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Abstract For achieving 2-layer smart spectrum access (SSA) which corresponds to feasible strategy of DSA, a
development of spectrum awareness system (SAS) is required. We focus on a core signal processing in SAS, which is
called signal area (SA) estimation. Simple-SA (S-SA) estimation has been developed as a method to find SA, which
means occupying area by PU in time-frequency domain. One of the issues of S-SA estimation is that it increases
false alarm. In this paper, we propose L-shaped false alarm removal (L-FAR). We analytically derive sub-optimum
parameters for L-FAR based on constant false alarm rate (CFAR). Numerical evaluations show the sub-optimum

solution can achieve competitive detection performance with the optimum solution. In addition, it is shown that

the proposed method can achieve better detection performance compared to the other methods.
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1. Introduction

Due to fixed spectrum assignment policy and increasing
demand of wireless communications, there is little room to
accommodate new wireless systems. However, research by
Federal Communications Commission (FCC) shows utiliza-
tion rate of spectrum in terms of time and frequency is in
range of 15% to 85% [1]. It means there are a lot of unused
spectrum, which is called white space (WS). For this issue,
dynamic spectrum access (DSA) [2] has been investigated. In
DSA, there are primary users (PUs), which have their own
spectrum, and secondary users (SUs), which do not have
their own spectrum. SUs correspond to new wireless system.
SUs can use the vacant spectrum while the spectrum uti-
lization by SUs does not cause any harmful interference to
PUs.

In DSA, SUs have to detect WS properly. Moreover, in-
stantaneous information of WS is necessary to share the spec-
trum with PUs whose spectrum utilization change dynami-
cally in time such as mobile data communication. Spectrum
sensing is a strong approach in such a situation [3]-[5]. How-
ever, DSA demands substantially high sensing accuracy and

low latency for spectrum sensing to avoid harmful interfer-
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ence to PU. Furthermore, low implementation cost and en-
ergy efficient scheme is required since spectrum sensing is
implemented to small and low cost mobile terminal [6].

One of the approaches to achieve these requirements is us-
ing statistical information of PU’s spectrum utilization such
as duty cycle (DC) or channel occupancy rate (COR) [7].
These information can be used to enhance spectrum sens-
ing performance [8]-[10]. Moreover, DC and/or COR can
be used for more sophisticated spectrum management, chan-
nel selection and MAC protocol design to enhance spectrum
efficiency [10]-[13].

However, it is difficult to estimate statistical information
based on long term observation by SU terminals because of
their limitation of energy consumption, i.e. computational
cost. 2-layer smart spectrum access (SSA) was proposed
as a practical approach to actualize statistical information
based DSA [14],[15]. In the 1st layer of 2-layer SSA, SUs can
use spatially and/or temporally vacant spectrum easily by
utilizing statistical information of PU’s spectrum utilization.
There is spectrum awareness system (SAS) in the 2nd layer.
A role of SAS is to estimate statistical information based
on long term, broad spectrum and large area spectrum mea-

surement, and to provide the statistical information to SUs.
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2-layer architecture can release SUs from estimation cost of
statistical information.

Since we have to cover large area, a large number of spec-
trum sensors must be spatially deployed. Considering such a
production cost, spectrum usage detection in each spectrum
sensor is required to be simple and accurate. As shown in
Fig. 1, assumed spectrum usage detection consists of 3 pro-
cesses; Fourier transform, such as Welch fast Fourier trans-
form (FFT), energy detection (ED) and signal area (SA)
estimation [15].

ED is a very simple signal detection method and it does
not require any prior information of PU signal [16]. FFT
based ED (FFT-ED) [17] is also widely investigated in the
area of spectrum sensing to sense multiple wireless systems
simultaneously. In FFT-ED, sensing result is obtained for
each frequency bin. Signal detection performance of ED is
not very high as compared to feature detection, matched fil-
ter, etc. [3],[5],[6]. On the other hand, Welch FFT based ED
(Welch FFT-ED) can improve FFT-ED performance since
power spectrum is averaged in time domain to suppress the
effect of noise uncertainty at the expense of frequency reso-
lution [15],[18],[19].

