of the simple path P2 : B Bv .

(1) If |P2| = 0, the statement is true by taking x = v, since the 0-th bit of Fv is 1.
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(2) If |P2| > 0, examine the child B′ of B in P2. By Lemma 2.8, there exists x ∈ B∩B′∩P , and let
P3 : x v. By the induction hypothesis there exists some y ∈ B′ ∩ P3 with iy ≤ iv ≤ iy + sy
and the iv − iy-th bit of Fy is 1. If y ∈ B, we take x = y. Otherwise, B′ is the root bag of y, and
by the local distance computation of Lemma 2.11, it is LDB′(x, y) = 1. By the choice of x, y we
have that Bx is an ancestor of By . Thus, by construction we have ix < iy and sx ≥ sy + iy − ix,
and hence ix ≤ iv ≤ ix + sx. Then in step 5, Fy is inserted in position iy − ix of Fx, thus the bit
at position iy − ix + iv − iy = iv − ix of Fx will be 1, and we are done.

When Bu is examined, by the above claim there exists x ∈ P such that ix ≤ iv and the iv − ix-th
bit of Fx is 1. If x = u we are done. Otherwise, by the choice of P , we have iu < ix, which can
only happen if Bu is also the root bag of x. Then in step 5, Fx is inserted in position ix − iu of Fu,
and hence the bit at position ix − iu + iv − ix = iv − iu of Fx will be 1, as desired.

Similarly, given a node u and an ancestor bag Biu of Bu at level i, the j-th position of the set Fiu
(resp., Tiu) is 1 only if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), where v ∈ Biu is such that lB

i
u
v = j. The

following lemma states that the inverse is also true.

LEMMA 5.5. At the end of preprocessing, for every node u, for every v ∈ Biu where Biu is the

ancestor of Bu at level i, we have that if (u, v) ∈ E∗ (resp., (v, u) ∈ E∗), then the lB
i
u
v -th bit of Fiu

(resp., Tiu) is 1 .

LEMMA 5.6. Given a graph G with n nodes and treewidth t, let T (G) be the time and S(G)
be the space required for constructing a balanced tree-decomposition of G with O(n) bags and
width O(t). The preprocessing phase of Reachability on G requires O(T (G) + n · t2) time and
O(S(G) + n · t) space.

PROOF. First, we construct a balanced tree-decomposition T = (VT , ET ) of G in T (G) time
and S(G) space. We establish the complexity of each preprocessing step separately.

1. Using Lemma 2.13, this step requires O(n · t) time. From this point on, T consists of b = O(nt )
bags, has height η = O(log n), and width t′ = O(t).

2. By a standard construction for balanced trees, preprocessing T to answer LCA queries in O(1)
time requires O(b) = O(nt ) time.

3. By Lemma 2.11, this step requires O(b · t′3) = O(nt · t
3) = O(n · t2) time and O(b · t′2) =

O(nt · t
2) = O(n · t) space.

4. Every bag B is visited once, and each operation on B takes constant time. We make O(t′) such
operations in B, hence this step requires O(b · t′) = O(n) time in total.

5-6. The space required in this step is the space for storing all the sets Fu of size su each, packed
into words of length W :

∑
u∈V

⌈ su
W

⌉
=

η∑
i=0

∑
u:Lv(u)=i

⌈ su
W

⌉
≤

η∑
i=0

∑
u:Lv(u)=i

( su
W

+ 1
)

=
1

W
·
η∑
i=0

∑
u:Lv(u)=i

su +

η∑
i=0

∑
u:Lv(u)=i

1 ≤ 1

W
·
η∑
i=0

n · (t′ + 1) + n = O(n · t)

since η = O(log n), t′ = O(t) andW = Θ(log n). Note that we have
∑
u:Lv(u)=i su ≤ n·(t′+1)

because |
⋃
u Fu| ≤ n (as there are n nodes) and every element of

⋃
u Fu belongs to at most t′+1

such sets Fu (i.e., for those u that share the same root bag at level i). The time required in this
step is O(n · t) in total for iterating over all pairs of nodes (u, v) in each bag B such that B is the
root bag of either u or v, and O(n · t2) for the set operations, by amortizing O(t) operations per
word used.
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6. The time and space required for storing each sequence of the sets (Fiu)0≤i≤Lv(u) and
(Tiu)0≤i≤Lv(u) is:

∑
u∈V

2 ·
⌈
aBu + bBu

W

⌉
≤ 2 · n ·

⌈
(t′ + 1) · η

W

⌉
= O(n · t)

since aBu
+ bBu

≤ (t′ + 1) · η, η = O(log n) and W = Θ(log n).
7. The space required is the space for storing the set sequences (T

i

v)i and (F
i

v)i, which is O(t2) by
a similar argument as in the previous item. The time required is O(t) for initializing every new
set sequence (T

i

u)i and (F
i

u)i and this will happen once for each node u at its root bag Bu, hence
the total time is O(n · t).

Reachability Querying. We now turn our attention to the querying phase.

