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Abstract A spectrum occupancy prediction can provide useful information to spectrum sharing-based wireless
networks. In this paper, we investigate a neural network-based channel occupancy rate prediction. Specifically,
based on real occupancy rate data obtained by our spectrum measurement system, we reveal a relationship be-
tween the prediction performance and several neural network parameters, such as the number of hidden layers and
the number of units in each hidden layer. Numerical evaluation shows an advantage of the neural network-based
prediction by comparing with other prediction methods, such as autoregressive model.
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1. Introduction

Due to fixed spectrum assignment policy and increasing
demand of wireless communications, spectrum becomes a
scarce natural resource and there is little room to accom-
modate new wireless systems [1]. However, several spectrum
measurement campaigns around the world [2–5] have shown
that almost all the spectrum is under-utilized in terms of
time and space [6, 7]. It means there are a lot of unused
spectrum, which is called white space (WS). For this issue,
dynamic spectrum access (DSA) has been investigated [8].

In DSA, there are primary users (PUs), which have pri-
ority regarding spectrum usage, and secondary users (SUs),
which can opportunistically access the vacant spectrum as
long as the spectrum utilization by SUs does not cause any
harmful interference to PUs.

In DSA, SUs have to detect WS to protect PUs from the
harmful interference. Moreover, instantaneous information
of the target spectrum, either vacant or occupied, is neces-
sary to share the spectrum with PUs whose spectrum utiliza-
tion may change dynamically. Spectrum sensing is a tech-
nique to find WS [9]. However, requirements of spectrum
sensing, such as accuracy, latency and implementation cost
in DSA are substantially high. For small and low cost mo-
bile terminal, low implementation cost and energy efficient

scheme for spectrum sensing is also required [10].
　Not only to resolve the issue of spectrum sensing but also

to provide other benefits to DSA, advanced DSA, known as
smart spectrum access (SSA), has been investigated [11–13].
SSA exploits useful prior information in terms of PU’s spec-
trum usage. This information can be obtained by long-term,
broadband and wide area spectrum usage measurements and
this information can be used to achieve efficient spectrum
sharing smartly. In fact, it has been shown that channel oc-
cupancy rate (COR) information can enhance spectrum sens-
ing performance [14–16]. It can also enhance spectrum man-
agement, channel selection, MAC protocol for DSA [17–19].

So far, models of spectrum occupancy have been widely in-
vestigated, for example in [20–22]. On the other hand, spec-
trum occupancy prediction is a new approach compared to
spectrum sensing and spectrum occupancy modeling [23–25].
Spectrum occupancy prediction infers future spectrum occu-
pancy from the measured spectrum usages. Spectrum occu-
pancy prediction has many merits such as reducing sensing
time and energy consumption involved in spectrum sensing
and increasing system throughput, and so on [26].

There are three widely used prediction methods in spec-
trum occupancy prediction, linear prediction such as autore-
gressive (AR) model, moving average model, hidden Markov
models and artificial neural networks (ANN) [23]. There
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are excellent survey papers which comprehensively summa-
rize spectrum occupancy prediction techniques, for example,
[23–25]. Among them, ANN-based prediction is a promis-
ing approach due to the success of deep learning (or deep
neural network) in industrial and academic field with the de-
velopment of computing power and the arrival of big data
era [27]. Moreover, [28] shows a recurrent neural network-
based spectrum occupancy prediction generally exhibits the
highest accuracy among the other methods such as AR model
and support vector machine. In recent years, ANN and deep
learning have also received significant attention in wireless
communication field [29, 30]. ANN is models that attempt
to mimic some of the basic information processing methods
found in the brain and a kind of machine learning technol-
ogy [31].

This paper focuses on COR prediction problem based on
ANN in SSA. The performance of ANN-based prediction de-
pends on the model structure of the network (e.g., number
of layers and neurons) [32]. Thus, it is important to reveal a
relationship between the performance of COR prediction and
several ANN model parameters, such as the number of hid-
den layers and the number of neurons in each hidden layer.
The main contributions of this paper are as follows:

• We reveal the relationship between the the perfor-
mance of COR prediction and several ANN model param-
eters based on real COR data obtained by our developed
spectrum occupancy measurement system.

• Numerical evaluations show the importance of input
size to the designed network rather than the number of hid-
den layers and the number of neurons. This gives our the
insight into to the design criterion of network architecture
for COR prediction.