Latency requirement of spectrum measurement is not so
strict as that of spectrum sensing since the spectrum mea-
surement is used to estimate statistical information based on
long term spectrum measurement. Therefore, we can add
post process to Welch FFT-ED [15]. Output of Welch FFT-
ED is in the form of a two-dimensional time/frequency grid.
We denote a single element of the grid corresponding to one
time slot and one frequency bin by tile. State of tile is Hy if
tile is occupied, or Hy if tile is unoccupied. The cluster of H1
tiles is referred to SA and SA in digital wireless communica-
tion is typically rectangular shape. This aspect can provide
diversity gain by exploiting the correlation among neighbor-
ing tile’s state. This process is denoted by SA estimation.

There were similar approaches; localization algorithm
based on double-thresholding (LAD) method with adjacent
cluster combining (ACC) [20], improved ED [21], contour
tracing (CT) [22] or simple-signal area (S-SA) [15]. In par-
ticular, S-SA estimation can find SA accurately with lower
computational cost than CT since S-SA utilizes the feature
that SA is a rectangular.

However, S-SA inherently increases false alarms even
though it can improve detection performance. Therefore,
false alarm cancellation (FC) is added into SA estimation as
a countermeasure of this problem, which is called FC+S-SA
estimation [15].

In this paper, we propose computational cost efficient false
alarm rejection method, L-shaped false alarm rejection (L-
FAR). S-SA with L-FAR is denoted by L+S-SA

Our main contributions in this paper are summarized as
follows:

e L+S-SA is proposed in this paper. L+S-SA has lower
complexity than FC+S-SA. In FC+S-SA, process of FC is
inserted into mid-flow of S-SA, but L-FAR is completely sep-
arated with S-SA. This structure provides an advantage in
terms of computational cost at L+S-SA. Furthermore, L+S-
SA estimation can achieve almost the same detection perfor-
mance as FC+S-SA.

e L-shaped false alarm rejection has four parameters.
It is difficult to analytically optimize L+4S-SA. Therefore,
we define a sub-optimization problem for L-FAR and obtain
sub-optimum solution analytically. Furthermore, it is shown
that the sub-optimum L+S-SA can achieve almost the same
performance as the optimum L+S-SA.

* Numerical evaluations will show extensive comparison
among L+S-SA, FC+S-SA and close-open+S-SA (CO+S-
SA). CO is noise rejection method which is widely used in
digital image processing field [23]. It will show that L+S-SA
achieves the lowest computational cost and the competitive
detection performance.

The reminder of this paper is as follows: process of spec-
trum usage detection in a spectrum sensor is provided in
Section 2.
SA, FC+S-SA) and proposed method (L+S-SA) are shown

in Section 3.

Detailed process of conventional method (S-

Section 4 shows optimization and sub-
optimization problem of parameters of L-FAR and derive
sub-optimum parameter analytically. In Section 5, numeri-
cal results will show validity of the sub-optimum parameter
and the advantage of L4+S-SA in terms of computational cost.

Conclusion of this paper is summarized in Section 6.
2. System Model

We focus on a process of spectrum usage detection in a
spectrum sensor and a block diagram of the spectrum usage
detection is shown in Fig. 1. A purpose of the spectrum
usage detection is to find the occupied signal area (i.e. SA)

in the observing time-frequency space.

T» Welch FFT 7» Energy 7» SA estimation 7—»
Detection

(ED) (SA)
Purnr DyFnr Dyt

Fig. 1 Process of spectrum usage detection in spectrum sensors.

Spectrum sensors observe spectrum from f. — fsam/2[Hz]
t0 fe + fsam/2[Hz], where f.[Hz] is center frequency for the
observation and fsam [Hz] is sampling rate. The observed sig-
nal is down converted to f. = 0[Hz| and the down converted

signal is sampled with fsam[Hz]. One observation period is



set to No, samples. In a time slot, there are Ng samples and
Ng corresponds to the number of samples for single Welch
FFT. Obtained samples for one observation period is divided
by Nrs time slots where Nrs = Nob/Ns.