Pair query. Given a pair query (u, v), find the LCA B of bags Bu and Bv . Obtain the sets F
Lv(B)
u

and T
Lv(B)
v of size bB. Each set starts in bit position aB of the corresponding sequence (Fiu)i and

(Tiv)i. Return True iff the logical-AND of FLv(B)
u and T

Lv(B)
v contains an entry which is 1.

Single-source query. Given a single-source query u, create a bit set A of size n, initially all 0s.
For every node x ∈ Bu with ix ≤ iu, if the lBu

x -th bit of FLv(u)
u is 1, insert Fx to the segment

[ix, ix + sx] of A. Then traverse the path from Bu to the root of T , and let Biu be the ancestor of

Bu at level i < Lv(Bu). For every node x ∈ Biu, if the lB
i
u
x -th bit of Fiu is 1, set the ix-th bit of A

to 1. Additionally, if Biu has two children, let B be the child of Biu that is not ancestor of Bu, and
jmin and jmax the smallest and largest indices, respectively, of nodes whose root bag is in T (B).
Insert the segment [jmin − ix, jmax − ix] of Fx to the segment [jmin, jmax] of A. Report that the
nodes v reached from u are those v for which the iv-th bit of A is 1.

The following lemma establishes the correctness and complexity of the query phase.

LEMMA 5.7. After the preprocessing phase of Reachability, pair and single-source reachability
queries are answered correctly in O

(⌈
t

logn

⌉)
and O

(
n·t
logn

)
time respectively.

PROOF. Let t′ = O(t) be the width of the small tree-decomposition constructed in Step 1. The
correctness of the pair query comes immediately from Lemma 5.5 and Lemma 2.7, which implies
that every path u  v must go through the LCA of Bu and Bv . The time complexity follows from
the O

(⌈
t
W

⌉)
word operations on the sets FLv(B)

u and T
Lv(B)
v of size O(t) each.

Now consider the single-source query from a node u and let v be any node such that there is a path
P : u  v. Let B be the LCA of Bu,Bv , and by Lemma 2.7, there is a node y ∈ B ∩ P . Let x be
the last such node in P , and let P ′ : x  v be the suffix of P from x. It follows that P ′ is a path
such that for every w ∈ P ′ we have ix ≤ iw ≤ ix + sx.

(1) If Bv is an ancestor of Bu, then necessarily x = v, and by Lemma 5.5, the lBv -th bit of FLv(B)
u is

1. Then the algorithm sets the iv-th bit of A to 1.
(2) Else, Bx is an ancestor of Bv (recall that a bag is an ancestor of itself), and by Lemma 5.4, the

(iv − ix)-th bit of Fx is 1.
(a) If B is Bu, the algorithm will insert Fx to the segment [ix, ix+sx] ofA, thus the ix+iv−ix =

iv-th bit of A is set to 1.
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(b) If B is not Bu, it can be seen that jmin ≤ iv ≤ jmax, where jmin and jmax are the smallest
and largest indices of nodes whose root bag is in T (B′), with B′ the child of B that is not
ancestor of Bu. Since the (iv − ix)-th bit of Fx is 1, the (iv − jmin)-th bit of the [jmin, jmax]
segment of Fx is 1, thus the jmin + iv − jmin = iv-th bit of A is set to 1.

Regarding the time complexity, the algorithm performs O(η · t′) = O(η · t) set insertions to A. For
every position j of A, the number of such set insertions that overlap on j is at most t′ + 1 (once for
every node in the LCA of Bu and Bv , where v is such that iv = j). Hence if Hi is the size of the
i-th insertion in A, we have

∑
iHi ≤ n · (t′+ 1). Since the insertions are word operations, the total

time spent for the single source query is
η∑
i=0

⌈
Hi

W

⌉
≤ η +

η∑
i=0

Hi

W
≤ η +

n · (t′ + 1)

W
= O

(
n · t
log n

)
since η = O(log n), t′ = O(t) and W = Θ(log n).

6. EXPERIMENTAL RESULTS

In the previous sections, we have dealt with the algebraic path problem on RSMs in a purely algo-
rithmic way. In this section we make an experimental evaluation of our algorithms on a standard
benchmark set, for various types of specific data-flow analyses.

Experimental setup. We have implemented our preprocessing and query algorithms for the IFDS
framework, which is the most widely-used static dataflow analysis framework. Our benchmark set
consists of the DaCapo benchmark suit [Blackburn 2006] that contains several real-world Java ap-
plications. Every benchmark is represented as an RSM that consists of several CSMs, and each
CSM corresponds to the control flow graph of a method of the benchmark. We have used the Soot
framework [Vallée-Rai et al. 1999] for obtaining the control flow graphs, where every node of the
graph corresponds to one Jimple statement of Soot. The tree decompositions were computed using
the tool JTDec [Chatterjee et al. 2017b], which computes tree decompositions of control flow graphs
using a variant of Thorup’s algorithm [Thorup 1998] for Java source code.

Compared algorithms. We have instantiated our preprocessing and query algorithms for the IFDS
framework, for 6 different types of interprocedural data-flow analysis: control-flow reachability,
unused variables, reaching definitions, live variables, simple uninitialized variables and possibly
uninitialized variables. In each case, we compared the performance of our algorithms with three
standard variants of the IFDS framework:

(1) The standard, offline IFDS algorithm of [Reps et al. 1995], where each query is treated as a new
analysis.