The rest of the paper is organized as follows: Section 2.
presents several related works with respect to ANN-based
spectrum occupancy prediction. Section 3. formulates the
COR prediction problem and presents the COR prediction
framework in SSA. Section 4. is devoted for the description
of spectrum usage measurement methodology and COR es-
timation process. In Section 5., the assumed ANN model
in this work is shown. The numerical evaluation and its
corresponding discussion are provided in Section 6. Finally,
Section 7. gives the conclusion of the paper and points out
the future work.

2. Related Work

In this section, we introduce several ANN-based spectrum
occupancy prediction techniques, especially feed-forward
neural network-based prediction techniques due to its popu-
larity. In [23,25], more detailed survey is conducted.

An ANN-based spectrum occupancy prediction learns the

PUs’ spectrum occupancy via the learning process, and then
predicts the future spectrum occupancy. In feed-forward
neural networks, the input data (binary sequences for spec-
trum occupancy state) are input to the input layer and the
predicted value (or values) are output from the output layer
via the hidden layers without any feedback. There are sev-
eral works which apply feed-forward neural network to pre-
dict the spectrum occupancy, for example [33], [34] and [35],
etc.

In [33], the simplest feed-forward neural network, multi-
layer perception (MLP), is applied to spectrum occupancy
prediction. Specifically, authors in [33] designed an MLP
consisted of one input layer with 4 inputs, two hidden lay-
ers with 15 neurons in the first layer and 20 neurons in the
second layer and one output layer. Moreover, they used the
batch back propagation algorithm, which can minimize the
mean square error between the output from the MLP and the
desired value and is based on gradient descent algorithm to
train the MLP. They showed the spectrum occupancy predic-
tion based on MLP can save the sensing energy and improve
the efficiency of spectrum access by SUs.

[34] showed with the soft information (i.e., power infor-
mation) instead of hard information (binary spectrum occu-
pancy state information) as the input data to the backprop-
agation neural network, the prediction performance can be
improved than hard decision spectrum prediction. Further-
more, authors in [34] extended their work to improve the
prediction performance in [35]. Specifically, they applied the
genetic algorithm for searching for the optimal parameters
such as weights and the momentum algorithm for faster and
stable training.

Note that the above mentioned works focus on predicting
the binary spectrum occupancy state (whether a channel is
busy or idle in the upcoming next time slot). On the other
hand, we focus on COR prediction based on ANN in this
paper, where COR indicates the fraction of time that the
channel is declared to be busy.

3. COR Prediction in SSA

3. 1 COR Prediction Framework in SSA
In this subsection, at first we introduce the concept of SSA,

then present a framework of COR prediction in SSA con-
cretely. Figure 1 shows the conceptual diagram of SSA. SSA
consists of two layers, DSA layer (upper layer in Fig. 1) and
spectrum awareness layer (lower layer in Fig. 1). DSA layer
consists of primary system and DSA system and dynamic
spectrum sharing between PUs and SUs is achieved in this
layer. The distinct feature of SSA from typical DSA is that
the DSA system smartly shares the spectrum with primary
system exploiting useful information regarding spectrum us-
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Fig. 1 Conceptual diagram of SSA & framework of COR predic-
tion

age by PUs. These useful information are provided by the
spectrum manager, which is an interface between DSA layer
and spectrum awareness layer.

On the other hand, spectrum awareness layer is responsi-
ble for spectrum usage measurements, measured data anal-
ysis and useful information provisioning to the DSA system.
The spectrum awareness layer consists of spectrum measure-
ment system (SMS), database and compute server.

A spectrum measurement system is composed of sev-
eral spectrum sensors such as spectrum analyzer and smart
phone, data analysis server and data storage. Sensors col-
lect the source data for useful statistical information such as
I/Q data and send the source data to the data storage. The
data analysis server processes the collected data by sensors
and estimates statistical information based on the processed
data. Finally, estimated statistical information are stored in
the database.

The compute server is responsible for modeling and learn-
ing of statistical information. The spectrum manager ex-
tracts useful information based on modeled or learned infor-
mation by the compute server and provides extracted infor-
mation to the DSA system.

Now, we move on the COR prediction framework in SSA.
The COR prediction consists of three main blocks, spectrum
measurement and COR estimation block, predictor learn-
ing block and prediction block. The spectrum measurement
and COR estimation block is performed in SMS in spectrum
awareness layer. Estimated CORs are stored in the database.
In Section 4., we will show the developed spectrum measure-
ment system prototype and COR estimation process.