In the Welch FFT, Ns samples are divided to Nw sam-
ples with No overlapping samples and the Ny samples is
denoted by segment. Then we get Nyez segments, which is
given by
__2Ns

M_Flii_l’ (1)

Nseg =
€ No Nw

where Ng and Ny are assumed to be power of 2, Ny /No
denotes overlap ratio which is set to 0.5 in this paper. Ham-
ming window is applied for each segment so that we can
suppress the effect of discontinuity at the boundaries of FFT
frame [24]. After windowing, we perform FFT and calculate
power spectrum for each segment. Estimated power spec-
trum in Welch FFT is given by averaging the Ngeg power
spectrum, and the averaging provide the gain in ED [25].

The power spectrum obtained by Welch FFT at frequency
bin nr and time slot ny is denoted by Py, n, and (ng,nr)
denotes the coordinate of tile in the observed time-frequency
space. PU’s bandwidth is defined by the frequency bins when
the signal power is 30 [dB] below its peak value [26].

Output of ED in the tile (nF,nr) is denoted by DEP)

ng,nT

and it is obtained by

1 (Popny>n:H
D%EI?%T _ (Prpng >1 1) )
0 (otherwise : Ho),

where 7 is threshold of ED. DEP) = 1and DEP) =0

ng,nT ngE,nT
indicate the state of tile is estimated as H1 and Ho, respec-

tively.

. . (ED)
SA estimation is performed to Dy, ingp

denoted by DngﬁZLT. D;SQZLT =1 and D%S;A%LT = 0 means

and the result is

estimated occupancy state is occupied and unoccupied, re-
spectively. Details of SA estimation is shown in Section 3. 1.
Es /Ny is energy per symbol to noise power spectral density

ratio and defined by

ots 0ts fsam
E./No = QO‘%N - 2;§SN fB ’ ®)
where JJQ: s is average signal power per unit frequency, a? N is
average noise power per unit frequency, afs is average signal
power in time domain, o2y is average noise power in time
domain and B is bandwidth of signal.

We define probability of detection Pp and probability of
false alarm Pra as metrics to evaluate the spectrum usage de-
tection performance. Pp and Pra for ED output are defined
by

PP = P(DEP) . = 1|H(np,nr) = H1), (4)

PI%ED) = P(Dslli“]?T)LT = 1‘H(nF7nT) = Ho)v (5)

respectively, where H(np,nr) represents the actual spec-
trum utilization state at tile (ng,nr).
Given a target probability of false alarm PF<§D), P](DED) can

be approximately given by [25]:
P (N PE)
L+ ‘7,2‘5/ g J%N

Pt (N pgjiD))

1+2ES/N0 ’

PP = T [ Neeg,

=T | Necg, (6)
where y = ['(a,z) = (f:o t“fleftdt)/(fooo t*te7tdt) is reg-
ularized incomplete gamma, function and & = I'"(a, ) is its
inverse function.

We also define Pp and Ppa for SA estimation output are
defined by

PEY = p(DEX) = 1| H(np,nr) = Hi), (7)

ng,nT
PRY = P(DSA)., = 1[H(nr,nr) = Ho), (8)

ng,nm

respectively, where superscript (SA) represents a type of SA
estimation method, such as S-SA.

We employ constant false alarm rate (CFAR) criterion and
the design purpose of spectrum usage detection in spectrum
measurement is to maximize P](DSA) on the condition that
P = P,

3. SA Estimation

3.1 S-SA [15]
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Fig. 2 S-SA estimation method.

The process of S-SA consists of three steps and an example
is shown in Fig. 2. In the step 1, raster scan is performed
to find a tile with DS?%T = 1 from origin O whose coor-
dinate is (np,nr) = (0,0), as shown in Fig. 2. Direction
of the raster scan is left to right and bottom to top. When
Diz]?w]?r)w =1 tile is found, the tile is denoted by starting tile
S and its coordinate is denoted by (S, St).



In the step 2, we estimate the width of SA using detec-
tion mask (dashed small rectangle in Fig. 2). Starting from
S, the algorithm checks the detected occupancy of tiles in
nr = Sr and St < ny < ys + At. If one or more of these
tiles are determined as occupied, the algorithm moves to the
right (np becomes nr + 1) and repeats the process. The
right edge is found when all the tiles inspected are detected
as unoccupied. The left edge can be found correspondingly
by moving to the opposite direction from the starting tile S.