(2) The complete preprocessing IFDS algorithm, where the transitive closure (wrt the respective
analysis semiring) is computed in the preprocessing phase, and each query is answered by a
simple table lookup.

(3) The On-Demand (OD) IFDS algorithm [Horwitz et al. 1995], which does no preprocessing, but
uses memoization to speed-up subsequent queries in the query phase.

For our algorithm and the complete preprocessing (i.e., the ones that have an explicit preprocessing
phase), we have imposed a timeout (TO) of 1 hour for performing the preprocessing. In the query
phase, we have performed 500 random same-context single-source/pair queries in each benchmark,
and computed the average time taken to answer each query. We have imposed a timeout of 1 hour
in the query phase, and in cases where a timeout occurred, we have averaged the query time over
the number of queries that were completed successfully by the timeout. Our experiments were run
on a Debian machine with an Intel Xeon E5-1650 3.2GHz CPU, on a single thread.
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Benchmarks
Name n |f | t Name n |f | t

antlr 506 5 3 JFlex 17272 145 8

bloat 122 5 1 jython 264 5 2

chart 7688 26 3 luindex 716 7 4

eclipse 600 10 2 lusearch 1296 6 4

fop 138 3 2 pmd 546 5 3

hsqldb 4294 18 3 polyglot 41294 338 5

javac 404 13 3 xalan 950 12 3

Table V: Statistics of our benchmark set.

Table V reports the statistics of our benchmark set. Recall that each benchmark is represented as an
RSM. In each table entry, n denotes the number of nodes in the corresponding RSM, |f | denotes
the number of CSMs in the RSM3, and t denotes the treewidth of the RSM. We see that in all cases,
the treewidth of the corresponding RSM is small compared to its size. We now proceed with results
on each individual analysis. In each case, |D| denotes the size of the analysis domain (i.e., the set
of data facts) in the IFDS formulation. Entries with 1µs denote that the corresponding running time
is 1µs or less.

6.1. Control-Flow reachability.

Our first analysis is simple control-flow reachability, and the goal is to decide for pairs (u, v) of
control-flow nodes, whether v may be reachable from u in some same-context execution. Given that
this is a may analysis, the meet operator is union, i.e. a node is reachable if it is reachable by at least
one path. The domain of the analysis is the singleton set D = {1}, i.e. we have one data fact per
node, encoding whether it is reachable or not. For each edge (v1, v2) of the interprocedural control
flow graph, its weight is defined as {1} 7→ {1} and ∅ 7→ ∅ (the identity function). In other words, if
v1 is reachable from some source node, then so is v2. On the other hand, if we know that v1 is not
reachable from a specific source node, this fact cannot be used to deduce that v2 is reachable. The
results of control-flow reachability analysis are shown in Table VI.

Preprocessing. We see that our algorithm spends less than 1 second in the preprocessing of all
benchmarks, except polyglot. On the other hand, the complete preprocessing spends more than 2
seconds in several benchmarks. We note that, in some cases, the complete preprocessing is faster
than our algorithm. However, this happens on benchmarks where the overall preprocessing time is
small for both algorithms, i.e., in orders of hundredths of a second. This is expected, as our algorithm
is more involved than the complete preprocessing, which leads to larger hidden constants. On the
other hand, when the size of the benchmark is large, our preprocessing is always faster. This finding
is consistent in all analyses.

Querying. In the query phase we see that the complete preprocessing always requires the smallest
time, which is expected as every query is a simple table lookup. Compared with the offline and
on-demand algorithms, our queries are always faster, often by orders of magnitude. We note that
control-flow reachability is a simple problem, and the exact running times are small enough to not
have a practical significance. However, we included this analysis as it is a common basis to all
other, more involved analyses. Indeed, every dataflow analysis needs to at least compute control-

3We have excluded libraries from our analysis, to avoid having the large library determine the running times.
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Benchmarks
Control-Flow Reachability

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 1 0.053s 0.077s 850µs 1µs 0.007s 0.014s 5µs 1µs 788µs 332µs