The pedictor leaning is responsible for the predictor gener-
ation based on the estimated CORs stored in the database.
This includes the determination of the predictor model used
and the estimation of predictor parameters. This process is
performed in the compute server in Fig. 1.

Finally, prediction is performed based on the learned pre-
dictor and the COR data from SUs. The predictor is con-
structed in the spectrum manager. Thus, SUs in DSA system
provide the COR data on demand to the spectrum manager,
then the predictor predicts the future COR value. The spec-
trum manager returns the predicted COR values back to the
corresponding SUs.

3. 2 COR Prediction Problem Formulation

Time
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M
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1
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Fig. 2 COR for a Channel

In this subsection, we define COR and formulate a COR
prediction problem.

COR at time instant t, Ψ(t) is defined as the ratio of occu-
pied time length by a channel to an observation period, TM .
For an example in Fig. 2, we can ideally calculate the COR
as Ψ(t) = 1

TM

∑3
i=1 T

(i)
1 , where T1 and T0 mean the occupied

time length and the unoccupied time length (i.e., WS), re-
spectively. Practically, we must estimate the COR and then
consider its estimated COR as the true COR Ψ(t) since we
do not know the true COR. In Sect. 4., we will explain the
COR estimation process based on spectrum measurement in
this work.

Then, we can formulate the (one-step ahead) COR predic-
tion problem as follows: Given a time series data regarding
COR up to current time t, Ψ(t), we predict the future COR
value at time instant t + 1, Ψ̂(t + 1) as

Ψ̂(t + 1) = g(Ψ(t)), (1)

where Ψ(t) = [Ψ(t − τ + 1), . . . , Ψ(t − 1), Ψ(t)]T and τ and
T indicate the time delay lag and the transpose operation.
Moreover, g(·) presents a learned linear or nonlinear function
which expresses a relationship between the input Ψ(t) and
the output Ψ̂(t + 1).

From a perspective of SSA, Ψ(t) is given by any SUs on
demand, while the function g(·) and corresponding model pa-
rameters are learned/estimated by the compute server. The
predicted COR, Ψ̂(t + 1) is predicted by the spectrum man-
ager and provided to SUs.

COR prediction aims to achieve the prediction error be-
tween the true COR, Ψ(t + 1) between Ψ̂(t + 1) as small as
possible. In this work, we apply RMSE (root mean square
error) as the prediction error given by (2).

RMSE(Ψ) =

√√√√ 1
T

T∑
t=1

(Ψ̂(t + 1) − Ψ(t + 1))2, (2)
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Fig. 3 Spectrum measurement system prototype
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Fig. 4 Measurement time schedule

where T indicates the total number of COR samples ex-
ploited for prediction.

4. Measurement Setup and Methodology

The measurement setup and methodology to obtain COR
data for learning ANN models are shown in this section.
We performed a spectrum usage measurement campaign in
the frequency band is 2.4 GHz (the center frequency is 2437
MHz and the bandwidth is 1.25 MHz). The spectrum mea-
surement system (SMS) prototype is located in our labora-
tory on fourth floor of a building in Koganei-campus, Tokyo
University of Agriculture and Technology, Tokyo, Japan
(35◦41’55.8”N 139◦31’00.6”E).

The block diagram of the SMS prototype is shown in Fig.
3. The system prototype consists of an antenna that can ob-
serve the target frequency band, cables, a real-time spectrum
analyzer (RSA) (Tektronix RSA6100A), a network-attached
high-capacity hard disk, a measurement system manager,
and a data analysis computer.

The measurement system manager takes care of the mea-
surement time scheduling, which is shown in Fig. 4. The
number of days for spectrum measurement is denoted by D

and we set D = 24 in the spectrum usage measurement. One
day (24 hours) is divided into M time slots. The time du-
ration for one time slot is denoted by TS and we set TS to

5 seconds. This means the spectrum manager predicts the
COR 5 seconds ahead given the measured COR data by any
SUs. One time slot consists of a measurement period and a
data analysis period, whose time durations are denoted by
TM and TA, respectively. During one measurement period,
the RSA continuously observes the target frequency band for
TM seconds and we set TM = 250 ms in this measurement
(i.e., TA = 4.75 sec).