In the step 3, height of SA is estimated in a similar way to
step 2. Detection mask for coarse height estimation (dashed
large rectangle in Fig. 2) begins with its bottom row at time
slot Sp + At 4+ 1 and width and height is W and AT, re-
spectively. Check the number of DgE;]?;T
W AT detection mask, which is denoted by N. The mask is
moved up by AT time slots and repeat the process only if
N 2 ve % W AT, where ¢ is threshold. After this process,
estimate the height finely and then we get the height of the
SA H. Details of this process has shown in [15].

= 1 tiles inside of

As confirmed in [15], S-SA has an advantage in terms of
computational cost, and it can achieve relatively good de-
tection performance. However, S-SA increases false alarms
inherently. There may be three cases increasing false alarms
by S-SA and the examples are shown in Fig. 3. In the FA1,
a few false alarms are adjacent and the process of step 2 in
S-SA estimation causes additional false alarms by combining
the tiles nearby the false alarms. In the FA2, false alarms
neighbor on the left side of the SA and process of step 2 in-
creases false alarms. In the FA3, false alarms neighbor on the
bottom side of the SA and again process of step 2 increases
false alarms. In all cases, area surrounded by a dotted line

in Fig. 3 will be false alarms by the process of step 2.
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Fig. 3 False alarms caused by S-SA.

3.2 FC+S-SA

To mitigate the increment of false alarms, FC was pro-
posed in [15]. A flow chart of FC+S-SA which corresponds
to S-SA in conjunction with FC is shown in Fig. 4(a). A
role of FC is re-determines the state of S based on two con-

ditions and FC is performed after the step 2. If the first

Step 1: Raster Scan

Step 1: Raster Scan Find starting tile S.

Find starting tile S.

Raster scan
finished?
o

Decision in
time domain.
xt > Ly 7

Decision in
frequency domain.
zr=Lr?

Step 2: Estimate 11/

Step 3: Estimate H

SA found!
(b) L+S-SA

Step 3: Estimate [

SA found!
(a) FC+S-SA

Fig. 4 Flow chart of S-SA methods. Thick flame is process of

false alarm rejection such as FC or L-FAR.

condition W > Win, where Wy, is threshold, is not satisfied,
FC determines the state of S as false alarm and it goes back
to the raster scan (step 1). This condition can cancel false
alarms with the FA1. In the second condition, the number of
tiles with DS?%T = 1 is counted at the bottom tiles of the
estimated SA in the step 2. The ratio of the number and 174
is denoted by g and if the condition vg 2 yrc, Where yrc
is threshold, is not satisfied, FC determines the state of S as
false alarm and it goes back to the raster scan (step 1). If
the both conditions are satisfied, finally FC determines the
state of S as signal component and proceeds the step 3.

3.3 L+S-SA

(ED)
gy

FA

np
_—

L, | FA3

ne oy, =1 [ D, =0
Fig. 5 Example of L-shaped false alarm removal. Parameters are

set to L¢ :37'Yt = I,Lf :4,"/f =2

A flow chart of L+S-SA is shown in Fig. 4(b) and ex-
ample of false alarm removal by L-FAR is shown in Fig. 5.
L-FAR is performed after the raster scan (step 1), therefore
the process of step 2 is not necessary if the state of S is deter-
mined as false alarm. This can provide the benefit in terms
of computational cost of the L-FAR compared to FC.

L-FAR determines state of S based on two conditions de-

signed by two detection masks. The Fig. 5 shows L-FAR and



sizes of detection masks are Ly tiles in frequency domain and
L; tiles in time domain, respectively. The reason that we use
L-shaped detection mask is tiles in the other directions have
already investigated by the raster scan.