bloat 1 0.008s 0.001s 173µs 1µs 653µs 350µs 6µs 1µs 199µs 7µs

chart 1 0.421s 2.894s 0.001s 1µs 0.065s 0.057s 5µs 1µs 0.015s 0.002s

eclipse 1 0.020s 0.035s 304µs 1µs 0.002s 0.009s 5µs 1µs 871µs 245µs

fop 1 0.004s 0.002s 81µs 1µs 517µs 0.001s 2µs 1µs 228µs 19µs

hsqldb 1 0.158s 3.382s 0.003s 1µs 0.134s 0.026s 6µs 1µs 0.008s 0.001s

javac 1 0.017s 0.007s 163µs 1µs 0.001s 0.002s 5µs 1µs 576µs 49µs

JFlex 1 0.661s 2.800s 0.001s 1µs 0.040s 0.014s 5µs 1µs 0.033s 0.002s

jython 1 0.009s 0.005s 138µs 1µs 0.001s 0.003s 5µs 1µs 399µs 62µs

luindex 1 0.036s 0.036s 427µs 1µs 0.005s 0.006s 5µs 1µs 0.001s 190µs

lusearch 1 0.074s 0.365s 0.001s 1µs 0.028s 0.021s 6µs 1µs 0.002s 793µs

pmd 1 0.037s 0.012s 397µs 1µs 0.002s 0.006s 5µs 1µs 770µs 206µs

polyglot 1 1.646s 3.890s 900µs 1µs 0.091s 0.025s 5µs 1µs 0.084s 0.002s

xalan 1 0.082s 0.069s 734µs 1µs 0.006s 0.010s 5µs 1µs 0.001s 451µs

Table VI: Comparison table for control-flow reachability analysis.

flow reachability. In the more involved examples that follow, the difference in running times is much
more amplified.

6.2. Unused Variables.

Our second analysis is unused variables detection, which is a common analysis in IDEs such as Jet-
Brains [ReSharper 2019] and Visual Studio [Warren et al. 2016]. Its goal is to identify the variables
that must be unused until a point of the program (usually the endpoint of a method) is reached. Such
variables can then be removed from the program to enhance its performance. This analysis has dif-
ferent domains in each method. In a method m, with local variables v1, . . . , vn, the analysis domain
is {v1, . . . , vn}, where vi denotes the fact that the variable vi is unused. This is a must analysis and
hence its meet operator is intersection, i.e. a variable is flagged as unused if it is unused in every
execution. The results of unused variables analysis are shown in Table VII.

Example 6.1. Consider the program in Figure 7 (left). Its control-flow graph is given in Fig-
ure 7 (right). The edges are labeled with their weights, which are distributive data-flow functions.
Note that we divided the node corresponding to line 4 in two. This is a standard practice (follow-
ing [Reps et al. 1995]) to model the state before and after the method call.

We now review how the weights were assigned. In line 1, three new variables a, b and c are intro-
duced, all of which are yet unused. Hence, the edge (1, 2) adds three new data-flow facts ā, b̄ and c̄.
In line 2, the variable a is assigned, but its value is not used. Hence, line 2 does not use any variables
and therefore the edge (2, 3) does not change the current set of data-flow facts. In contrast, the value
of b is used in line 3, hence the edge (3, 4) removes the data-flow fact b̄. Now consider the edge
(8, 4′) which returns control from g to f . Note that the variable c of f is used in the call to g iff the
variable n of g is used in this call. This is reflected by adding the data-flow fact c̄ at point 4′ iff the
fact n̄ holds at 8.

Consider an arbitrary same-context path in the control-flow graph that starts at 1 and ends at 5 and
assume that no initial data-flow facts hold at 1. By the time we reach 5, the data-flow fact ā always
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1 void f (int a , int b , int c ) {
2 a = 1 ;
3 c = b ;
4 p r i n t ( g ( c ) ) ;
5 }
6 int g (int n ) {
7 return n * 2 ;
8 }

1

2

3

4

4′

5

6

7

8

λx.{ā, b̄, c̄}

λx.x

λx.x− {b̄}

λx.x

λx.x

λx.∅

λx.{n̄}

λx.x− {n̄}λx.

{
{c̄} n̄ ∈ x
∅ otherwise

Fig. 7: An example program (left) and its unused variables analysis in IFDS (right).

Benchmarks
Unused Variables

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.373s 41.789s 0.010s 1µs 1.985s 2.462s 3µs 1µs 0.800s 0.026s

bloat 11 0.017s 0.020s 300µs 1µs 0.005s 0.001s 2µs 1µs 0.002s 37µs

chart 146 12m26s TO 0.123s TO 6m23s 52.634s 10µs TO 5m45s 0.122s

eclipse 30 0.737s 12.915s 0.004s 1µs 0.515s 0.566s 5µs 1µs 0.185s 0.022s

fop 11 0.067s 0.056s 659µs 1µs 0.013s 0.019s 4µs 1µs 0.006s 626µs

hsqldb 271 39m16s TO 0.589s TO 23m4s 1m22s 12µs TO 24m6s 0.211s

javac 21 0.189s 0.311s 0.001s 1µs 0.069s 0.010s 3µs 1µs 0.033s 312µs

JFlex 149 11m55s TO 0.076s TO 3m30s 5.085s 6µs TO 3m7s 0.174s

jython 17 0.076s 0.276s 669µs 1µs 0.038s 0.055s 2µs 1µs 0.017s 0.002s

luindex 39 2.626s 13.539s 0.009s 1µs 1.303s 0.537s 5µs 1µs 0.585s 0.023s

lusearch 91 1m2s 52m42s 0.062s 4µs 37.843s 10.766s 9µs 1µs 20.541s 0.094s

pmd 30 1.036s 2.564s 0.004s 1µs 0.308s 0.355s 4µs 1µs 0.223s 0.012s

polyglot 186 31m6s TO 0.060s TO 6m30s 20.699s 10µs TO 7m21s 0.196s

xalan 32 2.350s 35.542s 0.009s 1µs 1.331s 0.640s 4µs 1µs 0.714s 0.024s

Table VII: Comparison table for unused variables analysis.

holds, no matter which path was taken. Hence, a is an unused variable. However, after traversing
the path 〈1, 2, 3, 4, 6, 7, 8, 4′, 5〉, the fact c̄ does not hold. Given that the meet operator is intersection
over all paths, this means that c̄ does not hold at 5. Hence, c is not an unused variable.