The measured data (I/Q data in this spectrum usage mea-
surement) is first stored in the hard disk and then trans-
ferred to the data analysis computer. The data analysis
computer provides estimates of the COR by means of Welch
fast Fourier transform-based energy detection (Welch FFT-
ED) and post processing to achieve accurate spectrum usage
detection performance [12]. The measurement period TM is
divided into NT sub-time slots and Welch FFT-ED is per-
formed in each sub-time slot. The time duration for one sub-
time slot is denoted by tS . There are NS I/Q data samples
and NF frequency bins in one sub-time slot.

The spectrum usage detections are performed based on the
NT × NF estimated power spectrum samples by Welch FFT
at the data analysis computer. In this measurement, the
spectrum usage detections consists of typical ED and signal
area estimation with false alarm cancellation [12]. The pa-
rameters for the Welch FFT-ED are as follows: In Welch
FFT, 512 I/Q data samples (NS = 512) are divided into 7
segments while the overlap ratio is set to 0.5 [36]. Therefore,
the number of frequency bins, NF are set to 128 and 7 esti-
mated power spectra with 128 frequency bins are averaged,
leading to one estimated power spectrum by Welch FFT.
We set the detection threshold based on constant false alarm
rate criterion where the target false alarm rate is set to 0.01.
In this criterion, we need noise floor information in order to
set the threshold and we employ forward consecutive mean
excision (FCME) algorithm for noise floor estimation [37,38].

The outputs of the spectrum usage detection at time in-
stant t are denoted by

DnT ,nF =

{
1 (spectrum is occupied)
0 (spectrum is vacant),

(3)

where nT is the sub-time slot index number and nF is the
frequency bin index number. We define a set of index num-
bers of frequency bin, nF , involved in the observed frequency
band as F, which corresponds to one channel. Then, the
COR in the channel at time instant t can be estimated by

Ψd(t) = 1
NT

∑
nT

(
1 −

∏
nF ∈F

(1 − DnT ,nF )

)
. (4)

This equation indicates that if a part of the target channel F
is occupied, the state of the whole target channel is detected
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as occupied as well.

5. ANN-based COR Prediction

ANNs consist of a set of interconnected neurons and it
typically has layered architecture (i.e., input layer, several
hidden layers and output layer) as shown in Fig. 5. ANN
has the capacity to learn and model complex nonlinear rela-
tionships [31]. Furthermore, ANNs are classified according to
its model structure as the feed-forward neural network (e.g.,
multilayer perception and back propagation neural network)
and recurrent neural network (e.g., Elman recurrent neural
network, echo state network and long short-term memory).
Generally, the parameters of ANNs (i.e., weights which de-
termine the degree of connection among neurons) are learnt
via gradient descent algorithm in the predictor learning. We
focus on a feed-forward neural network as the network model
in this work.

Figure 5 shows an example of the feed-forward neural net-
work model applied in this work. The input data corresponds
to Ψ(t) in (1) and the output corresponds to Ψ̂(t + 1) in (1).
Each neuron receives one or more inputs from one preceding
layer, calculates their weighted sum, and finally outputs a
non-linearly processed weighted sum. Specifically, this oper-
ation is given by{

u = w1x1 + w2x2 + · · · + wN xN + b = wT x + b,

z = f(u),
(5)

where u presents the value of weighted sum of inputs from
one preceding layer, x = [x1, x2, . . . , xI ]T , while b indicates
the bias term. w = [w1, w2, . . . , wN ]T and N indicate the
weight vector and the number of inputs from one preced-
ing layer (equivalently the number of weights), respectively.
z is the output from a neuron where f(·) indicates a non-
linear function called activation function. There exist sev-
eral widely used activation functions, such as logistic sig-
moid functions, hyperbolic tangent function, rectified linear
function and identity function, etc.

Therefore, we can express the input-output relation of lth
layer (l ∈ {2, 3, . . . , L}) as (6), where L presents the num-
ber of layers in the considered ANN model. In Fig. 5, the

number of layers is L = 4.{
u(l) = W(l)x(l−1) + b(l),

z(l) = f (l)(u(l)),
(6)

where W(l) = [wT
1,l, wT

2,l, · · · , wT
J(l),l]T indicates the weight

matrix of lth layer. wj,l (j ∈ {1, 2, . . . , J(l)}, l ∈
{2, 3, . . . , L}) corresponds to the weight vector for jth neu-
ron in lth layer where J(l) indicates the number of outputs
from l − 1th layer (corresponding to the number of inputs of
lth layer). In Fig. 5, J(2) = τ = 3, J(3) = 2, J(4) = 3, re-
spectively. x(l) is the input vector to lth layer (equivalently
output vector from l − 1th layer). f (l)(·) is an element-wise
activation function.