The condition with detection mask for frequency domain
is x5 2 vy where x¢ is the number of Dgg]?%T = 1 tiles in the
detection mask for frequency domain, and vy is threshold.
In a similar way, the condition with detection mask for time
DEP) = 1 tiles

domain is z+ = v+ where x is the number of np g
in the detection mask for time domain, and -, is threshold. If
one or more conditions are not satisfied, L-FAR determines
the state of S as false alarm and it goes back to the raster
scan (step 1). Otherwise, steps 2 and 3 are performed. Ob-
viously, L-FAR can remove false alarm with the FA1 unless
there are false alarms more than threshold. In addition, the
L-shape detection masks can also remove the false alarms
with the FA2 and FA3 since it requires that enough num-
ber of Dg,]?,)w =1 tiles in both domains simultaneously. In
the FA2 and FA3, one of them would not satisfy the condi-
tion so its state is determined as false alarm. In addition,
L-FAR tends to determine state of the tile at S positioned
in the bottom left side of SA as signal component. This is a

preferable aspect for S-SA estimation.
4. Parameter Design of L-FAR

4.1 Optimization Problems
L-FAR has four parameters, v¢, v, L, Ly. To simplify
the optimization problem in terms of four parameters, we

DED)

set v+ = 1 and vy = 2. In the time domain, Dy 7, is in-
dependent and v; = 1. In contrast, there are considerable
correlation between DﬁLEF]?BLT in the frequency domain due to
the window function and the overlaps in Welch FFT, such as
correlation coefficient between neighboring frequency bins is
about 0.41, therefore vy = 2.

The optimization problem for L; and Ly is defined by

(LiOp“, L;"P“)) =argmax PYTSN (L, Ly (9)
L¢, Ly

it P Lg) = B,

where P](DL+S'SA)(Lt,Lf) and PlngrS'SA)(Lth) denotes Pp
and Ppa of L+S-SA output, respectively and PF(I:LS’SA) de-
notes a target Pra of L+S-SA output.

To achieve the optimization, there are two issues. The first
issue is that we need to analyze ED, L-FAR and S-SA jointly
to solve this optimization problem, but this is not easy. The
second issue is that the optimal solution in (9) also depends
on distribution of SA in the observed space, PU data traffic
and specification of the transmitted signals.

For the first issue, we focus on the performance of L-FAR

based on ED outputs. Based on this idea, sub-optimization

problem is given by

(Lgs“b*’p”, Ljf“b‘opﬂ) = argmax P{”) (L, L)  (10)
Ly, L

sit. P (L, Ly) = P,

where P&)(Lu Ly) and P](DL)(Lt7 Ly) denotes Pra and Pp of
the output of model respectively and PF%‘) denotes target Pra
at the output of L-FAR. Specifically, for a given ED outputs
with an observation period, the output of L-FAR corresponds
to applying L-FAR for the whole observation space without
step 2 and 3.

For the second issue, we assume certain situation for the
optimizations (9) and (10). This model assumes FA3 in Fig.
5.

Furthermore, most of the effect of spectral leak due to
hamming window is between neighboring tiles. Therefore,
we only consider correlation between neighboring tiles in the
analysis.

4.2 Analysis of P](DL)

For the second issue, the assumed situation is displayed in
A of Fig. 6. Specifically, whole detection masks for L-FAR
are in the SA.

For L-FAR detecting H; at tile (np, nr), it needs to satisfy
three conditions, DSE,)T)LT = 1, and conditions of two detec-
tion masks in L-FAR are satisfied. Therefore, Pp is given
by

Py = P(DEP)

ng,ny

= 1) 'Pfreq'Ptime, (11)

where Pr.oq denotes a probability that the condition in the
detection mask of L-FAR in frequency domain is satisfied,
and Pime denotes a probability that the condition in the
detection mask of L-FAR in time domain is satisfied. The
coordinate of tile with D%]??%T =1 is set to (S, ST) based
on step 1.

In this case, Piime is given by

Pime = Pzt 2 7t) (12)
Ly

= Y Bin(Li, k, P, (13)
k=t

where Bin(n, k,p) = (Z)pk(l — p)" ™" denotes binomial dis-
tribution, i.e. probability of k times success in n trials while
each independent trial can be success with probability p, and
in this case p is set by P]gED).