Preprocessing. We see that the domain of the analysis is much larger than in the previous case of
control-flow reachability, and varies per benchmark. The unused variables analysis is more involved
that reachability, and this has an immediate effect on preprocessing times. Both our algorithm and
the complete preprocessing use significantly more time for larger domains. However, our algorithm
always terminates within one hour, and typically much earlier, whereas the complete preprocessing
times out in 4 cases. In all cases, our algorithm preprocesses the corresponding RSM faster than
complete preprocessing, and hence the advantages of our preprocessing technique become apparent
in this analysis.
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1 void f ( ) {
2 int a =1;
3 if ( . . . )
4 a = a − 1 ;
5 else
6 a = 3 * a ;
7 }

1

2

3

64

7

λx.∅

λx.x ∪ {2̄} − {4̄, 6̄}

λx.x λx.x

λx.x ∪ {4̄} − {2̄, 6̄} λx.x ∪ {6̄} − {2̄, 4̄}

Fig. 8: An example program (left) and its reaching definitions analysis in IFDS (right).

Querying. As expected, the complete preprocessing is the fastest in answering both single-source
and pair queries, in the cases where the preprocessing phase was completed in time. However, we
have seen that this comes at a cost of significantly larger preprocessing times. At the same time,
our algorithm answers queries very fast, only at the cost of lightweight preprocessing. On the other
hand, the offline and on-demand algorithms handle queries much more slowly. It is also worth noting
that these two approaches experience high variance in their running times. This is expected, as e.g.,
the memoization heuristics of the on-demand algorithm have no theoretical guarantees.

6.3. Reaching definitions.

Our third analysis is reaching definitions. Reaching definitions is one of the most classic data-flow
analyses and is often used as the textbook example for this family (see e.g. [Cooper and Torczon
2011; Appel and Palsberg 2002; Nielson et al. 2015]). In this analysis, the data-flow facts in D
correspond to definition sites, i.e. points in the program where a value is assigned to a variable.
Consider a definition site s that assigns a value to variable x. The data-flow fact corresponding to s
holds at a node u of the control-flow graph if the value assigned at s may remain unchanged until
the program reaches u, i.e. if there is a path from s to u in which no new value is assigned to x.
Given that reaching definitions is a may analysis, its meet operator is union. The results for reaching
definitions analysis are shown in Table VIII.

Example 6.2. Consider the program in Figure 8 (left). Its control-flow graph, and its weights
for reaching definitions analysis, are given in Figure 8 (right). Here, we have D = {2̄, 4̄, 6̄}, where
ī denotes that the definition in line i reaches the current node. Note that every time there is an
assignment to the variable a, the new definition becomes active and deactivates every other definition
of the same variable. Consider a reaching definitions analysis starting at node 1. Since reaching
definitions is a may analysis, the data-flow fact 4̄ holds at node 7, because there is at least one path
starting at 1 and ending at 7 which contains 4̄. The fact 6̄ has a similar situation. However, 2̄ does
not hold at 7, because every path excludes it.

Preprocessing. This analysis uses the largest domain in all our experiments. Again, the complete
preprocessing is consistently slower than our algorithm, and times out in 4 cases. On the other hand,
our algorithm always completes in time, and the most challenging benchmark requires around 16
minutes.

Querying. The comparison in the query phase is qualitatively similar to that of the unused variables
analysis. Although our algorithm is not as fast as the the complete preprocessing, its running times
are small enough to make the difference negligible in practice. In addition, they are always smaller
than each of offline and on-demand algorithms.
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Benchmarks
Reaching Definitions

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 54 2.157s 28.368s 0.017s 3µs 2.365s 3.238s 3µs 1µs 0.337s 0.020s

bloat 11 0.018s 0.007s 384µs 1µs 0.002s 0.001s 5µs 1µs 0.001s 39µs

chart 170 8m16s TO 0.209s TO 3m29s 1m7s 11µs TO 2m9s 0.085s

eclipse 31 0.404s 11.140s 0.003s 1µs 0.203s 0.530s 3µs 1µs 0.071s 0.017s

fop 12 0.051s 0.040s 528µs 1µs 0.009s 0.015s 4µs 1µs 0.002s 495µs

hsqldb 289 12m17s TO 0.809s TO 5m22s 1m23s 8µs TO 4m8s 0.114s

javac 21 0.144s 0.119s 0.001s 1µs 0.031s 0.009s 3µs 1µs 0.013s 192µs

JFlex 149 9m26s TO 0.102s TO 1m22s 5.090s 9µs TO 55.471s 0.101s

jython 18 0.069s 0.102s 755µs 1µs 0.019s 0.045s 4µs 1µs 0.007s 0.001s

luindex 40 1.505s 7.062s 0.006s 1µs 0.595s 0.619s 3µs 1µs 0.192s 0.019s

lusearch 95 1m5s 33m31s 0.095s 5µs 32.516s 11.535s 9µs 1µs 7.242s 0.064s

pmd 31 0.637s 0.929s 0.003s 1µs 0.157s 0.441s 3µs 1µs 0.081s 0.012s

polyglot 212 16m6s TO 0.069s TO 2m8s 17.924s 10µs TO 2m26s 0.165s

xalan 33 1.542s 16.389s 0.006s 1µs 1.490s 0.663s 4µs 1µs 0.340s 0.014s

Table VIII: Comparison table for reaching definitions analysis.