Finally, we can express the input-output relation of ANN
model for COR prediction as (7) at the top of next page.

For constructing the ANN, we need to determine the num-
ber of hidden layers L, the number of neurons in each layer
J(l), l = 2, . . . , L and input size τ to the ANN before the
weight learning (estimation). However, it is difficult to opti-
mally determine them since they are data-specific. For this
issue, we investigate the relationship between the prediction
performance and the above mentioned parameters based on
real COR data obtained by our spectrum measurement sys-
tem, which was described in Section. 4..

6. Numerical Evaluation

In this section, we present several relationships between
the prediction performance evaluated by (2) and several
ANN model parameters. These relationships are based on
real COR data obtained by an SMS prototype described in
Section. 4.. Throughout this section, we focus on one-step
ahead prediction, i.e., prediction of COR at time instant t+1,
Ψ̂(t + 1), using Ψ(t). Thus, the number of neuron in output
layer is one. We apply the hyperbolic tangent sigmoid func-
tion and the identity function in hidden layer and output
layer as the activation function, respectively. Levenberg-
Marquardt algorithm are used as learning method. More-
over, we use the cross validation method in which the ratio
of the training test data size to the test data size is 7 : 3.

Figure 6 shows RMSE(Ψ) as a function of the number of
lag (τ). In this result, we use one hidden layer, i.e., L = 3
and the number of neurons in the hidden layer are set to
J(2) ∈ {1, 30}. As you can see, increasing τ and the number
of neurons result in smaller RMSE performance. Moreover,
we can get a higher gain when increasing τ than when in-
creasing the number of neurons.

Figure 7 shows the result of RMSE(Ψ) as a function of the
number of neurons in hidden layer. In this result, we set the
number of lag τ , the number of layers L to τ ∈ {1, 2, 10, 100}
and L = 3, i.e., one hidden layer, respectively. From this
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Ψ̂(t + 1) = z(L),

= f (L)(W(L)f (L−1)(W(L−1) · · · f (2)(W(2)Ψ(t) + b(2)) · · · + b(L−1)) + b(L)). (7)

Fig. 6 Predictive RMSE vs. Number of lag (τ)

Fig. 7 Predictive RMSE vs. Number of neurons in hidden layer.
τ ∈ {1, 2, 10, 100}, L = 3, J(2) ∈ {1, 5, 10, 15, 20, 30}.

figure, we can see increasing the number of neurons in hid-
den layer, J(2) may not an effective means since almost same
performances are achieved even if increasing the number of
neurons. On the other hand, increasing τ leads to a high gain
in terms of RMSE performance. Thus, we can conclude it is
beneficial for ANN design for COR prediction to increase τ .

Finally, we compare RMSE(Ψ) for several prediction meth-
ods in Fig. 8. We applied two comparative methods,
AR model-based COR prediction and AR model with state
change detection-based COR prediction [39]. In this result,
we set the AR order parameter of both comparative methods
to one as the authors in [39] confirmed the value is a proper
value by extensive numerical evaluations. On the other hand,

Fig. 8 Comparison of Predictive RMSE for several prediction
methods.

we use one hidden layer, i.e., L = 3 and, the number of lag,
τ and the number of neurons in hidden layer, J(2) are set to
τ = 10 and J(2) = 10, respectively. Obviously, ANN-based
COR prediction achieves the best RMSE performance. The
analysis of the cause that why ANN-based COR prediction
can achieve the best performance will be one of our future
works.

7. Conclusion

In this paper, we investigate the ANN-based COR predic-
tion. In ANNs, it is important to set the network parameters
such as weight values and the number of layers appropriately.
For this issue, we reveal the relationship between the pre-
diction performance and several neural network parameters,
such as the number of hidden layers and the number of units
in each hidden layer based on COR data obtained by our
spectrum measurement system. Numerical evaluations show
the importance of input size to the designed network rather
than the number of hidden layers and the number of neurons.
This gives our the insight into to the design criterion of net-
work architecture. Based on this insight, we will design the
input data form and the number of input layer as a future
work. Furthermore, we will consider other networks model
such as recurrent neural network model and convolutional
neural network model.
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