In the case of Ppeq, Binomial distribution is not applica-
ble due to the non-negligible correlation of ED outputs in

frequency domain. Pp.q is given by

Prea = Play 27D, = 1).
_ Py 275, D5, =1) (14)
= (ED) '
P(D =1)

ng,nm




Now we focus on tiles in the detection mask for frequency
domain and starting tile S and redefine index numbers for
the tiles. Specifically, indexes for the tiles np = Sp,Sr +
1,---,SFr + Ly are redefined by n = Ly + 1,Lys,---,1, re-
spectively. In addition, Dy({;,nT is abbreviated to D,S; In
this case, the denominator in (14) is re-denoted by

Li+1
Py 277, Dipri=1)= Y Pra(@ Doy =1). (15)
a=yi+1
where the suffix Ly + 1 of Pp FH1 indicates that it considers
tiles in the region 1 £ n < Ly + 1, and x denote the number
of tiles with D,, = 1 in the region. The term in right-hand

side of (15) can be calculated recursively as follows: [27]

P.(x,D, =1) =
1
> Pui(@—1,Dpo1 = d)
d=0

-P(Dy, = 1|Dn—1 = d). (16)

Considering the correlation between neighboring tiles, the
conditional probability at second term in the right side in
(16) can be obtained by

P(Dn|Dn_1) =

Dy,
ED ED ED
(PP )+ 27,

(1= PERY () 4 oD ) L (1)

where p(SED)

the neighboring tiles at inside of SA. The initial value of (16)
(n =1) is defined by

is correlation coefficient of ED outputs between

p(ED)

Pi(z,Dy=d)={ ° (18)

1- P]()ED) (x =

Note that t =0 and d =1, or x = 1 and d = 0 will not be
occurred.

4.3 Analysis of Plgk)

For the second issue, the area surrounded by dotted line B
in Fig. 6 is assumed for the analysis of ng). Specifically, S
is located below SA and L-shaped region is overlapped with
SA. In addition, length in time domain of assumed area in
noise area is set to Npoise tiles and length in time domain of
assumed area in signal area is L; — 1 tiles. Pra is given by

P = P(DY)

ng,nT

= 1) . Pfreq - Piime. (19)

In this case, Piime is given by averaging over the assumed

area in time domain as:

Ptime = P(-Tt 2 ’Yt)

Nnoise Lt
1
— s > _
N Nnoise +1 kZO Z P(xt = ’Yt|k7 Lt k)7 (20)
=0 ze=7t

where k indicates the number of time domain tiles of L-
shaped region in noise area, and L; — k indicates the num-
ber of time domain tiles of L-shaped region in signal area.
Specifically, & determines the location of L-shaped region in
the assumed area. In addition, P(x¢ 2= |k, L+ — k) is given
by
P(zt 2 ylk, Le — k) =
i:Bm(k,z,Pgﬁm) -Bin(Li — kyze — 1, PS™) (k£ Ly)
=0

(21)

(otherwise).

Bin(Ls, x, P

Preq can be obtained by the similar way (14)-(18), but
replace P]gED) and ngD) with PISED) and pE?D), respectively
where pg\?D) is correlation coefficient of ED result between

neighboring frequency tiles in the noise area.
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Fig. 6 Derivation of P]SL) and PS;) based on analysis model. We
focus on the bottom side of SA and correlation is consid-

ered only neighboring tiles.

5. Numerical Evaluations

Table 1 Simulation parameters for each SA estimation methods.

FFT size (Ng) 210
segment size (Nyy) 27
overlap ratio (Nw /No) 0.5
window function hamming window
BEN 0.01
sampling rate[MHz] 40
band width of PU 20
signal[MHz|
duration of one packet[us] 256
idle time[us] 205

In this section, we evaluate validity of sub-optimization
of L+S-SA and compare the detection performances among
L+S-SA and conventional methods (FC+S-SA, CO+S-SA)
based on CFAR criterion.
setting is shown in Table 1.

5.1 Sub-optimization of L4+S-SA

Fig. 7 shows obtained L; and Ly as a function of Es/Ng

Common simulation parameter

— 6 —



for different methods. (PPt analysis) LSCSUb"OPt analysie) qe.
notes the analytically obtained sub-optimal solution (10),
LESUb'Opt), Lj,s“b“)pt) denotes the sub-optimal solution based
on Monte Carlo simulation, and LgOPt),L}Opt) denotes the
optimal solution (9) based on Monte Carlo simulation.

Sub-optimal solution is based on analysis model of Fig. 6
and Npoise 1S set to 10.

In terms of sub-optimization, analytical result agrees with
the result of Monte Carlo simulation and it shows the validity
of analysis. On the other hand, there is difference between
the sub-optimal solution and the optimal solution and it is
at most four. In addition, the difference increases as Es/No
increases. Next, we will confirm an effect of this difference

in terms of detection performance.