6.4. Live variables.

Our fourth analysis is live variables [Horwitz et al. 1995; Appel and Palsberg 2002], and its goal
is to determine which variables may be live in specific program locations. A variable is considered
live in a program location if its current value may be used later in the program execution, i.e. if
its value might be read in the future, before first being overwritten by a new value. The domain of
the analysis is similar to that of unused variables. In a method m, with local variables v1, . . . , vn,
the analysis domain is {v1, . . . , vn}, where vi denotes the fact that the variable vi is live. However,
unlike our previous examples, live variables is a backwards analysis. Concretely, whether a variable
is live at a node v should be deduced from its liveness in successors of v. A standard trick to address
this is by reversing the edges of the control-flow graph to perform this analysis [Bodden 2012].

The results for live variables analysis are shown in Table IX. Although the running times differ from
the previous analyses, the qualitative conclusions are the same.

Example 6.3. Figure 9 shows an example program (left) and its reversed control-flow graph
labeled by weights for live variables analysis (right). Suppose that the analysis starts at node 6,
i.e. endpoint of the program. At this point no variable is live, given that the program has just ended.
The same is true at node 5, i.e. after execution of the print command, no variable is used and hence
no variable is live. However, at point 4, the variable b is live, because its value needs to be printed
at 5. However, b is not live at 3′, because it will be overwritten (at 4) before ever being used again.
Finally, note that b is live at 3, because its value will later be used in line 8. In contrast, a is not live
at 3, because its value is not used in g4.

4Alternatively, we could assume that the function call statement g(a, b) uses the value of a, but this is a detrimental assump-
tion and leads to an intraprocedural, rather than interprocedural, data-flow analysis.
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1 void f (int a , int b ) {
2 p r i n t ( a ) ;
3 g ( a , b ) ;
4 b =2;
5 p r i n t ( b ) ;
6 }
7 void g (int p , int q ) {
8 p r i n t ( q ) ;
9 }

1

2

3

3′

4

5

6

7

8

9

λx.x ∪ {ā}

λx.x

λx.x

λx.x− {b̄}

λx.x ∪ {b̄}

λx.x

λx.∅

λx.x

λx.x ∪ {q̄}

λx.


{a, b} x = {p, q}
{a} x = {p}
{b} x = {q}
∅ x = ∅

Fig. 9: An example program (left) and its live variables analysis in IFDS (right).

Benchmarks
Live Variables

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.418s 29.430s 0.016s 2µs 2.043s 1.863s 5µs 1µs 0.220s 0.019s

bloat 11 0.018s 0.014s 369µs 1µs 0.004s 958µs 4µs 1µs 0.001s 31µs

chart 146 6m38s TO 0.173s TO 3m56s 54.188s 7µs TO 1m33s 0.096s

eclipse 30 0.325s 13.702s 0.003s 1µs 0.465s 0.405s 3µs 1µs 0.067s 0.024s

fop 11 0.049s 0.063s 435µs 1µs 0.014s 0.009s 2µs 1µs 0.003s 507µs

hsqldb 271 11m30s TO 0.792s TO 4m53s 1m22s 12µs TO 3m48s 0.145s

javac 21 0.160s 0.168s 0.001s 1µs 0.039s 0.007s 3µs 1µs 0.014s 282µs

JFlex 149 9m56s TO 0.106s TO 1m34s 3.362s 6µs TO 54.635s 0.170s

jython 17 0.088s 0.224s 0.001s 1µs 0.027s 0.050s 4µs 1µs 0.008s 0.001s

luindex 39 2.036s 11.381s 0.009s 2µs 0.811s 0.454s 6µs 1µs 0.189s 0.021s

lusearch 91 52.708s 32m5s 0.092s 4µs 35.415s 9.200s 9µs 1µs 5.577s 0.076s

pmd 30 0.732s 1.386s 0.004s 1µs 0.170s 0.268s 5µs 1µs 0.079s 0.012s

polyglot 186 43m31s TO 0.059s TO 1m41s 18.113s 7µs TO 1m58s 0.130s

xalan 32 2.419s 40.082s 0.010s 1µs 1.386s 0.416s 6µs 1µs 0.235s 0.015s

Table IX: Comparison table for live variables analysis.

