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Four decades after it was first applied to skeletal muscle, phosphorus magnetic resonance 

spectroscopy (31P MRS) remains a valuable noninvasive window into metabolism in vivo. Bartlett et 

al. (Bartlett et al., 2020) use 31P MRS to investigate a physiological puzzle: why skeletal muscle O2 

consumption is higher than expected during maximal exercise (Roston et al., 1987). 

Muscle’s ability to match ATP turnover to mechanical output, still not fully understood, also provides 

a useful way to probe the system. By quantifying key metabolites (inorganic phosphate, 

phosphocreatine (PCr) and ATP directly, [H+] and [ADP] indirectly), dynamically during exercise and 

recovery, 31P MRS can inform on several aspects of muscle metabolism: ATP use by the contractile 

apparatus and non-contractile processes such as the Ca2+- and Na+-K+-ATPases; the balancing 

production of ATP by oxidative phosphorylation (dominant in low-intensity and sustained exercise) 

and anaerobic glycogenolysis (important as workload increases); the creatine kinase equilibrium 

which buffers temporary mismatch of ATP supply and use; and the cellular acid-base physiology 

which mitigates and eventually reverses the pH change accompanying anaerobic glycogenolysis to 

lactate (Kemp, 2015). 31P MRS has significant technical complications and limitations (Meyerspeer et 

al., 2020): absolute quantification is not straightforward, many interesting metabolites are 

inaccessible, and analysis often involves physiological assumptions and mathematical models. Other 

techniques have different strengths and limitations: muscle biopsy gives access to a wider range of 

metabolites, but time-series measurements during exercise are very challenging, especially in clinical 

studies. So too are direct arteriovenous cannulation studies of muscle transmembrane fluxes (e.g. O2 

in, lactate out). The noninvasive (whole-body) measurement of pulmonary respiration offers ready 

but indirect access to muscle oxidative metabolism. Alone or complemented by these techniques, 

31P MRS has a place in the in vivo muscle physiology toolkit. 

The phenomenon this paper investigates was originally identified by studies measuring pulmonary 

respiration: during high-intensity exercise (i.e. above the lactate threshold), steady-state oxygen 

uptake rates are greater than expected (Roston et al., 1987). This phenomenon is related to 

increased recruitment of Type II (fast twitch, less oxidative) fibres in the working muscle, but the 

underlying physiology is debated: it might reflect an increasing ATP cost of contraction (so more O2 is 

consumed because more ATP is needed), or else progressive mitochondrial uncoupling (so more O2 

is needed to generate the required ATP). This might seem easily resolved by measuring all the 

relevant fluxes, but practical obstacles are formidable. Several studies have nevertheless attempted 

to distinguish these possibilities by combining techniques, as the paper notes.  

Bartlett et al. did not choose a multimodal approach, but used one of the most conceptually 

straightforward 31P MRS analyses: the initial post-exercise PCr resynthesis rate as a measure of the 

end-exercise suprabasal oxidative ATP synthesis rate. A practical disadvantage is that this requires 
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stopping exercise, but it is straightforward to repeat exercise at various durations to build up a time-

course. The key finding is that the oxidative ATP synthesis rate decreases during later exercise. This 

raises two questions.  

First, does this reflect a genuine shortfall in ATP supply, or is less ATP made because less is needed? 

31P MRS offers a simple way to address ATP cost: the initial PCr depletion rate measures total ATP 

turnover at the start of exercise, but this obviously cannot be repeated to generate a time-course. 

Instead, the authors exploit cellular acid-base physiology to estimate non-oxidative ATP synthesis 

rates throughout the exercise period, to show that contractile efficiency does not change. On a 

technical note, it is perhaps unsatisfactory that several different analytical models and methods are 

still advocated, requiring assumptions about e.g. buffer capacity and mitochondrial feedback 

regulation which have some experimental support, but are not definitively established (Kemp et al., 

2015). To address this the authors used several alternative analysis methods, which turn out to have 

little effect on the conclusions.  

The key finding is thus that ATP cost does not change, at least in this protocol, so mitochondrial ATP 

synthesis is indeed progressively falling short of what is needed. The second question, then, is why? 

Here again 31P MRS can help. It is well established the first-order rate constant of post-exercise PCr 

resynthesis is a measure of what might be called ‘effective mitochondrial capacity’: this concept 

depends on the notion of feedback control of oxidative ATP synthesis via the creatine kinase 

equilibrium, and can be thought of as an estimate of the hypothetical rate of ATP synthesis given 

maximal values of feedback signals like [ADP] (Kemp et al., 2015). The finding is that this decreases 

with exercise. Between muscles of different fibre composition or trained and untrained subjects, for 

example, this quantity reflects the number and functionality of mitochondria (Kemp et al., 2015). 

When it changes during exercise, it clearly reflects acute changes in mitochondrial function. These 

experiments cannot prove a mechanism, but the finding is compatible with a mitochondrial 

uncoupling mechanism.  

In summary, the authors have exploited the ability of 31P MRS to study metabolic events in muscle 

exercising at high intensity, and thrown some useful light on an important physiological 

phenomenon, the over-consumption of O2 by maximally exercising muscle. The results strongly 

implicate a progressive impairment of mitochondrial function, and the authors suggest an 

uncoupling-based mechanism, which points the way to the studies which will be needed to pin this 

down.  
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