Ly, Ly

0 H H H H
‘0009 8 -7 6 5 4
Es/lVU

Fig. 7 Comparison of derived parameters by each methods. ~¢ is
fixed to 1 and y is fixed to 2. PIE‘IA) = 0.01.

5.2 Detection Performances

Fig. 8 shows detection probability as a function of E,/No
in terms of L+S-SA with several parameter setting solutions,
FC+S-SA, CO+S-SA in which closing-opening is used for
false alarm rejection [23], ans S-SA. As confirmed in Fig.
7, proper L: and Ly depends on Es/Ny, but it is difficult to
adjust them with E,/Ny. Therefore we also show a result de-
noted by "analytical fixed" in Fig. 8 and in this result, analyt-
ically obtained sub-optimal solution when Es/No = —6 dB is
used in the whole Es /Ny region. The reason of Es/No = —6
dB is that Pp achieves 0.9.

In L+4S-SA, this result indicates that at least the opti-
mal solution can achieve the highest detection probability,
but the difference among optimization solutions is negligible.
Also, L+S-SA can achieve almost the same performance as
FC+S-SA. On the other hand, we can confirm that L+S-SA
can achieve better detection probability compared to CO+S-
SA in the region where E,/Ny is more than -8 [dB].

5.3 Computational Time

Fig. 9 shows computational time as a function of PlgiA).
CO+S-SA needs a lot of computational time.

L+S-SA and FC+S-SA needs more computational time

0.8 [

0.6 -

_‘e_ opt
"7| =8~ sub-opt analysis
—A sub-opt analysis fixed
|- Feissa

--@- COS-SA
-3¢-SSA

-10 9 3 7 % s 4
Es/No

Fig. 8 Detection probability of SA estimation methods.

than S-SA due to false alarm rejection. L+S-SA has lower
computational cost than FC+S-SA because L+S-SA can re-
move false alarm tile before S-SA process, while FC+S-SA
make decision after width estimation of S-SA (step 2).

In Fig. 9, computational time of L+S-SA and FC+S-SA
is minimum around PS‘A):O‘OO4. Computational time de-
pends on the number of D%EF]?%T = 1 tiles found by raster
scan. Fig. 10 shows Nuoise and Nsignal where Nyoise denotes
number of tiles denoted as false alarm by FC or L-FAR and
Niignal denotes number of tiles denoted as signal by FC or

L-FAR. Computational cost depends on Npoise + Nsignal be-

(ED)
np,nT

cause we conduct S-SA process for every D =1 tiles
found by raster scan.

If PéiA) is very low (lower than 0.004 in Fig. 9), there
are a few false alarms tiles. But detection probability is also
very low. Therefore, tiles will be denoted as noise even if it is
inside of SA. Therefore, Nyoise and computational time will
be increased.

If PF(‘iA) is very high (higher than 0.004 in Fig. 9), there
are a lot of false alarm tiles and computational time will be
increased.

In the middle region (around 0.004 in Fig. 9), SA can be
found by minimum number of rectangle and number of S-SA
process is minimized. Therefore computational time takes

minimum value.

L A8 SA
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Fig. 9 computational time of SA estimation methods. (Es/No =
—5[dB])
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Fig. 10 Number of signal tiles Ngjgnal and number of noise tiles
Nhnoise over 1 observation period. (Fs/Nog = —5[dB])

6. Conclusion

In this paper, we investigated false alarm rejection method
for S-SA estimation which is post process of ED. We have
proposed L-FAR which is accurate and low computational
time than conventional methods.

Also, we proposed sub-optimum parameter setting method
based on analysis model of L+S-SA. Considering process of
L+S-SA, its performance can be analyzed only considering
L-FAR around the bottom side of SA. In addition, assum-
ing correlation exists only between neighboring ED outputs
in frequency domain, we can analytically calculate Pp and
Pra.
by this analysis.

We can design sub-optimum parameters analytically

Furthermore, simulation results show sub-optimum pa-
rameter can achieve almost the same detection performance
as optimum parameters, and proposed method (L+S-SA)
can achieve competitive detection performance to FC+S-SA
while lower computational time.
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