6.5. Uninitialized variables.

Finally, we report on two variations of uninitialized variables analysis, namely, simple uninitial-
ized variables and possibly-uninitialized variables. For these analyses, we follow the description
in [Horwitz et al. 1995]. In both cases, the task is to determine the variables that may be uninitial-
ized in specific program locations, i.e. the meet operator is union. The difference between these two
analyses is very subtle. In the simple uninitialized variables analysis, a variable is considered to be
initialized as soon as it appears in the left hand side of any assignment, no matter what appears on
the right hand side. In contrast, in possibly-uninitialized variables analysis, a variable that appears
on the left hand side of an expression whose right hand side contains another possibly-uninitialized
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1 void f ( ) {
2 int a , b ;
3 b = a ;
4 a = 2 ;
5 }

1

2

3

4

5

λx.x

λx.x ∪ {ā, b̄}

λx.x− {b̄}

λx.x− {ā}

1

2

3

4

5

λx.x

λx.x ∪ {ā, b̄}

λx.x− {ā}

λx.

{
x ∪ {b̄} ā ∈ x
x− {b̄} ā 6∈ x

Fig. 10: An example program (left) and its uninitialized variables analyses in IFDS, including
its simple uninitialized variables analysis (center) and its possibly-uninitialized variables analysis
(right)

Benchmarks
Simple Uninitialized Variables

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 1.451s 9.223s 0.010s 2µs 1.166s 2.340s 3µs 1µs 0.207s 0.013s

bloat 11 0.014s 0.007s 321µs 1µs 0.003s 0.001s 4µs 1µs 0.001s 34µs

chart 146 6m13s TO 0.178s TO 2m1s 49.804s 11µs TO 1m37s 0.040s

eclipse 30 0.310s 1.485s 0.003s 1µs 0.192s 0.565s 3µs 1µs 0.066s 0.012s

fop 11 0.038s 0.018s 488µs 1µs 0.007s 0.014s 4µs 1µs 0.002s 462µs

hsqldb 271 11m34s TO 0.770s TO 4m39s 1m15s 8µs TO 3m23s 0.100s

javac 21 0.154s 0.079s 0.001s 1µs 0.025s 0.009s 3µs 1µs 0.012s 192µs

JFlex 149 7m41s TO 0.110s TO 1m15s 4.359s 10µs TO 52.222s 0.098s

jython 17 0.062s 0.050s 723µs 1µs 0.016s 0.047s 4µs 1µs 0.006s 0.001s

luindex 39 1.227s 3.355s 0.007s 1µs 0.518s 0.672s 3µs 1µs 0.171s 0.012s

lusearch 91 41.787s 8m49s 0.089s 4µs 22.027s 10.279s 9µs 1µs 5.194s 0.052s

pmd 30 0.458s 0.454s 0.003s 1µs 0.134s 0.421s 3µs 1µs 0.072s 0.006s

polyglot 186 13m52s TO 0.090s TO 1m31s 15.914s 10µs TO 1m42s 0.128s

xalan 32 1.234s 6.629s 0.010s 1µs 0.575s 0.667s 4µs 1µs 0.215s 0.010s

Table X: Comparison table for simple uninitialized variables analysis.

variable is not considered to be initialized. In both cases, the data-flow facts domain is similar to pre-
vious analyses. In a method m, with local variables v1, . . . , vn, the domain is {v1, . . . , vn}, where
vi denotes the fact that the variable vi is uninitialized.

The results for the analysis wrt simple uninitialized variables and possibly uninitialized variables are
shown in Table X and Table XI, respectively. Although the running times differ from the previous
analyses, the qualitative conclusions are the same.

Example 6.4. Figure 10 shows an example program (left) and the modeling of simple uninitial-
ized variables analysis (center) and possibly-uninitialized variables analysis (right) of this program
in IFDS. Note that the only difference is in the weight of the edge (3, 4). In line 3, the variable a
is uninitialized when it is being assigned to b. In simple uninitialized variables analysis, b would be
considered as initialized after line 3, whereas possibly-uninitialized variables analysis considers b
as uninitialized.
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Benchmarks
Possibly Uninitialized Variables

Preprocessing Query
Single Source Pair

Name |D| Ours Compl Ours Compl No Pre OD Ours Compl No Pre OD

antlr 45 2.255s 25.928s 0.016s 2µs 1.611s 2.741s 3µs 1µs 0.218s 0.018s

bloat 11 0.017s 0.008s 370µs 1µs 0.003s 0.001s 5µs 1µs 0.001s 38µs

chart 146 6m43s TO 0.165s TO 1m59s 1m2s 11µs TO 1m32s 0.053s

eclipse 30 0.419s 7.628s 0.003s 1µs 0.349s 0.528s 5µs 1µs 0.063s 0.016s

fop 11 0.052s 0.135s 471µs 1µs 0.013s 0.015s 3µs 1µs 0.002s 493µs

hsqldb 271 10m27s TO 0.708s TO 4m34s 1m26s 12µs TO 3m49s 0.103s

javac 21 0.155s 0.110s 0.001s 1µs 0.032s 0.009s 3µs 1µs 0.013s 208µs

JFlex 149 10m42s TO 0.076s TO 1m15s 4.841s 9µs TO 52.722s 0.093s

jython 17 0.063s 0.098s 718µs 1µs 0.021s 0.061s 3µs 1µs 0.007s 0.001s

luindex 39 1.420s 4.734s 0.009s 1µs 0.564s 0.833s 3µs 1µs 0.175s 0.016s

lusearch 91 55.946s 44m6s 0.092s 4µs 42.777s 8.867s 9µs 1µs 5.240s 0.060s

pmd 30 0.506s 0.879s 0.003s 1µs 0.157s 0.395s 3µs 1µs 0.072s 0.008s

polyglot 186 14m36s TO 0.077s TO 1m33s 17.911s 10µs TO 1m54s 0.132s

xalan 32 1.857s 13.213s 0.009s 1µs 0.704s 0.591s 6µs 1µs 0.331s 0.018s

Table XI: Comparison table for possibly uninitialized variables analysis.

6.6. Experimental Conclusions

Our experiments with 6 IFDS-based dataflow analyses show that our new treewidth-based algo-
rithms succeed in answering both single-source and pair queries efficiently, only after a lightweight
preprocessing. In particular, in all cases that our preprocessing required more than a couple of min-
utes (ranging from about 6 minutes to 43 minutes), the complete preprocessing times out after 1
hour. In some cases, the complete preprocessing is at least 50 times slower than our preprocess-
ing (e.g., in the unused variables analysis, the benchmark lusearch requires only 1 minute to be
preprocessed by our algorithm, whereas the complete preprocessing requires 52 minutes). Since
preprocessing times are typically large, this difference is noticeable. In the query phase, our algo-
rithm requires more time than the complete preprocessing, as the latter only performs table lookups.
However, the query times of our algorithm remain very small, and often the difference is negligible.
In particular, our pair-queries are in the orders of microseconds, and thus appear to be within the
time budget of a real-time analysis scenario (e.g., for just-in-time compilation).

The advantage of the offline and on-demand algorithms is that they perform no preprocessing. How-
ever, this comes at a significant cost in the query phase. The offline algorithm often requires several
minutes per query, and although the on-demand algorithm is faster than the offline algorithm, it
remains noticeably slower than our algorithm. We also note that the times we report are averages
over 500 queries. Since the on-demand algorithm benefits only at the presence of multiple queries,
we expect that its running time is significantly larger in the first queries. In fact, the average time for
the first query of the on-demand algorithm coincides with the average time over all queries of the
offline algorithm, as reported in our tables above, and is thus very slow.

As a final remark, we note that for benchmarks with more methods, we expect to have a larger
preprocessing time, but not larger query time. This is because after the preprocessing phase, our
algorithm treats the control-flow graph of each method independently. Hence, we expect that the
running times reported here are robust with regards to variations in the number of methods. On the
other hand, that this is not the case for the offline and on-demand algorithms, and hence benchmarks
with more methods will lead to larger query times.
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7. CONCLUSIONS

On-demand interprocedural static analysis has several advantages over offline analyses in various
application domains, such as when performed as a user-level operation (e.g., during debugging) and
when run by a just-in-time compiler performing speculative executions. The tasks of an on-demand
static analyzer are naturally split between (i) a preprocessing phase, where the program is analyzed
without knowledge of the precise analysis queries, and (ii) a query phase, where the analysis queries
arrive in an online fashion (i.e., the analyzer is oblivious to future queries). Computationally, this
yields a wide spectrum of the resources spent in each phase. The key technical challenge faced by
the static analyzer is to achieve the best possible tradeoff in this spectrum: spend as few resources as
possible in the preprocessing phase (in terms of running time and space usage) so that, afterwards,
on-demand queries are answered fast.

In this work, we have taken an algorithmic approach to the challenge of on-demand interprocedu-
ral static analysis. A central part of our approach is the exploitation of a key structural property
of control-flow graphs of typical programs, namely, the fact that they form the most representa-
tive family of constant-treewidth graphs. Given this property, we have developed algorithms for
preprocessing and performing same-context queries, that offer strong complexity guarantees, and
combine the best of the two endpoints in the preprocessing/querying spectrum: the preprocessing
uses as much resources (time, space) as performing an offline analysis, and the querying uses as
many resources as if we have had the complete preprocessing at our disposal. Besides the theoret-
ical improvements, we have implemented our new, treewidth-based algorithms on a static analyzer
and have evaluated their performance experimentally on a standard benchmark set, for various types
of static analyses. Our results show that after a quick preprocessing, analysis queries are answered
extremely fast, and hence the theoretical improvements are realized in practice.

Our formulation of the static analysis as an algebraic path problem implies that our results are not
restricted to any particular static analysis, but are applicable to all analyses that admit an algebraic
formulation (namely, distributive analyses). Our work leaves open one key challenge, namely, move
from same-context queries to arbitrary queries where the endpoints belong to different functions of
the program. For this problem, the techniques developed here might prove useful, e.g., by breaking
such a distant query to multiple same-context queries. However, this treatment has no benefit with
regards to the worst-case complexity, and the problem merits closer attention. It is also possible that
treewidth alone is not sufficient to lead to algorithmic improvements, and further natural restrictions
must be considered, for example, regarding the structure of the call graph.
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